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Abstract

While ERM suffices to attain near-optimal generalization error in the stochastic learning setting, this is not
known to be the case in the online learning setting, where algorithms for general concept classes rely on com-
putationally inefficient oracles such as the Standard Optimal Algorithm (SOA). In this work, we propose an
algorithm for online binary classification setting that relies solely on ERM oracle calls, and show that it has finite
regret in the realizable setting and sublinearly growing regret in the agnostic setting. We bound the regret in
terms of the Littlestone and threshold dimensions of the underlying concept class.

We obtain similar results for nonparametric games, where the ERM oracle can be interpreted as a best re-
sponse oracle, finding the best response of a player to a given history of play of the other players. In this
setting, we provide learning algorithms that only rely on best response oracles and converge to approximate-
minimax equilibria in two-player zero-sum games and approximate coarse correlated equilibria in multi-player
general-sum games, as long as the game has a bounded fat-threshold dimension. Our algorithms apply to both
binary-valued and real-valued games and can be viewed as providing justification for the wide use of double
oracle and multiple oracle algorithms in the practice of solving large games.

1 Introduction

The advent of Deep Learning has exacerbated the importance of learning models which involve a large number
of parameters or are non-parametric. Non-parametric learning is learning at its fullest generality. We make
no assumption about the structure of our decision space, working with potentially infinite and non-continuous
hypothesis classes. From a theoretical standpoint, most study of non-parametric learning has focused on the
stochastic setting, where one learns a model given independent observations from some distribution. This study
has led to important developments in—both frequentist and Bayesian—non-parametric Statistics, including the
discovery of notions of complexity of hypotheses classes, such as the celebrated VC and fat-shattering dimensions,
which tightly capture the number of observations from a distribution that is necessary to select a hypothesis whose
prediction error under the distribution is approximately optimal. In fact, this is achieved via Empirical Risk
Minimization (ERM), the simple method, which given a hypothesis class 7, of functions mapping a feature set X’
to a label set J C R, and a set of observations {(z;, v;)} ;, outputs:'

N
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The main goal of this paper is to advance our understanding of non-parametric learning in the more general
setting of online learning, which is general enough to capture a variety of other learning settings as special cases
and has found applications in a diversity of fields, including optimization and game theory, which is also in the
focus of this paper. We will consider a fairly general online learning setting wherein a learner interacts with
an adversary over a number of rounds. In each round ¢t = 1,2,..., T, the learner picks a distribution D, over
functions h : X — ), where X is a feature set and ) C R is a label set, then the adversary picks a feature-label
pair (¢, y¢) € X X ), and then the learner draws a sample hy ~ D, and suffers loss \fzt(q;t) — y¢|. The learner’s
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losses add up over rounds and the learner’s goal is to make her total loss over several rounds as small as possible
compared to some benchmark loss computed with hindsight information.

There are many variations to the theme depending on what distribution D, the learner is allowed to use,
what data (x4, y¢) the adversary is allowed to supply, what benchmark loss the learner competes against, etc.
In this work, we consider the common setting where there is some class H of hypotheses from X to ), and
the performance of the learner is measured against the optimal hindsight error made by functions in this class:
infpeny 23:1 |h(zt) — yi|, ie. the goal of the learner is to minimize the following quantity, called regret, in
expectation or with good probability:

T T
; |he(ze) — ye| — hlg%; |h(zt) — yil- 2

When the distributions D, chosen by the learner are supported on hypotheses from # the learner is called (ran-
domized) proper, otherwise the learner is called improper. When the pairs (¢, y;) chosen by the adversary satisfy
that y; = h(z) for some h € H the setting is called realizable otherwise the setting is called agnostic. Finally,
when Y = {0, 1}, we call X a 0-1-valued or binary-valued concept class and the learning task online classifica-
tion. Otherwise, when ) = R or some subset such as [0, 1], H is called real-valued and the learning task is called
online regression.

Similar to the stochastic setting, there has been extensive work in the online setting on developing com-
plexity measures of concept classes, which suffice to characterize or bound the optimal regret (2) that is attain-
able by a proper or improper learner, in the realizable or agnostic setting, and for binary-valued or real-valued
functions. For example, the celebrated work of Littlestone [1988] characterizes the optimal regret bound attain-
able by an improper learner, in the realizable online classification setting, in terms of a complexity measure of
the concept class H that is now known as Littlestone dimension of H; see Definition A.3. More recent work
by Daskalakis and Golowich [2022] provides near-matching bounds for the optimal regret of proper learners in
the same setting, and generalizes this result to proper learners in the realizable online regression setting, providing
regret bounds in terms of the natural generalization to this setting of Littlestone dimension, called sequential fat-
shattering dimension; see Definition A.9. In the agnostic setting, Ben-David et al. [2009] and Alon et al. [2021]
characterize the optimal regret of improper learners in the online classification setting in terms of Littlestone
dimension, while in the online regression setting Rakhlin et al. [2010] characterize the optimal regret of proper
learners in terms of the sequential Rademacher complexity as well as in terms of the sequential fat-shattering di-
mension, the latter characterization being recently tightened by Block et al. [2021]. Finally, Hanneke et al. [2021]
obtain near-optimal proper learners for online classification in the agnostic setting via more constructive arguments
compared to Rakhlin et al. [2010] and Block et al. [2021].

In contrast to the stochastic setting, however, our understanding of attainable regret in the online learning
setting is quite more limited, in the sense that the afore-described works, which bound or characterize the optimal
regret, are either non-constructive or make oracle queries to the Standard Optimal Algorithm (SOA) proposed
by Littlestone [1988] or generalizations thereof [Daskalakis and Golowich, 2022]. Indeed, learning algorithms
for non-parametric hypothesis classes must have access to some oracle in order to interface with a potentially
infinite menu of hypotheses. We must keep in mind, though, that our goal in studying learning in this general
setting is to say something meaningful about specific learning tasks. Thus, our selection of oracle model should
be informed by the tasks to which we hope to apply our non-parametric algorithm. SOA and its generalizations
involve computing the Littlestone dimension or the sequential fat-shattering dimension of concept classes defined
by the online learner in the course of its interaction with the adversary, which are challenging computations, even
when the concept class and the set of features are finite [Manurangsi and Rubinstein, 2017, Manurangsi, 2022].
Thus, the non-parametric learning algorithms coming from the SOA oracle model are utterly useless for any
practical applications.

On the other hand, the stochastic learning setting is studied under the more standard ERM oracle model (1).
The learning algorithms here enjoy both success in their guaranteed performance and practical feasibility in their
more realistic oracle assumption. Ideally, we would like to construct online learning algorithms using this standard
oracle too. One of the main questions we ask is thus the following:

Goal 1.1 In the non-parametric online learning setting, do there exist learning algorithms whose steps run in
finite time given access to an ERM oracle as well as standard arithmetic operations, and whose regret is finite or
sublinearly growing with T'?

One of our main contributions is to provide positive answers to this question for the online classification setting,
as summarized in Table 1. In the realizable setting, we provide an improper learner whose regret is finite and a
proper learner whose regret grows sublinearly in the number of rounds; see Theorem 3.3. In the agnostic setting,



Setting Time per iter. | ERM calls/iter. Regret
Realizable, improper | min(¢, 4™, C9) 1 min(4™, CY)
Realizable, proper t 1 TES
Agnostic, improper gmin(47.C%) gmin(47.0) /T min(4™, )
Agnostic, proper eo(T) T T

Table 1: The table describes the complexities of our online learner, Algorithm 1 (and its extension to the agnostic
setting), in various settings, up to polylogarithmic factors. We use the following parameters: m = tr(H), the
threshold dimension of the concept class; d = Lit(?), the Littlestone dimension of #H; 7', the total number of
iterations; and ¢, the current iteration count (in case the complexity is different for different ¢). The complexities
are up to polylogarithmic factors and C'is an absolute constant.

we provide an improper learner with sublinear regret as well as a proper learner whose regret is also sublinear but
grows faster than that of the proper learner; see Theorem 3.5. The regret, time per iteration, and ERM oracle calls
per iteration of our algorithms are bounded in terms of the Littlestone dimension of the concept class and/or the
threshold dimension of the concept class, formally defined in Definition A.4 and related to the Littlestone dimen-
sion as per Lemma A.6. We note that our algorithms use a weaker oracle than the ERM oracle, called consistent
oracle, formally given in Definition 3.1. This oracle takes as input a set of examples (z1,%1), - -, (Zn, yn) and
outputs some h € H such that y; = h(z;) for all 4, if such h exists.

We note that, in the worst case, our algorithms require a number of iterations that is exponential in the Lit-
tlestone dimension. This is expected due to the lowers bounds of Hazan and Koren [2016]. They show that there
exist finite concept classes H such that Q(\/W )-many ERM and function evaluation queries are necessary to
obtain sublinear regret in the agnostic proper setting. When H is finite, its Littestone dimension is bounded by
log |#H|. Thus the total time in the last line of Table 1 should have exponential dependence on the Littlestone
dimension.

One of the main applications of online learning is for the purpose of equilibrium learning in games. In-
deed, the existence of agnostic, proper learners whose regret grows sublinearly in the number of rounds in the
online regression setting with finite concept classes can be used to establish the existence as well as the dis-
tributed learnability of minimax equilibria in two-player zero-sum games with a finite number of actions per
player and coarse correlated equilibria in multi-player general-sum games with a finite number of actions per
player; see e.g. Cesa-Bianchi and Lugosi [2006]. This result has been recently generalized to non-parametric
games, i.e. games wherein players have an infinite set of actions, under the condition that a collection of concept
classes (one class per player) defined in terms of the game’s payoff matrix have finite Littlestone or sequential fat-
shattering dimensions Hanneke et al. [2021], Daskalakis and Golowich [2022], Rakhlin et al. [2010]. However,
the resulting algorithms for equilibrium learning in non-parametric games also involve SOA oracles. Our second
goal in this paper is the following:

Goal 1.2 Consider a family of non-parametric two-player zero-sum (respectively multi-player general-sum) games
for which minimax (respectively coarse correlated) equilibria exist. For such family of games, are there algo-
rithms for computing an e-approximate minimax (respectively coarse correlated) equilibrium, which run in finite
time given access to best-response oracles for each player (a.k.a. ERM calls) as well as standard arithmetic
operations?

Our other main contribution is to provide positive answers to this question, as summarized in Table 2. In particular,
Theorem 4.2 provides an algorithm computing an e-approximate minimax equilibrium of a two-player zero-sum
game, whose number of iterations, time per iteration and number of best-response (a.k.a. ERM) calls are bounded
in terms of the fat-threshold dimension of the game, as per Definition A.22. Theorem 4.3 provides similar results
for approximate coarse correlated equilibrium computation. Our results apply to both binary-valued and real-
valued games. It is important to note that our algorithm for solving zero-sum games is a variant of the double
oracle algorithm, proposed by McMahan et al. [2003]. In our variant, the players grow the action sets they consider
in alternating rounds of the algorithm as opposed to simultaneously in every round. So our Theorem 4.2 provides
conditions under which our variant of the double oracle algorithm converges in games with infinite action spaces,
answering a question raised by Gemp et al. [2022] and their references. In a similar vein, our algorithm for solving
multi-player games provides a multi-player variant of the double oracle algorithm and conditions under which it
converges. Such multi-oracle algorithms are used extensively in practice for equilibrium computation in large
games such as multi-agent reinforcement learning; see e.g. the discussion on the policy-space response oracles
(PSRO) algorithm in [Gemp et al., 2022] and its references. Again our work provides convergence guarantees
when the action sets are infinite.



Setting Time per iter. | BR calls/it. #iterations
Minmax, 0-1 valued t/et logt/e2 | CLt(G)/E A ¢~CVC(G)" (G log VC(G)/e*

Minmax, real valued t/et logt/e> Cstat(G.e)/¢* p =CI(G)’ fatir(Gre) [
CCE, 0-1 valued kt/e? klogt/e? Ck/*) Lit(G)
CCE, real valued kit /€2 klogt/e> C/(k/€%) stat(G.e)

Table 2: The table describes the time per iteration, the number of best-response calls per iteration and the number
of iterations of our algorithms, up to polylogarithmic factors for finding an O(¢€)-approximate Nash in a zero-sum
two player game (minmax equilibrium) and Coarse Correlated Equilibrium (CCE) in general games G. Here,
C > 0is auniversal constant, and Lit, VC, tr, sfat, fat, fattr denote Littlestone, VC, threshold, sequential fat, fat

2
and fat-threshold dimensions of G, I(G) = fol ( fat(G, 6)d6) and A denotes a minimum of two terms.

We want to highlight that we give the first algorithm for general concept classes and games that can be imple-
mented with access to an ERM oracle. Though SOA-oracle algorithms only require polynomially-many iterations
in the Littlestone dimension, the execution of a single iteration for even simple tasks can take exponentially long.
Our ERM-oracle algorithms enjoy fast per-iteration time complexity, and often in terminate in far fewer than the
worst-case exponentially-many iterations. It is no surprise that the algorithms that arise from the ERM-oracle
model parallel the algorithms actually used in the practice of solving large games (known as double-oracle al-
gorithms; discussed under Goal 2). In contrast, the algorithms that arise from the SOA-oracle model are utterly
dissimilar from any practical algorithms. The thesis of this work is that, rather than making oracle assumptions
based on what will guarantee a polynomial regret bound, we should instead select an oracle based on what is
practically feasible, and then from there, see what regret guarantees are possible.

2 Preliminaries

We include below a shortened version of the preliminaries. See Section A for a full version.

Games A k-player game is a pair (A, u), where A = A; X -+ X A and v = (uy,...,uy), where each
up: A — R. Each A, is the set of actions (ak.a. strategies) available to player p and each u,, is the utility,
or payoff, function of player p, which maps the set of action profiles A to the reals. Each player’s goal is to
maximize their own utility. We denote by A_,, the Cartesian product of {A;}.,. Similarly, for any action
a = (a1,...,ar) € A, denote by a_,, the Cartesian product of {aq}qxp. A mixed strategy for player p is a
distribution over A,. A zero-sum game is a two-player game such that u;(a,b) = —ua(a,b) for all @ € A and
b € B. We sometimes compress our notation and represent a zero-sum game as (A, B, u) where u : Ax B — Ris
a single function representing the utility function of player 2. Player 2 aims to maximize this utility while player
1 aims to minimize this utility.

Definition 2.1 (e-Nash equilibrium and ¢-CCE) Let (A, u) denote a game. An e-approximate Nash equilibrium
is a collection of probability measures, p1, . . ., ik, over Ay, . . ., Ay, respectively, such that for any player p € [k]
and any d,, € A,,

ECLNM X X bk [up(dpi a—P)] < EGNM X X bk [up(a)] €

A Coarse Correlated Equilibrium (CCE) is a joint measure y over A such that for any player p and any d,, € A,

Banplup(dp, a—p)] < Eanplup(a)] — €

Definition 2.2 (Minimax equilibrium) Given a zero-sum game G' = (A, B, u)?, we say that G has a minimax
equilibrium if

inf sup Egop, bops|u(a,b)] =  su inf  Egeu, bops|ul(a,b 3)
“1€A(A)u2€AIzB) arvp,b ,uz[ ( )} ;J,QGAIZB)IMGA(-A) an~ i1 ,b H2[ ( )]

where A(A) and A(B) denote the set of all probability measures over .4 and B respectively. If Eq. (3) is satisfied,
we say the probability measures 11, p2 optimizing Eq. (3) are a minimax equilibrium of G. Denote by Val(G)
value of the game, which is the value of both sides of Eq. (3).

