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Abstract

Understanding when reinforcement learning
algorithms can make successful off-policy
predictions—and when the may fail to do
so—remains an open problem. Typically, model-
free algorithms for reinforcement learning are
analyzed under a condition called Bellman
completeness when they operate off-policy with
function approximation, unless additional condi-
tions are met. However, Bellman completeness
is a requirement that is much stronger than
realizability and that is deemed to be too strong
to hold in practice. In this work, we relax this
structural assumption and analyze the statistical
complexity of off-policy reinforcement learning
when only realizability holds for the prescribed
function class.

We establish finite-sample guarantees for off-
policy reinforcement learning that are free of
the approximation error term known as inherent
Bellman error, and that depend on the interplay
of three factors. The first two are well known:
they are the metric entropy of the function class
and the concentrability coefficient that represents
the cost of learning off-policy. The third fac-
tor is new, and it measures the violation of Bell-
man completeness, namely the mis-alignment be-
tween the chosen function class and its image
through the Bellman operator. Our analysis di-
rectly applies to the solution found by temporal
difference algorithms when they converge.

1. Introduction

Markov decision processes (MDP) (Puterman, 1994;
Bertsekas, 1995b;a) provide a general framework for re-
inforcement learning (RL) (Bertsekas & Tsitsiklis, 1996;
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Sutton & Barto, 2018), which is a general paradigm for pre-
diction and decision making under uncertainty. Modern
RL algorithms typically solve sequences of sub-problems
that require estimating the value of a policy different from
the one that generated the dataset, a task broadly called
off-policy reinforcement learning. Moreover, function ap-
proximations are typically implemented to deal with large
state-action spaces.

Various off-policy methods have been proposed, such as
importance sampling (Precup, 2000; Thomas & Brunskill,
2016; Jiang & Li, 2016) and weight learning (Uehara et al.,
2020; Jiang & Huang, 2020; Zanette & Wainwright, 2022).
Nonetheless, methods based on controlling the temporal
difference error, such as fitted Q iteration (Ernstet al.,
2005; Munos & Szepesviri, 2008), TD (Sutton, 1988), and
their variants such as ()-learning (Watkins & Dayan, 1992),
remain widely used especially with deep function approxi-
mation (Tesauro et al., 1995; Mnih et al., 2013; 2015; 2016;
Fujimoto et al., 2018). We collectively refer to these algo-
rithms as temporal difference (TD) methods.

Bellman completeness: a fundamental RL notion
When the state-action space is large, TD methods
are implemented with a function approximation class
for the action value function. Their existing anal-
yses (Munos & Szepesvari, 2008; Chen & Jiang, 2019;
Duan & Wang, 2020; Fan et al., 2020) rely on a fundamen-
tal reinforcement learning notion known as Bellman com-
pleteness, which must hold for these algorithms to succeed.
Completeness requires the chosen approximation space to
fully capture each Bellman backup, see Figure 1a. How-
ever, such requirement is deemed too strict to hold in prac-
tice. What is more, even related algorithms that are the-
oretically more robust than TD and fitted Q, such as the
minimax variant (Antos et al., 2008), also rely on Bellman
completeness to properly function without approximation
erTor.

This led researchers to investigate fundamental limits
(Chen & Jiang, 2019; Zanette, 2020; Wang et al., 2020;
Weisz et al., 2020; Wang et al., 2021; Foster et al., 2021).
Recently, (Foster et al., 2021) discovered that complete-
ness is crucial in an information-theoretic sense: even with
seemingly benign distribution shifts, exponential lower
bounds quickly arise in the absence of Bellman complete-
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ness.

Unfortunately, completeness is a very hard condition to
meet. For example, when realizability is violated, the pre-
dictor class can be expanded so as to reduce the approxi-
mation error, a balancing act known as bias variance trade-
off (Shalev-Shwartz & Ben-David, 2014). On the contrary,
when Bellman completeness is not satisfied, enlarging the
prescribed function class may make completeness even
more violated, because the Bellman backup of this new and
bigger function class must now be correctly represented.

In summary, while realizability is also needed to make
good predictions in Statistics, Bellman completeness seems
like an additional requirement specific to reinforcement
learning, one that is intuitively very restrictive and unde-
sirable, and unlikely to hold in practice, but seemingly nec-

essary.

Contribution In this work we analyze the statistical com-
plexity of off-policy reinforcement learning in settings
where only realizability is assumed, and bridge the gap be-
tween the Bellman complete case and the known exponen-
tial lower bounds that arise when Bellman completeness
is “extremely” violated. In order to characterize this in-
termediate regime, we introduce the concept of local in-
herent Bellman errors to measure the local violation of
Bellman completeness. We then establish off-policy error
bounds for the solution found by the minimax reinforce-
ment learning formulation (Antos et al., 2008), first with
function classes of finite-cardinality and then with more
general, non-parametric ones.

Our error bounds depend on three critical factors: 1) the
metric entropy of the chosen function class, 2) a certain am-
plifying factor, called concentrability coefficient, that arises
due to the distribution shift, and 3) a new amplifying factor
that represents the mis-alignment between the prescribed
function class and its image through the Bellman operator.
Furthermore, these error bounds apply to the widely used
iterative TD methods when and if they do converge.

The main improvement compared to prior analyses is that
the violation of Bellman completeness is expressed as an
amplifying factor that affects the sample complexity, in-
stead of as an approximation error term known as inher-
ent Bellman error. The improvement arises from the ap-
plication of a localization argument to measure the viola-
tion of Bellman completeness. Effectively, this removes
the assumption of Bellman completeness for off-policy
evaluation: instead, the lack of completeness is measured
by a certain coefficient —like the metric entropy measures
the function capacity and the concentrability measures the
distribution shift—that can in principle be computed. We
expect the insights of this paper to apply more broadly to
other settings such as policy optimization or exploration.

Bellman complete models require all Bellman backups to
be contained in the prescribed function class. In contrast, in
our work the two are allowed to be only partially aligned.
It follows that the decision processes that can be studied
with our framework are far richer and more realistic than
those that are Bellman complete, because the image of the
prescribed function class through the Bellman operator can
have a complex, truly high-dimensional structure.

Most literature is discussed in Section 4.3.

2. Preliminaries

Here we recall the basic definitions; some additional back-
ground material can be found in Appendix B.

2.1. Notation and Set-up

We focus on infinite-horizon discounted Markov decision
processes (Puterman, 1994; Bertsekas & Tsitsiklis, 1996;
Sutton & Barto, 2018) with discount factor y € [0, 1), state
space S, and an action set .A. For each state-action pair
(s, a), there is a reward distribution R(s, a) over [0, 1] with
mean r(s, a), and a transition function P(- | s, a).

A (stationary) target policy m maps states to actions. Its ac-
tion value function is denoted with f*. It is defined as the
discounted sum of future rewards based on starting from
the pair (s, a), and then following the policy 7 in all future
time steps f*(s,a) = r(s,a) + > poy Y'E[rn(Sh, Ap) |
(So0,A0) = (s,a)], where the expectation is taken over
trajectories with Ap, ~ m(- | Sp), and Spy; ~
P(- | Sp,Ap) forh=1,2,.... We also use f(s,m) =
Epnn(s) f(s, A) and define the Bellman evaluation opera-
tor and its empirical counterpart using the observed reward
r and successor state st as

(Tf)(sa a) = T(Sﬂ a) + 7ES+~P(-|s,a)f(S+a7r);
(Tf)(rﬂ S+) =r+ 7f(5+a7r)'

The key property needed in our theorems is that T is
a bounded operator. The discounted occupancy measure
of the target policy 7 is given by d"(s,a) = (1 —
V) S o Y PL[(Sh, An) = (s,a)], where P}, is the prob-
ability of encountering a certain state-action pair when fol-
lowing 7 from a given initial state.

We are interested in the prediction error from a certain ini-
tial state sg, which will be omitted later for brevity

E(f) = (f" = f)so,m).

Throughout the paper we assume that the learner has access
to an action value function class F that contains the correct
predictor.

Assumption 1 (Realizability). f* € F.
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(a)

(b)

Figure 1: Bellman completeness (Figure 1a) puts strong restrictions on the Bellman operator 7", because the Bellman operator 7~ must map the chosen function class F onto
itself, i.e., TF C F. Without Bellman completeness (Figure 1b), there is no restriction on 7 F, although its alignment with F does influence the statistical complexity of

off-policy reinforcement learning.

Learning from a dataset We assume we have access to
a dataset D = {(s;,a;,7,5; ) }i=1....n that contains n tu-
ples. Each tuple contains a state s, an action a, a reward
r and a successor state sT. In order to deal with the situ-
ation where the dataset is created using different policies,
we assume that the states and actions are sampled from an
underlying distribution p. Conditioned on (s,a) ~ p, the
reward and successor state in a certain tuple are sampled
from the Markov reward process, i.e., r ~ R(s,a) and
st ~ P(s,a). The associated expectation operator over
(s,a,r,sT) is often denoted with IP, while its empirical
counterpart over (s, a,r,st) € D is denoted with ,,.

