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Abstract

We provide time- and sample-efficient algorithms for learning and testing latent-tree Ising
models, i.e. Ising models that may only be observed at their leaf nodes. On the learning side, we
obtain efficient algorithms for learning a tree-structured Ising model whose leaf node distribution
is close in Total Variation Distance, improving on the results of Cryan et al. [2001]. On the
testing side, we provide an efficient algorithm with fewer samples for testing whether two latent-
tree Ising models have leaf-node distributions that are close or far in Total Variation distance.
We obtain our algorithms by showing novel localization results for the total variation distance
between the leaf-node distributions of tree-structured Ising models, in terms of their marginals
on pairs of leaves.

1 Introduction

Statistical estimation and hypothesis testing challenges involving high-dimensional distributions are
central in Statistics, Machine Learning and various other theoretical and applied fields. Core to
this challenge is the fact that even the most basic of those challenges require exponential sample
sizes in the dimension to solve if no structural or parametric assumptions are placed on the under-
lying distributions; see e.g. Daskalakis and Pan [2017], Canonne et al. [2017], Acharya et al. [2018],
Daskalakis et al. [2019] for discussions of this point and further references.

The afore-described exponential sample-size barriers motivate the study of models that sidestep
those requirements, e.g. models encapsulating conditional independence structure in the distribution,
such as Markov Random Fields (MRFs) and Bayesian networks. In turn, a vast line of research
has studied statistical inference questions involving MRFs and Bayesnets and their applications;
see e.g. Pearl [1988], Lauritzen [1996], Jordan [2004], Koller and Friedman [2009] for an introduc-
tion to graphical models, their uses, and associated inference algorithms, and see e.g. Chow and Liu
[1968], Chow and Wagner [1973], Narasimhan and Bilmes [2004], Ravikumar et al. [2010], Tan et al.
[2011], Jalali et al. [2011], Santhanam and Wainwright [2012|, Bresler [2015], Vuffray et al. [2016],
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Klivans and Meka [2017], Hamilton et al. [2017], Dagan et al. [2021], Kandiros et al. [2021], Daskalakis and Pan
[2021], Bhattacharyya et al. [2021], Vuffray et al. [2022] and the references in the previous paragraph

for some classical work and some recent theoretical progress on learning and testing graphical models

as well as other types of statistical inference with them.

Despite the vast study of graphical models, and a recent burst of activity towards computa-
tionally and statistically efficient algorithms for inference with them, a broad outstanding chal-
lenge in this space lies in computationally efficient inference with graphical models that have la-
tent variables. Those are widely motivated in practice (see e.g. Aigner et al. [1984], Bishop [199§],
Everett [2013], Bartholomew et al. |[2011|, Felsenstein [1973]) but inference with them is known
to be computationally intractable in general. For example, learning graphical models with la-
tent variables in total variation distance is known to be intractable, even when the underlying
graph is a tree [Mossel and Roch, 2005], while in the absence of latent nodes the same problem
is computationally tractable, owing to classical work of Chow and Liu [1968] and its recent analy-
sis [Daskalakis and Pan, 2021, Bhattacharyya et al., 2021]. Similarly, computing the likelihood of a
tree-structured graphical model is tractable in the absence of latent nodes, but becomes intractable
in the presence of latent nodes [Chor and Tuller, 2005, Roch, 2006]. These computational challenges
become more daunting when the underlying graph gets cyclic, and the overall difficulty of handling
latent variables has motivated the development of an array of widely-used approximate inference
methods, such as the expectation-maximization algorithm of Dempster et al. [1977] and variational
inference (see e.g. Blei et al. [2017] for a survey).

A main goal of this work is to advance the frontier of computationally efficient learning and
testing of graphical models with latent variables. While learning general tree MRFs over general
alphabets is hard |[Mossel and Roch, 2005], we focus on the binary-alphabet tree-structured Ising
models, which have found extensive use in phylogenetics [Felsenstein, 1973]. We focus on two
inference goals:

1. (Proper Learning): Given sample access to the distribution at the leaves of a tree-structured
Ising model P, we want to learn a tree-structured Ising model @ whose leaf-node distribution
is e-close it total variation distance to that of P.

2. (Identity Testing): Given sample access to the distribution at the leaves of two tree-
structured Ising models P and Q with the same leaf set, we want to distinguish whether
the leaf-node distributions of P and Q are equal or at least e-far in total variation distance.

We provide computationally and statistically efficient algorithms for both Goals 1 and 2. Our contri-
bution to Goal 1 is an algorithm whose time- and sample- complexity provide substantial improve-
ments compared to the algorithm by Cryan et al. [2001] as well as the algorithm by Mossel and Roch
[2005], which requires restricting the correlations across the edges of the Ising model. We also im-
prove upon work in the phylogenetic literature (see Section 3) which has focused on identifying
the latent tree-structure of the model but also requires restrictions on the Ising model to achieve
this. We finally note that, because we are targeting binary alphabet models, the computational
intractability results of Mossel and Roch [2005] for learning tree-structured graphical models with
latent variables do not apply to Goal 1.

On the technical front, a fruitful approach towards statistical inference with graphical models
uses the paradigm of localization, whose goal is to localize the difference between two graphical
models to differences of their marginals involving a small number of variables. Such localization
properties can be used to distinguish between models for the purposes of hypothesis testing, or



exploited to learn graphical models or perform hypothesis selection. Localization of the KL di-
vergence between two Bayesian networks with the same DAG follows directly from their shared
factorization, which implies that the KL divergence between the two Bayesnets is upper bounded
by the sum of the KL divergences of their marginals on different neighborhoods of the graph, involv-
ing a node and its parents. Similar subadditivity results have been established for total variation
and square Hellinger distance [Daskalakis and Pan, 2017] as well as for other distances, for MRFs,
and for causal models [Acharya et al., 2018, Daskalakis et al., 2019, Ding et al., 2021|. They are also
known for comparing graphical models on different graphs, as long as the underlying graphs are
trees Daskalakis and Pan [2017]. In turn, the afore-described localization results have been exploited
to show that the celebrated Chow and Liu [1968] algorithm learns tree-structured Ising models with
optimal sample complexity Daskalakis and Pan [2021] and to obtain optimal algorithms for testing
Bayesian networks Daskalakis and Pan [2017]. Additionally, localization properties of graphical
models are implicit in much of the recent burst of activity on learning graphical models referenced
earlier in this section.

On the latent variable front, Bresler and Karzand [2020] proved localization bounds for the same
model that we study: Ising models with zero external fields. Yet, their bound is exponential in the
number of variables, hence we cannot apply it to obtain efficient algorithms. A main goal of our
work is the following:

3. (Localization of TV in latent-tree Ising models): We are seeking to upper bound
the total variation distance between the leaf-node distributions of two tree-structured Ising
models, which have the same leaf set but potentially different underlying trees, in terms of
the marginals of these models on pairs of leaves. Further, the bound should be polynomial in
the size of the tree.

In the fully observable case, the localization of distance results that are known for tree-structured
graphical models exploit factorization properties of distributions defined on trees, plus combina-
torial results that allow writing two tree-structured graphical models under a common factoriza-
tion Daskalakis and Pan [2017]. The challenge that arises in tree-structured models with latent
variables is that their leaf-node distributions result from marginalizing out all non-leaf vertices,
thus they cease to have any tree-structured factorization.

1.1 Results

Let us formally define tree-structured Ising models. One is given some undirected tree 7' = (V, E)
whose leaves are denoted 1,...,n and whose internal nodes are denoted n+1,...,n +n'. Without
loss of generality, we will assume that all non-leaf nodes have degree 3. With any edge (i,j) € E
there is an associated weight, 0;; € [-1,1]. (Because the tree is undirected, edge (7,7) is the same
as edge (j,7) and 0;; = 0;;). Each node i is assigned a spin, x; € {—1,1}, and the probability of a
spin-configuration is defined as

Przi, ..., op4n] H L Oiji; .
(i.4)EE

'Every tree can be converted into one with all non-leaf nodes having degree 3, without affecting the leaf distribution.
We just contract every path that consists of nodes of degree 2 into a single edge and split nodes with degree larger
than 3 by introducing edges with 6 = 1.



We notice that this definition allows for any tree-structured Ising model with zero external fields (a
more common expression is Pr(z1, ..., &nyn] o< exp(3_; jyep BijTiz;)/Z, and this can be translated
to our setting by substituting 0;; = E[zz;] = (ePs — e Pii)/(ePis + e Pid)). A sample can be
obtained by first choosing some internal node as a root for the tree and directing all the edges of
the tree away from the root. Then, we draw a uniformly random value for the spin of the root and
randomly propagate the values of the spins along the tree as follows: for any directed edge i — j
such that the spin x; was already set, we set the spin x; such that Prjz; = ;] = (1 + 6;;)/2 and
Priz; = —x;] = (1 — 6;;)/2. This process has been used as a model in a variety of applications.

Our first result involves proving bounds on the total variation (TV) distance between two latent
tree Ising models. In the case of a fully observable tree, these properties can be proven by using
the product factorization of the probability distribution over the edges of the tree. While it is in
general hard to analyze latent-variable graphical models in the same way, the pairwise-marginals
between leaves are easily accessible. In the specific case of an Ising model, for any two nodes i, j of
the tree, the marginal distribution of (z;,x;) is characterized by

aij = Elzzj] = H Okt (1)
(k,l)ePij

where P;; is the unique path that connects i and j on the tree. Given m samples, the correlations a;;
between any pair of leaves uniquely identifies the model and the parameters and further, they can be
easily estimated from data approximately. Hence, a natural analogue of the marginal distribution
of edges in the complete tree would be the marginal distribution of all pairs of leaves in the tree. In
that direction, we provide a bound on the total variation of two leaf distributions based solely on
their pairwise correlations, in two settings: when both share the same tree and for a different tree.
This can be seen as an approximate tensorization property for TV in latent tree Ising models.

Theorem 1. Let p and p* be distributions over the leaves of two tree Ising models with n leaves and
assume that |E,[z;x;] — Ey(zx;]| < e for all leaves i,j. Assume also that the minimum diameter
of the two trees is D. Then:

e Same topology: If i and p* are defined on the same graph, then TV (u, u*) < 2n2e.

e Different topologies: If u and u* are defined on different graphs then TV (u, u*) < O(Dn’¢),
where O hides absolute constants.