2We slightly abuse notation and throughout denote a zero-sum game (A x B,u) as (A, B, u)



Dimensions Given a real-valued function-class F over a domain X and € > 0, define the e-fat threshold dimen-
sion of F, fattr(F, €), to be the largest m > 0 such that there exist fi,..., fm € Fand z1,...,2, € X and a
threshold € € R such that

fi(z;) >0+¢€ foralli < j € [d]

fi(z;) <6 foralli > j € [d]

For 0-1 classes define the threshold dimension of F as tr(F) = fattr(F, 1/2). We will also use the notion of VC
and Littlestone dimension, VC(F) and Lit(F) for real 0-1 valued classes and their real-valued analogues, the fat
and sequential fat-shattering dimensions, fat(F, €) and sfat(F, €) (all defined in Section A).

These dimensions can be extended to games: For each player p, her utility u, : A, x A_, — R can be
thought of as a concept class F, over the domain set X, = .A,, whose concepts f,_, are parametrized by
elements a_, € A_, and are defined by f, ,(a,) := up(a,,a_,), foreach a), € A,. We define the dimension
of a game to be the maximal dimension over these utility function classes, where p ranges across all players.

@

Convex hulls and their dimensions. Denote by conv(F) the convex hull of F, namely the class of all convex
combinations of elements from F, by A(X) the set of all probability distributions over X', by dconv(F) the dual
convex hull of F the set of all elements from F extended to the domain A(X') by taking an expectation, namely,
f(pn) =Ezop[f(x)] forall f € Fand p € A(X), and by conv 2(F) = dconv(conv(F)). Similarly, for a game
G we denote by conv((G) the game obtained from G where the action sets A, are replaced by A(A,). We prove
the following theorem, which bounds the threshold dimension of conv 2(F) (see Appendix D for the proof):

Theorem 2.3 For [0, 1]-valued concept classes F, fattr(conv(F),e) < e¢ stat(Foe/ O/ and same result holds
when conv is replaced by dconv and conv2 and when F is replaced by a zero-sum two-player game G. Moreover,

2
for a zero-sum two-player game G, fattr(conv(G), €) < ¢ C1(G) fattx(Cre/O)/ € yppere I(G) := (fol Vfat(G, e)de)

and C' > 0 is a universal constant. For {0, 1}-valued games, we have tr(conv(G),e) < O ((I/E)CVC(G)2 tr(G) log(VC(G)))

Throughout, we use the notation O() for omitting poly-logarithmic factors.

3 Online learning

We describe below our algorithm and results in the online learning setting. First, we define the oracles that the
algorithm is allowed to use:

Definition 3.1 (Consistent oracle) For any set of pairs {(z1,%1), ..., (z+, y¢)}, the oracle outputs h € H such
that h(x;) = y;, for all ¢ € [t], if exists (otherwise it is undefined).

Definition 3.2 (Value oracle) For any h € H and =z € X, return h(x).

‘We notice that the only access that the algorithm has to the function-class H is via the consistent oracle. Further,
the only access to the set X is via the examples generated by the adversary. We present the following theorem on
Algorithm 1 which only has access to these two oracles:

Theorem 3.3 (Realizable) Ler H be a 0-1 valued concept class and assume the stream of examples is realizable
by some h* € H. Then, Algorithm 1, instantiated as an improper learner, has the following bound on its regret

and on its number of calls to the consistent oracle: min((’)(4tr(m) ,eO(Lit(H))); if Algorithm 1 is instantiated
2 tr(H)+2

as a randomized proper learner, the bound changes to O (T2 () +3 ) Here, tr(#) and Lit(H) are the threshold

and Littlestone dimensions of H, respectively.

We notice that Theorem 3.3 provides a new proof that Lit(#) < O (4"(H)) : indeed, Littlestone dimension equals
the smallest regret possible for any improper learner in the realizable setting.? Notice that the best known bound
is Lit(H) < 2tr(H) [Alon et al., 2019, Theorem 3] [Hodges et al., 1997, Shelah, 1990]. Additionally, as a direct
corollary, we obtain the first polynomial-time algorithm that, given a full description of the class, implements a
no-regret learner whose mistake bound depends only on Littlestone’s dimension.

Corollary 3.4 There is an online learner who has access to a table of size n = |H||X| that describes a binary-
valued concept-class H over X, that has a mistake bound of O Wt (M) in the realizable setting and runs in time
O(n) per iteration.

3Equivalently, a constant bound on the regret is called mistake bound.



For comparison, SOA achieves a mistake bound of Lit(?), however, its runtime is not polynomial in n: while
SOA requires computation of Littlestone’s dimension, under hardness assumptions, it is impossible to even ap-
proximate Littlestone’s dimension in time polynomial in n as long as it is w(1) [Frances and Litman, 1998,
Manurangsi and Rubinstein, 2017, Manurangsi, 2022]. On the other hand, the halving algorithm [Shalev-Shwartz and Ben-David,
2014] takes time O(|H|) per iteration, however, its mistake bound is O(log |#|) — this does not depend only on
Lit(H).
Next, we describe the result for the agnostic setting, which is obtained by applying the reduction of Ben-David et al.
[2009] from the agnostic to the realizable setting, while using Algorithm 1 as the realizable learner in this reduction
(see Section B for the proof):

Theorem 3.5 (Agnostic) Let H be a 0-1 valued class. Then, there exists an improper learner which accesses H

only via the consistent and value oracles, that achieves in the improper setting a regret of | T min (6 (4D eO(Lit(H)))

2 tr(H)+3

and O (T 2Er(A)+4 ) in the proper setting.

3.1 Algorithm

Below we describe the algorithm for the realizable setting. It has two variants, proper and improper. For con-
venience of notation, in the proper setting, we say that the algorithm plays a distribution u! over hypotheses
h € H in each iteration ¢ and suffers loss Loss(u’, (z¢,y:)) = Prput[h(z:) # w].* In the improper set-
ting, the algorithm is allowed to take a weighted majority vote over hypotheses and it will select the label that
is predicted with the largest probability according to u. Formally, the learner predicts §; = Maj(u!, x;) =
1, Prpptlh(z) =1]>1/2
0, otherwise '

The algorithm proceeds in phases, where each phase consists of multiple rounds of prediction. In each phase,
J, the algorithm plays a distribution over some pool of actions {h1,...,h;}. By the end of each phase, the
algorithm adds a new action to the pool, k41, which is taken as a hypothesis that is consistent with the whole
history of elements (z, y) observed by the algorithm throughout all phases.

Next, we describe the phases. Fix a phase 7, denote the distribution played by the algorithm at any round ¢ of
this phase by x! and we describe how to determine p*: first, ! is the uniform distribution over all the hypotheses
available in this phase: {h1,...,h;}. In rounds ¢ when Loss(u!, (x;,y:)) > e, the algorithm updates p' via a
multiplicative-weight update. In the remaining rounds, no update is made, and ptt! < ut. We call this type of
update Lazy multiplicative weights. The phase j ends once T); updates have been made. We rely on an auxiliary
parameter « to determine the value of T;. See Algorithm 1 for the main pseudocode and Algorithm 2 for the
implementation of each phase.

Algorithm 1 Online Action Insertion

Input: A function class H.

Parameters: ¢, > 0.

Subroutines: Consistent oracle (Definition 3.1), Lazy Multiplicative Weights (Algorithm 2).

1. TInitialize active action set H;  {h;} for arbitrary hy € H.
2. Forphase j =1,2,...,J:

(a) Instantiate the algorithm Lazy Multiplicative Weights with the function-class H; and pa-

rameters T} = {CI%JHJ'—‘ and € (C' > 0 is a constant), in order to predict in the next classification

rounds, until the execution of Lazy Multiplicative Weights terminates.

(b) Call the consistent oracle to obtain hj;1 € H that is consistent with all pairs (z,y) observed in all
previous rounds throughout all phases.

(c) Update the active action set H1 < H; U {hjq1}.

4The alternative would be to sample one h from H - these two notions are equivalent if one is interested in an expected loss.



Algorithm 2 Lazy Multiplicative Weights
Input: A finite set of functions G = {¢1,...,9n} C {0, 1}X.

Parameters: K rounds with an update, accuracy parameter € > 0, learning rate n = %.

1. Initialize a uniform probability distribution p' = (u,...,pL) = (p*(g1),--., 1" (gn)) over G, where

pi + Lforalli=1,...n
2. k<« 0.
3. Fort=1,2,...:

(a) If proper: predict !, observe (z¢, y;) and suffer Loss(u, (z¢,yt)).
Else (if improper): Observe z, predict §; := Maj(u!, z;), observe y; and suffer a loss 1(§; # y¢).

(b) If Loss(ut, (x4, y:)) > €:

i Vi, it e plbexp(—nlgi(ze) — yil) / 25—y 1 exp(—nlgj(ze) — yil)-
ke k41

iii. If k¥ = K then Return.

Else: make no update: p/*% « pt.

3.2 Proof

Proper learner, bound in terms of tr(7{) We say that a distribution z over 7{ makes an e-mistake on (z,y) €
X x {0,1} if Loss(u, (z,y)) > €. We say that the algorithm makes an e-mistake on iteration ¢ if its prediction
ut makes an e-mistake on (z¢,y;). Our first goal would be to bound the number of ¢ mistakes made by the
algorithm. This will be done by bounding the number of phases observed by the algorithm. Assume that the
algorithm has observed more than J phases, and for every j € [J], denote by Z; the set of elements (z,vy)
observed by the algorithm on phase j, on which the algorithm made an e-mistake. For any h € H, denote
Loss(h, Z;) = ﬁ > (w.y)ez; Lh(x) # y) as the fraction of mistakes of / on the elements of Z;. Recall the pool
of functions R, ..., h; maintained by the algorithm in phase J. In the following lemma, we argue that the loss
applied on the functions hy, ..., h s and the sets Z1, ..., Z s, have the following threshold behavior:

Lemma 3.6 Lethy,...,hyand Zy,...,Z  be defined as in the preceding paragraph. Then, for all i,j € [J]

Loss(h;, Zj) > e — ifi <j

5
Loss(hi, Z;) =0 ifi>j ®)

Proof For i > j, Loss(h;, Z j) = 0 since h; is the output of a consistent oracle that observed all the examples
from previous rounds, including those from Z;. Next, we proceed with 7+ < j. To prove for i < j, fix round
J, and notice that the Lazy multiplicative weights algorithm, restricted to rounds where the adversary played
actions in Z;, behaves exactly as the original multiplicative weights algorithm. There are T; such rounds, and let
ptt, ..., 1'% be the learner’s distributions over ‘H; for these rounds. From the Multiplicative Weights guarantee
(see Lemma A.16) and by definition of T}, the regret of the learner is upper bounded by (’)(\ /T log j ) < Tjo:

T,

T} J
ETj < ZLOSS(Mtka (xtkaytk)) < min Z‘h(Tfk) - ytk| + Tja
P he{hl,...,hj}kzl
=T; min  Loss(h, Z;) + T;a,
I ey s} (h, Z;) J

where the first inequality holds since the algorithm makes an e-mistake in each of these rounds, the second due to
the regret guarantee of multiplicative weights and the third since Z; = {(=+,,ys, ) }xe|r;)- By rearranging terms,
this concludes that for all ¢ < j, Loss(hs, Z;) > € — cv. [ |

Let h* be the function that is realizable with all the examples provided by the adversary throughout all phases,
namely, h*(x;) = y; for observed (x4, y:). Such h* exists due to the realizability assumption. For ¢ € [.J], define
the function f;(z) = (h; ® h*)(z) := L(h;(z) # h*(x)), and notice that Eq. (5) implies the following, where



unif(Z;) denotes a uniform distribution over Z; and only = is sampled (rather than the pair (z, y)):
Eqrunit(z[fi(2)] > e — ifi <j
Ew~unif(Zj)[fi(x)] =0 if i > ]

By a simple inductive argument, Eq. (6) is sufficient to imply a lower bound on the threshold dimension of
{f1,.-., fs} in terms of .J, which equivalently bounds the number of phases .J in terms of tr({ f1,..., fs}):

Lemma 3.7 Let fi,....,f;: X — {0,1} and Z1, ..., Zj C X such that Eq. (6) holds, let m € N and assume that
k
J2 Y0 (Zs) - Then (i, fah) 2 m.

(6)

Proof We prove the claim by induction on m. For m = 0, trivially there exists a threshold game of size 0. For the
induction step, assume that the claim holds for m — 1. To prove for m, we need to show that there exist functions
91,y 9m € {f1,..., frtand z1,..., 2 € X such that g;(x;) = I(i < j). We will start by determining x,,
and g,,, and the remaining elements f; and g; will be taken from the induction hypothesis. To determine x,,, we
notice that from double summation and from the condition of this lemma,

J
]:EZL'Nllnif(ZJ)|{i € [J] fl(x) = 1}| = ZEmwunif(ZJ)[fi(I)] > J(E - OZ) .

i=1
This implies that there exists ' € Z such that the set I,» := {i € [J]: fi(2') = 1} is of cardinality at least
J(e — a). We take x,,, = 2’. The functions g1, ..., g, will be taken from {g; };cr,, and this will guarantee that
gi(xm) =1 =1(i < m). We denote i’ = max I, and set g,, = f;s. The remaining elements z1, . .., Z,,_1 will

be taken from the sets {Z;}cr where I’ = I,» \ {¢'}. This will guarantee that for all j < m, gm(z;) =0 =
I(m < j), using Eq. (6). We would like to apply the induction hypothesis on the functions { f;};c1- and the sets

k
{Z;}jer . Indeed, the induction hypothesis can be applied since |I'| = |I/| -1 > (e—a)JJ—1 > 221;11 (L) ,

E—Q

1
e—a

k
which follows by the computed bound on |I,/| and by the assumption J > >~ | ( ) . Hence, the induction

hypothesis yields that tr({ f; }ic1/) > m — 1, which imply the existence of functions g1, . .., gm—1 € {fi}icr- and

elements z1,. .., Zm—1 € X such that g;(z;) = I(¢ < j) for all 4,5 € [m — 1]. Together with g, and x,,, the
arguments above imply that g;(z,;) = I(¢ < j) for all ¢, 5 € [m], which concludes the induction step. The proof
follows. u

We are now ready to bound the number of e-mistakes of the algorithm. Combining Lemma 3.6, Eq. 6 and
Lemma 3.7, we obtain that .J < Z;:i{lfl """ f"})H(e —a) " <2(e—a)” tr({frfrP=1, assuming thate < 1/2.
Recall that f; = h; @ h* and define H @ h* := {h®h*: h € H}. Lemma F.9 argues that tr(H & h*) <
2tr(H) + 1, consequently, J < 2(e — a)_Qtr(m_Q. Recall that the number of e-mistakes in each phase j is
at most O(log(j)/a?). Assuming that there are at least .J phases, the total number of mistakes is bounded by
@) (J log J/ a2). Substituting the bound on J and optimizing over «, one obtains that the number of e-mistakes is
at most O(tr(?—i)3e_2 ”(H)_Q) (see Lemma B.1). The total regret of the algorithm is bounded by the number of

e-mistakes, plus €7, in order to account for the loss for less-than-e-mistakes. Setting e = 71/ (*)+3) yields

the bound of O (T%) .

Bounds for the improper learner. Recall that the improper learner takes a majority vote over pf, therefore, it
makes a mistake only if y* makes a 1/2-mistake. Substituting e = 1/2 in the bound on the number of e-mistakes of
the proper learner, one obtains the desired bound of O (4”(7")) . For the bound in terms of Littlestone’s dimension,
we use the fact that Eq. (6) implies that fattr(dconv(H @ h*),e — o) > J (for the dual convex dconv(-) see

Section 2). Indeed, the functions fi,..., f; € H @ h* and the elements {er z ﬁ} 7 € conv(X), satisfy
je

Eq. (4) in the definition of the e-fat threshold dimension. The bound in Theorem 2.3 on the threshold dimension
of the dual convex concludes the proof. See Lemma B.2 for the proof of this argument.