We commonly measure quantities using the norm induced
by the distribution x4 and the policy 7. Let f be a function
defined over the state-action space; they are defined as

£ = Esaymalf (s.0), 117 = Egs.apwar [f (5, 0)

Projections The projection operator II onto F takes in a
function h and finds a function g € F closest to h
ITh = argmin ||g — h|| .
geEF
In most cases we deal with, the function to project is the
Bellman backup h = T f, and so it is convenient to de-

note the projected Bellman backup and the empirically pro-
jected backup with specific symbols, defined as

gy = argmin|jg — Tf||i, and
geEF
2
(g(s,a) —Tf(r, s+)> .
(D

~ 1
gy = argmin — Z
ger (s,a,r,st)eD

Fitted Q Fitted Q (Ernstet al., 2005) is a classical and
well studied (Munos, 2005; Munos & Szepesvdri, 2008;
Chen & Jiang, 2019; Duan & Wang, 2020; Fan et al., 2020)
off-policy prediction and optimization algorithm. In this
paper we focus on the policy evaluation version of the al-
gorithm, which starts from an initial iterate fy € F and
updates it iteratively by solving

1
fin —agmint Y

n
Jer (s,a,r,st)eED

(Fls.) —r —fiuls*m)

We indicate with pr the fixed point of fitted Q.

2.2. Minimax Formulation and Inherent Bellman
Error

The fitted Q algorithm is related to the minimax formula-
tion (Antos et al., 2008) in the sense that when fitted Q con-
verges to a fixed point, such fixed point is a minimizer of
the minimax formulation (Chen & Jiang, 2019).

Squared temporal difference cost Consider the follow-
ing cost function, which is the squared temporal difference
error of the tuple (s,a,r,s*) evaluated using f as next-
state value function and g as current function. It is defined
as

2
L(gaf) = (g(s,a) -r- ’\/Ea'*NTr(s)f(SJrﬂaJr)) - @

In order to find a predictor consistent with the dataset D,
one can try to minimize the empirical expectation of the
above cost function with g = f, namely £(f, f) where'

Lo f) = % S L))
(s,a,r,sT)ED

Unfortunately, due to the double sampling issue (Baird,

1995; Sutton & Barto, 2018), its expectation contains the

bias term o( f)? (made explicit in Lemma 6, but the fact is

well known) representing the variance of the backup

EL(g, f) = lg = Tl + o*(f). 3)
The variance term o(f)? arises even when g = f in the
cost function. This implies that in the limit of infinite data
the minimizer of EL(f, f) must trade-off minimizing the
mean-squared Bellman error || f — 7 f||7, with minimizing
the variance o (f)? of the backup. The resulting procedure
may converge to a solution different from the optimal pre-
dictor f* even in the realizable setting.

't is useful to define the cost and its expectation by separating
g and f in preparation for the discussion to follow.
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A different cost function To remedy this issue?, the fol-
lowing cost function was introduced in (Antos et al., 2008):

Compared to the squared TD cost function in Equation (2),
which would be minimized with ¢ = f, the modified cost
function contains the correction term —L(g, f). The ex-
pectation of the correction term generates the conditional
variance of the backup o(f)? which then cancels the one

presentin EL(f, f). We have E[L(f, f) — L(g, f)] =
=f =Tfla+o()? =llg=Tflz —o(f)?
= =Tfl = llg =TI @

While the modified cost function is successful in cancelling
the unwanted term o (f)?, it has introduced a different bias
term represented by ||g — 7 f||%. In order to keep this bias
at a minimum, the function g should be selected so as to
minimize it, ideally as

. — mi _ 2
gy =minllg =T
The population-level loss to minimize is (Antos et al.,
2008)

M) = I = TfIlG = minllg=TfIE )

The resulting empirical program to minimize over f is

M(f) =L(f, f) - min £(g, f)

Its empirical minimizer f is of interest to us:

fe argmin./\//T(f).
fer
The fact that the fitted Q fixed point minimizes M(f) (see

e.g., (Chen & Jiang, 2019)) motivates the study of the min-
imax formulation.

Completeness removes the bias Despite the above effort
to reduce the bias term, the term infyc 7 || g — 7 f||2 still af-
fects the estimation quality of the mean-squared Bellman
error, and it is unclear whether that is better than o(f)?.
A notable case where such correction is desirable is when
the bias term minge 7 lg — 7 |2 is zero for all f € F,
a condition called Bellman completeness. In this case,
the population-level loss M( f) coincides with the mean-
squared Bellman error, i.e., under Bellman completeness
we have

M) =f=TFI2- (6)

Therefore, minimizing M directly minimizes the mean-
squared Bellman error.

%In practice iterative algorithms are used, but the algorithm
studied here is closely related to the iterative TD algorithms.

Inherent Bellman errors When completeness starts to
be violated, only part of 7 f is ‘captured’ by F, and an
angle between the two arises, see Figure 1b. Although in
this cases the backup 7 f is not contained in F, we can
still consider its projection onto F defined in Equation (1).
As the projection discards potentially useful informations
about the backup 7 f, we expect an error to arise. Such
error is the component of the backup 7 f not captured by
F:

Jnf {lg =T fll- v
An algorithm like fitted Q typically considers different
functions f € F through its execution, and the projection
error is propagated through the iterations. Moreover, such
error term is present in the definition of the minimax pro-
gram in Equation (5), and so its presence seems to be un-
avoidable. Generally, a worst-case analysis is adopted, and
the worst-case value of the residual over f € F is called
inherent Bellman error of the function class F

Zr = sup inf ||g — T f||... 8

> = sup inf g =Tl ®)
(Other definitions based on different norms are possible).
The inherent Bellman error is zero for the Bellman com-
plete case in Figure la; the less the Bellman backup is
aligned with F the bigger it becomes (cfr. Figure 1b).

3. Local Inherent Bellman Errors

In this section we introduce the core concept of this paper,
namely the local inherent Bellman errors and the related
notion of S-incompleteness; they are needed to convey the
main message of the paper when Bellman completeness is
violated. From a technical standpoint, our development
is inspired by the localization argument of (Bartlett et al.,
2005), which is a now a standard tool in statistics to obtain
fast regression rates (Wainwright, 2019). Our use of local-
ization, however, concerns a different quantity—the inher-
ent Bellman error—and brings an even more consequential
improvement, i.e., that of removing the approximation er-
ror term connected to the lack of Bellman completeness.

Some intuition is provided in Figure 2, while the defini-
tions are motivated as follows. If Bellman completeness
was satisfied then minimizing M would directly minimize
the mean-squared Bellman error, see Equation (6). When
completeness is violated, our hope is that the mean-squared
Bellman error is still minimized by the minimax algorithm.
In other words, we hope that f enjoys small mean-squared
Bellman error || f— 7 f ||2 If that is the case, f must belong
to the set of predictors F ( ) whose Bellman error is, say, at
most 7 for some positive value r:

Fr)={feFIIf =Tfllu<r}
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If f is known to belong to the set F (r), the inherent Bell-
man error that should arise in a performance bound is one
where the predictor f is restricted to the class F(r). The
value of the inherent Bellman error constructed in this way
as a function of r is what we call incompleteness function.

Definition 1 (Incompleteness Function). The incomplete-
ness function I (or localized inherent Bellman error) is the
function

() = swp inf llg =T/

JeF(r)9

In other words, the incompleteness function is the inher-
ent Bellman error localized to the set of functions of small
mean-squared Bellman error || f — 7 f|| .. When r — oo,
the localized inherent Bellman error recovers the inherent
Bellman error, i.e., Z(co) = Zz. Notice that if the model
is misspecified (f* ¢ F) then the set F(r) may be empty
for small values of 7, and so the incompleteness function is
defined only up to a certain value of r.

To summarize, our expectation is that the empirical solu-
tion fbelongs to F(r) for an appropriate value of r. In that
case, the inherent Bellman error ‘felt’” by the minimax algo-
rithm should be Z(r). When r decreases, the function Z(r)
should also decrease because it is an error associated to a
smaller set. This intuition on the behavior of the local in-
herent Bellman errors is correct, and it is formalized by the
following proposition, which is proved in Appendix C.1.

Proposition 1 (Behavior of Local Inherent Bellman Errors).
The following holds true:

* I(r) is increasing with r;

* if realizability holds then Z(0) = 0.

Figures 3a to 3c illustrate possible shapes for the incom-
pleteness function in the realizable case, while Figure 3d
shows one where realizability is violated (i.e., when f* &
F).