We note that the previous bound by Bresler and Karzand [2020] was n2"e, and it holds for
different (and same) topologies. Their setting was slightly more general, as it applied to arbitrary
subsets of the nodes of an Ising model, rather than only sets of leaves. Yet, we believe that using
the same techniques as the ones we present here, one could prove a more general Theorem, similar
to Proposition 1 in Appendix H of Bresler and Karzand [2020]. Such a general result would improve
the bounds for learning in k-local-TV [Bresler and Karzand, 2020, Boix-Adsera et al., 2022| from
being exponential in k£ to polynomial (see Section 3 for more details on this line of work).

Theorem 1 is a result of independent interest, since it can be used in a variety of applications.
A direct corollary of Theorem 1 is a polynomial time algorithm for identity testing of latent tree
Ising models, which uses a polynomial number of samples.

Corollary 1. Let P,Q be leaf distributions of two potentially different tree Ising models. Suppose
we are given access to samples from P and we wish to distinguish whether P = Q or TV (P, Q) > .



Assume also that the minimum diameter of the two trees is D. Then, there exists a polynomial time
algorithm that answers correctly with probability at least 1 — §, with sample size

0 (nloD2 log%> .

€2

Corollary 1 can be proven directly by applying Theorem 1. It is worth noting that the diameter
is typically of the order O(logn) in many applications of interest.

To further show the utility of Theorem 1, we provide polynomial-time and polynomial-sample
algorithms for learning tree-structured Ising models. We provide two algorithms: one that requires
to know the structure of the tree in advance and the second does not require any assumption.

Theorem 2. Given m samples from the joint distribution over the leaves of some tree-structured
Ising model and given a target error € > 0 and confidence § > 0, there exist polynomial-time algo-
rithms for learning a tree-structured Ising model whose marginal over the leaves is e-close to the true
marginal in total variation distance, with probability 1 — &, with the following sample complezities:

e Known topology: If the tree topology T = (V, E) is known and the weights are unknown, the
sample complexity is m = O(n*log(n/d)/e?).

e Unknown topology: If the tree and weights are unknown, then m = O(n'**1log(n/d)/e®).

The algorithms for both settings consist of two steps: first, they empirically estimate the pair-
wise correlations between every pair of leaves. Then, they utilize an algorithm that, given these
approximate correlations, finds some tree Ising model whose pairwise correlations are close to the
estimated ones. The guarantees of those algorithms then follow directly from Theorem 1. Notice
that for the case of known topology, it is possible to implement this algorithm using a simple linear
programming, as outlined in Section 4. While for unknown topology, the algorithm is slightly more
complicated, and it is outlined in Section 8.

The only prior work that we are aware of, that provided a polynomial time algorithm for learning
in total variation without any restrictions on the weights of the model, is Cryan et al. [2001]. They
do not explicitly state the sample complexity and it can be inferred from the proof to be at least
n® /e'®. We notice that their result is slightly more general and holds for general trees with a binary
alphabet. We provide a brief technical comparison with their result in Section 4. We further note
that information theoretically, (:)(n/ €?) samples are sufficient and necessary for learning the joint
distribution, in the known and unknown topology settings, and these are also the best known lower
bounds for efficient algorithms. This is well known, and can be shown, for example, by modifying
the arguments in Devroye et al. [2020], Brustle et al. [2020], Koehler [2020]. For completeness, we
provide a sketch of these arguments in Section 9. It remains an open problem whether there is a
statistical-computational gap in this setting.
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2 Technical Contributions — Proof Sketch

We describe the main tools for the proofs of Theorem 1.

2.1 Preliminaries

For the discussion, fix some tree T' = (V, E). For any leaves i, j, let P;; denote the path connecting
them. Denote by # any vector in [~1,1]¥ whose entry . denotes the correlation across the edge

e € E. When we write «, & etc., this corresponds to a vector in [—1, 1](3), whose entries, a;; are
indexed by two distinct leaves ¢ # j. In general a can be an arbitrary vector, yet, we say that « is
induced by some probability distribution on a tree 1" if it represents the pairwise correlations of the
leaves in some Ising model that is defined over the tree (i.e. if (1) holds for some edge-correlations
{0c}eck). Given a tree T', edge-correlations § and = € {—1,1}", denote by Prpg[x] the probability
that the leaves equal x under the Ising model defined by 7" and 6. We say that Prrg is the leaf
distribution over {—1,1}".

First, we define a pair of leaves i, j to be a cherry if they share their common neighbor (recall
that a leaf has only one neighbor). In other words, if one directs the edges from some internal node
to the leaves, 7 and j would share their parent.

2.2 An expression for the probability distribution on the leaves from Bresler and Karzand
[2020]

We describe a convenient closed-form expression for the probability distribution over the leaves of
the tree. To describe it, we begin with some definitions. Let S be a subset of the leaves of even
cardinality. Then, there is a unique? way to partition S into |S|/2 pairs (z1,%1),-. -, (z151/2:Y|51/2)
such that the path connecting x; and y; is edge-disjoint from the path connecting z; and y;, for
all i # j. This partitioning can be obtained by matching leaves that are closest to being a cherry
(i.e. siblings have highest precedence) repeatedly. For example, if we have S = {i, j, k,¢,m,p} in
the tree shown in 1, then we partition S into (7,¢),(j,m) and (k,p). The leaf distribution can be
described as the following multilinear function of x, whose coefficients, that are indexed by sets S
of even cardinality, rely on the aforementioned partitioning into pairs:

1S]/2
fEa) =27 Z ok Hmz ,  where ol = H Oy, (2)
SCln] €S i=1
|S| even

The following lemma, which is a special case of Theorem H.1 in Bresler and Karzand [2020], argues
that fI'(a) is the leaf distribution, as a function of z.

Lemma 1 (Bresler and Karzand [2020]). For any latent tree distribution with tree-topology T" whose
pairwise correlations over the leaves equal o = (v5)i j teaves- Then, the probability of any configura-
tion x = (z1,...,7n) € {—1,1}" on the leaves equals fI ().

For convenience, we give a proof of Lemma 1 in Section 5.

2The uniqueness holds if each internal node has degree 3 and this assumption is without loss of generality, as we
explain in a footnote in Section 1.
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Figure 1: Path removal: In (a) We depict the graph obtained from 7' by removing the path from ¢
to j (i.e. the dashed edges are being removed). In (b) we depict a removal of the quartet {i, k, ¢, m}.

2.3 Technical tools for the tensorization of Theorem 1 (same topology)

We now utilize Lemma 1 to prove Theorem 1 (same topology). The total variation distance between
two distributions on the same topology 7" with induced weight-vectors a and & is ), | Prro[z] —
Prrafz]l/2 = >, [fo(a) — f2(&)]/2, where T is omitted from fl for brevity. We would like to
bound the above expression, assuming that a and & are close and this corresponds to showing
some Lipschitzness properties on f,(«). We show that such a Lipschitzness property holds in the
neighborhood of a probability distribution. Namely, that if « is induced by a distribution and we
change one entry of «, then f,(a) does not change much:

Lemma 2 (Formal statement in Lemma 6). Suppose a € [—1, 1](3) is induced by some probability
distribution on a tree T. Denote by o) ¢ [—1, 1](3) the vector that agrees with o everywhere, except

for pair of leaves ij, where ozz(;j) # a;j. Then,

ST fal@) = fol@l@)] < Jag; — ol

ze{-1,1}"

Proof sketch. Let 0 denote the weight vector on the edges of 1" that induces the correlation-vector «

in accordance to (1), and let 6’ be the weight vector that is obtained from € by replacing any weight

along the path from i to j with 0. Then, it is straightforward to see that for all z € {—1,1}",
‘fﬂc(O‘) - fx(a(m)”

) ij

In other words, the ratio above equals the probability of x in the distribution that is obtained from
Prr g by removing the path from i to j in 7', as depicted in Figure 1 (a). Since the right hand side
represents a distribution over z, if we sum over x the result equals 1. O

To bound the total variation between two weight vectors a and &, one would attempt to directly
apply Lemma 2 multiple times, each time substituting one entry of a with its corresponding entry
of &. However, in the process of transforming the vector one coordinate at a time, we may stumble
upon an intermediate weight vector o that is not induced by a probability distribution and so
Lemma 2 does not apply. Hence, one has to prove an analogue of Lemma 2 for the case that
« is close to being induced by a distribution. Interestingly, this can be proved by an inductive
application of Lemma 2.



2.4 Technical Tools for the tensorization of Theorem 1 (different topologies)

In this section, we aim to bound the total variation distance between a probability distribution
defined on a tree T' with weights « and another defined on T with weight &, under the assumptions
that the weights are e-close: |a;; — Gy;| < e. To compare between two different topologies, we will
use the known fact (folklore) that the topology on the nodes of a tree is completely determined
by the set of all subgraphs that are induced by four leaves (quartets). Hence, in order to analyze
the difference between two graphs, we can analyze the difference between these subgraphs. This is
significantly easier to analyze since the subgraphs contain only four nodes each. For this purpose,
we introduce below some useful concenpts, inspired by the phylogenetics literature.

r

{(12)(34)}

Step 1 (T')  Step 2 (T?) Step 3 (T?)

)
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{(14)(23)}

e T B
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(a) The 3 quartet possibilities (b)

Figure 2: (a) The three possible topologies for a quartet. In the first topology, {(12)(34)}, the path
from 1 to 2 does not intersect the path from 3 to 4. Further, ajoaizq > ayzaiey = aggans; (b) The
different positions of 7 in its movement across the tree towards j. Each position corresponds to a
different tree 1°.

Definitions of a quartet. In the discussion below, we focus without loss of generality in the case
where a;; > 0 for all 4, j. Similar claims can be made for arbitrary signs. We will use the notion of a
quartet of leaves: this is a collection of four leaves, {i,j, k, ¢}. It is well known in the phylogenetics
literature that for every quartet there are 3 topologically distinct ways for these 4 leaves to connect
with each other, if we contract all the paths leading to other leaves in the tree. Depending on which
of the 3 ways we have, we say that the tree induces a topology for a specific quartet. We denote the
three induced topologies by {(ij)(k¢)}, {(ik)(j¢)} and {(i¢)(jk)}, where {(i7)(k¢)} means that the
path P;; is edge disjoint from the path Py, and similarly for the other topologies, as depicted in
Figure 2 (a). For a fixed quartet {i,j, k,(}, there are three quantities that determine the topology,
out of the three possibilities, and those are ajjags, arojr and ageojy. It is known that two of these
quantities are always equal and always smaller than the third, which determines the true topology:
if ajjagy is the largest then {(ij)(k¢)} is the topology. If two trees induce a different topology for a
quartet, we say that the trees disagree on that quartet, otherwise we say that they agree on it. It is



known (folklore) that if two trees agree on all the quartets, then they should have the same topology.
Lastly, note that in the special case where leaves {7,j} form a cherry, the path P;; does not share
edges with the path between any two other leaves. This implies that the topology of {ijk¢} would
necessarily be {(ij), (j¢)} for any two other leaves k and /.