4 Computing equilibria in games

In this section, we will provide an algorithm for computing approximate Nash equilibria in zero-sum two-player
games and coarse correlated equilibria in general multi-player games. The algorithm is allowed to use the follow-
ing oracles:



Definition 4.1 (Best-response and value oracles) An e-best response oracle in a game ( Ay, ..., A, u) receives
a player p, a finitely-supported distribution s, over the Cartesian product A, = [] atp A, and outputs an action
ap, € A, that e-maximizes the player’s utility against a random sample from the distribution:

EaiPNufp[up(dpaafp)] > sup Ea7p~ufp[“p(apaafp)] —€ .
ap€EA,

A value oracle receives a player p and actions (ay, . . ., a) and outputs u, (a1, . . ., ak).

We notice that a best-response oracle can be viewed as an ERM oracle, that maximizes reward instead of min-
imizing loss. We note that the only access that the algorithms have to the game is via these oracles and they are
not allowed to access the action sets apart via these oracles. This aims to capture the scenario that their action sets
are large or perhaps even infinite. Algorithms are given under the assumption that the sequential fat-shattering
dimension sfat(G, €) of the game is finite. It has been shown that if the dimension is infinite, an equilibrium might
not exist [Hanneke et al., 2021, Daskalakis and Golowich, 2022].° 1In the following two sections, we present
our two results: in Section 4.1 we present the result for computing a Nash equilibrium in two-player zero-sum
games. In Section 4.2 we study general sum games and show how to compute a coarse correlated equilibrium,
whereas computing Nash is a significantly harder problem: for finite games, it is PPAD-hard [Daskalakis et al.,
2009, Chen et al., 2009] whereas CCE is poly-time computable [Hart and Mas-Colell, 2000, Hart and Schmeidler,
1989]

4.1 Approximating Nash equilibrium in zero-sum two-player games

Theorem 4.2 Let G = (A, B, u) be a zero-sum two-player game, where u: A x B — [0,1] and let € > 0. There
is an algorithm to find an O(€)-Nash for this game using the following number of e-best response oracle calls
(assuming this number is finite):

2

1
O(min(eCsfat(G,e/C)/ez’ (1/6)01(6')2fattr(G,e/C)/es)); 1(G) = (/ /rt(G,e))
0

As a first step, we argue that it is possible to find an approximate Nash for a game (A, B, u) where one of the
players has a finite action set and random access to that set and the second player has an infinite action-set and
an e-best response oracle. We use the reduction from online learning to equilibrium computation which states
that if two players play an algorithm whose regret behaves as o(7") in a zero-sum game, then the pair of uniform
distributions over their actions converges to a Nash equilibrium as 7" — co. We use the common technique where
the player with the finite number of actions can play a no-regret algorithm (such as multiplicative weight update)
and the second player plays best-response, which is a no-regret algorithm as well. We notice that a modification
of this technique does not work when both players play best response since best-response is no-regret only if it is
played second, after observing the opponent’s action.

Next, we will provide the algorithm to compute an e-Nash in a zero-sum game (A, B, u) where both A and
B are possibly infinite or very large. The algorithm was inspired by the proof of existence of minimax equilibria
by Hanneke et al. [2021]. It gradually accumulates actions for each of the two players until reaching a sufficiently
large finite subgame whose e-Nash equilibrium approximates the Nash of the complete game. In particular, at each
iteration ¢, Player 1 will hold a finite subset of actions, A; C A, that grows as ¢ increases, namely, Ag C A; C
Ag C ---. Similarly, Player 2 will hold finite sets By C B; C ---. The initial sets Ag and By are of cardinality

1 and contain a single arbitrary element from A and 15, respectively. Then, the players take turns adding actions
to change the value of the game in their favor. In particular each iteration ¢ begins where Players 1 and 2 hold
the sets of actions A; 1 and B;_1, respectively. Then, Player 1, whose aim is to minimize the utility u and the
value Val, finds a set of actions A, D A,_1, such that Val(A;, B;_1) < Val(A;_1, B;—1) — Q(¢). This is done by
computing an approximate Nash equilibrium for the game (A, B;_1, u) where Player 1 is unrestricted and player
2 is restricted to her finite set By, and adding the support of this approximate Nash to A;_;, thus creating A;.
Then, similarly, Player 2 responds by finding a set of actions, B; O B;_; that increase the value of the game,
namely, Val(A;, B;) > Val(A¢, B;—1) + (e€) thus changing the value in her favor. The algorithm stops when no
player can improve the value by more than €. See Algorithm 3 for the pseudocode.

SThere are some delicacies in the statement of when there exists, or there does not exist, an equilibrium and the exact conditions are not
known. See Section A.4 and [Hanneke et al., 2021, Daskalakis and Golowich, 2022] for more discussion.



Algorithm 3 e—approximate Nash Equilibrium for a zero-sum game

Input: A zero-sum game (A, B, u), a parameter € > 0.
Subroutines:

* Nash: Receives sets of actions A and B for both players, and an € > 0, where either A is finite or B is. It
outputs an e-Nash for the subgame (A, B, u) (Algorithm 5)

» Val: Receives finite sets of actions of the players. Returns the value of this finite subgame.

1. Ag < {a}, By < {b}, where a € A and b € B are arbitrary actions.
2. Fort=1,2,...

(@ (ubt, ut?) «+ Nash(A, By _1,€).

(b) A; < Ay 1 U Support(uh?h).

(c) (&41,£52) + Nash (Ay, B, e).

(d) B; < B; 1 U Support(£h2).

() I Val(Ar, Bi_1) > Val(Ar_1, Bi_1) — € or Val(Ay, B;) < Val(Ay, Bi_1) + €
i. Return (¢b1, ub?).

The first statement that is proven is that the output of the algorithm is an approximate Nash equilibrium.
Intuitively, this follows from the fact that when the game ends, no player can add action to drastically change
their value. The second statement is that the algorithm eventually ends. This is proven using the fact that
fattr(conv(G), €) is finite, which follows from Theorem 2.3. Intuitively, the finiteness of fattr(conv(G), €) im-
plies that there exists no sequence of mixed strategies (i.e. distributions over actions) u1, p2, . . . for player 1 and
&1,&, ... for player 2 and a threshold 6 such that u(y;,&;) > 6 +eif i < jand u(p,,§;) < @if i > j — this
can be shown to imply that the players cannot keep adding actions to increase the value by {2(¢) to their favor
indefinitely.

Lastly, we explain how the two bounds on fattr(conv(G), €) are derived in Theorem 2.3: the bound in terms
of the threshold dimension of G is an adaptation of the beautiful technique of Hanneke et al. [2021] using Ramsey
numbers, that was used to prove the existence of minimax in a wide class of zero-sum games. The bound in terms
of the sequential fat-shattering dimension uses a standard technique of comparison to the sequential Rademacher
complexity of Rakhlin et al. [2010].

4.2 CCE in multi-player general-sum games

We prove the following theorem for finding a CCE in a general game:

Theorem 4.3 Let G = (A= Ay X+ - X Ag,u = (u1,- -+ ,ur)) be a multi-player game. Assume that utilities are
bounded u,, : A — [0,1], and let € > 0. Then, Algorithm 8 executed with parameters G, € will compute an O(€) —
CCE for the game using using the following number of e-best response oracle calls: O (ec(k/é) Sfat(adc)).

In order to extend our algorithm for finding a Nash in a two-player zero-sum for our setting, we use the brilliant
reduction of Papadimitriou and Roughgarden [2008] from multiplayer games to a two-player game which we term
the CCE game. Here, player 1 selects an entire strategy profile a and Player 2 selects a player p and an alternative
action d,, for player p. The utility for player 2 in the CCE game, corresponds to the gain in utility (in the original
game) made by player p deviating to action d,, when everyone is playing according to strategy profile a. This
utility can be defined formally as a matrix whose entries are indexed by a and (p, d,,), as follows:

Definition 4.4 (The CCE matrix of a game) For a game G = (A4 = A; X -+ X Ag,u = (ug,--- ,ug)), the
CCE matrix MGog : A X <Up .Ap) is defined, fora € Aand (p,d,) € |, Ay as

MgCE[a’ (p,dp)] = up(dp,a—p) — up(ap,a—p)

The goal of Player 1 is to minimize MgCE[a, (p,dp)]. An existence of CCE in the original game implies
that there exists a distribution p* over strategy profiles in that game, such that no deviation is profitable for any
of the players. In particular, if Player 1 plays p*, this guarantees that the utility against any action of Player 2 is
at most 0, which implies that the value of the CCE game, if exists, is at most 0. Similarly, the mixed-strategy p
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played by Player 1 in any e-approximate Nash equilibrium for the CCE game, constitutes an e-approximate CCE
in the original game. Therefore, we would like to apply Algorithm 3 to find a Nash equilibrium of the CCE game.
Yet, this requires two things: (1) Bounding the various dimensions of the CCE matrix in terms of those of the
original game, which is proved using closure properties of these dimensions that appear in Appendix F; and (2)
Implementing best-response oracles for the players of the CCE game, based on best-response and value oracles
for the original game. We notice that since the utility of Player 2 corresponds to the deviations of players from a
strategy-profile given by Player 1, the best deviation can be simulated using a best response oracle for the original
game. For Player 1, we will not simulate a best-response oracle. Rather, recall that such an oracle is used only for
computing an approximate Nash equilibrium for the half-infinite game, where Player 2 is restricted to play from
finitely many actions and Player 1 is unrestricted. Hence, it is sufficient to compute such a Nash equilibrium, a
task that can be reduced to a computation of a CCE in a finite subgame of the original game.® In that finite game,
the set of actions available to the players correspond to the actions of Player 1 in the CCE game.
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A Preliminaries

A.1 Function Classes and Dimensions

We work with two types of function classes: 0-1 function classes, and the more general real-valued function
classes. We define them here as well as their accompanying notions of dimensionality.

A.1.1 0-1 Function classes

Definition A.1 (0-1 function class) Define a 0-1 function class F to be a set of concepts, f: X — {0,1}, where
X is called a domain set and {0, 1} is a label set.

The three important notions of dimensionality of 0-1 function classes are the following.

Definition A.2 (VC Dimension) For a 0-1 function class F, denote its VC Dimension VC(F) to be the maximal
d (possibly infinite) such that there exists a magnitude-d subset {1, -+, 24} C X satisfying the following. For

all binary strings b € {0, 1}%, there exists f € F that satisfies

flzi) =b; forall j € [d]

Definition A.3 (Littlestone Dimension) For a 0-1 function class F, denote its Littlestone Dimension Lit(F) to
be the maximum depth d of a complete, binary tree ' = (V, E), such that the children of any internal node are
ordered by left and right and such that any internal node v € V is labeled by x(v) € X and every leaf is labeled
by f, € F, and these labeling functions satisfy the following: let vy — vy -+ — vg — vg4+1 = £ be a root-to-leaf
path along the tree, where v; is the root and v41 is a leaf. Then, for any i € [d]:

fe(z(vy)) =1 if v; 41 is a left child of v;

fe(z(v;)) =0 if v;41 is a right child of v;

We also utilize the concept of threshold dimension, a concept similar to VC dimension but only requiring the
existence of a hypothesis for each “threshold binary string” of the form (0,--- ,0,1,---,1).

Definition A.4 (Threshold Dimension) For a 0-1 function class F, denote its Threshold Dimension tr(F) to be
the maximal d (possibly infinite) such that there exist magnitude-d subsets { f1, ..., fa} € Fand{z1, - , 24} C
X satistying the following.

fi(z;)
fi(z;)
These dimensions are related in the following ways.
Lemma A.5 VC(F) < min(Lit(F), tr(F))
The Lemma follows from standard arguments.
Lemma A.6 log Lit(F) < tr(F) < 2M4(F)
For the proof, see [Alon et al., 2019, Theorem 3] and the references therein Hodges et al. [1997], Shelah [1990]

1 forall: < j € [d]
0  foralli> j € [d]

Zj
Zj

A.1.2 Real-valued function classes

The following definitions are analogous to those for 0-1 function classes.

Definition A.7 (Real-valued function class) Define a real-valued function class F as a set of concepts f: X —
R. Similarly, define a [0, 1]-valued function class as a collection of functions f: X — [0, 1].

When defining the three analogous concepts of dimensionality in the real-valued setting, we introduce a mar-
gin parameter € to ensure hypotheses are sufficiently distinct. Let us start with the real-valued analogue of VC
dimension: “e-fat-shattering dimension”.

Definition A.8 (e-fat-shattering dimension) For a real-valued function class F, denote its e-fat-shattering di-

mension fat(F, €) to be the maximal d (possibly infinite) such that there exists a magnitude-d subset {z1, - - , 24} C
X and witnesses (61, - - - ,03) € R? satisfying the following. For all binary strings b € {0, 1}’1, there exists f, € F
with
fo(zj) > 05 +¢ forall j € [d] with b; =1 o
fo(zj) <6 forall j € [d] withb; =0
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Next, the real-valued analogue of Littlestone dimension: “e-sequential-fat-shattering dimension”.

Definition A.9 (e-sequential-fat-shattering dimension) For a real-valued function class F, denote its e-sequential-
fat-shattering dimension sfat(F, €) to be the maximum depth of a complete binary tree 7' = (V, E'), whose inter-
nal nodes v € V are labeled by elements z(v) € X and are accompanied by some witnesses 6(v), whose leaves

¢ € V are labeled by fy € F, such that the following holds: for any root-to-leaf path vy, ..., vq,vg+1 = £ in the
tree and for any ¢ € [d]:

fe(z(vy)) > 0(v;) + € if v;y1 is a left child of v;

8
fe(z(vi)) < 0(v;i) if v;41 is a right child of v; ®)

For the real-valued analogue of threshold dimension (e-fat-threshold dimension), we slightly shift our use of
the witness parameters. Rather than have a distinct witness 6; for each x; (as in the definition of e-fat-shattering
dimension) or for each v (as in the definition of e-sequential-fat-shattering dimension), we use the same 6 across.
The reasoning behind this stems from our eventual use of representing game matrices as function classes, where it
is preferred to have a definition that is symmetric to transposing the matrix, or equivalently, to swapping the roles
of the concept class F and the domain set X. When we are considering bounded real-valued function classes (for
example, only taking on values in [0, 1]), defining the e-fat-threshold dimension in this way will only lead to a
O(1/e) factor difference in the dimension.

Definition A.10 (e-fat-threshold dimension) For a real-valued function class F, denote its e-fat-threshold di-
mension fattr(F, €) to be the maximal d (possibly infinite) such that there exist magnitude-d subsets { f1, ..., fa} C
Fand {z1,...,2zq4} C X and a witness 6 € R satisfying the following.
filzj) > 0+¢€ foralli < j € [d] ©
fi(z;) <0 foralli > j € [d]
For real-valued function classes bounded on [0, 1], these dimensions are related in the following ways.
Lemma A.11 For any [0, 1]-valued function class F and any € > 0,

fat(F, e) < min <sfat(.7:, €), W) . (10)

Further, there exist universal constants ¢, C' > 0 such that:

celog(elog(sfat(F,€))/C)
log(1/(Ce))
We note that the left part of Eq. (11) was proved by [Daskalakis and Golowich, 2022, Lemma 8.4] and the

remaining proofs are standard. We include sketches in Appendix G.
Lastly, we define the convex hull of a function class:

< fattr(F,e) < 250tF0+1 (11)

Definition A.12 The convex hull of a function-class F over domain X is defined as:
conv(F) =S Y NifiimeN, fi,oo fm €F, Ay A 20, Y N =1
j=1 i=1

The dual convex hull of a class is defined as a class on the domain conv(X) as the set of all formal convex
combinations of finitely many elements from X, namely,

14

14
conv(X) = {Z)\ixi: CEN, Ay, A €[0,1], D N = 1}
i=1

i=1

where ), A\;x; is a formal sum. Extend each f € F to the domain conv(X) by defining the extended function

dconv(f) as
dconv(f) <Z )\LCEZ> = Z Aif(z;) .