In the sequel we focus on the realizable case to make the
analysis clearer, i.e., on function classes that satisfy As-
sumption 1. Although in this case the local inherent Bell-
man error always converges to zero, it might do so at dif-

Figure 2: Local inherent Bellman errors. The norm of the un-captured component of
the Bellman error IT7 f — 7 f, when maximized over f € F,is the inherent Bellman
error. For every function f € F, such un-captured component is always a fraction
of the Bellman error f — 7 f. When the Bellman error is reduced, its un-captured
component also gets reduced. This means that the ‘effective’ inherent Bellman error
seen by an algorithm decreases as the algorithm approaches the optimal predictor f*
along F. In order to leverage this observation in the analysis, we localize the inherent

Bellman error to a subset of functions where the empirical predictor f returned by the
minimax algorithm is expected to be. In this way, we can replace the inherent Bellman
error in Equation (8), which is defined globally over F, with a more localized version

defined over a smaller class F C F that contains f

ferent speeds. The average rate of convergence to zero is
denoted with (3 and it determines the problem complexity.

3.1. B-incomplete MDPs

Let us gain some intuition by considering a linear problem,
namely one where the function class F is linear. It is de-
fined by a feature extractor ¢ that maps state-action pairs
to real vectors in R?, as Fyi, = {¢ " w | w € R4},

When the class is linear and realizability holds, the local-
ized inherent Bellman error Z(-) always increases at a lin-
ear rate, a fact that we verify in Appendix F.1.

Proposition 2 (Linearly Incomplete MDPs). If F = Fi,
then Z(r) = pr forall r > 0.

In this case, we say that the system is S-incomplete. When
B = 0, the MDP is linear Bellman complete (Zanette et al.,
2020; Duan & Wang, 2020) and that corresponds to the sit-
uation in Figure 3a. On the contrary, the higher 3 is, and
the farther from f* (i.e., the higher the radius ), the more
Bellman completeness is violated, a situation in display in
Figure 3b.

When F is non-linear we expect the local inherent Bellman
error Z to exhibit a more complex behavior. It must still
comply with Proposition 1, namely it must start from zero
and increase as the radius increases. In these cases it is a
good idea to define a quantity to capture its global behavior.
Such quantity should put a bound on the average rate of
increase of Z, i.e., such that

Z(r) < Br. (&)

With this goal in mind, we give the following definition for
B, one that applies to the linear and the non-linear setting.

Definition 2 (8-incompleteness). The incompleteness fac-
tor B, or mis-alignment between F and its image T F, is
the scalar quantity defined as

wup g 19 =Tl

= f3. 10
sup b =T, (10

In other words, 3 represents the maximum fraction of the
Bellman error || f — 7 f||,, that is not captured by F. When
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Figure 3: Stylized representations of possible shapes of Z

Bellman completeness holds, infsc 7 |[g — 7 f||, = 0 for
all f € F, and thus 8 = 0. In the worst case, g in the nu-
merator in Definition 2 can at least be chosen equal to f, in
which case we have 5 = 1. More generally, (3 is a number
between zero and one. The closer it is to zero, the more
Bellman complete the MDP is, in the sense that complete-
ness gets violated more slowly when moving away from f*.
See Figure 3c for a visual definition of 3. It can be shown
that Definition 2 leads to the desired behavior in display in
Equation (9), since Z(r)/r can be written as

lo=TFle — u iug Lo =T/l

<
Sw =T, =

= sup inf
fEF(r)9EF r

How is Definition 2 useful for prediction? Intuitively, the
numerator infye 7 ||g — 7 fl|, in Definition 2 represents
some form of approximation error for the backup 7 f; the
division by the denominator scales such approximation er-
ror with respect to the mean-squared Bellman error, which
is the quantity that we wish to reduce. When the latter is
reduced, the approximation error is also reduced, and the
Bellman backup is more faithfully represented. In other
words, the approximation error must vanish as we approach
I

Another possible connection is with the double-sampling
issue (Baird, 1995). Although the mean-squared Bellman
error cannot be accurately estimated without Bellman com-
pleteness (see e.g. (Duan et al., 2021) for a recent lower
bound), B-incompleteness ensures that we can estimate it
with a certain accuracy relative to its magnitude, and in par-
ticular, more accurately for the important functions that are
closer to f*.

4. Error Bounds on Bellman-Incomplete
MDPs

In this section we present our main results, which are
off-policy error bounds on the prediction error 1E(F)] for
the minimizer f of the empirical loss M. These error
bounds apply to the limit point for fitted Q when it exists
(Chen & Jiang, 2019).

Concentrability It is useful to introduce the following
concentrability coefficient (Chen & Jiang, 2019; Xie et al.,
2021), which represents the increase in the mean-squared
Bellman error when moving from the data-generating dis-
tribution p to that induced by the target policy 7

If=TrI2
C L L
TR I =TAI2

As the proof shall clarify, the minimax procedure indirectly
attempts to minimize the mean-squared Bellman error over
1 (even though it cannot estimate it properly), while the
prediction error is related to that over d,. Therefore, the
concentrability coefficient® translates how minimizing the
mean-squared Bellman error over p affects that over d”™,
and hence the prediction error. The higher the value of
C, the less effective the minimax algorithm is, because the
value of the mean-squared Bellman error over (i is less rep-
resentative of the prediction error.

4.1. Error bounds with finite classes

For simplicity, let us present the main findings first when
the cardinality of F is finite.

Theorem 1 (Error Bound with Finite Classes). With prob-

ability at least 1 — 0, the prediction error of the minimizer
f satisfies the bound

= 1 1 C'In(|F|/9)
DI =13 = an
The proof is in Appendix D. The bound above exhibits a
typical dependence on several factors: the log failure prob-
ability In(1/0), the square-root of the number of samples
n, the effective horizon =, the metric entropy In(|F|)
and the concentrability factor C. However, the key nov-
elty is the presence of the pre-factor ﬁ that measures the

3Some weaker upper bounds, which have the advantage of be-
ing independent of F, are the following:

C < Fpn [d”(s,a)]2 < sup (59
- SaIH “(870’) (s,a) /,L(S Cl)
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lack of Bellman completeness, and the absence of the in-
herent Bellman error. Practically speaking, the form of the
equation suggests that realizability is sufficient whenever
1) 8 < 1, and 2) the TD method converges. When § = 1,
off-policy learning is unviable without additional ‘domain
knowledge’ because the projected Bellman equations—
which TD methods aim to solve—may have multiple so-
lutions.

Compared to the state of the art (Chen & Jiang, 2019;
Jin et al., 2021; Xie et al., 2021; Duan et al., 2021) analy-
ses of the minimax algorithm, the use of the local inher-
ent Bellman errors has transformed the approximation er-
ror term Z into the pre-factor ﬁ that multiplies the rate
of convergence. In other words, Equation (11) establishes
that the lack of Bellman completeness does not generate
an approximation error—the inherent Bellman error—but

instead it affects the rate of convergence.

The factor ﬁ could also be interpreted as the cost, in
terms of sample complexity, of moving from the double-
sampling regime* to the single-sampling regime in off-
policy reinforcement learning; the work of (Duan et al.,
2021) can be used to compare our sample complexity with
that of methods based on Bellman residual minimization in
the double-sampling regime.

It is instructive to examine in more details the three key
components that determine the sample complexity.

* The metric entropy, represented by In(|F|), arises al-
ready in supervised learning (Wainwright, 2019).

» The distribution shift, represented by the concentrabil-
ity coefficient C, arises (as a simplified expression that
does not depend on the Bellman operator) if distribution
shift is present in supervised learning.

* The incompleteness factor, represented by ﬁ, mea-
sures the adequacy of the chosen function class with re-
spect to the Bellman operator 7; this is the key factor
that distinguishes the reinforcement learning setting from
single-step processes, because it involves the Bellman op-
erator. Notice that the notion of S-incompleteness is not
an assumption: the value for 5 can always be computed,
and its knowledge is not required by the algorithm. Much
like the concentrability coefficient measures the degrada-
tion in performance as the target policy 7 visits different
state-action pairs than the dataset distribution g, the in-
completeness factor 3 represents the loss of efficiency as

*We say that double samples are available when the avail-
able dataset contains two independent transitions for each tu-
ple. More precisely, it contains tuples (s, a,r,s™, 91) such that
st ~ P(s,a)and s* ~ P(s,a) are independent successor states,

a condition hardly met outside of simulated domains or determin-
istic MDPs.

the chosen function class becomes more and more mis-
aligned with the Bellman backups.

Finally, it is worth to highlight the following fact
(Chen & Jiang, 2019): if fitted Q converges, its limit
point must inherit the bound of Theorem 1, and so our
completeness-free result applies to the solution found by
fitted Q.

Theorem 1 already contains the key innovation of this pa-
per. However, the result only applies to finite classes, which
are statistically simple but also unstructured: they are non-
convex and non-differentiable and hence the above result
cannot be applied to gradient-based methods such as TD.
We deal with more expressive models in Appendix C.3, and
make additional considerations in Appendix C.2.