For the analysis, we would like to quantify how sensitive is the topology of a quartet to changing
the weights. For any quartet {i, 7, k, ¢} and weight-vector «, define

Aijke = maX{Otijau, Qi g, Otiéajk} - min{aijakéa Qi g, az’éajk}

(where the dependence on « is omitted for brevity). Recall that the topology is determined by the
largest of these three products, while the other two smaller products are identical. Hence, it is
easy to see that two trees T' and T, with e-close weights o and &, disagree only on quartets where
Ajjre < 2e.

General approach Recall from Section 2.3 that we transformed « into & by replacing its values
one coordinate at a time for the case where T'=T. Here, we first fix o and transform 7" into 7. In
other words, we find a sequence of topologies Tt = T,T2,...,TF = T that interpolates between T’
and T in a way that T, T%+1 only differ in a small part of the graph. After transforming T' into T,
we then transform « into &.

Transforming one tree into the other. We now describe in more detail the sequence of local
moves from T to 7. Intuitively, the quartets are the analog of the pairwise distances in the fixed
topology setting, and so we will measure dissimilarity between trees by the number of quartets that
they disagree on. Thus, the goal is to produce a sequence of local topological changes that reduces
quartet disagreements between 7" and T while ensuring that each consecutive pair of terms I and
fT s close.

The sequence of moves starts by identifying two leaves i, j that are a cherry in T but are not a
cherry in T' (if one exists). Since i, j are not a cherry in 7', there is a path connecting them, which
involves at least 2 other nodes, by definition of a cherry. Denote the path by P;; = vi —vo—---—y
where v1 = i,v; = j and [ > 4. In the process of transforming 7' into T, we select one of the two
nodes (according to some criterion), say it is i, and move it along the path P;; in 7" until it becomes
a cherry with j. The different steps of this movement are shown in Figure 2 (b), where we can see
the different positions of i. When we are done moving i towards j, we will find a new pair to make
a cherry and so on. If T" and T agree on all cherries, we look for disagreements due to parents of
cherries, grandparents of cherries, and so on. When this process ends, 7" and T are guaranteed to
be the same.

Analyzing one step. Let us focus on one of the steps in the above process. While the first step
does not change the topology over the leaves, we will analyze the second step, transforming 7! into
T? as shown in Figure 2 (b). This involves cutting 7 from the middle of edge (v1,v2) and pasting it
in the middle of edge (va,v3). We will bound |f2" (a) — f£*(a)| in terms of the parameters Ajjre of
the quartets that 7" and 72 disagree on:

Lemma 3 (Formal statement in Lemma 8). Let i,j be a cherry in T but not in T and let T* and
T2 be the topologies defined by procedure above (depicted in Figure 2 (b)). Also, denote by U the set



of quartets where T and T? disagree on. Then,

S @ -l Y Auktm (4)

ze{-1,1}" {i,k.L,;m}eU

Lemma 3 can be seen as an analogue of Lemma 2 but we have quartets instead of pairwise
distances. It shows a type of Lipschitzness of fI " when we change the topology of some of the
quartets. The way to prove it is to notice that the difference \fle (o) — fIT2 ()| can be factored into
a sum of terms, each for a quartet in U. Each term is the expression of a probability distribution
on a topology that results when we remove all paths between leaves in that quartet from the tree,
as depicted in Figure 1 (b). Next, we will bound the right hand side of (4).

Lemma 4 (Formal statement in Lemma 9). Fach term Ajgem in the right hand side of (4) is
bounded by 2e.

Proof sketch. Using a simple case analysis, it can be shown that the only quartets that can change
topology are those that contain 7, some k € K, some ¢ € L and some m € MU{j} (see Figure 2 (b)).
The quartet topology is {(ik)(¢m)} in T* and {(im)(kf)} in T? and we would like to argue that
Ajkem < 2¢. First, let us assume that m = j. Then, the topology of {i,k,l,m} in T equals that
of T, since T' and T1 share the same leaf topology, while the quartet topology of T? equals that of
T indeed, the topology of 7' is {(2])(kﬁ)} since (i, §) is a cherry in 71", as assumed in the algorithm
and this is also the topology in T2. In particular, since the topology in 7! is different than that in
T2, then the topology in 7T is different than that in 1. As explained after the definition of Ajrsm,
above, this implies that A;ien < 2¢. In particular, this provides a bound on Aj;is, as required.
The case that j # m is more complicated and it relies on the fact that ¢ can be selected such that
Aikem < Ajrem and cosidering the quartet (4, k, £, m). O
Completing the proof After ensuring that the move described in Lemma 3 incurs a small loss,
the natural next step is to repeatedly apply a variant of Lemma 3 for each other step of the sequence
and obtain a bound for |fI (a) — fI'(a)|, using the triangle inequality. We would like to analyze the
total loss incurred in all the steps. We divide these steps into rounds, where in the first round we
move leaves, in the second round we move parents of leaves etc. The number of rounds is bounded
by the diameter D of T. We can show that in each round, every quartet changes topology at most
4 times. Furthermore, in the general variant of Lemma 4 that corresponds to a movement of a
subtree (rather than a leaf), € is replaced with me. Since there are at most ( ) quartets, the total
loss incurred in TV during all these steps is O(Dn’¢).

3 Related Work

A popular method for latent-tree estimation are tree-metric approaches, which rely on estimating the
pairwise correlations between any two leaves. For these algorithms, there is a vast theoretical analy-
sis which is largely focused on estimating the structure of the tree, namely, finding the set of edges F
Felsenstein [1973|, Chang [1996], Erdds et al. [1999], Huson et al. [1999], Csurés [2002], Felsenstein
[2004], King et al. [2003|, Daskalakis et al. [2006], Roch [2006], Mossel [2007]|, Gronau et al. [2008|,
Roch [2010], Roch and Sly [2017|. The results typically require some upper and lower bounds on the
edge-weights a;;. Such bounds guarantee that the structure of the tree can be completely identified
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from polynomially many samples. In contrast, Daskalakis et al. [2009] design an algorithm that re-
constructs as much of the true topology as possible, without assuming bounds on the edge-weights.
However, they do not provide any guarantee on the closeness of the learned distribution to the true
distribution. Another popular family of algorithms are likelihood-based methods Felsenstein [1981],
Yang [1997], Stamatakis [2006], Lee et al. [2006], Wang and Zhang [2006], Truell et al. [2021], but
their convergence guarantees are barely understood [Zwiernik et al., 2017, Daskalakis et al., 2018,
2022].

Beyond trees, the general problem of latent graphical model estimation has received some at-
tention [Bresler et al., 2019, Bresler and Karzand, 2020, Moitra et al., 2021, Goel, 2019, Goel et al.,
2020]. However, all these algorithms have time- and sample- complexity that is exponential in the
maximum degree of the graph. Also, Acharya et al. [2018| study testing of Bayesnets with latent
variables, but under the assumption that the c-components have constant size.

Another related line of work is that of estimating a tree from fully observable data, while
guaranteeing that the error is bounded in k-local-T'V : this means that the output model is e-close in
total variation to the true model in any marginal of k£ nodes (where k is considered small). While the
complexity of learning the full tree to € total variation distance is © (n logn/e?) [Daskalakis and Pan,
2021, Koehler, 2020], the algorithm of Boix-Adsera et al. [2022] has a sample complexity of O(logn -
k222F /e2) for learning in k-local TV. The preceding paper of Bresler and Karzand [2020] obtained
the same guarantee, however, they assume some upper bounds on the edge correlations 6;;.

4 Algorithm

Algorithm 1: Learn a tree-structured distribution with a known topology

Input: An unweighted tree T'= (V, ') whose leaves are labeled 1,...,n
Input: Estimates on the correlations between the leaves: (@i_j)i,je{l,...,n}, itj
Input: A parameter > 0 that bounds the errors of &;; in absolute value.
(wie)keep < any solution for the following linear program:

Find a feasible solution for: (wg¢)recr
subject to
V leaves i # j: log(|uj]| — 1) < 3 (4 nepatn(iy) Wkt < log(ldz;| +m)
(here log z is interpreted as —oo for z < 0)
V edge (k,0): wge <0

U« {(i,7) : |&y| > n}
(Ske)kecr < any solution for the following linear system in Fa:

Z ske = sgn(dyj) for all (4,5) e U
(k,£)EP;;

return the weights 0y < (—1)5e™k¢ for all edges (k,() € E

We describe the algorithms of Theorem 2 both for the case that the tree topology is known and

when it is unknown, given m samples (x1,...2L),..., (z7, ..., 2™) € {—1,1}". Both algorithms
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first estimate the covariance between any two leaves from samples, setting &;; = % oy xfxﬁ.
We note that by Chernoff-Hoeffding and a union bound, with high probability all the estimated
correlations are close to their true values a;‘j:

With probability 1 -4, Vi # j: |ai; — af;| < n:=+/2log(n?/d)/m. (5)

Given such estimates on the covariance, our algorithms will find some weighted tree whose correla-
tions a;; between the leaves are close to the estimated correlations &;;. By the triangle inequality,
the correlations of the estimated tree are close to the true correlations and the result will follow by
applying Theorem 1.

Known tree topology. We describe an algorithm that learns the weights of a fixed tree, given
the estimated correlations &;;. From (5), we can assume that all these estimations are accurate up
to an additive error of n = y/2log(n2?/d)/m.

We start by assuming that the edge weights 0}, are non-negative, which also implies that the
pairwise correlations between the leaves ozfj are non-negative by (1). Such Ising models are called
ferromagnetic. Later, we will show how to use this algorithm to solve the unrestricted problem.

Starting with a ferromagnetic (non-negative weight) model, we will show how to write a linear
program that returns weights on the edges of this tree, such that the pairwise correlations «;; over
the leaves are 7-close to &;j, if such weights exist. Yet, a solution is guaranteed to exist since the
true edge-weights satisfy these constraints. This gives us a model whose pairwise correlations are
2n close to those of the true model:

g — o] < iy — dug| + |duj — aj;[ <+ =2n.