Define the dual convex hull of F as
dconv(F) = {dconv(f): f € F}
Lastly, define conv2(F) = dconv(conv(F)).
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A.1.3 Uniform convergence

Below, we use the notion of uniform convergence, which enables one to sample-down a distribution and compress
it to a distribution over a small number of elements, while changing the expectation of each function by at most e.

Definition A.13 (Uniform convergence) For a concept class F over a domain set X, define by ¢(F,¢,d) the
smallest number m, such that for any measure p over X,

m

N @) ~ Eanl @)

i=1

lVfE}",

<e] >1-9.

T1eomop (1)

Denote by ¢(F, €) = infs<1 ¢(F, €, 9).

Intuitively, the support of any distribution can be compressed down to a size of at most ¢(F, ¢), while changing
expectations of functions in F by at most e.

We notice that ¢(F, €, ) can be bounded in terms of the VC dimension of 0-1 valued classes and in terms of
the shattering numbers of real-valued classes: Rudelson and Vershynin [2006].

Lemma A.14 Let F be a concept class. If F is 0-1 valued then
VC(F) +log(1/9)

2 )

c(F,e,0) < C

€

where C' > 0 is a universal constant. Similarly, if F is [0, M|-valued then

MRt (F, e)) * 4 log(1/0)

c(]—",e,é)gc( 5

€

A.2  Online learning and Multiplicative-Weights algorithm

We address the online learning setting in realizable and agnostic settings. Let H C {0, 1}X be a hypothesis class,
where X is the instance space and ) = {0, 1} is the label space. The online learning protocol can be formulated
as a game between the learner and an adversary, where at rounds ¢t = 1,2,..., 7T,

1. The adversary chooses (z;,y:) € X x {0,1}.
2. The learner observes x; and predicts §; € {0,1}.
3. The learner observes y; and suffers a loss |§: — y¢|.

In the section, we assume realizability which means that all target labeled are generated by a function h* € H, that
is, h*(x;) = y, for t € [T]. Define the mistake bound for a deterministic algorithm A : (X x V)" x X — {0, 1}
by

T
M(H,A) = sup Z|A(($1:(t71)ay1:(t71))7xt) - h*(xt)| .

h*eH,T\x1.7 1

We can write the output of the algorithm as a function é;(z) = A((mlz(t,l),ylz(t,l)), T) We say that the
algorithm is improper if the output functions ¢; do not belong to .

The learner is allowed to make randomized predictions, where the adversary picks (z,y,) without knowing
the random bits of the learner in this round. We analyze the expected loss of the learner. Formally, for a randomized
algorithm A : (X x V)" x X — A({0, 1}), we define the expected loss of algorithm A in 7" rounds

T

‘C(Ha -Aa T) = sup ZE|A((x1:(t—1)ayl:(t—l))axt) - h*(l‘t)| 5
h*eH,z1.1 ;7

where the expected loss at round ¢ can be interpreted as the probability of predicting incorrectly at round ¢. If we
write the algorithm’s (random) output as a function é,(z) = A((xl:(t_ 1) Y1:(t=1)); x) , we say that the algorithm
is randomized proper for a function class H if the function ¢é; belong to 7. In other words, the algorithm draws a
function from a distribution that is supported on H.

In the agnostic setting, we define the more general setting of prediction with expert advice, where the loss
function is arbitrary and not necessarily the 0-1 loss as in the realizable setting.
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Definition A.15 (Prediction with expert advice) There are IV experts indexed by [N] = {1,...,N}. In each
time step ¢t = 1, ..., T the learner chooses a probability vector ' = (u}, ..., ply) from the simplex Sy = {p €

RY : Vi, p; > 0 and Zivzl pi = 1}. Thereafter, a loss vector ¢; € [0, 1] is revealed to the learner In the
adversarial setting, the loss vectors ¢1, . . ., 7 are entirely arbitrary and may be chosen by an adversary. The goal
of the learner is to minimize the regret, given by

T T
e t . .
Ry = ;,u by — irél[ll{[l];&(z).

Lemma A.16 (Multiplicative weights algorithm) Multiplicative Weights algorithm with learning rate n =

\/% suffers a regret of O(v/T log N) where N is the number of experts and T is the horizon length. Fur-
ther, the time complexity is O(N) per iteration.

For proof, see Littlestone [1988], Arora et al. [2012], and [Schapire and Freund, 2013, Section 6]

Algorithm 4 Multiplicative Weights

Parameters: Learning rate parameter n > 0.

1. Initialize a uniform probability distribution p! = (,u%, ey M}v) over the N experts, where i} < % for all
1=1,...,N.

2. Fort=1,2,...,T":

(a) Predict u! and suffer a loss ut - 4.
(b) Update '+! based on #;:

n
Vi, it = b exp(—nly(i)) /2" where Z' = b exp(—nti(5)) -
j=1

A.3 Games
A.3.1 Games and equilibria

Definition A.17 (Multi-player game) A k-player game is a pair (A, u), where A = A; X -+ X Ay and u =
(u1,...,ux), where each u,: A — R. We assume that each A; is accompanied with some X-algebra that u is
measurable with respect to. Each A, is the set of actions available to player p and each u,, is the utility, or payoff,
function of player p, which maps the set of action profiles A to the reals. Each player’s goal is to maximize their
own utility. We denote by .A_,, the Cartesian product of {.A;},-,. Similarly, for any actiona = (a1, ...,ar) € A,
denote by a_,, the Cartesian product of {aq }¢-p.

Definition A.18 (Zero-sum game) A zero-sum game is a two-player game such that u;(a,b) = —usz(a,b) for
alla € Aand b € B. We sometimes compress our notation and represent a zero-sum game as (A, B, u) where
u: A x B — Ris a single function representing the utility function of player 2. Player 2 aims to maximize this
utility while player 1 aims to minimize this utility.

Definition A.19 (¢-Nash equilibrium and ¢-CCE) Let (A, u) denote a game. An e-approximate Nash equilib-
rium is a collection of probability measures, ji1, . . ., g, over Ay, ..., A, respectively, such that for any player
p € [k] and any dj, € A,,

Earpy s xp [tp(dp, a—p)] < Eamppy xoepuy [up(a)] — €

A Coarse Correlated Equilibrium (CCE) is a joint measure 1 over A such that for any player p and any d,, € A,,

Baplup(dp, a—p)] < Eanplup(a)] — e
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Definition A.20 (Minimax equilibrium) Given a zero-sum game G = (A, B, u)’, we say that G has a minimax
equilibrium if

inf sup  Egepy,bops|u(a, b sup inf  Egepy bopslu(a, b (12)
oAy, 2 B e [u(a, b)) = D iy e e [u(a,; b)]

where A(A) and A(B) denote the set of all probability measures over .4 and B respectively. If Eq. (12) is satisfied,
we say the probability measures 11, o optimizing Eq. (12) are a minimax equilibrium of G and denote by Val(G)
value of the game, which is the value of both sides of Eq. (12).

The following relation holds between an e-Nash and the value of the game:

Lemma A.21 Let G(A, B, u) denote a zero-sum game with a minimax equilibrium. If (j11, 12) is an e-approximate
Nash equilibrium for this game, then

1gf Epops[u(a, b)] > Val(G) — € supEqy, [u(a, b)) < Val(G) + €
a beB

We note that a distribution over actions of a particular player p is also termed a mixed strategy, and given
mixed strategies j1,. . ., uy for the players, we abuse notation and denote for any p € [k] the utility of player p
given mixed strategies fi1, . . ., [k AS Up 1, - - -5 fk) 2= Eampy s [Up(@)].

A.3.2 Game dimensions

We now extend these dimensionality definitions from function classes to games. For each player p, her utility
up + Ap x A_, — R can be thought of as a concept class F,, over the domain set X, = A,,, whose concepts f,_,
are parametereized by elements a_,, € A_,, and are defined by f,_,(a,) := up(ay, a_p), foreach a, € A,. We
define the dimension of a game to be the maximal dimension over these utility function classes, where p ranges
across all players.

Definition A.22 (Real-valued fat and threshold dimension for a multi-player game) Let G = (A4,u) be a
k-player game. We define

fat(G, €) = axfat(]-' €)
fattr(G, €) = axfattr(}' €)
sfat(G, e) = maXSfat(]: €)
) =

c(G,€,0) = maxc(}"p,e 0)

([ v

Lastly, the convex hull of a game

= ((-Ala cee Ak)ﬂ u)
as the game conv(G) = ((conv(A,),...,conv(Ag)),a) where conv(A,) is the set of all finitely-supported
probability measures over A, and @, (1, . . ., i) == E i [up(as, ..., ax)]-

A.3.3 Best-response oracle

Definition A.23 (Best-response oracle) Let (A, u) be a multi-player game. An e-best-response oracle receives a
bounded-support distribution 1 over .A_, and outputs an action a, € A, that is an e-best response, namely:

Eo_poptip(ap,a—p) > sup Eq_,~pup(ap,a—p) — e
ap€EA,

7We slightly abuse notation and throughout denote a zero-sum game (A x B, u) as (A, B, u)
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A.4 On learnability and the existence of game equilibria

We say that a concept class F is uniformly online learnable if there is a function R: N — [0, c0), that satisfies
R(T) = o(T') as t — oo, such that for any T there exists an online learner that achieves a regret of at most R(7").
We notice that a class is uniformly online learnable with regret of o(7") if and only if its e-sequential-fat-shattering
dimension is finite for all e > 0. We notice that Algorithm 1 achieves a regret of o(7") for any such class, using
only a best response oracle, yet, with suboptimal regret.

Next, we discuss the reduction (see e.g., [Schapire and Freund, 2013, Section 6]) which shows that online
learnability of an appropriate function-class implies the existence of an equilibria. First, we define the notion of
a repeated game: this denotes the iterative setting, where in each iteration ¢ = 1,...,T, each of the players is
playing an action and gains a reward according to their utility. Equivalently, the negation of their reward can be
viewed as a loss that they suffer. The next lemma states that if both players in a zero-sum game play a no-regret
learning algorithm, then the average-iterate converges to a Nash equilibrium. Similarly, in a general sum game the
average iterates converge to a CCE:

Lemma A.24 (Equilibria computation via a repeated game) Assume a repeated game between two players in a
zero-sum game, that is repeated for T iterations, where in each iteration t, player 1 plays an action a} and player
2 plays ab. Assume that each player p suffers a regret of €T, for p € {1, 2}, namely:

T T
Zup(a;;, af;p) > sup Zup(ap, af;p) — €T
t=1 aPGAP t=1

Denote by (i, the uniform distribution over a}), e ,ag, forp € {1,2}. Then, (u1, p2) is an e-Nash equilibrium.

Similarly, in a general-sum multi-player game, assume a repeated game such that every player p € [k] plays
action a; in iteration t € [T and suffers a regret of at most €T'. Denote by i the joint distribution over A which
is the uniform distribution over the multiset {(a%, ..., a},) }.cir). Then, v is an e-CCE.

In particular, this implies that any game which admits no-regret learners has a minimax (for a zero-sum game)
or a CCE (for general games). This implies that games with bounded e-sequential-fat-shattering dimension for
all € > 0 admit such equilibria. Equivalently, games with bounded e-fat-threshold dimension € > 0 attain such
equilibria.

The converse is not completely true, yet, for zero-sum games, there are known lower bounds that use similar
notions of a dimension. For example, in a 0-1 valued game, assume that the game contains a subgame which is
an infinitely large threshold game, namely, there exist actions {a} }nen and {a3 }nen such that u(al, ad’) = 1
if m > n and 0 otherwise. Then, as observed by Hanneke et al. [2021], this subgame does not contain a Nash
Equilibrium. There is a gap between the above described upper and lower bound, which is the setting where the
threshold dimension is infinite, namely, there are arbitrarily large threshold games, yet, there is no infinitely large
threshold subgame. In this particular setting, Hanneke et al. [2021] showed that if additional the VC dimension is
finite then the game admits a Nash Equilibrium.

B Deferred proofs for Online Learning

LemmaB.1 Ler0 < e <1/2 letd > 1, letv = ¢/(d + 1) and let J such that

d
1srs ()
€E—«

JlogJ 3 1\¢
— < Cd log(l/e)<;>

Then,

where C' > 0 is a universal constant.

Proof First,

11 1 1!
e—a el—1/(d+1) € d)
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Consequently,

Jlog J dlog(l/(; —)) < ! )d = d*(log(1/€) +log(1 + 1/d)) <%)d (1 + l)d

o? « €—« d
1 d
<Cd? 10g(1/e)<—> .
€
[ ]

Lemma B.2 The improper variant of Algorithm 1 makes at most C¥"*F) mistakes, for a universal constant C' > 0.

Proof Substitute e = 1/2 and @ = 1/4. It has argued, in the main proof body, that fattr(dconv(H ®h*), e —a) >
J, under the assumption that the algorithm runs for more than J phases. By Theorem 2.3,

J< dCODV(H D h*,E _ OZ) — eC’sfa»t(’}-l@h*,(6704)/0)/(57(1)2 _ eC’Lit("r'-[EBh*)/(efoz)2

— U Lit(H&h")

for universal constants C', C’ > 0. It is well known and follows from definition that Lit(#) = Lit(% @ h*), which

yields that
J S eCLit('H) .