4.2. Comparison with existing guarantees

In reinforcement learning analyses for model free algo-
rithms, an approximation error term is present even if the
problem is realizable, i.e., even if the action value function
f* of the target policy is contained in F. Precisely, the ap-
proximation error term is the inherent Bellman error of the
function class F. A typical bound® (Munos & Szepesviri,
2008; Chen & Jiang, 2019) for the minimax variant reads

= 1 1
- CW(F/3) , VC 1
1—7 n 1—7
————

stat error approx error

According to Equation (12), the prediction error can be re-
duced only up to an error floor represented by the inherent
Bellman error Zx of the function class F.

Figures 4a to 4d display some Bellman errors to help ap-
preciate the results of this paper and the informal defini-
tion of 3. When Bellman completeness holds such as in
Figure 4a, the class F fully captures the Bellman backup
and thus 5 = 0 (no component of the Bellman error is
left un-captured). In this case, the existing bound in Equa-
tion (12) and the new one in Theorem 1 both reduce to

T i Z'In )
‘V 7v|éﬁ /('1(|T;7:\/)_

The difference between the new analysis and the existing
ones becomes stark when completeness is violated. For ex-
ample, in Figure 4c¢, the Bellman backup 7 f is mis-aligned
with respect to F, and the residual in Equation (7) can be
quite large if the Bellman error f— 7T f is also large. For the
specific example in Figure 4c, the residual in Equation (7)
is roughly a fraction 3 = 0.7 of the full Bellman error, i.e.,
infoerllg — T fllp = Bllf — T fll If the Bellman error
happens to be large, say || f — 7 f||, ~ 1, then the residual

SNotice that these papers study the case where 7 is the Bell-
man optimality operator, which leads to slightly different expres-
sions.
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Figure 4: Local alignments between the Bellman backup 7 f and the class F for various values of 3. The setting in Figure 4a is traditionally called ‘Bellman complete’. In

this simple example 8 = sin 6.

B =1 Figure 5: Off-policy reinforce-
‘ ment learning remains viable for
values of 3 in the range [0, 1),
while prior analyses expected an
unavoidable inherent Bellman er-
ror to arise. The red shaded
area, which corresponds to 3 —
1, represents problems where the
sample complexity becomes un-
manageably large, a condition in
force in the lower bounds.

B=0

infye 7 |lg — T fl|, will also be large. Tt follows that the
inherent Bellman error will be large as well, and so will the
prediction error when estimated via Equation (12):

VT — V™| 2 Tr ~ 1. (13)

In other words, the bound 12 becomes vacuous. However,
if the situation depicted in Figure 4c is representative of
the mutual alignment between 7 f and F across various
f € F, then in lieu of a large approximation error, our
analysis predicts only a slowdown of a factor of ﬁ ~ 3
compared to the Bellman complete case:

~ 1 1
|V7r _V7T‘ g 3 x C Il(|.7:‘/(5)
e ekl A

1-5

. (14

For such problems, the bound in display in Equation (14) is
a major improvement compared to the one in Equation (13).
While the analyses that lead to Equation (13) suggest that
accurate predictions are out of reach due to large inherent
Bellman errors, the refined one of this paper expects a mi-
nor slowdown in the rate of convergence compared to the
Bellman complete case.

It is only when the Bellman backup becomes almost or-
thogonal to F that 3 approaches one and prediction be-
comes very challenging; such is the situation depicted in
Figure 4d and in force in some recent lower bounds (e.g.,
(Foster et al., 2021)). See Figure 5 for a graphical sum-
mary. More precisely, the condition 8 = 1 corresponds
to the existence of multiple projected fixed points. Any
method based on finding projected fixed points to the Bell-
man equations necessarily fails to converge to the correct

predictor on such problems, because the correct predictor
is only one of the many possible solutions to the projected
Bellman equations.

When 3 is close to one, the classical bound in Equa-
tion (12) can be tighter than the new bound in Equation (11).
Of course, one can always select the tighter of the two.
Likewise, it is possible to leverage the more general no-
tion of local inherent Bellman error instead of that of -
incompleteness and achieve tighter error guarantees than
the ones that we present, but doing so would have only been
possible at the expense of the clarity of exposition. Instead,
the key contribution of this work is to interpret the inherent
Bellman error no longer as an unavoidable approximation
error that must be zero for the approximation error to be
zero, but as a quantity that naturally decreases when more
samples are added. More precisely, if 8 < 1, as the number
of samples n increases, the bound in Equation (11) eventu-
ally becomes tighter than that in Equation (12), establishing
convergence to the optimal predictor even when the inher-
ent Bellman error is non-zero. See also Appendix A.

4.3. Further comparison with existing literature

One work close to ours is (Xie & Jiang, 2020b), which
operates with stronger concentrability requirements. An-
other one is the non-linear Bubnov-Galerkin method
(Zanette & Wainwright, 2022), for which we may expect
similar considerations to apply; however, the violation of
completeness is not quantified in an interpretable way in
that work.

Our result is due to a refined analysis, as well as to an
appropriate definition, and not to a new algorithm. The
minimax formulation has been analyzed multiple times,
(Antos et al., 2008; Chen & Jiang, 2019; Xie et al., 2021;
Jin et al., 2021; Duan et al., 2021; Xie et al., 2022) but to
our knowledge all analyses use the inherent Bellman errors.
Although our minimax formulation is for policy evaluation,
as the proof will clarify, the same argument applies to pol-
icy optimization (i.e., when 7 is the Bellman optimality
operator). Finally, our work removes the binary distinc-
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tion between Bellman completeness and the lower bound
of (Foster et al., 2021).

Additional literature The off-policy prediction task has
been widely studied. Earlier methods where based
on temporal difference (TD) (Sutton, 1988); they in-
clude @-learning (Watkins & Dayan, 1992) and fitted Q
iteration (Ernst et al., 2005; Munos & Szepesvari, 2008).
These TD methods are key to the recent successes of
RL (Tesauro et al., 1995; Mnih et al., 2013; 2015; 2016;
Fujimoto et al., 2018).

A more robust TD variant which is however harder to opti-
mize numerically is the minimax formulation that we inves-
tigate here (Antos et al., 2008); its relation with TD meth-
ods has been investigated by (Chen & Jiang, 2019). The
minimax formulations has been adopted for provably ef-
ficient exploration (Jin et al., 2021) and offline robust op-
timization (Xie et al., 2021). More recently, the minimax
formulation has been used as a proxy to analyze theoret-
ically an empirical algorithm based on TD (Cheng et al.,
2022). An analysis based on local Rademacher averages
is given in (Duan et al., 2021). All these analyses require
Bellman completeness, or otherwise the inherent Bellman
error must be suffered.

Many other algorithms for the off-policy prediction prob-
lems have been proposed. These include importance sam-
pling methods (Precup, 2000; Thomas & Brunskill, 2016;
Jiang & Li, 2016; Liu et al., 2018; Farajtabar et al., 2018),
which do not require completeness but can only tolerate
small distribution shifts.

More recent literature has proposed weight-learning
methods which rely on the knowledge of certain
weights, typically the marginalized importance ratios
between the distribution that collected the data and
the target policy (Liuetal., 2018; Xie & Jiang, 2020a;
Zhan et al., 2022; Nachum et al., 2019; Xie etal., 2019;
Zhang et al., 2020a;b; Yang et al., 2020; Kallus & Uehara,
2019; Jiang & Huang, 2020; Ueharaetal,, 2020;
Zanette & Wainwright, 2022; Rashidinejad et al., 2022).
While these algorithms can avoid Bellman completeness,
they rely on additional assumptions, such as realizability
of the weight class, and more generally they leverage
additional domain knowledge which is implicit in the
choice of the weight class. For example, (Uehara et al.,
2021) makes completeness assumptions about the weight
class, and (Zhanetal.,, 2022) assume realizability for
both the weight and value class. An additional high-level
viewpoint is presented in Appendix B.

Two notable exceptions to completeness are (Xie & Jiang,
2020b; Zanette & Wainwright, 2022); however
(Xie & Jiang, 2020b) make very strong assumptions on the
concentrability factor, while the violation of the complete-

ness condition is not quantified in (Zanette & Wainwright,
2022). The violation of completeness is also examined
algebraically and algorithmically for the linear setting by
(Perdomo et al., 2022). For off-policy learning with pes-
simism and linear methods, completeness was removed via
a Bubnov-Galerkin approach in (Zanette & Wainwright,
2022) while still ensuring computational tractability;
in contrast, here we focus on more general non-linear
predictors.

Fundamental limits were investigated in (Zanette, 2020;
Wang et al., 2020; Foster et al., 2021). Collectively they
show that hard-to-learn structures can arise in absence
of Bellman completeness, or with large distribution
shift.  Our paper describes the intermediate situation
between these lower bounds and the Bellman complete
setting. Related papers include (Duan & Wang, 2020;
Duan et al., 2021; Tang et al., 2019; Nachum & Dai, 2020;
Uehara et al., 2021; Chen & Qi, 2022; Chang et al., 2022).