First, we discuss the linear program that finds weights €y, > 0 on the edges (k,¢) € E. The variables
of the linear program are (wge)x rer and they signify wgy = log 0. We would like our output to
satisfy the following constraints: (1) 0y, € [0,1], which can be rewritten as wye < 0; and (2) For
any leaves i, j, || — 1 < |ag;| < |&ij| + n. If we take log and substitute |ov;| = [T nepatn(,j) O
according to (1), we get the following linear constraints on the variables wy,:

For any leaves i # j:  log(|Gy;| —n) < Z wy < log(|duj| + 1)
(k,l)€path(i,5)

(while using the convention logax = —oo for < 0.) This yields a linear program for finding the
logarithms of the weights of the tree, and we can obtain weights for the tree by exponentiation of
these log-values.

It now remains to handle the case where the edge weights 0y, can be negative. We will first
consider the tree whose edge weights are |0f,;|, which we call the ferromagnetic variant of the
original tree. Notice that by (1), the pairwise correlations in this tree equal |aj;|. In the first
part of our algorithm, we will find a tree whose pairwise correlations are 27 close to those of the
ferromagnetic variant of our tree. This can be done by feeding the linear program with the absolute
values of the estimated correlations, |d;;|. Notice that these are n-close to the true correlations in
the ferromagnetic variant. Indeed, by the triangle inequality,

[l&is| = leg; | < léus — agsl <.
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Since the linear program is fed with the estimates |d;;| that are n-close to the correlations of the
ferromagnetic variant, by the guarantees of the linear program, it outputs a tree whose pairwise
correlations are 27 close to those of the ferromagnetic variant.

It now remains to find a sign for each edge. Let sgy € {0,1} be a variable for each edge (k,¢)
so that the sign of edge (k,¢) is (—1)*¢. By the approximation guarantee [&;; — aj;| < n, we can
accurately estimate the sign of a;; whenever |&;j| > n. Let 4,7 be such a pair of leaves and denote
the sign as sgn(d;;) € {—1,1}. By (1),

IT (-1 = sgn(as;) = sgn(a,)
(k,f)ePij

This gives us a linear equation in Fy with variables sg, for all such pairs (i.e. there is a linear
equation for each pair 7,j such that &;; > 7). We subsequently find a solution to this system to
obtain signs for all edges. We note that there exists at least one solution since the true signs of our
model is a solution, yet, the algorithm can output any solution. As a final output, the edge-weights
01, are determined such that their absolute values equal the output of the linear program over R,
while the signs of the edges are taken according to the system of equations over Fy, as summarized
in Algorithm 1.

We argue that the pairwise correlations in the output model, which we denote by a;;, are 4n
close to the true correlations. Indeed, divide into cases:

o If |&;;| > n, then, by the guarantee of the system of equations over Fy, the sign of a;; equals

that of afj. Their absolute values are 2n-close by the guarantee of the linear program over R.

Hence, their values are 2n-close.

e If |G;j| <, then, by the approximation assumption, we have that
|a;| <[] +n < 2n.
Further, recall that by the guarnatee of the linear program over R, we have that
|aij| <[] +n < 2n.

We derive that
|aij — o5 < evij| + |og;| < 20+ 20 = 4.

According to Theorem 1, the output model is O(n?n)-close in total variation distance. By the
assumption on 7 in (5), the proof follows. See Section 6 for a more detailed proof.

Unknown tree topology. If we do not know the tree structure, we use the algorithm of Daskalakis
[2011] that, given approximations é;; of the correlations between the leaves, finds a forest that shares
multiple properties with the original tree. Then, for any tree in this forest, we compute weights on
the edges, using Algorithm 1 and return the weighted forest, as summarized in Algorithm 2.

To analyze this algorithm, we perform a series of careful contractions and deletions of edges,
that transform this forest into one where each subtree has exactly the same topology as the one
induced by the true tree on that particular subset of leaves. Then, crucially, we use the analysis
for the known topology setting, to bound the difference in total variation between learned marginal
distribution over the leaves of each subtree and the true marginal distribution.

13
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Algorithm 2: Learn a tree-structured distribution with an unknown topology

Input: Estimates on the correlations between the leaves: (&ij);je(1,...n}, iz
Input: Parameters 1/, &,6 > 0.
F < the forest output by the algorithm of Daskalakis et al. [2011] given weights (d;j)iz;
and parameters £, > 0
for Tree T'= (V,E) € F do
(ekg)(kyg)e g < the output of Algorithm 1 given 7" and the correlations &; ; between any
two leaves of T' (while substituting its parameter 7 with n’)
end
return The forest F', where each T' = (V, E) is weighted according to (0x¢)kecr

To compare with Cryan et al. [2001], they employ a similar process of splitting the tree into
subtrees. However, they then rely on learning the weights within in each subtree accurately. This
yields a bound in total variation between the learned and true distribution within each tree. The
difference between these approaches is that we learn in total variation only the leaf distribution
within each subtree, while their analysis relies on learning the distribution on both the leaves and
the internal nodes of each subtree. This requires them to cut the original tree into significantly
smaller subtrees, which harms the complexity.

5 A Formula for the leaf distribution from [Bresler and Karzand,
2020]

We first introduce some convenient notation. Let S be a subset of the leaves of even cardinality.
Then, there is a natural way to partition the leaves in S in |S|/2 pairs using the following criterion:
each leaf 7 in S is matched with its closest relative in .S in the tree. Yet, to be more exact, we say
that a matching of S is a closest relative matching if for any two distinct pairs (i,5) and (k,¢) in
the matching, the path from ¢ to j does not intersect the path from k& to £. An example of such a
matching is given in Figure 4. In the following proposition, we prove that there is a unique such
matching, and use this matching to find an expression to the leaf distribution of an Ising model:

Lemma 5. Let z1,...,x, denote the values over the n leaves of a tree T with pairwise correlations
a€ -1, 1](3) Then, the following holds:

o Any subset S C [n] of even cardinality has a unique closest relative matching.

e Define for any subset S C [n] of even cardinality

5]/2
ag = H Qg
k=1
where (i1, J1), - - (i|s)/2—1,J|s|/2—1) are the pairs in the closest relative matching. Then, we

have

Zeven subsets S C [n] &S HiGS Z; 6
e (©

Pr[zy,...,x,] =
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Proof. Recall that we can assume that there are no nodes of degree 2 (otherwise, we can contract
maximal paths of degree-2 nodes and replace them by a single edge whose weight is the product of
all edges in the path. This does not change the leaf distribution.) We will prove both statements
together by induction. We will focus on the proof for the probability expression, and the uniqueness
of the matching will come as a by-product. The base case considers either 0, 1 or 2 leaves, and
follows trivially. For the induction step, suppose the claim is true for all trees having at most n — 1
leaves. Let T' be a tree with n leaves. We are interested in the probability Pr[z,...,z,] of the
leaves taking some specific values. First of all, since T" is assumed to contain no nodes of degree
2, we know that there exists at least one cherry, i.e. a pair of leaves that share their parent. Also,
without loss of generality, suppose that leaves n — 1 and n form a cherry and denote by p their
common parent in the tree. Lastly, denote by 6, ,_1) and 6, ,,) the weights of the edges (p,n—1)
and (p,n) respectively. Then, we know that xz,,z,_1 are conditionally independent from the rest
of the tree conditioned on y,, where y, denotes the value of node p. Thus, we can write

Prizy,..., x| =Prlzy, ..., 2n2,yp = 1 Prlzp 1,20 | yp = 1]
+ PI'[LEl, ey Ip—2,Yp = 71] Pr[Infla Tn | Yp = 71]
Now, notice that we can view the nodes 1,...,n — 2,p as the leaves of a tree 7”7 which is simply
T after deleting leaves n — 1 and n and the edges (n — 1,p) and (n,p). Hence, we can apply
the induction hypothesis on the distribution of z1,...,z,—2,y,. Recall that the expression for the
probability distribution is a function of the expressions ag of all the even subsets S of the leaves.
Hence, we would like to compare the coefficients g between the distribution over z1,...,z, and
the distribution over w1, ..., %, _2,y, that is used for the induction hypothesis. In order for such a

comparison to be possible, we divide the collections of even subsets of the leaves of T" and 7" into
categories. We start with the leaves of tree 1. Denote by S the set of all even subsets of the set of

leaves {1,...,n}. Clearly, we can partition S into 4 disjoint subsets:
S__ := {even subsets of [n] not containing neither n — 1 nor n}
S4— := {even subsets of [n] containing n — 1 but not containing n}

S_4 = {even subsets of [n] not containing n — 1 but containing n}

—_— o o

]
]
]
]

S+ = {even subsets of [n] containing both n — 1 and n}

Similarly, we define analogues to be applied on the distribution that is used in the induction hy-
pothesis. In particular, define by R the collection of all even subsets of [n — 2] U {p}. We can also
partition R into the following subsets:

R_ := {even subsets of [n — 2] U {p} not containing p}
R := {even subsets of [n — 2] U {p} containing p}

While applying the induction hypothesis, once computing Pr[z,...,z,] we will split the sum in (6)
into four sums over the different subsets of S that were defined above. Similarly, while computing
Pr(zy,...,zn—2,yp] we will split the sum into terms corresponding to R_ and R,. In order to be
able to compare between these two sums, we will map each of the four subsets of § to a subset of
R.

First, note that S_— = R_ since both equal the collection of even subsets of [n — 2]. Hence,
it follows by induction hypothesis that the sets S € S__ have a unique closest relative matching.
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Further,

S [[eies= 3 [Jaios .
SeS__ies SeR_ieS

Next, notice that there is a bijection between S;; and R_, which takes any S € S;4 to
S\ {n —1,n}. We use this to prove that there exists a closest-relative matching for any S € Sy.
Indeed, we can match n — 1 with n and then match S\ {n — 1,n}. This is possible by induction
hypothesis. Further, this matching is unique. This is true because any such matching must match
n — 1 with n, and the matching in S\ {n — 1,n} is unique by induction hypothesis. Using this

bijection between the matchings of S, and R_, we derive that

Z ngiaS = Tn-1Tnln—-1n Z HxiaS .