Since the number of times the distribution p! of the algorithm makes an e-mistakes in each round j is bounded by
O(log(j)/a?) < O(log(J)) (recall v = 1/4), the total number of times of such an e-mistake across all phases is
bounded, up to constants, by

JlogJ < C Lit(H)eC 1t |

where C' is a universal constant. Recall that in the improper setting, the algorithm predicts according to the
majority. Consequently, it makes a mistake if ;‘ makes an ¢ = 1/2 mistake. Hence, the number of mistakes of
the algorithm is bounded by O(e Lit(*)), |

B.1 Agnostic Online Learning

Proof Proof of Theorem 3.5 We start with the bound for improper learners. We use the reduction of Ben-David et al.
[2009] to reduce from agnostic to realizable. In their proof, they instantiate (1\7:1) algorithms for the realizable set-
ting, where M is the mistake bound of the realizable algorithm (i.e. the regret bound). Each of these instantiations
is fed with the original sequence of x1, . . . , z, however, the labels ¥, . . . , yr are different in each instantiation. A
multiplicative weights algorithm (Algorithm 4) is used to choose between these experts. In their paper, they proved
that the regret of this algorithm is bounded by O (/T M logT)®, which translates to the bound of Theorem 3.5,
when one substitutes M with mistake bound (i.e. the regret bound) of the improper learner from Theorem 3.3. In
the randomized proper setting, instead of a bound on the number of mistakes, the proof of Theorem 3.3 yields a

bound M (€) on the number of e-mistakes. While translating it into the reduction of Ben-David et al. [2009], one
obtains a total regret of O (\ /TM(e)logT +T e), where T'e accounts for the additional loss caused by the fact

that each of the experts possibly suffers an additional regret of T'e, accounting for less-that-e-mistakes. Substitut-
ing the bound of M (€) < O(e~2"(*)=2) from Theorem 3.3 and substituting e = 71/ (*)+4) yields a total

2tr(H)+3
regret of T'2r(F)+4

Number of oracle calls and Runtime: Since the algorithm selects from (17;[) using multiplicative weight
update, the runtime is linear in the number of experts and equals O((ATI)) In the improper setting, M =

O(4%(H)), which translates to a bound of (1) < UAC)

_ . . A, —2tr(H)—2
0(672 tr(H)J), which yields a regret of 79 )
(2 tr(H)+3) /(2 tr(H)+4>)

and in the proper setting, one a bound on M (¢) <
. For the specific choice of ¢ = T —1/2t()+4) the

runtime per iteration is at most 79(

8In their paper, Ben-David et al. [2009] provided an algorithm for the agnostic setting with a mistake bound of O(+/T Lit(#H) log T'),
however, the only property they used of the Littlestone’s dimension is the existence of an algorithm with a mistake bound Lit(#) for the
realizable setting. Hence, we can replace Lit(#) with the mistake bound of any algorithm and the proof would follow.
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The number of oracle calls can be trivially bounded by the runtime. Though, one can obtain a better bound.
There are at most ¢ distinct functions if we restrict our hypothesis class to a domain of size ¢. In particular, there
are at most t¢ maximal realizable partial labelings of {z1,...,z;}. It suffices to call the consistent oracle only
on these maximal labelings (and the collection maximal realizable labelings of z1,...,x441 can be efficiently
constructed from those over z1, . . ., z;;). This yields at bound of at most 7'¢ oracle calls per iteration. |

C Minmax in zero-sum games

This section is dedicated to the proof of Theorem 4.2. We denote the game as G = (A, B, u), where A and B are
the sets of actions of Players 1 and 2, respectively. In Section C.1 we will describe an algorithm that solves the
minimax of a game where one player has infinitely many actions at hand, and she is equipped with a best-response
oracle, and the other player has finitely many actions, to which he has random access. Next, in Section C.2 we
describe an algorithm, that iteratively uses the algorithm for the half-infinite game to compute a Nash equilibrium
for a game where both players have infinitely many actions.

C.1 Nash for a half-infinite game

In this section, we will describe an algorithm to find a Nash equilibrium for a game where one of the players has
a finite set of actions and the other player has an infinite set of actions. Assume without loss of generality that
player 1 has the finite action set. A similar approach to computing an equilibria in half-infinite games appeared in
the context of robust PAC learning [Feige et al., 2015, Attias et al., 2022].

In order to compute the Nash equilibrium, recall from Lemma A.24 that if the players play a repeated game
and if both players play a no-regret learning algorithm, then their average-iterate converge to a Nash equilibrium.
In particular, multiplicative weights (Algorithm A.2) and e-best response are both no-regret learning algorithms,
therefore, the following lemma is a (well known) consequence of Lemma A.16:

Lemma C.1 (Multiplicative weights vs. best response) Assume a repeated zero-sum game for T iterations,
between player 1 who plays over n actions and player 2 whose number of actions is unbounded and possibly
infinite. Assume that Player 1 plays the exponential weights algorithm to choose a mixed strategy ut over their
actions in each iteration t € [T'), and assume that player 2 reacts with an e-best-response by to the uniform mixture
of ut, ..., ut, namely,

t t
1 - 1 -
- u(p',by) > sup — u(u',b) — e.
tia et bep t ; vt

Denote by jui the uniform mixture of u*, . .., u* and by ¢ the uniform distribution over by, . .. ,br. Then, (u, &) is

an O ( log(n)/T + e) -Nash equilibrium.

Following Lemma C.1, we propose Algorithm 5, where Player 1 plays exponential weights over her actions and
Player 2 plays a best-response, using his best-response oracle.
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Algorithm § e-Nash Equilibrium for a half-infinite zero-sum game

Input: A game (A = {ay,...,a,}, B,u), avalue € > 0.
Subroutines:

* BestResponse oracle: receives a mixed strategy over actions from A and an € > 0 and outputs an e-best
response from B (see Definition A.23).

* The utility function u(a, b) that receives a pair of actions and outputs its utility.

Clog|A| | . log|A|
l.Te[ = W,n<— T

2. pt = (pi, ..., p}) denotes a uniform probability distribution over A where yi} «+ L foralli=1,...,n.
3. by < BestResponse(ul,e).
4. Fort=2,...,T
(a) Fori=1,...,n,
b b exp(nulan1,b0))/ 2 where 7 = 3"t~ explau(ar 1, b))
j=1
(b) by + BestResponse(u,e)

5. Return (i, £), where /i is the uniform mixture of 1!, .. ., u*, namely, ji; = % 23:1 pt and ¢ is the uniform
distribution over by, . .., by

‘We obtain the following statement:

Lemma C.2 (Nash for the half-infinite game) Let G = (A = {ay,...,a,}, B, u) be a zero-sum game where
|A| = n and B is possibly infinite, and let € > 0. Then, Algorithm 5, executed with the parameter ¢, finds an
O(€)-Nash equilibrium, after T = O(log n/€?) iterations.

Proof Algorithm 5 implements exponential-weights vs best response, therefore, the proof follows directly from
Lemma C.1. |

C.2 The algorithm for the fully-infinite game
We first argue that the output of the algorithm is an O(¢€)-approximate Nash equilibrium.

Lemma C.3 Assume that Algorithm 3 stops. Then, the returned strategies constitute a 5e-Nash for the original
game (A, B, u).

Proof Since the game ends, then either Val(A;, B;_1) > Val(A4;_1, By_1)—€or Val(A;, By) < Val(As, By1)+
€. Assume first that the latter holds.

Notice that for any ¢,
Val(Ay, Bi—1) < Val(A, Bi_1) + e. (13)

This is due to the fact that in the game (A;, B;_1, u), player 1 has a strategy that guarantees her a value of at least
Val(A, B;_1): indeed, her strategy ¢! satisfies this property, because ¢! is a strategy for player 1 in the game
(A, Bi_1,€). Similarly,

Val(A;, By) > Val(A, B) —e. (14)

Recall that we assumed that Val(A;, B;) < Val(A, B.—1) + €. This with the equations above yields:
Val(At, B) —e< Val(At, Bt) < Val(At, Btfl) +e< Val(.A, Btfl) + 2e.
Recall that ;"2 is the strategy for player 2 in an e-Nash in the game (A, B;_1, ). This implies that for any a € A,

u(a, p'?) > Val(A, B;_1) — € > Val(A;, By) — 3e. (15)
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Similarly, since £ is the strategy for player 1 in an e-Nash for the game (A;, B, u), then for every b € B:
u(Eh1,b) < Val(Ay, B) + € < Val(Ay, By) + 2e.
Combining the equations above, we obtain that
Val(Ay, B;) — 3¢ < u(€', ut?) < Val(Ag, By) + 2e.
Consequently,

u(eht, ut?) — Clirelgu(a, ph?) < Val(Ay, By) 4 2¢ — (Val(Ay, B;) — 3€) = 5e,

and similarly,

supu(€ht,b) — u(eht, pb?) < Val(Ay, By) + 2e — (Val(Ay, By) — 3€) = be.
beB

This concludes that (¢! ?) is a 5e-Nash, and recall that we assumed that Val(A¢, B;) < Val(A¢, Bi_1) + .
This was one of the stopping conditions. However, we have to consider the second stopping condition, namely,
that Val(A;, B;) > Val(A;_1, B;) — e. Recall that Eq. (13) states that

Val(Ay, Bi—1) < Val(A,Bi_1) +¢€
and we substitute ¢ — 1 instead of ¢ in Eq. (14) to obtain that
Val(A;—1,B;—1) > Val(A;_1,B) —e.
Combining with our assumption that
Val(Ay, Bi—1) > Val(A;_1,Bi—1) — €,
we obtain that
Val(A;—1,B) —2¢ < Val(A;_1,Bi—1) — € < Val(Ay, Bi_1) < Val(A, Bi—1) + €.
Since "2 is the strategy of player 2 in an e-Nash for the game (A, B;_1,u), we obtain that for any a € A,
u(a, p'?) > Val(A, B;—1) — € > Val(Ai—1, Bi_1) — 3e.

Further, since ¢! is the strategy of player 1 in the e-Nash for the game (A, B, ) and since the Nash equilibrium
is monotone under addition of actions to a single player, for any b € B,

u(€8,b) < Val(Ay, B) + € < Val(Ay_1,B) + € < Val(4;_1, By_1) + 2e.

The proof concludes similarly to how it ended in the first of the two cases that we analyze. |
Next, we are bounding the stopping time of the algorithm.

Lemma C.4 Algorithm 3 stops after O(fattr(conv(G), €)/¢) iterations.

Proof of lemma C.4 Suppose the game runs for more than 7" iterations. First, we would like to find indices
1 <4y <ig <--- < ig < T for which the following hold:

Val(A;;, Bi,) <0 ifj >k 16
Val(AZ-j,Bik)20+e/2 1f]§k: ( )

We claim that we can always guarantee ¢ = O(T¢) such indices.
Define a crossing’ of an interval [a,b] where 0 < a < b < 1 to be a pair of numbers ¢, d such that ¢ <
a < b < d. We will prove that we can find ¢ pairs of the form (Val(A;, B;_1), Val(A;, B;)) that cross the
same interval. Indeed, if we take the numbers Val(A;, B;_1), for 1 < i < T, by Lemma G.1 we have that at
least €7'/2 of them lying in the interval U = [0 -5, 0], for some ¢, and denote them by ¢; < --- < i4. Since
the algorithm has not stopped at any of these iterations, by the stopping condition of the algorithm it holds that
Val(A;;, Bi;) > Val(A;;, Bi;—1) + € > 0 + €/2. This concludes that (Val(A;,, B;, _1), Val(A;,, B;;)) crosses
the interval [0, @ + €/2]. This concludes Eq. (16): indeed, for all j > k, since i; > iy, consequently, i < i; — 1
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then, by the definition of the algorithm, B;, C B;, 1, which implies, by the monotonicity of the value of the
game, that
Val(Aij 5 Bik) < Val(AIJ 5 Bijfl) < 0.

Similarly, one can deduce that Val(A;,, B;, ) > 0 + €/2 for j < k, which concludes Eq. (16).

Recall that taking the average of c¢(G, {5,0) (defined in Definition A.22) actions can guarantee us an {5-
approximate minmax strategy «;; for player 1 in the game (A;;, B;, ,,u), due to uniform convergence (A.13).
Similarly we can get a {5-approximate minmax strategy (3;, for player 2 in the game (A;,, B;;,u). For these

strategies, notice that for all j > k, it holds that
u(AZ-j,Bik) <0+ %

and for all j < k, it holds that

Now, look at the matrix where the rows are parameterized by the strategies of player 1, {aij :1 < j < g}, the
columns by the strategies of player 2, { 3;, : 1 < k < ¢}, and the value of the (j, k) entry is taken to be u(a; , f;, ).
This constitutes a matrix where all entries above and at the diagonal are at least 6 + £ and below the diagonal

at most 6 + ¢. This concludes that the &-fat threshold dimension of the mixed-strategy game is at least Q(T'e),

namely fattr(conv(G), €) > Q(Te) which gives T' < O(M), as required. [ ]
In order to bound the number of oracle calls, we add the following lemma:

Lemma C.5 Assume that Algorithm 3 runs for T iterations. Then, the number of oracle calls is bounded by
O(T/€e? - log(T/€?)).

Proof First, we would like to bound the sizes of A; and B; by O(tlogt/€?). In order to show that, notice that A,
is obtained from A;_; by adding the support of an e-approximate Nash for the half-infinite game (A, By—_1,u).
We would like to bound the size of the support of the strategy of Player 1 in such an approximate Nash. This
approximate Nash is computed in Algorithm 5, and the size of the support equals the number of iterations of
this algorithm, which is bounded by O(log|B;_1|/€?), by Lemma C.2. This implies that [A;| < |A4; 1| +
C(log |B;_1| + C)/€? for a universal constant C' > 0 and similarly, since B is obtained from B;_; by adding
the support of an approximate Nash for the game (A, B, u), it holds that | B;| < |B;_1| + C(log |A;| + C)/€>.
It can be proven by induction that |A;|, | B;| < O((t/e?) log(t/€2)). We notice that the number of oracle calls by
iteration ¢ equals exactly |A;| + | B|, which concludes the proof. |

We are now ready to prove our main theorem.
Theorem 4.2 Let G = (A, B, u) be a zero-sum two-player game, where u: A x B — [0,1] and let € > 0. There
is an algorithm to find an O(e)-Nash for this game using the following number of e-best response oracle calls
(assuming this number is finite):

. 1 2
O(min<eCsfat(G7e/C)/e2, (I/E)CI(G)2fattr(G7e/C)/e°)) L 1(G) = </ fat(G,e))
0

Proof Proof of Theorem 4.2 We notice that Lemma C.3 implies that the output of Algorithm 3 is an O(¢)-Nash.
Furthermore, Lemma C.4 bounds the number of iterations by 7' < O(fattr(conv(G),€)/€) and Lemma C.5
implies that the number of oracle calls is bounded by O (fattr(conv(G), €)/€3). The proof of Theorem 4.2 follows
by substituting fattr(conv(G), €) with its bound in terms of the various dimensions of the game G, according to
Theorem 2.3:

fattr(conv(G), €) < eCstat(Gre/C) /€

The total bound on the number of oracle calls is then
6(fattr(conv(G), €)/e?) < e Sfat(G’e/C)/g/e?’.

Notice that the fact of 1/€3 can be omitted by changing the constant in the exponent, and this yields the desired
bound on the number of oracle calls and concludes Theorem 4.2.
|
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D Bounding the threshold dimension of the mixed-strategy game

In this Sections D.1 and D.2 we prove Theorem 2.3, which consists of two upper bounds on fattr(conv(F), €) and
fattr(conv(G), €) for a zero-sum game G and a concept class F. We further present lower bounds in Section D.3.

D.1 A bound using Ramsey’s theory
In this section, we will prove the following lemma:

Lemma D.1 Let G be a zero-sum game, then,

€

9 c(G,e/4)? fattr(G,e/4) /e
fattr(conv(G),e) < O (—) .

2
We notice that substituting ¢(G, €/4) with ( fol Vfat(G, e)de) /€ using Lemma A.14, yields one of the two

bounds of Theorem 2.3.
In the proof, we will use the following variants of Ramsey numbers, as defined below:

Definition D.2 (Multi-colored Ramsey number) * R(n,Q) is defined as the maximal size of a complete
graph that contains no monochromatic n-clique, where each edge can be colored by one of @ colors.

* R(n,Q,?) is defined as the maximal size of a complete graph that contains no n-monochromatic clique, if
each edge is colored by ¢ colors out of () possible colors.

* R ((m \n2,...,nQ), Q, E) is defined as the maximal size of a complete graph that contains no n;-monochromatic

clique of color 4, if each edge is colored by ¢ colors out of () possible colors. Note that R ((n, n,...,n),Q, E) =
R(n.Q,0)
The following bound holds:

Proposition D.3 (A bound on R(m, Q), from Balaji et al. [2021] Corollary 3.9) For n,Q € N, R(n,Q) can
be bounded as follows
3+e(Q(n—2))!