Other papers have implicitly examined settings that are in-
termediate between realizability and completeness, such as
(Wei et al., 2022; Ye et al., 2022). In their setting, if the
corruption continues through time then the regret scales lin-
early. Rather, our setting is corruption free, and we can
indeed converge to the optimal solution when 5 < 1.

5. Conclusion

In this work we have re-analyzed the statistical com-
plexity of off-policy reinforcement learning on Bellman-
incomplete MDPs using temporal-difference-style algo-
rithms. The work establishes that there exists a full spec-
trum between Bellman completeness and the existing lower
bounds where off-policy reinforcement learning remains
statistically viable, even without additional domain knowl-
edge, such as weights or test classes, and with no approxi-
mation error. The key advancement is due to a localization
argument, which removes the approximation error associ-
ated to the lack of Bellman completeness.

Even though we presented our findings for the policy evalu-
ation problem, the optimization setting is immediately cov-
ered by replacing the Bellman evaluation operator with its
optimization counterpart; since our main analysis only re-
lies on the boundedness of the Bellman evaluation operator,
this is a straightforward operation. We also expect these in-
sights to extend directly to the setting of exploration and
of pessimistic policy learning. More generally, we believe
that a local analysis can be a useful tool to analyze new al-
gorithms or existing ones in other settings as well. It can
help carefully assess how the violation of a certain assump-
tion affects the performance of an algorithm, so as to relax
some structural assumptions in a way that does not intro-
duce an approximation error.
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Finally, although our paper exhibits an algorithm to find
high-quality solutions in absence of Bellman completeness,
there is no guarantee that such points can be found in a com-
putationally efficient way. For example, TD methods do
not always converge, although when they do, they inherit
such bounds. That raises an interesting question, one that
concerns possible statistical-computational trade-offs to be
made in reinforcement learning.
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Appendix

The appendix is organized as follows:

* Appendix A presents further comments, particularly related to the weight methods

» Appendix B describes additional notation

* Appendix C describes additional results

* Appendix D presents the main proof of the paper

* Appendix E presents the main technical sub-component of the paper, which is the rate of the minimax program

* Appendix F presents some technical results needed in the prior sections

A. Further Comments on the Relation between TD and Weight Methods

There is a solid high-level connection between TD and weight methods, which we discuss in this section.

If one had access to a generative model, the mean-squared Bellman error can be minimized to find a good predictor.
However, without a generative model, it is not possible to directly estimate (and thus minimize) the mean square Bellman
error when function approximation is implemented. In this case, the ‘standard’ approach (e.g., temporal difference learning,
fitted Q, but also the minimax formulation that we examine here) is to roughly minimize the projected Bellman error. To
be more precise, the Bellman error is projected onto F. Of course, the projection may discard important components of
the Bellman error (those orthogonal to F), and so there is a loss in sample efficiency, which our work quantifies with the
scalar 8. When prior art assumed Bellman completeness, they assumed that there are no orthogonal components.

One might wonder whether it makes sense to ‘project’ the Bellman error along different spaces (i.e., a space V different
from F). This idea roughly leads to the class of weight methods, although they are normally not presented as methods
doing projections; see the paper (Zanette & Wainwright, 2022) for one such viewpoint.

Which one (TD or weight learning) is better? The answer is problem dependent. At a very basic level, if F is well aligned
with the Bellman error, TD-style methods are superior. If one has specific knowledge of a subspace V that better captures
the Bellman error, then a weight learning method can be used. A special case of this is, for instance, when V contains the
density ratio of the target policy with respect to the behavioral policy.

While weight learning methods are conceptually appealing, it is rare to have such domain knowledge to exploit with a
weight learning method, and so TD-style methods (broadly those that we analyze here) remain very popular.

B. Additional Notation

TD and Bellman errors For a given @Q-function and policy 7, let us define the temporal difference error (or TD error)
associated to the sample (s, a,r,s") and the Bellman error at (s, a)

6f) (s, ar,s™) E fs,a) = r—f(sTom),  (Bf)(s.a) 2 f(s.a) = r(s,0) = VEgrap(say f(sT,m). (19)

The TD error is a random variable function of (s,a,r, s™), while the Bellman error is its conditional expectation with
respect to the immediate reward and successor state at (s, a).

Function class We deal with a function class F that contains a set of predictors f defined over the state and action space.
They are bounded in supremum norm, i.e., SUp, q |f(s,a)| <1, abound that must apply to f* as well since we assume
realizability.
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Some of our results are presented using a statistical complexity notion called Rademacher complexity. The Rademacher
complexity of a function class measures the expected worst-case alignment of a predictor f € F, evaluated in a n-
dimensional space over the random covariates (S;, A;) ~ p, with the Rademacher noise ¢;, which takes value —1 and
+1 with equal probability. It is defined for a function class F as

n

R, [F] =Esup 1 Z € f(Si, Aj)

ferin i

When presenting our results for general function approximation, we use a set that contains functions that are at most > 0
away from the optimal one. It is defined as

(F=0) == NN =l <7, feF} (16)
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C. Additional Results
C.1. Proof of Proposition 1

Proof. Let us focus on the first statement and fix two radii » < r’ where Z exists. The supremum sup , for Z(r) is over
F(r) while for Z(r') it is over F(r’); in both cases, the infimum inf,, is over the original class F. Since F(r) C F(r'),
taken together these observations imply
dif . . . dif ’
I(r) = sup inf [lg—=Tf[, < sup inf|lg—TF[, = Z(r).
feF(r) 9er JEF() 9€F

Now, for the second statement: when realizability holds, the set 7(0) = {f € F | || f — T f||, < 0} contains at least f*,
and it is hence non-empty. The fact that Z(0) = 0 for a realizable problem then follows from

Z(0) = sup
FO

inf |g—Tfll,< sup [[f=Tfl.<0.
JeF(0)9EF FEF(0)

C.2. Off-policy cost coefficient

The error bound in Equation (11) can be re-written in a more suggestive way:

~ 1 C o In(|F|/0)
€] < i mr*, where 7] = T—An

The above regroupment has highlighted the dependence on three key factors. The first is the rate of convergence r, to

zero of the population-level minimax program M (as the proof will clarify, we have M(f) < r2 with high probability).
The other two factors are the concentrability coefficient C' and the lack of Bellman completeness ﬁ They relate how

~

minimizing M—represented by r,—affects the prediction error £( f).

A natural question to ask is whether it makes sense to have two factors, rather than a single entity, to relate the value of the

~ ~

program M f) and the prediction error £(f). In fact, it is possible to adopt a more direct approach and directly measure
how minimizing M( f) affects the prediction error £(f), and denote the worst-case ratio by C*:

o def E(f)? _  quantity of interest

= . 17
rer M(f)  quantity being minimized a7

The off-policy cost coefficient C* so defined always leads to tighter bounds: it is always smaller than the product between
C and the incompleteness factor ﬁ that appears in Theorem 1:

A S
(1=7)21-5
In fact, the proof of Theorems 1 and 2 computes the performance bound of the minimax algorithm using C*, only to relax
it at the end by using the above display to make the result more interpretable; one can thus directly replace ﬁ % in

Equation (11) and Equation (18) to follow with C*.

Although C* is less interpretable in terms of fundamental reinforcement learning quantities, its use should be preferred
for two reasons. The first is that it is smaller, i.e., C* can be small even when & is large. The second is that it reflects
more truthfully the learning mechanics of the algorithm: C™* directly bounds the ratio between the quantity of interest—
the prediction error |£(f)|—and the one being controlled—the value of the minimax program M (f)—and it is thus the
‘correct’ way to quantify the cost of off-policy learning with the minimax procedure.

C.3. Error bounds with more general function approximation

In practice, TD methods are implemented as gradient-based algorithms, using differentiable approximators that are far
more complex then finite classes and that may operate in a non-parametric regime, such as neural networks. In such cases,
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we do not expect a y/n rate of convergence. In order to provide error bounds that apply to the latter setting, in this section
we express the result using Rademacher averages, which are standard ways to quantify the capacity of a function class.

As with the localized inherent Bellman error in Section 3, the relevant sets to determine the statistical complexity—and
hence the rate of convergence—are subsets of F where we expect the predictor f to be. We expect these sets (and their
Rademacher complexity) to become smaller as n increases, much like the incompleteness function.

‘What determines the rate of convergence r, then is a certain relation presented in Equation (19). It involves the Rademacher
complexity of these localized sets, which is a standard way to express the rates of convergences with generic function
classes (Bartlett et al., 2005; Wainwright, 2019). The conditions in Equation (19) must admit a solution r, such that the
requirement holds for all » > r,; this requirement is met by the bounded classes we consider. We further assume that there
are no measurability issues when stating and proving the following theorem; in particular we assume that the prerequisites
for using Talagrand are met in order to avoid measurability issues.