SES 4 ieS SeR_ieS

Further, notice that there is a bijection between S;_ which takes S € S4_ to S\ {n—1}U{p}.
Further, to argue that each S € S;_ contains a unique closest-relative matching, it is easy to see
that there is a one-to-one correspondence between the closest-relative matchings of S\ {n—1}U{p}
and that of S. Indeed, for any closest-relative matching of S\ {n —1} U {p}, we can obtain a closest
relative matching of S by replacing p with n — 1, and vice versa. Notice that the path from n —1 to
any other vertex can be obtained from the path from p to that vertex by adding the edge (n — 1, p)
in the beginning. Hence, for any leaf ¢ we have ay,—1; = 0,,—1 p0, ;. In particular, this implies that
ag = Op-1p0s\(n-1}u{p}. Summing over S € S;_, we get

Z vaz’as =Tp 10,1, Z H Tias
Ses, €S SER4 ieS\{p}
Similarly, the sets S € S_, also have a unique closest-relative matching, and
Z Hmias = Tpbnyp Z H TG .
SeS_,ies SER+ ieS\{p}

Using the above expressions, we can complete the proof, using the induction hypothesis:

Pr[fﬂl, tee 7$n] = Pr[$17 e )$7l—27 yp = 1] Pr[xTL—lu $n|yp = ]‘]
+ Pr[ml, e ,.rn_z, yp = —1] Pr[xn_l’ x’n‘yp — _1]
_ Yser_ Llies mias + Xger, [ies\ipy i 1+ 2000 1 + 21001,
- 2n—1 9 92
" 2ser_ ieswias = 2 ser, ies\(p) #1051 — 200 1 — 201001,

_ Yser llieszios + ntn10npbn-1p > ger lies zias
= >

Tnbnp Lser, lies\py Tis + Tn-10n-1p 2oser . lies\p) Ticts

27’L
_ Yses Lliesmios + Y ges,, [LiesTios + Xges | [lies vios + 2ges,  [lies vias
2n

_ ZSES HieS Lites
— m
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6 Proof of Theorem 1 (Same topology) and Theorem 2 (Known
topology)

In this Section, we provide the proof for bounding the TV distance between two models with the
same topology (Theorem 1). This argument immediately implies an algorithm for TV-learning using
O(n*/e?) samples from the leaves.

We first restate Theorem 1 for the same topology with a bit more detail.

Theorem 3. Let T be a tree and o, & € [—1, 1](3) be two tree metrics on T'. Suppose ||a — G| < €,
for some € > 0. Let u,fi be the corresponding distribution on the leaves of 1" with metric o, &
respectively. Then,

TV (i, 1) < 2n’e

To start, let 7" be a tree with n leaves. We will refer to the leaf set as [n], so each number
corresponds to one leaf. We define for each x € {—1,1}" and for each tree topology 7" a function
-1, l}(g) — R as

f;p(a) = 2even subsets SQ%L [n] a%: [Lics @i o

Notice the similarity of this expression with the probability distribution of the leaves. However, this

is a multilinear function that is defined for any vector o € [—1, 1](3), which might not necessarily
arise from a tree metric on the leaves. This motivates the following definition. For a vector a €
-1, 1](3), we say that « is induced by a metric in T if there exists an assignment 6, of weights for
each edge e of 1", such that for all leaves i, j

Q5 = H 96

GEPij

In that case, we will refer to « as a tree metric on T'. Now, bounding TV (u, i) essentially amounts
to bounding
Yoo @ @)= Y fale) — f2(a)]
ze{-1,1}" ze{-1,1}"

Thus, the problem amounts to bounding the Lipschitzness of f.. We will bound this quantity by
substituting one by one the coordinates of @ with & We first introduce some relevant definitions.
We will need a total ordering of the pairs (4, j) of leaves. The precise ordering doesn’t matter, but
for simplicity let’s say we pick the lexicographic order. This means that (i,7) < (k,1) if and only
ifi <kori=kandj <!l Weusethe notation (i,5) < (k,1) as a substitute for (i,j) < (k,l) or
(i,7) = (k,l). Suppose we order all pairs of leaves in lexicographic order. Then, we denote the ¢-th
pair in this order as (i, j;). For each 0 <t < (g), we define the vector a! € [—1, 1](2) as

¢ { Gy, if (k1) < (ig, Jir)

Q= .
kil ay; , otherwise

For t = 0, the convention is that o = «. Notice that ol3) = a. Also, denote T'\ {1, 7} the topology
that is obtained from 7" if we remove all edges on the path P;; from 7'

We first prove a Lemma about what happens to the expression of fg () if we change exactly
one coordinate of a. This is a purely combinatorial statement that relies on the structure of the
coefficients ag.
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Lemma 6. Let T' be a tree and i,j two leaves of T. Also, let a, f € [—1, 1](3) such that oy = P
if (k,1) # (4,7). Let v € [—1, 1](3) be defined as follows

_ | 0, if P;j and Py have common edges
Tkl = oy , otherwise

Then, N

fl(a) = £1(B) = mimj(aj — Bij) B9} (v) (8)
Proof. We have
Zeven subsets S C [n] (Oé%: B ng) HiES i

77(@) ~ £1(8) = -

We first notice that if {4, j} is not a subset of S, then «;;, 8;; will not appear in ag, ﬁg respectively.
This means that ag = ﬂg:, since a, 8 agree on the rest of the coordinates. Hence, we focus on the
collection of subsets

S1:={SC[n]:{i,j} €S and |S| even}

Suppose vg = 7,01, ...,V = j is the path connecting 4, j in T'. Since each non-leaf node has degree
3, each one of the nodes v1,...,vr_1 has exactly one other neighbor outside of the path. We can
view this as each v; being the root of some subtree T; that starts from the neighbor of v; that is
outside of the path. Let A; be the set of leaves on subtree 7;. Notice that the sets A; partition
[n] \ {i,7}. Figure 3 depicts these sets of leaves along the path.

vy =1 v =7
T Ty Th1
A, A, A

Figure 3: The figure shows the path connecting i to j and the subtrees that will become connected
components if we remove this path from the graph.

We now want to determine which elements of the family S; of subsets gives different coefficients
for a, 5. We first show that if for some S € S we have |SN A,| being odd for some 0 < r < k, then
ag = Bg. The reason is the following: suppose there exists ry with |S N A,,| being odd. Suppose
also without loss of generality that this is the smallest r for which this property holds. This means
that for r < rop we have |S N A,| is even. Thus, by the matching process described in Section 5, it
is clear that for each r < rg, the leaves in S N A, will be matched in pairs inside the tree 7, and
not with some leaves outside of the tree. Also, since [S N A,| is odd, the leaves in S N A, will
be matched with each other, except one leaf, call it w, which will be left unmatched. Then, the
matching process dictates that w should be matched with 7. Hence, ¢ will not be matched with j
for this subset S. An example of this situation can be seen in Figure 4.
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0 U1 @ @

Ay As

Figure 4: In this example, we have the subset S = {i,7,1,2,3,4}. Notice that |[S N Ay|,|S N As| are
even. Clearly, the closest relative matching is (4, 7), (1,2), (3,4). If we had the set S" = {i, 1,3, 5},
then the matching would be (¢, 1), (3, j).

Hence, in ag we will have the factor o, instead of a;;. This means that «;; does not appear in
ch and similarly j3;; does not appear in Bg. But this implies that a:‘g = Bg, since «, 8 agree on all
the other coordinates. This proves our claim.

Hence, if we define the set

Sy = {{i,j} U (Uf;llSr) : Sy C A, |Sy| even, for all r}

then 1
fr(@) = f2(8) = 37 > (as = 65) [ =
SES, €S
Since S, has an even number of leaves, they will be matched inside tree 7)., regardless of the topology
of the rest of the tree. This leaves 4, j, which will be mathced together. This enables us to write

k-1 k-1

T, T

ag=ay [[af . Bs=8;][]ek
r=1 r=1

The reason we wrote ag, in the expression of g is that «, 5 agree on all coordinates other than 7j.
Hence,

k—1
1 1
T T T
THORSACEICTRENEE B | EreiiD S | E
r=1 SrCAr,|Srleven u€Sr

-

iy (a)
= (aij = Bi)aizwj fr 9 ()

Let us explain the last equality. The r-th element in this product corresponds to the expression
of the probability distribution on the leaves A, of the subtree 7)., with pairwise correlations that
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are given by a (we are slightly abusing notation when we pass « as an argument in fI7, since it
is the vector of pairwise correlations for the whole tree). Hence, the product of these terms is the
expression of a product probability distribution over the subsets A, and 4, j being independent from
everyone else (this is the 1/4 term). This is exactly the expression of the distribution on 7"\ {7, j}
with correlations given by «, except for pairs of leaves that belong to different subtrees, which have
correlation 0. This is exactly how we defined -, hence the result follows.

O

Lemma 6 tells us how much f, changes when we change one coordinate, corresponding to some
pair (i,7). Hence, our efforts will now be focused on bounding the expression on the RHS of (8).
If this expression corresponds to a distribution on 7"\ {i, 7}, then this term can easily be bounded.
However, as we will see, that will not always be the case and we need to be more careful. The
following Lemma contains the Lipschitzness property that we would like to prove.

Lemma 7. Let T be a tree and o, & € [—1, 1](3), where a is a metric on T'. Suppose that ||a—&l|e <
¢/(2n?), where € € (0,1). Then, for any t > 1

> @) - <= (9)

ze{-1,1}"
Proof. We will prove (9) via induction on ¢. First, we define for all s,¢ < () the vector

ts | 0,if P,; and Py have common edges
Tht = af, , otherwise

The base case t = 1 corresponds to the pair of leaves (1,2). Since a! and o = « differ only in the
pair (1,2), by Lemma 6 we have

> ) - @) S lan—anl Y [N

ze{—1,1}" ze{-1,1}"

Now, we notice that ff \{1’2}(71’0) is actually the probability distribution on 1" that results from «

if we set 8, = 0 for all e € P1o. Hence, we can remove the absolute value and get

S @) = )| <lona —daa| D () = Jagp — o] < %

2n
rze{-1,1}" ze{-1,1}"

Hence, the base case of the induction is proven.
Now, suppose we have proved the claim for all ¢’ < ¢.
By applying Lemma 6, we again obtain

S 1) @] < i~ da] Y [T (10)

ze{-1,1}" ze{-1,1}"

Now, the problem is that 4" contains some coordinates of a and some coordinates of &. As a result,
the expression fI (4!) is not necessarily a probability distribution anymore. We will try to relate
this quantity to a true distribution.
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Essentially, v%* is the same as o, except for pairs of leaves that belong to different components
of T'\ {it, ji}. Now, we can write

‘fg\{lh]t} (,yt,S)
ze{-1,1}n
t—1
< Z ‘fxT\{z‘t,jt}(’yt,o)‘ + Z Z ‘fg\{injt}(,yt,S) _ fg“\{it,jt}(fyt,sfl)
Ie{—l,l}n —1 xe{_171}n

First of all, we notice that the expression ff Mg t}(vt’o) is the expression of a probability distribution
on T, which is obtained from «a by setting 6, = 0 for all edges e € F;,j,. Hence, the first term of the
RHS sums up to 1. As for the second sum, each term of the outer sum has exactly the form of (9),
where the starting « is 7v%? and we have substituted at most ¢t — 1 with &, since s < t — 1. Hence,

we can apply the inductive assumption to get
t—1
oY [N - g e < (- 1) < e
s=1ze{-1,1}" n
since t < (Z) < n2. Overall, this gives

T

<1l+e
ze{-1,1}"

Now, plugging this in (10) gives us
_ . €
S £ = £ Y] < ey, — Gl (1 +€) < o
ze{-1,1}"

since € < 1. Thus, the inductive step is complete and the claim is proved.