2 ((n=2)Hhe

Using the bound m! = O(m'™), we can write the above as:
R(n,Q) < 0(Q°")
Here, we show how to improve the bound if we know that each edge is colored with ¢ colors:

Proposition D.4 (A bound on R(n, @, ¢)) Forn,Q,l € N,Il < Q it holds that:

(na) <)

An immediate corollary from the above proposition is the following:

Corollary D.5 (A bound on R(n, @, eQ)) We have that forn,@ € Nand e € (0,1)

R(1,Q,¢Q) < O ((%)Q>

Now to prove Proposition D.4, we use the following:

R(n,Q) <

Proposition D.6 (Proposition 2.1, Balaji et al. [2021]) Suppose ¢,Q,n1,...,n, € N, and suppose Ay, ..., Ag
are sets with |[A1 U ---UAg| =n. Ifn>ny + - +ng — Q, then |A;| > n; forsome 1 < i< Q

Lemma D.7 For some Q,{,n1,n2,..,nq € N, we have that:

¢ (R((nl,ng, ), Q,é) . 1)

SR((nl—l,ng,...,nQ),Q,Z) +---+R((TL1,TL2,---,”Q*UaQaé) —(Q—1)
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Proof of Lemma D.7 Assume N = R((nl, na,...,n.),Q, ). Let v be an arbitrary node out of the N nodes

of the K graph and denote is the parent node. Allocate the N — 1 remaining vertices into r sets, namely
A1, Ag, ..., Ag, where each node can appear in multiple sets. A node u will be assigned to set A., where ¢ =
1,2,...,Q if one of the colors of the edge that connects v and v is c. Now, note that

|A1UA2U...UAQ| = (N*l)f

since each edge has ¢ colors. If we assume towards contradiction that:
(N=1)¢> R((n = 1,nz o0y, Qu€) 4+ R, = 1),Q,0) = (Q = 1)

then there exists an ¢ such that |4;| > R((nl, can— 10000, Q, E). If such an ¢ exists, that means that we

either have a K, clique for i # jin A;, or we have a K,,,_; clique in A;, and therefore we can create a K,
clique by connecting the parent node v with the n; — 1 nodes in A; that form that clique. That means that we have
a color ¢ for which we have a monochromatic clique of size n;, contradicting the definition of the multi-colored

Ramsey number R((nl, na, ..., N, Q, E). Thus it must be that
(N=1)¢> R((n = 1,nz, 00 0p), Q) 4+ R((n, oo = 1),Q,0) = (Q = 1)
as required. |

Proof of Proposition D.4 Let us define the following quantity

S(N,Q,0) = R((nl,...,nQ),Q,e)

max
(n1,n2,....,nQ)|n:>2,>7, ni=N

Note that S(2Q, @, ¢) = 2, as we have that Z? n; = 2@ which means either n; = 2Vi in which case the multi-
colored Ramsey number is 2, or there exists ¢ such that n; = 1 in which case the number is 1. We can use Lemma
D.7 as follows:

S(N,Q, ) :R((nl,...,nQ),Q,E)
R((m1 =10 ,n0),@,0) + -+ R((n,. g — 1),Q,¢) 0—1

< @t
R((n1 — 1,...,nQ),Q,Z) +...+R<(n1,...,nQ — 1),Q,€) 0
= < 7SN -1,Q,0)
¢ l
Using the above we can conclude that:
N-2Q N—-2Q
sve.0 < (9)" see.0.0=2(9)

Thus for the Multi colored Ramsey number R ((nl, ...,nQ),Q, E) we have

R(n, Q,/@) < S(nQ,0,0) < 2(%)(%%

We proceed with the proof of Lemma D.1 as well as Corollary D.8 for the binary setting. Denote m =
fattr(conv(G), €) and n = fattr(G,e/2)). Since the e-fat threshold dimension of the mixed-strategy game is
m, that means that there exist strategies «;, 5;, ¢ € [m] and a threshold 6 € [0, 1] for which u(ay, 8;) < 0 ifi > j
and u(cy, Bj) > 0 + e if i < j. These strategies’ supports may be unbounded. Towards applying the bound on
the multi-colored Ramsey numbers, we would like to replace these strategies with strategies that have the above
properties, with perhaps a gap smaller than €, however with bounded support. We use the uniform-convergence
parameter of the game from Definition A.22, ¢(G, €/8), to argue that for any ¢ € [m], there exists a strategy o for
Player 1, that is a uniform distribution on ¢(G, €/8) actions (possibly with repetitions), which approximates the
strategy «v; up to an error of €/8. More precisely, for any strategy 3 of player 2 and any i € [m],

u(od, B) = (e B)| < g
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Similarly, there exist strategies (., ¢ € [m] supported on ¢(G, €/8) actions, such that for any strategy o of player
1’
u(av, B7) — u(ev, Bi)] <

Thus, for strategies o}, 3} we will have u(«a, 37) < 0 + §ifi > j and u(of, B;) > 6 + % ifi < 7.

We want to bound the e-fat threshold dimension of the pure strategy game. To do so, let us take the graph
K. Suppose Q@ = c(G,€/8)% We determine how to color an edge (i,5), where i > 7, in the following
manner: create two matrices of dimensions @ x @ each, denoted by A*’ and B%»7. The matrix A% is the utility
matrix of the subgame where Player 1 is restricted to play from support(«/) and Player 2 from support(ﬁ}). In
particular, denoting support(a;}) = {ai1,. .., c(c.e/8)} and support(B7) = {bj1,. .-, bjc(c.e/8)}> We define

| m

AZ’Q = u(a; , bj¢). Similarly, the matrix B*J corresponds to the game where Player 1 plays from support ()
and Player 2 from support(g;), where BiJZ = u(a; kbig). N
Since a; and (3} are each uniform d‘is‘tributions over their supports, then forall i > j, u(c}, 8) = é D ke Azfl
and similarly u (o}, ) = é > ke By Since fori > j, u(af, B7) < 0+ ¢ and u(a, ) > 0+ 3¢, it holds that
& S (B - A7) 2 5
~ Suppose out of the Q? pairs (k,1), 6Q? are such that By, — A%, > § and for the rest we have that B, —
A’y < §- Thatimplies that

ISE)

>

FNIE

€
2 1-—

PN

1 irj ij (1-0)Q*{ +6Q” €
S@;<Bk,@Ak,ﬂz>§ 02 :(175)Z+<5:>62

Consider now all the pairs (k, ) for which B;JI, - A;J[ > £ holds. Divide the interval of [0, 1] into [2] intervals

of size § (11 =0,9),L =[5 %),.. ) and assign the pair (k, () in the interval which A;Jl belongs to. If the

pair belongs to interval 1., we color the edge (i, j) with color (k, [, 7). Note that in total there are Q*[2] colors.
Suppose we can form a monochromatic clique of size ¢ in the graph K,, we constructed, with vertices

U1, U2, - . . , us. That means that there exist actions aq, as, ..., a; € Aand by, b, ..., b, € Bsuch thatu(a;, b;) <

0" if i > j and u(a;, b;) > 0 + g if i < j. That implies that the e-fat threshold dimension of the game is at

2
least t. Above, we constructed a complete graph, where each edge is multicolored with % colors out of the

available Q? (%] colors. By Corollary D.5, we have that a monochromatic clique in K, of size n 4 1 will exist if
1 271‘ . .
m > O ((%) @ ) > R(n+1,Q? [%-\ , %) As we assumed the e—fat threshold dimension of the pure strategy

1 c(G,e/8)%n
) )

1 27’1 .
game is exactly n, we need to have m < O <(l) <@ ) =0 ((l as otherwise we would have a

threshold of at least n + 1.
With a slight modification to the previous argument, we attain the following corollary for binary-valued games,

Corollary D.8 Let G be a {0, 1}-valued zero-sum game, then,

tr(conv(G),€) < O ((1/6)0\/0(0)2“(0) 10g(VC(G))>

Proof As in the general case of real valued games, forall i > j € [m], we can construct the Q) x ) matrix AbI with
entries A}cjl = u(@ik, bje) fora; ;. € support(a;) and b; ¢ € support(3}) and the @ x @ matrix B*7 with entries

By = u(aj, bi) for aj € support(a}) and b; ¢ € support(;). Again, we have é W, (B;]e — AZ’?Z) >

N[

Now, importantly though, the matrices have values in {0, 1}. This means there must exist at least 1 pair (k,[)
for each (4, j) with By — A}, = 1. So, rather than discretizing the [0, 1] interval and coloring each edge 4, j
using Q> {%1 colors, we can use simply Q2 colors, and a monochromatic clique will imply a threshold matrix in
the pure strategy game. Even though each (i, j) pair receives one color here, the reduction in number of colors

2
gives us the improved m < O ((QQ) @ n) , as desired.
|

D.2 A bound based on the sequential fat-shattering dimension of the original game

In this section, we prove one of the two bounds from Theorem 2.3, stated as the following lemma:
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Lemma D.9 Let F be a [0, 1]-valued concept class. Then, there exist universal constants C1,Cq > 0 such that
fattr(conv(F),e) < 2¢1 sfat(F,e/Ca) /e

Further, the same holds when conv(F) is replaced with either dconv(F) and conv2(F), and when F is replaced
with a zero-sum game G.

We use the definition of the sequential Rademacher complexity of a class F [Rakhlin et al., 2010]:

Definition D.10 Given a concept class F over a domain X, given horizon length 7' > 0, and given functions
Zoy. .., Zp—1 where Z;: {—1,1}t — X, define the sequential Rademacher complexity of F with respect to
Z = (Zo, . ,ZT,1) as

T
sRad(F,T,2Z) = Ee, ...cr |5up > _erf(Zio1(er-.. e-1))]
feri

where €1, . .., e are sampled uniformly and independently from {—1, 1}. Define sRad(F,T) = sup, sRad(F,T).

The following are upper and lower bounds on the sequential Rademacher complexity given the sequential
fat-shattering dimension were initially proved by [Rakhlin et al., 2010, Proposition 9] and the upper bound was
improved by Block et al. [2021].

Lemma D.11 Let F be a concept class, and let € > 0. Then, for any T > sfat(F,€), it holds that

sRad(F,T) > ce/T sfat(F,e),

where ¢ > 0 is a universal constant. Further, if F is [0, 1]-valued, then for any T > 1,

1
sRad(F,T) < C <Te+/ VT stat(F, r)dr) ,

where C' > 0 is a universal constant.
Further, we use the following lemma [Rakhlin et al., 2010, Lemma 3]:
Lemma D.12 Letr F be a concept class. Then, sRad(F) = sRad(conv(F)).
Consequently, we obtain the following bound:
Lemma D.13 Let F be a [0, 1]-valued concept class and let € € (0, 1]. Then,
< Ch sfat(];, €/Ca)

€

sfat(conv(F), €)
where C1,Cs > 0 are universal constants.

Proof Let T' = sfat(conv(F), €), denote by ¢, C' the constants of Lemma D.11, let ¢ > 0. Apply Lemma D.11,
Lemma D.12 and the fact that sfat(F, ) is monotonic decreasing in  to obtain:

cer/T sfat(conv(F), €) < sRad(conv(F),T) = sRad(F,T)

1
<C (Te’ +/ VT stat(F, r)dr) < CTé€ + C\/T stat(F,¢€)

= Cé /T sfat(conv(F), €) + C/T sfat(F,€).

Setting €’ = ¢/(2C), one obtains that

% /T stat(conv(F), €) < C+/T sfat(F,e).
Consequently,

~“\ec €? '

2 /
sfat(conv(F),€) < (E) M

This concludes the proof. |

We use that fattr(F,e) < 2058591 o obtain the desired bound. In order to obtain the bounds where
conv(F) is replaced with either dconv(F) or conv2(F), we notice that the proof follows from the same argu-
ments, replacing Lemma D.12 with sRad(F, T') = sRad(conv(F),T) = sRad(dconv(F),T) = sRad(conv2(F),T),
whose proof follows similar arguments as the proof of Lemma D.12. Lastly, for a game G, the bound follows di-
rectly from the bound for concept classes F, since the various dimensions of GG are obtained by considering the
relevant concept classes.
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D.3 A lower bound

We prove two lower bounds on fattr(conv(F), €): one in terms of tr(F) and another one in terms of Lit(F), for
some 0-1 classes F. This is stated in the following two lemmas.

LemmaD.14 Foranyn € N, n > 2and any e < 1, there exists a 0-1 valued concept class F with fattr(conv(F),€) =
n whereas tr(F) < O(logn) (where O hides constants that depend only on e).

Proof We will prove for ¢ = 0.2 however the proof for any e follows the same arguments with the numerical
constants changed. We will define a distribution over concept classes and show that with probability greater than
0, a random concept class from this distribution satisfies the desired properties. Define the random concept class
F as aunion of classes Fi, . . ., Fp, over the domain X = [n]. Each F; contains ¢ different elements, f; 1,..., fi¢
where ¢ = ©(logn) is to be determined exactly later. We independently, for each i € [n], k € [¢] and j € [n],
define

Frl) = 1wp0.7and0w.p0.3 ife <y
)T ) 1 wp0.3and 0 wp 0.7 if i > .

We notice that for each ¢ < j € [n], from Chernoff-Hoeffding bound,

)4
1 . —cl
Pr lE kil firx(j) > 0.6] >1—e

where ¢ > 0 is a universal constant, and similarly for any ¢ > j € [n],
1L
. —cl
Pr lz kil fir() < 0.4] >1—e“.

We set £ = log(3n?)/c and notice that e=** < 1/(3n?). By a union bound over i,j € [n], we get that with
probability at least 2/3, for all 4, j € [n]:

£
Y fikz06 i<
k=1

4
Zfi,k <04 ifi>j
k=1

If this holds, then fattr(conv(F), 0.2) = n. This is obtained by taking the convex combinations { % Zﬁzl fik}icm)
as the functions f; in Definition A.10.

Lastly, we will show that with probability at least 1/3, tr(F) < O(logn). Let M > 0 and we will see
that if M > Q(logn) (with a sufficiently large constant), there are no functions f!,..., fM € F and elements
T1,...,20m € X such that for all i,j € [M], fi(z;) = Z(i < 7). Fix some functions f!,..., fM € F and
z1,...,xpm € X, and notice that

Pr[¥i,j € [n], fi(z;) = (i < 3)] < 0.7,

since f%(z;) are independently chosen and each value for f(x;) can be taken with probability at most 0.7 and
there are M? values to be satisfied. We note that there are at most (¢n)n?M < O(n?logn)™ choices for
{fY ..., fM x1,..., 20}, and by a union bound over all choices, we have

Prtr(F) > M]
=Pr[3ft,.. . M eF, a,...,am €X, st.Vi,j € [M], fi(z;) =Z(i <j)]

< (C’n2 logn)Mojl\F < oC1 log(n)MfCQMz’

where C, Cy, Cy are universal constants. If we set M = Cj3log(n) for a sufficiently large constant C3, then
the probability above is bounded by 1/3. We obtain that with probability 1/3, fattr(conv(F),0.2) = n and
tr(F) < O(log(n)) as required. |

Lastly, we notice the following lower bound fattr(conv(F), €) in terms of Littlestone’s dimension of the class:
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Lemma D.15 For any n there exists a 0-1 valued class F such that Lit(F) < log n while fattr(conv(F), €) = n,
forall e < 1. Similarly, there a class F such that Lit(F) < logn while fattr(dconv(F), €) = n.