Theorem 2 (Error Bounds with General Function Approximation). With probability at least 1 — 9§, the prediction error of
the minimizer [ satisfies the bound

~ T C

DI < 75\ 103 (18)
where the rate of convergence - is such that all 7 > 1 satisfy the inequalities
Ru{L(f,f) = Llgs. f) | EIL(f. /) = Llgs. )] < 2} < enr?, (19)
Ry [(]-' - f*)(Kr)} < eor?, (19b)
(K + 1)@ < c3r. (19¢)

1

or three universal constants ¢y, co,c3 > 0, and K = 1 if F is convex or K =
) €2, -8

if F is non-convex.

The rate of convergence 7, is that of the minimax procedure, i.e., we have M(f) < r2 with high probability. Let us add
that convexity always leads to improved bounds. The second and third critical inequalities in Equation (19) are standard,
while the first involves the Bellman operator, and can be relaxed only with additional assumptions (Duan et al., 2021).

In all cases, in order to determine the rate of convergence 7., the first step is to compute the local Rademacher averages
in Equation (19) as a function of 7, and the second step is to solve for 7 the resulting relation, finding r,. It is enough to
compute an upper bound to the local Rademacher complexity. Likewise, it is sufficient to identify any value 7, that solves
the resulting relation, but the smaller the r,, the better the rate of convergence that we can guarantee. Of course, in order
to obtain concrete and interpretable bounds, one must consider specific function classes, see the book (Wainwright, 2019)
for several parametric as well as non-parametric examples.

Finally, let us mention that the bound that we present here uses the coefficient 3 which represents the average behavior
of Z, but intuitively, it is the actual shape of the incompleteness function Z around the origin that determines the problem
complexity. Itis possible to obtain critical relations involving the incompleteness function, much like those in Equation (19).
However, implementing this observation would have made the analysis less clear and the final result less interpretable, and
so we leave that for future studies.
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D. Main Analysis

In this section we prove Theorems 1 and 2.

Proof techniques Although the minimax formulation has been analyzed previously in a number of works (see e.g.,
(Chen & Jiang, 2019) for a relatively recent analysis), our proof differs from what is available in the literature from the
very set-up, as the concept of local Bellman errors arises quite soon in the proof in Appendix D. In addition, there is
substantial technical novelty in the way we bound the minimax program in Appendix E, where the statistical localization,
as well as the definition of 3, are leveraged explicitly.

Setting up the proof In order to prove the theorems, we need to establish a high probability bound on the estimation

~ ~

error, which is the value function difference at the initial state s, i.e., the quantity |E(f)| = [(f* — f)(s0,7)]-

The proof is based on the following key observation: since fminimizes the empirical loss M , we expect that we can bound
its population value M (f). Following the suggestion outlined in Appendix C.2, we factorize the squared prediction error
as
n2 _ €V R < o (T
e(f)” = M(T X M(f) < C* x M(f).

~

The off-policy cost coefficient C* is defined in Equation (17), and connects the prediction error to the population-based
value of the minimax program. In order to complete the proof, we need to bound C* and M(f).

Bounding C* A variation of the simulation lemma (Kakade et al., 2003) allows us to upper bound the numerator in C*;
it is proved in Appendix D.1.

Lemma 1 (Weak Simulation Lemma). For any f € F we have the bound

1
£ < 7= = TFln

In addition, we can lower bound the denominator in C* with simple algebra.

Lemma 2 (Effect of S-incompleteness). For any f € F we have the bound

I£ = TSI < 5 M.

The above lemma is where the definition of S-incompleteness is leveraged; however, S-incompleteness also plays a role in
determining the rate of convergence of the minimax program in Proposition 3. After putting together the pieces, we obtain

L e

O s
1 N2 1 -T2
S%EQ—7>1—MU—Tmi

() T

Bounding M(f) In order to conclude, we must establish a high probability rate of convergence for the population loss
evaluated at the empirical minimizer f. Such rate of convergence depends on the function class F. More precisely, if the
function class F has finite cardinality, the rate of convergence is

o In(|F1/9)

~ ' 7

(11— P’

while for a general function class it must be such that any r» > r, satisfies Equation (19).

r
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Proposition 3 (Rate of Minimax). With probability at least 1 — §

M(f) <.
The proof of Proposition 3 is in the appendix. Combined with the bound on C*, the proof of Theorems 1 and 2 is complete.

D.1. Proof of Lemma 1 (Weak Simulation Lemma)

For a fixed function f € F, the simulation lemma (e.g., (Kakade et al., 2003)) ensures

€N = [(f* = f)(s0,7)]

1
‘EE(s,a)Nd” (f =Tf)(s,a)l

%,YIE(S,(L)Nd7r \/[(f - Tf)(sa a‘)]2

<
-1

Using the Jensen’s inequality we obtain the upper bound

< ﬁ VEGararl(f = TH(50)2

1
= Eﬂf =T fllx-

D.2. Proof of Lemma 2 (Effect of S-incompleteness)
We can write
M) =f=TFIE~lgr = TFIi
>\ f =Tl =821 = T1IL
=Q1-If-Trli
== +AIf-TFI2
> (1= Bf =TI

The last inequality follows from the fact that 5 € [0, 1].
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E. Proof of Proposition 3 (Rate of Minimax)

We will show that the population and the empirical loss are related, i.e., that
M(f) £ 2M(])

with high probability. Next, since fminimizes M , and realizability holds, we should have that M (f) is small, or more
precisely that with high probability

M(f) S 2.

Together, they imply the statement. In order to proceed we need to introduce more notation.

E.1. Notation, Empirical Processes and Failure Events

‘We need to show that the bad event

M(f) z 212 (20)

~

occurs with probability at most 4. Since fis random, we establish uniform convergence results, i.e., statements that hold
for many (possibly all) functions f € F. In order to do so, we need to analyze the statistical fluctuations of the empirical
process associated to the cost function that defines the loss:

def

X(f) = L(f, f) — L(gg, [)-

This is a natural quantity to analyze, because its expectation (which is computed with the help of Lemma 6) is precisely
the quantity that we wish to control

PX(f) =E(s,aymp Er~R(s,a),s+~P(s,a)X(f):|
=L(f.f)+o(f)* — L(gyg, ) — o(f)?
= L(f, f) = L(g5. f)
= L(f.) ~ Inf L(g. f)
= M(f),
while its empirical average is upper bounded by the empirical loss that the agent minimizes

> X

(s,a,r,sT)ED
(faf) (gfaf)

(f)-

P X(f) =

IA I
Dy By 3=

I
<)

E.1.1. SETTING UP THE FAILURE EVENTS

As outlined, we need to establish that it is unlikely that M (J?) is large
P(F)<6/2  where Fy :  M(f) > r2. (21

When the failure event Fy does not occur, we have P, X (f) < M (f) < r2.1f we can claim M(f) = PX(f) < 2P, X (f)
then the proof would be complete. Unfortunately, the latter claim is not true in general. However, notice that if M(f) =
PX(f ) < r2 then we can already jump to the conclusion. Therefore, it is sufficient (and more convement) to show that it
is unlikely that PX ( f ) is large (i.e., > 72) and at the same time the deviation is large PX (f ) > 2P, X (f )

~ ~

P(F,) <6/2  where Fy : PX(f)>2P,X(f) and PX(f)>r2. (22)
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To recap: when neither F; nor F5 occur either we have
or otherwise we have

and the proof would be complete. Consequently, the rest of the proof is devoted to showing that F; and F; are unlikely to
occur, namely the claims in Equations (21) and (22).

E.1.2. RELAXING THE FAILURE EVENTS

In this section we define events that are easier to bound and that lead to the stated result in Equations (21) and (22).

Relaxing the claim in Equation (22) The difference PX(f) — P, X (f) is a concentration term. It is convenient to
introduce the set of functions under consideration

Ur,) =1{f €F | PX(f)>r?}.

To establish the claim in Equation (22) it is enough to establish that large deviations are unlikely for all functions with large
expectation, i.e., that

~ 1
3f € U(r,) suchthat - PX(f) ~ PoX(f) > 5PX(/) (23)
can occur with probability at most 6 /2.

Relaxing the claim in Equation (21) In order to provide the required bound, we need to leverage the fact that fis
minimizing M(f).

o~ o~

M(f) S M(f*) = LU f7) = L(Gg= 7).
The term to bound is the empirical (excess) risk of a realizable problem. For convenience, define the empirical process

def

Y(g) = L(f*af*) 7L(gaf*)'

With the above definition we have

To recap: if we can show that with probability 1 — §/2

P.Y(g) < =r?  forallge F (24)

DN

then under the same event we have the desired bound
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E.2. Concentration inequalities for finite classes

In this section we complete the proof for the special case where F has finite cardinality.

E.2.1. ESTABLISHING EQUATION (23)
To complete the proof, we need to compute the threshold 7, past which the event in Equation (23) becomes unlikely.

The Bernstein’s inequality (see e.g., (Wainwright, 2019) for a reference), coupled with a union bound over each function
inU(r.) C F ensures that the following event occurs with probability at most §/2

3f €U(r,) such that  PX(f) — P, X (f) 2 \/VarX(f)nln('ﬂ/‘s) 4 ln(|{:|/5>.