O
We are now ready to prove Theorem 3.
Proof of Theorem 3. Let € = 2n2e. We divide into cases.
Case 1: Suppose € < 1. Then, Lemma 7 applies and we get
V() = Y, [f(@) - f1(@) Z Y. £ )
ze{—-1,1}" =1 ge{-1,1}n
(z)
< £ < =m2e
— 2 — -
n
t=1
Case 2: Suppose € > 1. This means that
TV (pu, i) < 1< 2n2e
so the claim is trivial in that case.
O
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We can now also conclude the proof of Theorem 2 for known topology, which we sketched in
earlier Sections.

Proof of Theorem 2 (Known topology). Let o € [—1,1]" denote the vector of correlations of leaves
in the model we are trying to learn and u denote the distribution on the leaves for this model. Let

us consider the sample mean obtained from m independent samples 2, ..., z(™),
N
Q5 = g
ij m

e
Il

1

By standard Chernoff bounds, we know that with probability at least 1 — d, for all leaves i, j

) 2log(n?/9)
| — G| < m Ui (11)
We run Algorithm 1 with this n parameter.
First, we claim that the LP that Algorithm 1 solves has a feasible solution for this choice of 7.
To show that, we will construct a feasible solution of the program. If 6 € [—1,1]/#l is the vector of

the edge weights of the model we are trying to learn, then for all leaves i, j

g = H Or1

(k,1)EP;;

jaijl =TT 16wl

(k,1)EP;;

This implies that

Thus, if we set wy; = In|0y,| for all edges (k,1), we have that

> wu=In| [ 6ul|=1loglal

(k},l)EPi’j (k,l)ePij
We know that with probability at least 1 —§
|levis| — 6] < fov; — Gl <
which implies by the previous observations that
log(|ag| —n) < Y ww < log(|d| +n)
(k)P ;

Hence, the inequality constraint for feasibility is satisfied. Hence, this is a feasible solution for
the program.

Let 6 be the edge weights that are returned by the LP and & € |0, 1](3) be the pairwise
correlations that are induced by these weights. We need to figure out the correct signs for each 6y;.
Let sy € {—1,1} be a sign variable for each edge (k,). Also, let s(a);; € {—1,1} be the sign of oy
and likewise define s(a;). If we find an assignment of the sj; variables such that

H sk = s(ovj)

(k,l)eP;;
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for all pairs i, 7, then it follows that

I swbe— )= I] s [l Om— s(eplegl|=| J] 0w lal|<n (12

(k,l)ePij (k,l)ePij (k},l)EPZ‘j (k},l)EPij

Thus, we will now focus on finding such si; and the output of the algorithm will be 0 = S0k
First of all, we need a way to figure out s(a;j) for all i,j5. Let U = {(i,7) : |&;] > n}. By the
approximation guarantee |a;; — of;| < 1, we conclude that for all (i,j) € U, s(a;j) = s(cj;). Hence,
we build up the system of equations

H skl = s(ajj) for all (4,7) € U (13)
(k,1)EP;;

This can be viewed as a system of linear equations in F9, which is the field with 2 elements. Hence,
we can use the standard Gaussian elimination algorithm to solve it. Since s(cjj) = s(ay;) for all
(i,7) € U, we know that this system has at least one solution, namely setting sg; to be the sign of
01 in the true model. Let § be the solution that is returned by the Gaussian elimination algorithm.
There might be many solutions, since it’s possible that the system is underdetermined, which could
be cause by the absence of some equations for (i,5) ¢ U. But in any case, we know that 3§ satisfies
(13).

Now, we set O = 8761921 and let @ € [—1,1](3) be the correlations that are induced by 6,
namely &;; = ajj H(k,l)ePi]- sg1- 1f (i,7) € U, then (13) holds, which means that by (12) we have
|ai; — il < m. If (i,7) ¢ U, then |&;;] < n implies |a;;| < 2n and |oG;| = |ag;] < 2n. Thus,
[ — aij| < 4n.

Next, we argue about the TV distance between the distribution iz that is induced on the leaves
by the output @ of the algorithm and p. We just proved that for all 4, j

|vij — | < 4

We can then apply Theorem 3, which gives

121 2/
TV (u, i) < 8n277 — 8n2 M
m

To make this quantity smaller than e, we need

o (n4log(n/5)>

€2

samples.

7 Proof of Theorem 1(Different topologies)

Let us start with some definitions. Let T' be a tree with n leaves and where all non-leaf nodes have
degree 3. For a vector o € [—1, 1](2), we say that « is induced by a metric in T if there exists an
assignment 6, € [—1, 1] of weights for each edge e of T', such that for all leaves i, j

Qi = H 98

GEPZ']'
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If u is the distribution of the leaves of T' when the vector of pairwise distances between leaves is a,
we say that u is specified by the pair (7', ). For an even subset S C [n], we denote ag the coefficient
of [[;cg i in the Fourier expansion of the probability distribution on a tree 7". In this Section, we
prove the following Theorem, which is a restatement of Theorem 1 (different topologies).

Theorem 4. Let T,T denote the topologies of two trees with n leaves, where each non-leaf node
has degree 3. Let o, & € [—1, 1](3) denote vectors of pairwise distances that are induced by some
tree metric on T and T , respectively. Let also fi be the distribution that is induced on the leaves by
(T,d) and 1 the one induced by (T,). Finally, let D be the minimum diameter of T,T. Suppose
that for all leaves i # j we have that |oy; — G,j| < €. Then,

TV (u, 1) < Cn’De (14)
where C 1s an absolute constant.

For four leaves i, j, k, [, we will denote a quartet of leaves by {1, j, k,1} when we do not wish to
specify their relative placement. The following fact is folklore: if we contract all edges that do not
belong to some path between two leaves in the quartet, then we might end up with one of three
possible topologies. We call this the topology of the quartet {i, j, k,l}. The 3 topologies are shown
in Figure 5. For example, if we are in the first topology, we write {(12)(34)} to denote that fact.
We might refer to the quartet as either {1,2,3,4} of {(12)(34)}, depending on whether we want to
highlight the topology of the quartet or not.

Possibility 1: {(12)(34)} Possibility 2: {(13)(24)} Possibility 3: {(14)(23)}

Figure 5: The three possible topologies for a quartet. In Possibility 1, the path from 1 to 2 does not
intersect the path from 3 to 4. Further, ajoai3q > ay3io4 = agaeg (and similarly for Possibilities 2
and 3).

As explained in Figure 5, what distinguishes the topology is the relative order between the
products ajsaiyg, apzog, a14aie3. When « is induced by some tree metric, then two of these products
will always be equal and the third will be larger or equal. Depending on which of the products is
larger, we get one of the tree possible topologies (if all products are equal then we will choose the
topology arbitrarily). Hence, if for some reason we cannot distinguish which of the three products
is larger, then we intuitively expect that it will be hard to find the correct topology for a quartet.
We give the relevant definitions below.

Definition 1. Let i,j,k,l be a quartet of four leaves of T'. We define

Agjri(a) = max (i, Qi apoejy) — min( oo, o, 0G0k
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Definition 2. Let i,j,k,l be a quartet of four leaves of T'. We say that this is an e-good quartet
w.r.t. some vector « if
Aijkl(a) > €

A quartet of leaves that is not an e-good quartet is called an e-bad quartet. Intuitively, if a
quartet is good, then it is easy for an algorithm to distinguish which is the correct topology of these
four leaves out of the three possibilities. If it is bad, then the topology is very close to being a star
and so all three possibilities are roughly equivalent. One thing to note is that if |& — a*| < ¢, then

|Ajki (&) — Agjra(a™)] < 2e

for all 4,7, k,l. Hence, it does not really make a difference whether a quartet is good or bad with
respect to & or o, since there is only an O(e)-additive error.

We now proceed with the proof of Theorem 4. First, we need to formally define some notions of
cutting and pasting nodes in different parts of the tree. This will prove useful in having a unified
vocabulary when describing the process of interpolating between two trees.

Definition 3. Let T'= G(V, E) denote the topology of a tree where every node has degree at most
3. We define BINARY(T') to be the tree that is obtained from T by contracting all mazximal paths of
nodes of degree 2 into a single edge. In other words, it is obtained if we succesively find a degree 2
node u with edges (u,v), (u,w) and replace it with edge (v,w), until we cannot find such a node.

Notice that the output of BINARY is also described in Definition 6. For an example of how
BINARY works, see Figure 6. Clearly, BINARY(T) satisfies the property that every non-leaf node
has degree 3.

T BINARY(T)

Figure 6: On the left we have the tree before the contraction. On the right, we have the tree after
applying BINARY. We have highlighted with similar colors the path that is contracted on the left
and the final edge on the right.

Definition 4. Let T' = G(V, E) denote the topology of a tree and suppose (u,v) € E. Let (r,s) €
E be some other edge of T, where we might have {r,s} N {u,v} # 0. The only requirement 1is
that r,s belong to a different component than u when we remove edge (u,v) from T. We define
CUTPASTE(T, u,v, (r,8)) to be the tree that is obtained from T as follows: we delete edges (u,v)
and (r, s), we add a node t and we add the edges (t,u), (t,r),(t,s). This produces a tree T'. We set
CUTPASTE(T, u, v, (r,s)) = BINARY(T").
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CuTtPAsTE(T)
= BINARY(T")

Figure 7: The Figure shows the output of CUTPASTE(T, u, v, (r, s)). In the first step we cut u from
it’s place and paste it in the middle of edge (r,s). In the second step we contract paths of degree 2
nodes.