Proof For the first part of the lemma that involves conv(F), this follows from the fact that fattr(conv(F), €) <
Lit(F), that Lit(F) < log|F]|, and that for n there exists a class F of n elements with tr(F) = n: Indeed,
consider the class F = {fi1,..., fn} where f;: [n] — {0,1} defined by f;(j) = Z(¢ < j). This class has
threshold dimension n by definition. The second part of the lemma, that involves dconv(F), is proved similarly.

|

E CCE

Recall our definition of the CCE-matrix of a game

Definition 4.4 (The CCE-matrix of a game) For a game G = (A = HI;ZI Ap,u = (ug,--+ ,ug)), the CCE-
matrix MGqp 1 A x (Up .Ap) is defined, fora € Aand d, € A, as

MgCE[a’ (p,dp)] = up(dp,a—p) — up(ap,a—p)

As stated in Section 4.2, in order to compute a CCE of GG, we would like to run something analogous to
Algorithm 3 on the zero-sum matrix game on M&g. To do so, we need two things:

1. Bounds on the dimension parameters of M&
2. Best-response oracles for the two players of the game

For item 1, viewing M&y, as a [—1, 1]-concept class { f,|a € A} over the domain set X = U, Ay, we prove
the following.

Lemma E.1 Ler G = (A, u) be a k-player game with bounded utilities u, : A — [0,1] for all p. Then, the
combinatorial dimensions of the game G bound those of the MgCE concept class as follows

fat(M&qg, 16€) < O(k fat(G, €) log fat (G, €) log?(1 /€))
sfat(MEag, 2¢) < O((k/¢) sfat(G, €))
fattr(M&gg, 2€) < (k/e) fattr(G, €)

Proof We introduce the notation M& g A, A, to denote the submatrix of M &gy containing only the columns
in A,. We can express M& ., as the horizontal concatenation of matrices:

M&cg = [MEcr[A, A1), - -, MEcg[A. Ay]]

We will bound the dimensions of MgCE[.A, Ay] for all p and use that to bound the dimensions of MgCE
using the horizontal concatenation lemmas of Appendix F. We partition the rows of each matrix MgCE[A, Al
as follows. For each integer z € [0, 1/¢], define

Sp.z.e = {a € Alup(ap, a—p) € [2€, (2 + 1)e)}
We can express M& g [A, A, as the vertical concatenation of matrices:

M§CE[Sp,o,e, Ap)
MgCE[Aa Ap] = MCCE[SpyLéa Ap]

We will bound the dimensions of M&g[Sp.z,c, Ap] for all z and use that to bound the dimensions of
MgCE[A, A, using the vertical concatenation lemmas of Appendix F. Recall the utility concept class of player
p. Fp is defined over the domain set X;, = A, and has concepts f,_, parametereized by elements a_, € A,
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defined as f,_,(dp) := up(dy,a_p), for each d, € A,. Note, for all (a,,a_p) € Sp - We have uy(ay, a_p) €
[z€, (z + 1)e). Therefore, for all (ap,a—p) € Sp..c and d, € A,

M&cgl(ap, a—p), (b, dp)] — (2 +1/2)€ € [fa_,(dp) — €/2, fa_,(dp) +¢/2]

Since the (z + 1/2)e-shifted concepts of MEog[Sp.».c, Ap] correspond to concepts of F,, up to an additive
factor of €/2, any shattering structure present in MgCE[Sp%E, Ap] with a margin of 2e must exist in F,, with a
margin of at least e. This is due to the fact that the (z + 1/2)e shift can be incorporated in the witness parameters
of the structure 6. Thus,

fat(M$[Sp.2.c, Ap], 2€) = fat(Fp, €) < fat(G,€)
sfat(M$[S) 2 e, Ay), 2€) = sfat(Fp,e) < sfat(G,€) (17)
fattr(M$ S, 2., Apl, 2¢) = fattr(Fp,e) < fattr(G,e)

Using the vertical concatenation lemmas of Appendix F, as well as equation (17), we conclude

fat(M&GaglA, Ay), 16¢) < O(fat(G, €) log fat (G, €) log®(1/€)) (18)
sfat(MEcg[A, Ap], 2€) < O((1/€) sfat(G,€)) (19)
fattr (MG g [A, Ay], 2¢) < (1/€) fattr(G, €) (20)

where (18) follows from Lemma F.1, (19) follows from Lemma F.3, and (20) follows from Lemma F.7. Then,

fat(MEqg, 16€) < O(k fat(G, €) log fat (G, €) log?(1/€)) 21)

sfat(MGag, 2¢) < O((k/€) sfat(G, €)) (22)

fattr(MGag, 2¢) < (k/€) fattr(G, €) (23)

where (21) follows from Lemma F.2, (22) follows from Lemma F.5, and (23) follows from Lemma E.8. |

For item 2, we need to be able to compute two things. We have a zero-sum matrix game on MgCE A X
(Up Ap) — [—1,1] between a minimizing player selecting distributions over action profiles © € A{.A} and

a maximizing player selecting distributions over deviations ¢ € Up A,. The corresponding “e-best-response”

oracles would return, forall £ € A (Up Ap), G4 = BestResponse(E, €) € A satisfying
1" MEcg€ < inf 1[a]" Mot + € (24)
ac
and, for all u € A(A), (p,dp) = BestResponse(u, €) € |J, Ay satisfying

1"™™Ecgl((h,ds)] > sup  p"MEcgl(p.a,)] — € (25)
(pvaP)EUpAP

As stated in Section 4.2, (24) is not necessary. It is used at time step ¢ in Algorithm 3 when the minimizing
player is increasing her set of actions A; 1 — A; in order to improve her value in the game versus the maximizing
player’s current set of actions B;_j. For the specific case of the matrix game Mgc > we have the following
construction of A; in terms of B;_1.

Algorithm 6 Finite-CCE

Input: A finite game ((B',..., B¥),u), ane > 0
Subroutines:

* Multiplicative-weight update: a no-regret learning algorithm that operates on a finite set of actions (Algo-
rithm A.2)

1. Simulate a repeated game between the k players, where each player plays according to multiplicative weight
update (Algorithm A.2), for T' = © (log(max,, | B,|) /€?) iterations

2. Return the uniform distribution over {a!,...,a’} where a’ is the strategy profile played by the players at
iteration .
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From Lemma A.24, we have that the output of Algorithm 6 will constitute an e-CCE for the subgame G’ =
(Hp By_1,p,u). Therefore, we have

Valyig (Support(Finite-CCE(B-1)), Bi—1) <€ (26)

By the definition of e-CCE, there is no profitable deviation for any player to any strategy within the subgame
G'. Therefore, the outputted distribution x must satisfy supg. A(Bi_1) uTMgCEg < ¢, and Player 1 can force
the game to have value < e using a strategy supported on Support (Finite-CCE(B;_1)). This suffices for the
purposes of our algorithm. To achieve (25), we introduce the following subroutine

Algorithm 7 e-best deviation for an action profile distribution

Input: A bounded-support distribution over action profiles 1 € A(A), a value € > 0
Subroutines:

* BestResponse, oracle: for a player p, receives a bounded-support distribution over adversary actions
t—p € A(A_p) and an € > 0 and outputs an e-best response from .4, (see Definition A.23).

* Utility functions uy(ap, a—p) for all players p that receive an action profile and outputs player p’s utility
1. Forp=1,2,...,k

(a) Marginalize: p—pla—p] <= 32, couppore (), Hl(ap, a—p)] fora_, € Support (i),

(b) Best deviation for p: d;, +~ BestResponse,(fi—p, €)

(c) Value of not deviating for p: vy <= 3°, csionort (u) Up(@p: a—p)ila]

(d) Value of best deviation for p: vj, <= 37, o oore(u)_, Up(dp, a—p)ti—pla—p]

/ —

2. Player with greatest value increase if she deviates: p <— arg max,c[x] v;,

Up

3. Return (p,dp)

The following lemma demonstrates that this subroutine gives the desired e-best-response of (25).

Lemma E.2 (Best deviation for an action profile distribution) Consider a game
G= (A= H];:1 Ap,u = (u1,--- ,ug)), bounded-support distribution over action profiles p € A(A), and a
value € > 0. Then, Algorithm 7 executed with parameters i, € outputs a (p, dp) satisfying

W MGogl[(p,ds)] > sup  p'MEcrl((p,a,)] — e
(prap)eU, Ay

Proof Recalling Definition A.23, our e-best-response oracle for player p receives a bounded-support distribution
H—p € A(A_p) and outputs an action d,, € A, satisfying

Z up(dp, a—p)p—pla—p] > sup Z up(ap, a_p)p—pla_p] | —€
a_pEA_, ap€Ap \ 4 Lea,

Therefore, for all p, the values vy, Uzlo in Algorithm 7 satisfy

Up = Z Z (“p(dpaafp) — up(ay, a,p))u[(ap,a,p)]

a—pEA_p ap€A,

4 —

Up

Y

sup Z Z (up(ap, a—p) — uplap, a—p))pl(ap,a—p)] | —¢

€A \ 4L EA_, apEA,

or equivalently

v —vp = p" MEcgll(p,dp)] > sup p"MGcgl[(p,ap)] — ¢

ap€A,
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Therefore, defining p* such that (p, a,,) € A~ where

(pa ap) = arg sup ,LLTMch]].[(p, ap)]
(pvap)GUp Ap

we have
1" MEcgl[(h, ds)] = " MEcg1((p*, dp+)]
> sup MTMgCE]l[(P, ap)] — €
Ap* GAP*
= sup " MEcgll(p,ap)] — €
(p.ap)€U, Ap
as desired. | |

We are now ready to state our main algorithm and prove our main theorem.

Algorithm 8 O(¢)-approximate CCE for a general-sum game

Input: A general-sum game G = (A = H’;zl Ap,u = (u1,---,ug)), a parameter € > 0
Subroutines:

* BestDeviation: Receives a bounded-support distribution over action profiles u € A(A), and a value
€ > (. Returns an e-best-response from Up A, for the matrix game on MgCE

* Nash: Receives finite set of action profiles A C A, and an ¢ > 0. Returns an e-Nash for the two-
player zero-sum subgame (A, |J, Ay, M¢, ) using BestDeviation as its BestResponse subrou-
tine(Algorithm 5)

* FiniteCCE: Receives a finite game ((Bi, - - - , B), u) and returns an e-CCE

* Val: Receives finite sets of action profiles A C A and of deviations B C |J, A,. Returns the value of this
finite subgame on M&.

1. Ag 0, By < {(1,a1),- -+, (k,ax)}, where (a1,--- ,a;) € A are arbitrary actions

2. Fort=1,2,...
(a) Ay < A1 U Support(FiniteCCE((Bi—1,1,...,Bi—1,k),u)) where B;_1,, = B;_1 N A,
(b) (€,602) + Nash (At, U, 4. e)
(¢) By + By 1U Support(¢?)

(d) ifVal(At,Bt) S €

i. Return ¢!

As stated previously, this algorithm is analogous to Algorithm 3 run on the game matrix MgCE, with a
modification to how the minimizing player adds actions to her support (using FiniteCCE). Analogously, we
have the following theorem.

In a similar fashion with section C.2, we will use three main results to prove Theorem 4.3, bounding the total
number of oracle calls made by Algorithm 8. First, we show that the output of Algorithm 8, given that it stops, con-
stitutes an O(€)-CCE(Lemma E.3). Then, we show that Algorithm 8 necessarily stops after fattr(conv(M&qg), 2€)
iterations (Lemma E.4). Last, we show that Algorithm 8 running for 7" iterations makes only O(kT'/€*-log(T'/€?))
oracle calls (Lemma E.5).

Lemma E.3 Assume that Algorithm 8 stops. Then, the returned strategies constitute a 5e-CCE for the original
game G = (A, u).
Proof The returned £%! is the strategy for player 1 in an e-Nash for the game (A, | J » Ap, MgCE) So, for every
deviation (p, dp) € U, Ap:

MgCE [gt’l’ (p’ dp)] < Val(Atv U -A;D) te

p
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Since £%? is the strategy for player 2 in an e-Nash for the game (A, U, Ap, Mg cg), we have:

Val(Ay, | JAp) < Val(A, By) +e.

p

Lastly, by the stopping condition of Algorithm 8
Val(A, By) < 3e.

Combining these 3 equations gives the desired MG [€91, (p, d,)] < e for all (p,d,) € U, Ap- |

Lemma E.4 Algorithm 8 terminates after fattr(conv(MEgg), 2¢) iterations.

Proof Suppose the algorithm runs for > T iterations. Then, we will have support sets A; C As C --- C Ap and
B; C By C -+ C Br satistying the following. Forall 1 <,5 < T,

ValMgCE(Ai,Bj) <e ifi >
Valyg_ (i, B;) > 3¢ ifi <

The first holds due to (26) and the fact that Support(Finite-CCE(B;_1)) € A;. The second holds
because the continuation of the algorithm implies the stopping condition is not met. Defining «; to be the minmax
strategy of Player 1 in the subgame (A;, B;_1, MgCE) and f3; to be the minmax strategy of Player 2 in the
subgame (A4;, B;, MgCE) for all ¢, we have

MEcglai, 8] < € ifi>j
M&cglai, ;] >3 ifi<j

which constitutes a (2¢)-fat-thresholding matrix in M. Therefore, fattr(conv(M&ag), 2€) > T as desired.
|

In order to bound the number of oracle calls, we add the following lemma:

Lemma E.5 Assume that Algorithm 8 runs for T iterations. Then, the number of oracle calls is bounded by
O(kT/€e? - log(T/€?)).

Proof First, we would like to bound the sizes of A; and B; by O(t/€? - log(t/€2)). In order to show that,
notice that B, is obtained from B;_; by adding the support of an e-approximate Nash for the half-infinite game
(A, Up Ap, MEqg). We would like to bound the size of the support of the strategy of Player 2 in such an
approximate Nash. This approximate Nash is computed in Algorithm 5, and the size of the support equals the
number of iterations of this algorithm, which is bounded by O(log |A;|/€2), by Lemma C.2. Further, we would
like to argue that |A;| < |A; 1|+ C(log |B; 1|+ C)/€? for a universal constants C' > 0. Indeed, this is true since
A, is obtained from A; ; by adding the support of a CCE computed by Algorithm 6, given an action-set taken
from B, 1, and the support size is bounded by O(log(|B;|)/€?). By an inductive argument, it is easy to show that
these two recursive equations for A, and By imply that |4, |B;| < O(t/€* - log(t/€?)).

Lastly, it remains to bound the number of oracle calls. Notice that any addition of an action to the support of
Player 2 involves computing a best deviation (Algorithm 7), which is being used as a subroutine in this instance
of the half-infinite equilibrium computation (Algorithm 5). Algorithm 7 makes exactly k calls to the best response
oracle. Thus, the total number of calls is bounded by O (kt/€* - log(t/€?)). [ |

We are now ready to prove our main theorem. Recall
Theorem 4.3 Let G = (A = Ay X -+ X Ag,u = (uy,--- ,uy)) be a multi-player game. Assume that utilities
are bounded u, : A — [0, 1], and let € > 0. Then, Algorithm 8 executed with parameters G, e will compute an
O(e) — CCE for the game using using the following number of €-best response oracle calls:

O( oC(k/%) sfat(G,e/C))

Proof Proof of Theorem 4.3 We notice that Lemma E.3 implies that the output of Algorithm 8 is an O(¢)-CCE.
Furthermore, Lemma E.4 bounds the number of iterations by 7' < fattr(conv(M&cg), 2¢) and Lemma E.5 im-

plies that the number of oracle calls is bounded by 6((k /€2) fattr(conv(MEcg), 2€)). The proof of Theorem 4.3
follows by substituting fattr(conv(M&gg), 2¢) according to Theorem 2.3:

fattr(conv(M%CE),Qe) < eCSfat(MgCE,Ze/C)/EQ .
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The total bound on the number of oracle calls is then

O((k/€?) fattr (conv(MEcg), 2€))
< (/C/62)€C sfat(MgCEQe/C)/eQ

Notice that the fact of k/€2 can be omitted by changing the constant in the exponent. Lastly, plugging in our
bounds on the dimensions of MgCE in terms of those of G from Lemma E.1, we get that the number of oracle
calls made by Algorithm 8 is

< ec(k/s“') sfat(G,e/C)

as desired. ]

F Concatenation Lemmas

Lemma F.1 (Vertical e-fat-shattering concatenation tool) For each p € [k], say we have a real-valued function

class F, defined on a domain set X with fat(Fp,€) < d. Then, the “vertically-concatenated” real-valued
function class \J,, F has fat({J, Fp, 8€) = O(log (k) + dlog(d) 10g2(1/e)).