If we make the above right hand side larger then the event becomes even more unlikely. The term involving the variance
can be upper bounded by upper bounding the variance

1
1-8
aresult stated in Lemma 7. If in addition the fast rate is dominated by the variance term, (we shall see in few lines that this
is the case), namely if for all functions in 2/ (ry)

In(l.F/8) \/KPX(f) In(|.F]/4)

n n

Var X (f) < KPX(f), where K<

) (25)

then we readily obtain the smaller (and more unlikely) event defined below

3f € U(r,) suchthat PX(f) —P,X(f) > \/KPX(f) 1n(|.7—"|/6)'

n

The fact that Equation (23) holds with probability at most /2 then would follow if its right hand side is even bigger than
the right hand side in the above display; such situation occurs if for all f € U(ry)

%PX(]") > \/KPX(f)ln(lfl/Q (26)

n

Solving for PX ( f) gives the condition
- Kn(|7]/4)

~

PX(f)2 =

Such condition must be satisfied by all functions f € u (r+), a fact that holds true by definition of u (r«) as soon as 7y
satisfies

K In(|F|/9)

e
n

. 27)

The value for 7, established by the above inequality ensures that any function f € u (r) satisfies the bound in display in

Equation (26) (recall the definition of Z(r)). In addition, it also ensures that Equation (25) is always satisfied, as promised
(observe that K > 1).

To recap: we have computed the critical threshold r, past which Equation (23) occurs with vanishing probability, as desired.
By doing so, we have also determined the rate of convergence r, of the minimax program, up to a constant.

E.2.2. ESTABLISHING EQUATION (24)

In this section we establish Equation (24), or equivalently that the following event has probability at most 6 /2:

1
exists g € F such that P,Y (g) > ETE (28)
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We start from the inequality of Bernstein coupled with a union bound over each element of F to ensure that the following
event has probability at most §/2

VarY (g) In(|71/0) | In(I71/6)

Jg€ F  suchthat  P,Y(g9) —PY(g) > \/ n n

If we make the right hand side in the above display any larger, the event above becomes even more unlikely. We have the
following bound on the variance (recall that PY (¢) < 0), which we verify in Lemma 8

VarY(g) < ~PY(g).

We obtain the following (smaller) event

—PY(g) In(171/0) | n(I71/9)

n n

dgeF such that P.Y(g9) - PY(g9) 2 \/

~

or equivalently

—PY(g) In(I71/0) | In(l71/9)

n n

JgeF  suchthat  P,Y(g9) >PY(g)+ C\/

for some constant ¢ > 0, a bound that holds with probability at most /2. We would then be able to conclude that
Equation (28) holds with probability at most 6/2 if its right hand side is always larger than the one in the above display,
namely when

—PY(g) In(l71/9) | In(l71/9)

1
57“3 > PY(g) + C\/ - o

The right hand side above is quadratic in /—PY (g). Its maximum value® is

) 2 py(g) 4 o 2V ORI | 07110

and therefore it is sufficient that r, satisfies the inequality

In(|.F]/9)

2
2z B

In other words, we have determined the minimum value for r, past which Equation (28) becomes unlikely; furthermore,
this requirement is already satisfied by that presented in Equation (27).

®Notice that PY (g) is negative while the square root term is positive; in particular, the right hand side is maximized when PY (g) ~
In(|F]/8)
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E.3. Concentration inequalities for general functions

In this section we establish Equations (23) and (24) for general function classes. It is useful to define the following factor
(up to a constant).

K ﬁ, if F is non-convex
1, if F is convex.

E.3.1. ESTABLISHING THE CLAIM IN EQUATION (23)

In order to provide a bound to Equation (23), we need a suitable concentration inequality that can ensure fast rates by
leveraging the variance of the process. However, the analysis to follow deals with the worst-case variance represented by
the quantity sup retir,) PX (f) which can be’ of order one. In order to tightly connect the worst-case maximum variance

to the actual value of PX (f) of the function responsible for violating the inequality in Equation (23), it is best to partition
the set U(r,)

U(rs) = UnemUm
according to the value of PX (f), i.e., using intervals that tightly bracket the possible values of PX (f), as follows:
ﬁm:{fea(r*) | 72 < PX(f) §2r2}, where 12 = 2™ 12,
The partition starts at m = 1 where r = r, and since (see footnote) PX (f) < 1, the partition can stop at M =~ log,(1/r+).
When f € U,, we have PX (f) > r? and therefore we can create a larger event which is easier to bound

dif

(37 €l | BX(f) ~ BuX(F) > 3BX(1)} € {3F € [BX() ~BuX(f) > 3°} 2 B,

Let F be the event in Equation (23); using the above inclusion, we can claim
EC Ume[M] E.,.

At this point we can apply Lemma 3; rescaling d coupled with the union bound now gives a bound on the original event
P(E)< > P(En)<d/2
me[M]

In order to apply Lemma 3, several conditions must be met. The bound on the variance is ensured by Lemma 7; in addition,
r must satisfy the following two critical relations for appropriate constants and for all m € [M]

E sup {]P’X(f) —JP’nX(f)} <2 and (K4 1)BEO) o2 (29)
fEUm n

The condition on the left involves the Bellman operator 7 through X (f). The requirement is relaxed in Lemma 4; we
obtain that it is sufficient that r satisfies an inequality that involves the following local Rademacher averages:

| 1/(6
Ro{L(f.f) - Dlas f) | BX(F) <22} S92 ana (4 1)/ 22200 o (0)
n
If both conditions admit a smallest positive solution 7, such that Equation (30) holds for all » > r, then we can cover all
cases m € [M] with the condition r > r, where 7, satisfies

Ra{L0F.1)~ Lop D 1 BX() <22} 02 ana (i 4 1) 220D o2 a1

Since r > r,, when the inequalities in Equation (31) are satisfied, Equation (30) is automatically satisfied as well.

"We have PX(f) < |If = TfI% < |If = Tfll% S 1.
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E.3.2. ESTABLISHING THE CLAIM IN EQUATION (24)

Since PY (g) < 0, it is sufficient to claim that we are unlikely to witness large deviations such as the one below®:

1 1
Jg € F such that P,.Y (9) — PY (9) > —5PY (g) + 57“,%. (32)

Let E be the above event; we show that E can occur with probability at most §/2. In the complement event, Equation (24)
must hold.

We construct a family of sets { E,,,} such that

E C Unefo,2,. .myEm

EERER)

where each event E,, is described in the analysis to follow.
Small variance event Let us consider the set of functions with small variance
1
Fo={9€ F|0<-PY(g) < 57"5}

The associated event is

1 1
{Elg € Fp such that P, Y (g) — PY (g) > 7§[[Dy(g) + ETE}

1
Q{Hg € Fp such that P,,Y (g) — PY (g) > 57&}

d;fEO

Large variance events Consider the following partitioning to control the variance of the empirical process

Fm = {r? < =PY(g) < 2r%}, where 2 & om=2,2 5 212 gorn =12, M.

)

N | =

The partition stops at M ~ In(1/r,) as —PY (g) < 1. The associated events are
1 1,
dg € F, such that P, Y (g) — PY (g) > —EIP’Y(Q) + 37

1
= {Hg € Fm such that P, Y (g) — PY (g) > —§IP’Y(g)}

Putting together the pieces After rescaling ¢ to become §/(2(M + 1)) and using the union bound we can finally apply
Lemma 3 to bound the event in Equation (32)

N| —

C {39 € Fp, such that P, Y (g) — PY (g) >

difE
= FE,,.

P(E) <Y P(Enm) <6/2,

In order to apply Lemma 3, we need to verify the assumptions in the statement of the lemma.

8Notice that Equation (32) is a bit weaker than Equation (23) due to the additional . term on the right hand side; this is due to the
fact that we must also consider the small variance regime —PY (g) < r2 in this section.

24



When is Realizability Sufficient for Off-Policy Reinforcement Learning?

We have the following variance calculation reported in Lemma 8

Var[Y(g)] S —PY(g),  forallg € F. (33)
By the symmetry of F, every time Lemma 3 is invoked, for every m = 1,2, ..., M the associated value for  must satisfy
In(1/(6
E sup {JP’Y(g) — IE”nY(g)} <r? and In(1/(or)) <72
n

9gEFm

The condition on the right is already in the final form; the one on the left involves the Bellman operator 7 through Y (f).
In order to obtain a bound that only depends on the class F, the requirement is relaxed in Lemma 5. After the relaxation,
we obtain that it is sufficient that r satisfies the inequalities

In(1/(r.) _ o

R [(F = f)(r)] < and m
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E.3.3. TALAGRAND’S BOUND

In this section we assume that the prerequisites for using Talagrand are met in order to avoid measurability issues, and
bound the supremum of an empirical process. Let W be a random variable on a certain probability space. For a given
function class H, define the supremum of the empirical process

Z = sup {Ph(W) - ]P’nh(W)}.