An example of applying CUTPASTE can be seen in Figure 7.

Intuitively, CUTPASTE encodes the following process: we delete edge (u,v), we add a node ¢ in
the middle of edge (r,s) and we attach u together with it’s connected component to ¢. This is why
the order of u, v as arguments of CUTPASTE is important, while the order of 7, s is not.

Before describing the interpolation process between the two trees, we prove a lemma about
CuTPASTE. It shows what changes in the distribution if we change the tree according to CUTPASTE.
For a tree T' and a quartet {w, z,y,u}, let’s denote by 17"\ {w, z,y,u} the graph that we get if we
remove all paths of the quartet {w, z,y,u} from 7. An example is given in Figure 1(b).

Lemma 8. Let T = (V, E) be a tree and o € [—1, 1}(3) Let i, j be two nodes in V (leaf or non-leaf)
and denote i = vg,v1,...,Uym = J to be the nodes in the path that connects them in the tree, with
m > 3. Define T¥ = CUTPASTE(T, i,v1, (v, vk41)) for all 0 < k < m. Denote by Uy, the set of
quartets where T* and T differ. Lastly, let’s define the vector a®?¥* € [—1,1] () as

ST 7T if the path Py does not have common edges with any of the paths in the quartet {w, z,y,u}
ki1 0, otherwise

Then,

Tk Tk:+1 Tk: Tk+1 Tk: 20,
o) e = 3 (ofnewm — ofulym) mursayr - 770700 @00

(w,z,y,u) €U
where fI(a) was defined in (2).

Proof. Let I; denote the subset of leaves that lie on the subtree where 7 belongs to if we delete edge
(i,v1) from the tree, and analogously we define I; as the set of leaves of the subtree where j belongs
to after this removal. By definition, we have

k1 1 k k1
fie) =i (@) =5 > (e ok )]

SCln],|S|even ues
1 k k+1
— T T
= o > (o —ag ) [] =
SCln],|S|even,SNI;#0 ues
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The last equality follows because the relative topology of the leaves [n]\ I; does not change, which
means the coefficients «g for S C [n]\ I; also do not change. Now, for 0 < k < m let us define Sy to
be the subset of leaves on the connected component that v, belongs to, if we remove all edges of the
path P;; from the graph. Let’s also define L = Ulg:lSq, Ry = UZ”;,;SQ U I; . We will characterize
the set of quartets Uy that change from T} to Tgy1. An illustration of all these concepts we just
defined is given in Figure 8.

So So (in T%) Sy (in T*+1)

\ /
\ /
\ /

\ /

\ /

\ /

\ /

(v0) ()
Vo =1 vy =v Vs = J

vo (1) (v9) ‘ (v3) (vs) vs

So=1; St So S3 = Sk+1 Sy S5 = Ij
L2 = Lk Ry = Rk+2

Figure 8: This is an illustration of how CUTPASTE cuts ¢ from a place and moves it along the path
to vs = 7, one step at a time. This is also exactly the same movement that is done by Algorithm 3,
where one move corresponds to moving vy one step to the right. Note that quartet {w,z,y,u} is
changed when we move vy from the left of vz to the right of vs. For illustration we denote k = 2
and we depict the movement from tree T* to TF*1,

First of all, notice that I;, I, {S, ;”:_11 partitions the set of leaves. It is straightforward to see
that
Uk = {{wvz7ya U} Tw e Ii7z S Lkvy S Sk+17u S Rk+2}

Now let’s fix a quartet {w,z,y,u} € Ur. We would like to characterize the even subsets S D

{w, z,y,u} such that
Tk Tk Tk
XS = Muw,zy,u}¥S\{w,z,y,u}

Denote by S 4 this collection of subsets. Essentially, these are the subsets were the matchings
happen so that w, z and ¥y, u are matched together. The reason we are interested in these subsets is
that these are exactly the subsets where agk and ang will be different (once we enumerate over
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all quartets {w, z,y,u} in Uy) Our strategy to understand how these sets look like will be similar
to the one employed in the proof of Lemma 6. In particular, let us consider removing the paths of
the quartet {w, z,y,u} from T*. This leaves us with a collection of connected subtrees, each with a
leaf set A,. Here, r ranges from 1 to [ where [ is the number of these components. The set of leaves
can be partitioned as

[n] ={w,z,y,u} U (UTSIAT)

It should then be clear from the figure that S € S, ., if and only if |S N A;] is even, for all
i. To justify that, let’s see what happens if for some r |S N A,| was odd. Then, there would be a
leaf b € A, that would be left unmatched in A,. As we can see from Figure 9, there are 5 different
possible positions that b can lie in the relative topology of the quartet {w, z,y,u}. However, from
these, only 4 are possible, since b cannot lie in the middle of the quartet. The reason is that by
definition of {w, z,y,u} there is no node in the middle edge of that quartet, so there is no subtree
that is hanging from there.

@) @(1) @(4)

& @(2) ()

Figure 9: The 5 different placings of b relative to the quartet {w, z,y,u}. Notice that position (5)
is actually not possible, as there is no node in the middle of the quartet (see Figure 8)

Hence, b should lie closer to one of the 4 leaves. Let’s assume w.l.o.g. that it lies closer to w.
Then, a similar argument as in Lemma 6 applies. In particular, we can also assume w.l.o.g. that b
is the closest leaf in w that is left unmatched by it’s subtree A, (otherwise we consider the closest
one instead of b). Then, b has to be matched with w in agk, which means that the term o, will
not appear in that expression. This means that S ¢ Sy, ., 4, & contradiction. Thus, we established
that

Sw%yuu = {{wa Zvyau} U (UTSIST) : S C A, ‘Sr| even }
Note that the sets S, ., are disjoint for different quartets {w, z,y, u}. Also, it is easy to see that
S € Sy,2,yu if and only if
of " =0l O s

k k+1 . . .
Hence, the sets S such that ozg % ar‘g are precisely the union Uy, . o w1et, Sw,zy.u- Now, notice
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that

2% Z (a£k+1 _ a%:k) H o,

SGSw,z,y,u ceS

. Tk Tk:+1 1
= \Mwzyur — Hwzyu) f”wf‘fz%%g—nﬂ >, as I =

r SCA, |S|even c€ESNA,

N

sz\{vayyau}(awzyu)

The last equality is true, since it has the form of a product distribution over the subsets A;, which
is exactly the distribution of the topology 7'\ {w, z,y,u}. The weights in each subtree remain the
same, but across subtrees the correlations are 0, which is why the argument is a®?¥* now. Summing
over all {w, z,y,u} € Uy gives us the desired claim.

O

We now describe the process of interpolating between 1" and T. We first give the pseudocode,
which is Algorithm 3. We note that even though we call this process an algorithm, it will only be
used as part of the Analysis of the TV distance between two trees. Hence, we are not concerned
with its computational complexity.

The interpolation will be carried away in rounds. Each round corresponds to a run of the outer
While loop. In the first round (¢ = 1), we make sure that any two leaves that form a cherry in T
will also form a cherry in T. At the end of the first round, we update the set of leaves by removing
leaves that are cherries and adding their parents. Hence, in the second round, we make sure that
parents of leaves that are cherries in T become also cherries in 7" and so on.

Let us now describe in a bit more detail what happens in each round. First of all, notice that
the L in the for loop condition is evaluated at the start of the loop. This means that if we change
it during the run of the loop, the number of iterations will not be affected. In the first round, this
set L corresponds to the leaf set [n]. We proceed to search for a pair i,j that is a cherry in T but
not in 7T'. If such a pair 4,5 is found, the we have to move one of them towards the other to make
them a cherry. This sequence of moves is called an epoch and corresponds to a run of the first If
statement inside the For. We include an extra If statement since we want to choose the weakest
of i,7 to move (we will see why this is important later). To move i towards j, we use the fuction
SEQUENCE. This gives us all the intermediate topologies that are needed to move i to j. Each of
these topologies corresponds to a move. Hence, an epoch consists of moves. The movement is by
cutting 4 from it’s current placement and pasting it in all the edges of the path to j consecutively,
similarly to what is shown in Figure 8. After this movement is made, T3 is updated to store the
new topology.

We now explain the significance of the second If statement. If 7,7 was not a cherry in 7" but
was in T, then the previous If fixed that. Now, the second If locates all these cherries that are
common in T3 and 7" and removes them from the leaf set L, while adding their parent. This means
that the subtree rooted in the parent will not be changed after that point, since it has the same
topology in Tg,T and instead will be moved around with it’s parent in subsequent steps. Hence,
in the second round, L will contain some parents of leaves and possibly some leaves that were not
matched into cherries in the first round. We give an example run of Algorithm 3 in Figure 10.

Let’s introduce a bit of notation about this process. Suppose ¢ is a round, t is some epoch of
this round, and m is some move in epoch . We denote (i, j;) the pair of leaves from L that is
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Algorithm 3: Interpolation between two tree topologies

Input: Unweighted trees T'= (V, E), T = (V, E‘) whose leaves are labeled 1,...,n
Input: Correlations (ij); je(1,...n}, ij Petween leaves of T' and (&ij); je(1,...n}, i)
between leaves of T'
T1 T
S <+ {Tl}
L+ {1,...,n}
while |L| > 4 do // a new round starts
fori,j € L do
if CHERRY(i,j,T) == FALSE and CHERRY(@',j,T) == TRUE then // new epoch
p < common neighbor of i, j in T
I < set of leaves in the same component at i, if we remove (i, p) from T
J < set of leaves in the same component at j, if we remove (j,p) from T
Z < arg maxyeg Gy
W 4— arg maXye j Qjy
if &, > Gy then
| Switch ¢, j
k «<neighbor of i on the path F;;
[ < neighbor of j on the path F;;
Sy < SEQUENCE(11,1,7) // sequence of moves
T, < CurPasTE(Th, i, k, (j,1)) // make i,j a cherry

S« SUSy
end

f CHERRY(i,j,T) == TRUE then // remove cherries where 7,7 agree
p < common neighbor of ¢, j in T

Lo L\ {i,j}

L+ LU{p}

end

i o

end

end
return The list L of topologies that were generated during interpolation
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Figure 10: Example run of Algorithm 3. In the first round, we have epoch 1. In epoch 1, e becomes
a cherry with h. In the second round, we have epochs number 2 and 3. In epoch 2, the parent of
f, g becomes a cherry with the parent of a,b. In epoch 3, the parent of ¢, d becomes a cherry with
the parent of e, h. After that, we have reached the final topology.
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Algorithm 4: Functions SEQUENCE and CHERRY

Function Sequence (7,1, 7)

S« {T}
Let {vg,...,vm} be path from i to j /] vg=1,vm =7
forr < 1tom—1do
Ty < CUTPASTE(T, i, v1, (Up, Up41) // a move happens here
S« SU{Ty}
end
return S

Function Cherry(i,j,T")

if 4,7 have a common neighbor in 1" then
| return TRUE

else
| return FALSE

end

selected during epoch t of the algorithm. Suppose the length of the path P;,;, is l;. Then, we denote
by vl =i, 0l ... ,vft = j; be the nodes in the path from 4; to j;, which has length ;. We denote
by T™ the topology that we get before move m and 7! the one we get after the move. We also
define T9 = T'. Formally, if m/ is the first move of epoch ¢, we have,

T = CUTPASTE(T™ iy, v}, (v, v!111))

It is implied that in the definition of 7'7° we do not delete the leaves that have already been fixed

into cherries. Note that i, j; might correspond to some internal nodes. Let I;, J; be the set of leaves

in the same component as iy, j; respectively, if we remove all the edges in the path from i; to j;.
We collect here some observations about Algorithm 3 that will prove useful in the sequel.