Proof For a real-valued function class F, define the e-covering growth function

Nr.(n) = max min{|V| : V is an e-cover, under the co-norm, of F on S} 27
|S|_:n

That is, we want to find the smallest V' C R* such that, for all f € F, there exists v € V such that, forall x € S,
|f(z) — v(z)| < e. Foreachp € [k], if V], is an e-cover of F, then | J, V}, e-covers [ F,,. Therefore,

NU, Fpen) <D Nz, o(n)
p

From Theorem 1.5 of Kakade and Tewari [2008], if fat(F,€) < d, then

n ) rdlog(%)-\

Nracn) < O(5 28)

Given this, we can argue the following about the vertically-concatenated real-valued function class. Since a union
of covers of the F,, for each p will cover Up Fps

n \ fd1og( )]
NUT’ .7:,,,45(77/) < ZNF1)74€(n) < k 0(6_2) '
» 3

and for n = Q(log(k) + dlog(d)log®(1/e€))

log (k o(%) ““"g(%”) — log(k) + d(1 + log(n/d) +log(1/e)) (log(n) + 2log(1/e)) = o(n)

Therefore, for n = C (log(k) + dlog(d) log?(1/ €)) with sufficiently large constant C,
NUP ]:p’4€(’n) < 2"

Therefore, forall S = {x1,--- ,z,} C X and all § € R"™, there exists b € {0, 1}" such that there isno f € Up Fp
with
f(zj) > 6; + 8¢ forall j € [n] withb; =1

29
flz;) <0; forall j € [n] withb; =0 (29)

If there existed such an f;, € Up Jp for every b, each would have to be covered by a distinct v in the minimal
(4¢€)-cover V. This would force the size of the cover to be at least 2", a contradiction. Therefore, fat(lJ, 75, 8¢) =

O (log(k) + dlog(d) 10g2(1/e)), as desired.
|
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Lemma F.2 (Horizontal e-fat-shattering concatenation tool) Say we have real-valued function classes F, for
all p € [k] defined on mutually-disjoint domain sets X, with fat(Fp,€) < d. Let’s say these classes all have the
same magnitude, and their elements are enumerated by a set A. That is, for all p, there is an f, o € Fp for each
a € A We define the “horizontal concatenation” function class F = { fala € A} where each fo : |J, Xp = R
is defined

falz) = fpalz)  forallz € X, forallp (30)

Then, the horizontal concatenation function class F has fat(F, €) < kd.

Proof Assume for the sake of contradiction that there exists S = {x1, -+ ,2Zpa+1} C Up X, and witnesses
01, ,0kd+1 such that for every b € {0, 1}kd+1, there exists a € A with
falzj) >0 +€ forall j € [kd + 1] with b; =1 a1
fa(zj) <6, forall j € [kd + 1] with b; = 0

By the pigeon hole principle, there must exist a p € [k] such that |S N X,| > d + 1. That would imply, for every
b e {0, l}lsz"l, there exists a € A with

Ipalz;) >0 +€ forall jwithz; € SN X, and b; =1 32)
fpalzy) < forall j withz; € SN Xp,and b; =0
contradicting our assumption that fat(F,, €) < d, as desired. ]

Lemma FE.3 (Vertical e-sequential-fat-shattering concatenation tool) For each p € [k|, say we have a real-
valued function class F, defined on a domain set X with stat(F,, e) < d. Then, the “vertically-concatenated”
real-valued function class |, Fp has sfat({J, Fp,€) < k(d+1) — 1.

Proof Assume for the sake of contradiction there exists a complete binary tree ' = (V, E) of depth k(d + 1),
whose internal nodes v € V are labeled by elements 2(v) € X and have witnesses 6(v), and whose leaves £ € V
are labeled by f, € Up Fp, such that the following holds: for any root-to-leaf path v1, . . ., V(d41), Vr(d+1)+1 = £
in the tree and for any i € [k(d + 1)]:

fe(z(v;)) > 0(v;) + € if v;41 is a left child of v;
fe(z(vi)) < 0(v;) if v;41 is a right child of v;

We color the leaf nodes of the tree with k colors where c(¢) = p iff f, € F,. We will demonstrate that there
exists a complete binary “subtree” of depth d + 1 that is leaf-monochromatic. Here, we define a subtree to be a
tree 7 = (V’, E') on a subset of nodes V’ C V where every internal node v € V' satisfies:

Vlett 18 the left child of v in T” implies vy, is a left descendant of v in T'
Uright 18 the right child of v in T’ implies Uright 18 a Tight descendant of v in T’

We also ensure that leaves in 7" are leaves in T'. The existence of this depth-(d + 1) complete leaf-monochromatic
subtree would give the desired contradiction, implying that for some p, sfat(F,) > d + 1. To prove the existence
of this subtree, we will use the following lemma.

Lemma F.4 Define Riqf(C1,--- ,Cy) to be the minimum integer such that any complete binary tree of depth
Rieaf(Ch, - - -, Cy) with k-colored leaves necessarily has, for some p € [k], a complete binary subtree of depth C,,
with all leaves colored p. Then,

Rleaf(cla e 7016) < Zcp
p

From the lemma, Rjee(d+1,--- ,d+1) < k(d+ 1) and therefore the desired leaf-monochromatic depth-(d+ 1)
subtree exists. |

Proof Proof of Lemma F.4 We prove by induction on Zp C). For a base case, note that Rier(0, - - - ,0) = 0. For
a depth-0 binary tree (consisting of 1 leaf node), whatever color we select for the leaf, the leaf itself will constitute

the desired depth-0 leaf-monochromatic subtree.

Assume the claim holds for all Riet(C1,- -+, Cy) with }° €} < d. Let’s consider a k-leaf-colored depth-
(d+1) tree and Zp C, = d+ 1. We note that the two child trees of the root have depth d > Rjese(C1, - -+, C), —
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1,---,C}) for an arbitrarily selected color p. If either child tree contains a g-leaf-monochromatic subtree of
depth C, for some ¢ # p, we are done. So, from the inductive hypothesis, assume both child trees contain
p-leaf-monochromatic subtrees of depth C,, — 1. These two trees together with the root give the desired p-leaf-
monochromatic subtree of depth C,,. n

Lemma E.5 (Horizontal e-sequential-fat-shattering concatenation tool) Say we have real-valued function
classes Fy, for all p € [k] defined on mutually-disjoint domain sets X, with sfat(F,,e) < d. Let’s say these
classes all have the same magnitude, and their elements are enumerated by a set A. That is, for all p, there is an
fp.a € Fp foreacha € A. We define the “horizontal concatenation” function class F = { fo|la € A} where each
fa: Up Xp — Ris defined

falx) = fpalx)  forallz € X, forallp

Then, the horizontal concatenation function class F has sfat(F, €) < kd.

Proof Assume for the sake of contradiction there exists a complete binary tree I' = (V, E) of depth kd+ 1, whose
internal nodes v € V" are labeled by elements z(v) € [J, X, and have witnesses 6(v), whose leaves ¢ € V are

labeled by f, € F, such that the following holds: for any root-to-leaf path vy, ..., Vggt1, Vka+2 = ¢ in the tree
and for any i € [kd + 1]:

fe(z(vy)) > 0(v;) + € if v;41 is a left child of v;

fe(z(v;)) < 0(vy) if v; 41 is a right child of v;

We color the internal nodes of the tree with k colors where c(v) = p iff x(v) € X,. We will demonstrate
that there exists a complete binary subtree of depth d + 1 that is internally-monochromatic. The existence of
this complete internally-monochromatic subtree would give the desired contradiction, implying that for some p,
stat(F,) > d + 1. To prove the existence of this subtree, we will use the following lemma.

Lemma F.6 Define R (Ch,--- ,Cy) to be the minimum integer such that any complete binary tree of depth
Ri(Ch, - -+, C) with k-colored internal nodes necessarily has, for some p € [k], a complete binary subtree of
depth C, with all internal nodes colored p. Then,

Rim(cla"' ,Ck;) Sch_k+1
p

From the lemma, Rin(d+1,- -+ ,d+1) < kd+1 and therefore the desired internally-monochromatic depth-(d+1)
subtree exists. | |

Proof Proof of Lemma F.6 We prove by induction on Zp C). For a base case, note that Riy(1,---,1) = 1. For
a depth-1 binary tree (consisting of 1 internal node and 2 leaves), whatever color we select for the internal node,
the tree itself will constitute the desired depth-1 internally-monochromatic subtree (leaves are not colored).

Assuming the claim holds for all Rin (C1, -+, C}) with 3 © €}, < d, let’s consider a k-colored depth-(d + 1)
tree. Assume without loss of generality that the root has color p. We note that its two child trees have depth
d > Rin(Ci,--- ,Cp —1,---,Cy). If either child tree contains a g-internally-monochromatic subtree of depth
C, for some g # p, we are done. So, from the inductive hypothesis, assume both child trees contain p-internally-
monochromatic subtrees of depth C}, — 1. These two trees together with the root of color p give the desired
p-interally-monochromatic subtree of depth C),. |

Lemma F.7 (Vertical e-fat-threshold concatenation tool) For eachp € [k], say we have a real-valued function
class Fp defined on a domain set X with fattr(F,,€) < d. Then, the “vertically-concatenated” real-valued
function class \J,, Fy has fattr(UJ, Fp, €) < kd.

Proof Assume for the sake of contradiction that there exists F = {f1,- -, frat+1} C Up Fp. S ={x1, - ,Trat1} C
X, and witness 6 such that for every 7, j € [kd + 1]
(i) >0+ foralli < j
filws) 2 0% = (33)
fi(z;) <6 foralli > j

By the pigeon hole principle, there must exist a p € [k] such that |F' N F,| > d + 1. Therefore, for every i, j
with f;, f; € FNF,
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fi(z;) >0+¢€ foralli < j (34)
fi(z;) <6 forall ¢ > j
contradicting our assumption that fattr(F,, €) < d, as desired. [ |

Lemma F.8 (Horizontal e-fat-threshold concatenation tool) Say we have real-valued function classes F for
all p € [k] defined on mutually-disjoint domain sets X, with e-fat-threshold dimension < d. Let’s say these
classes all have the same magnitude, and their elements are enumerated by a set A. That is, for all p, there is an
fp.a € Fp foreacha € A. We define the “horizontal concatenation” function class F = { fo|la € A} where each
fa U, Xp — Ris defined

falx) = fpalx)  forallz € X, forallp (35)

Then, the horizontal concatenation function class F has e-fat-threshold dimension < kd.

Proof Assume for the sake of contradiction that there exists A = {f1,-- -, fras1} C A, S = {z1, -+, Tgasr1} C
U, Xp. and witness 6 such that for every 4, j € [kd + 1]

fi(x5)

xj 0+ e foralli < j (36)
filz;) <0

foralli > j

IN IV

By the pigeon hole principle, there must exist a p € [k] such that |S N X,| > d + 1. Therefore, for every i, j
with z;,z; € SN X,

fpi(x;) =0 +e€ forall i < j an
fpi(zs) <0 forall i > j
contradicting our assumption that fattr(F,, ) < d, as desired. u

Lemma F.9 Let F be a 0-1 valued function class. Define the XOR of 2 functions as follows: (f @ g)(z) =
I(f(z) # g(x)). We also define the XOR of a function class F and a function g as follows: F ® g ={f® g :
f € F}. Then we have that:

tr(F@g) < 2tr(F)+1

Proof Consider the function class in which all the entries from F are flipped and name if 7. Now let us con-
catenate the two function classes F and F vertically, as the functions are the rows of the function class. Name
this new function class F.,,.. Note that the threshold dimension of F,,,,. is going to be at most the sum of the
threshold dimensions of F and F, i.e.

tr(Feone) < tr(F) + tr(F)

Moreover, one can notice that if F has threshold dimension tr(F), then the threshold dimension of F has to be at
least tr(F)—1. Similarly, the threshold dimension of F has to beat least tr(F)—1. So we have tr(F) > tr(F)—1.
Thus we have:

tr(Frone) < tr(F) + tr(F) < 2tr(F) + 1
Finally we will prove that tr(F @ g) < tr(Feonc)» Which combined with the above result will give us the required
bound.
Recall that the rows of a function class are the functions. Let us take a look at what happens to the column j of F
when we XOR it with the entry of the function g, g;, at that column j. If g; = 0 then the column is not swapped,
otherwise if g; = 1 the column is swapped. Therefore each column of F @ g is either a column of F or a column
of F. That means that any threshold in F @ g will be contained in F,y,., thus concluding our proof.
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G Various inequalities

We first prove the following auxiliary lemma:

Lemma G.1 Let 64, ...,04 be numbers in [0,1 — €| for some € > 0. Then, there exists some 0 € [0, 1] such that

licld: e f-e/20>

Proof For each i € [d], if 6 is drawn uniformly at random from [0, 1], then with probability /2 it holds that §; €
[0 —€/2,0]. Consequently, taking expectation over 6, the expected number of elements ¢ such that §; € [0 —e/2, 6]
is ed/2. There exists some 6 € [0, 1] that realizes this expectation, namely, that there are at least ed/2 elements 4
such that 0; € [0 — €/2, 0], as required. |

Using Lemma G.1, we proceed to providing a sketch of Lemma A.11:

Proof Proof sketch of Lemma A.11 let d = fat(F, ¢). By definition of the fat-shattering dimension, there exists
aset {z1,..., 24} and witnesses (01, . .., 0q) that satisfy Eq. (7). To prove fat(F, e) < sfat(F, €), notice that we
can construct a complete binary tree of depth d, such that all internal nodes of depth i are labelled by x; 1, for
i =0,...,d — 1. Further, Eq. (7) imply that one could label the leaves with appropriate functions f € F such
that Eq. (8) holds, which implies that sfat(F, €) > d as required.

For the inequality fat(F, €) < W, we use the same notation of {x1, ..., 24} and witnesses (01, ..., 0q)
that satisfy Eq. (7), where d = fat(F,¢). By Lemma G.1 there is some 6 € [0, 1] such that there exist at least
ed/2 elements ¢ € [d] such that 6; € [0,0 + €/2]. Letiy,..., i, denote the set of indices of these 6; variables,

where m > ed/2. By Eq. (7), for each j € [m] there exists f; € F such that f(z;,) > 0;; +¢€ > 0 + € for
all £ € {j,j +1,...,m} and such that f(z;,) < 6;; < 0forall £ € [j — 1]. This, by definition, implies that
fattr(F,e/2) > m > ed/2 = efat(F, €)/2, as required.

For the inequality fattr(F, €) < 2524(F-)+1 notice that it is equivalent to sfat(F, €) > log fattr(F, e) — 1. It
is sufficient to prove that sfat(F,¢) > |log fattr(F, €)|. To obtain that, denote m = 2L24%r(F-9)] and notice that

given functions f1, ..., f,, € F elements z1,...,2,, € X and @ € [0, 1] that satisfy Eq. (9), one could construct
a tree whose internal nodes are labelled by x4, . . ., z,, and whose leaves are labelled by f1, ..., f,,, that satisfies
Eq. (8).

The left part of Eq. (11) was proved by [Daskalakis and Golowich, 2022, Lemma 8.4]. |
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