We use Talagrand’s bound (Talagrand, 1996) to derive a tail bound to Z when the variance of the process is tightly bracketed.
(Here v > 1).

Lemma 3 (Talagrand’s Bound with Bracketed Variance). The event

1
T]_ : Z>§T2

occurs with probability at most § if the following conditions are satisfied for appropriate universal constants

Var[h(W)] < vPh(W) < 2ur?, and  EZ <r? and (v+ I)M <72 34)
n

The strategy is to create a more ‘natural’ tail event 75 associated to a variance-based concentration inequality. The
concentration inequality will ensure that P(7T%) < §. Then we show that the event T} is contained in T, ensuring
P(Ty) < P(Tz) < 6.

Talagrand’s bound (see Thm 3.27 and Eq. 3.85 in the book (Wainwright, 2019)) applies to the tail event

a2 log(1/9) N log(1/4) '

T, : ZZEZ+ (35)
n n
where the variance-proxy of the process is
9 def 2
o* < sup B{n(W) — BR(W)} +2PZ,
heH
It ensures that such large deviations have small probability of occurring
P(T3) < 6. (36)

We now proceed to showing that

T, = {Z> 17«2} - {Z SEZ 4 )2 108/0) | 1og(1/5)} - T,
> CZ2 :

n n

which allows us to conclude. In order to show the inclusion, we need to ensure that

o?log(1/9) N log(1/9)

1

52> EZ+ “ RrHS,

We start from the above rhs and upper bound it until we obtain 2. By combining the bound on the variance with the one
on the expectation we obtain

2
o? = sup P{h(W) — Ph(W)} " +2PZ
heH

= sup Var[h(W)] + 2PZ
heH

sup vPh(W) + 2PZ
heH

< 2ur? + 2PZ
S+ 1)7"2,

IN
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where the last step used Equation (34). This implies the upper bound

RHS <EZ +r\/(v+ 1)10g(i/5) N log(1/4)

n

where the last step used again Equation (34) for appropriately tuned numerical constants. Therefore, we have shown the
inclusion 7 C T5; combined with the tail bound Equation (36) we obtain

P(T1) < P(12) <6,

as claimed.
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E.3.4. SIMPLIFYING THE RADEMACHER COMPLEXITIES

Lemma 4 (Rademacher Complexities for the X process). We have the relation

E s {BX()-EX(N}SE_ s =S alL(ff) - Lop )

PX(f)<2r? PX(f)<2rz T

First notice that we have

I =95l < W =THluw+lgr = TFllw < 207 =T fllu

and so using Lemma 2

17— g2 S ——PBX(f).

BT
If instead F is convex, the Pythagoras’ theorem ensures

1f = gsll}, <PX(F), (37)
We handle both cases with

I1f = grlls < KPX(f). (38)

It is useful to rewrite the left hand side in the statement of the lemma in a better form first by using a symmetrization
argument, for which it is temporarily useful to emphasize the dependence on the random variable G = (s,a,r,s™)

=E sup {PX(f)(G) - ]PnX(f)(Gi)}
PX(f)<2r?

=E sup lz:{]P’X(f)(G)—X(f)(Gi)}

PX(f)<2r2 M

Upon defining i.i.d. random variables G we can write

—E s S {EX()(@) - XG0}

PX(f)<2r2 TV

Using Jensen’s inequality we obtain

<E_swp Y {X()@) - X(N©G)}.

PX(f)<2r2 TV

Now introduce the Rademacher random variables ¢;

=E sup lZEZ{X(JK)(éz)—X(f)(Gz)}

PX(f)<or2 4

<2 s =Y alx(e)

PX(f)<2rz

—2E sup = S elL(f ) - Ligr )

PX(f)<2r2 5

The above argument is standard (see the textbook (Wainwright, 2019), chapter 4).

Lemma 5 (Rademacher Complexities for the Y process). We have the relation

E s {PY(g) - PuY(9)} <Ru{A€F—F | A% <22}
—PY (g)<2r?
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Notice that we have

lg — X112 = =PY(g). (39)

by definition of Y. It is useful to rewrite the left hand side in the statement of the lemma in a better form first by using a
symmetrization argument; this step is analogous to that in Lemma 4, and thus here we report only the final bound:

1 * * *
B s {PY(g)-PY()} <2E suwp =S elL( S0~ Lig S,
—PY (g)<2r2 —PY(g)<2r2 M

Using Equation (39) we obtain

=2FE sup lzﬁi[L(f*:f*) — L(g, f)].

llg—Frl1z2<2r2 =
Since
\L(f* f*) = Lg, [ = 1(f* =Tf)? = (g =T | = [(f* =Tf =g+ Tf)f* = Tf +g-Tf) S| =4l,

the Talagrand’s contraction principle (see (Talagrand, 1996) or Thm A.6 in (Bartlett et al., 2005)) ensures

1
<2E  sup = eilg—f)]
llg—fFrl12<2r2! T ;
Thus we can re-write the above as
1
2F sup - Z €A,

AeF—f*, || Allf<2r?

which is the Rademacher complexity of the set

F-e) D {aer- a0}
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F. Technical Results
F.1. Proof of Proposition 2 (Linearly Incomplete MDPs)

Since F is linear, the projector II onto F is a linear map. We can write

f=Ti=f=-TfH=("=TF)
=(f=f)=2P(f =1
=T =P =F")

and

g5 =TS =TT ~Tf
=TT/~ Tf - QTS ~T/")
f*
= VTIP(f = [) = 7P(f = )
=@ -D)P(f — ).

Notice that A = v(II — Z)P and B = (Z — ~/P) are both linear operators. If we denote with A = f — f* the increments,
we have

I(r) = sup [AA]] - (40)
AEFin, IIBA|, <r

Fix r > 0 and let 3 satisfy Z(r) = Sr for that specific value of r. Now, consider any other radius v’ > r; it must be
representable as v’ = c¢r for some constant ¢ > 1. Then the function A’ = cA € Fy, is feasible for the program below if
A is feasible for the one in Equation (40)

I(er) = sup JAA] .. @
AE Fiins ”BAH;A,SC"'

This implies Z(cr) > Ser. Now assume that the inequality is strict to derive a contradiction. That is, assume Z(cr) > SBer
and let A’ be a maximizer of Equation (41). Then the function A = A’/c is feasible for Equation (40) and it gives
Z(r) > Br, contradiction, because we assumed Z(r) = fSr. Therefore we must have Z(r') = Z(cr) = Ber = Br’ for any
r’ > r. Since r is arbitrary, and Z(0) = 0 follows from Proposition 1, the proof is complete.

Lemma 6 (Expectation of the Single Cost).

EL(g, f) = L(9: ) + E(s.a)~p Var [(Tf)(r, s+)} .

r~R(s,a), st~P(s,a)
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Proof. Recall the definition of Bellman backup T. By some algebra steps we have

EL(9, )] = E(g(s, )~ —17(s*,m))

= E(g(s, ) (T)5,0) + (TNls,0) ~ [r 475" ) )
=(Tf)(r,sT)

E{ (s6s.0) = (TN @)
+2(g(s,0) = (TF)(5.0)) ((TH)(s,0) = Tf(r,5))

+ (7)) T s+>)2}

=L(g,[)
+ 2B (9(5:0) = (T)(5:0)) Eroniona), st~y (o) ((T)(5.0) = T (r,5)) |

=0

2
+ E(s,a)qurwR(s,a), st~P(s,a) [(Tf) (Sa a) - Tf(’l", 8+):|

.y By oy \¢ Tf(r,s*
(gaf)+ (s,a) HT~R(S,G),§£NP(S,G)[ f(T s ):|

F.2. Variance Bounds

Lemma 7 (Variance of the X -process). We have the following bound on the variance

1
Var[X (f)] < EPX(J")-

In addition, when F is convex then we have the tighter inequality

Var[X(f)] S PX(f)-

Proof.
Var[X(f)] = Var [L(f, f) — L(gs, )]
<E[L(f.f) - Ligs. /)]
=E[(f = 9)%(f = Tf + 97 - Tf)?]
SE(f —g95)
= =9zl
When F is convex Pythagoras’ theorem ensures
1 = ol < I = TFI% = lgs = THI
= PX(f).
Otherwise, for arbitrary F we have the bound

I =g9illu =1 =TF+TF = gsln
<If=THlw+llgr =TFllu
<2(f =T flu
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Coupled with Lemma 2, we obtain the bound

1

1f = gsll S 11 = Tf|\2<f18PX(f)

Lemma 8 (Variance of the Y -process). For any g € F we have the bound

VarlY (9)] < —PY(g).
Proof.

Var[Y (g)] :Var[ (f* ) = Lg, )]
E[L(f*. f*)  L(g. /)]
= E[(f* — (" =T +g = Tf)?]
SE(f*—g)°
=If* =gl
=71 4l
=L(g, f")
=L(g, f*) = L(f*, ")
L
=—PY(g).
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