Observation 1. The total number of epochs for a single run of Algorithm 8 is at most n.

Proof. Each time an epoch is complete, we build a subtree of strictly larger size than before (size
stands for number of leaves here) which agrees with 7. Since there are at most n leaves, we need
at most n steps until we reach T'. Hence, there are at most n epochs in the whole process. ]

Observation 2. Any quartet {i, j,k,l} changes topology at most once per epoch.

Proof. Follows by inspecting the set of quartets that change during a move, which was described in
Lemma 8. It is trivial to see that these sets are disjoint for different moves in a single epoch. U

Observation 3. For any epoch t and any move m in t, the subtree induced by the leaves in Iy and
Jy 1s identical in T™ and in T'.

Proof. This follows inductively by the construction of the Algorithm. When a node i, is selected, it
is either a leaf or some node that was added in L after it’s two children 4y, j became cherries in T}
during a previous epoch ' < t. Inductively, the subtrees rooted in iy, jy have the same topology in
Ty and T'. Since iy, jp are siblings in Ty and in T” in epoch t, we conclude that the subtrees rooted
at i, are also identical in Ty and 7" for epoch ¢. Same reasoning applies for J;. O
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Observation 4. At the end of the last M of Algorithm 3 we have TM+1 =T

Proof. Let us define the graph H; as follows: it is obtained by running Algorithm 3 until epoch ¢
and each time ' < t we make a cherry with iy, ji, we remove the subtrees Iy, Jyr, so that iy, jy
become leaves. By Observation 3 we know that the subtrees we remove in each epoch have the
same topology as in T. Obviously, the number of leaves in H; shrink with each epoch, until we
have 3 leaves u, v, w, for which there is only one possible topology. At that point, topology T™M*1
is obtained by placing the subtrees for u, v, w back. By Observation 3, we know that these subtrees
have the topology of T hence TM+1 should also have the topology of 1. ]

Observation 5. If D is the diameter of T', there are at most [D/2] rounds when we run Algorithm 3.
Furthermore, each leaf is moved in at most one epoch per round.

Proof. Consider the graph H; that was defined in the proof of Observation 4. We will show that
the largest path in H, shrinks by at least 2 edges in each round. It then follows that there will be
at most [D/2] rounds in total.

Let u,v be two leaves of H; such that P,, in H; has length equal to the diameter D of Hy. Let
p be the only neighbor of u in H;. Clearly, u is also part of the path P,,. Let w be the neighbor of
p that does not lie on the path P,, (since p has degree 3, such a neighbor should exist). We claim
that w should be a leaf, otherwise we could extend the path P,, into one with larger length than
P,,. Thus, u,w should be siblings, which means they will be selected in the current round to be
paired into a cherry, which will remove them from the graph and will leave p as a leaf. Thus, P,,
will shring by one edge on the side of u and for the same reason will also shring by one edge on the
side of v. This proves our claim.

For the second claim, any leaf u is moved only when some subtree with root i; is moved and u
belongs in this subtree. Suppose that this happens during a round, resulting in i, j; becoming a
cherry. Then, we can see that Algorithm 3 then removes iy, j; from the list of leaves L, which means
that ¢; will not move again for the remainder of that round (it’s parent p; is not considered in the
For loop of the current round). Hence, u remains fixed for the remaining of that round.

O

We first argue that during this interpolation process, only bad quartets change topology. This
is crucial, since good quartets should be maintained if we wish to lose only a little in TV.

Lemma 9. Let T = G(V,E) and T = G(V, E) be two trees with tree metrics o, & respectively. We
assume that || — &l|ee < €. Suppose we run the procedure 3 with input T,7,a,é&. Let T™,T™+!
be two arbitrary consecutive steps in this process. Let U,, be the set of quartets where T™,T™H!
disagree. Then, for all (w,z,y,u) € Up,, we have that

A,z yu() < 20ne

Proof. We will denote by t the epoch where move m belongs to. We will prove the claim inductively
over t. We will prove that if a quartet {w, z,y,u} is changed during the ¢-th epoch, then

Ay zyu(c) < 20te

This obviously implies the final claim since ¢ < n by Observation 1. Since the base case is the same
as the inductive step, we give the inductive step proof only.
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Suppose we are at epoch t. First of all, we know that node %; is selected to be moved towards
jt, where the intermediate nodes are v§ = iz, v}, ... ,vfm = j;. Similarly to the proof of Lemma 8§,
let I; be the set of leaves on the same component with 7, if we remove edge (vf,v}), S! the set of
leaves on the same component as v}, if we remove edges (v!_,v}), (v, !, ) from the tree, and J; be
the set of leaves on the same component with j; if we remove edge (v}, 15 vh,, ). Also, let us define
Lis = UkSsS}i, Ry = UkZSS}i U J; for all s < my. The situation is similar to the one presented in
Figure 8.

Suppose T™ corresponds to node i; being pasted in the middle of edge (v¢, v} +1) for some fixed s.
As we saw in the proof of Lemma 8, the set U, of quartets that differ in 7, 7™ can be written
as

Un ={{w,z,y,u} rwel,z€ L, ye S, ,ue R ,}

Note that all the quartets in U, are considered to change at epoch t. Suppose there exists a quartet
{w, z,y,u} € Up, such that
Ay 2y ula) > 20te

First, we will assume that u € U;QSS}Z. Afterwards, we will deal with the case u € J;, which
will actually prove to be easier. The first thing we observe is that we can assume without loss of
generality that the topology of {w, z,y,u} has not been altered in any previous epoch. The reason
is that if it was altered at some epoch ¢’ < t, then by the inductive assumption, we already have

Ay 2 yule) < 20t'e < 20te

and we have nothing to prove. Hence, we can assume w.l.o.g. that it is the first time that it is
changing topology. Note also that by Observation 2 a quartet changes topology at most once per
epoch. Since it has not changed topology before, it follows that it’s topology in 7" is {(wz)(yu)}. It
is straightforward to notice that

Aw zyu(@) = Bu,zyullal)
where || is the vector of absolute values of a. This implies that
A zyula) = [owsz||oyu| — [azy||owu| > 20t
Our assumption about «, @ implies that
|zl |ayu] = [Quwzl|Gyu| <26, Jozy||owa| = [Gay||Guwal < 2€

Hence, we have
|0A‘wz‘|dyu| - ‘dzy‘|dwu| > 20te — 4e
Let p, be the common parent of i, j, in the tree 7. Now, by the construction of procedure 3(first

If statement), we know that

> 15
max |Gfp, | ma |G, | (15)

Now, we know by Observation 3 that the subtrees rooted at i; and j; with leaf sets I; and J;
respectively have the same topology in 7™ and T'. Since z,u ¢ I, we can write (see Figure 11).

|Gz dyu| — |y |G| = |G p, | (|62 p, || — |2y || p,])
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Figure 11: From the picture, it is clear that du,, = Qup,Op, =

Let h = argmaxycy, |Gy, |. Then, by(15) we have

|G e (162 || Gy | = |Gy |Gy |) > |G, pe (|62 e[| Gty | = |Gy || G |)

Since we have assumed that z,u ¢ I;, figure 11 implies that
|Gz || Gy = |Gy | |G| = |G py [ (|G i || Ceyus| = [ Qi [| G i |) = G i | (|62 py || Gy | — |Gy || G i | ) > 20te—6e
By the closeness of «a, &, this in turn implies that

lanz||ayu| — [0yl |otny| > 20te — 10e > 20(t — 1)e (16)

Clearly, leaves h,z,y,u do not change position during epoch ¢, hence the quartet {h,z,y,u} does
not change topology during epoch t. Now, there are two possibilities:

Case 1: Suppose {h, z,y,u} has changed topology at least once in some previous epoch ' < t.
Then, by the inductive hypothesis, we should have

Ap o yu(a) <20t'e

Since t’ <t — 1, this contradicts (16).
Case 2: Suppose {h,z,y,u} has not changed topology until epoch ¢. This means that the
topology of {h, z,y,u} in T is {(zy)(hu)}, since that is the topology in 79", This implies that

‘ahz||ayu| - |azy”ahu\ <0

which again contradicts (16).

Hence, in all cases we obtain a contradiction and the inductive step is proved. Now, let’s consider
the case u € I;. Then, we can assume w.l.o.g. that this is the first epoch where {w, z,y,u} changes
topology, otherwise the inductive step applies. This means that the topology of this quartet in T is
{(wz)(yu)}. Hence,

Az yu(@) = [wz|loga| = |ozy 0w
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Clearly, the topology of this quartet is {(zy)(wu)} in T. This implies that
|dMZ||dyu| - |dzy”dwu| <0

In turn, this means
|awz|‘ayu| - |azy|‘awu| < 4e < 20te

and this concludes the claim in that case as well.

O

We now formulate our main result, which bounds the Lipschitzness of the function fI in terms
of local changes in the topology of T. We will use it to relate the changes in TV to the changes of
quartet topologies along this interpolation process.

Lemma 10. Let T'= G(V, E) and T = G(V, E‘) be two trees and suppose that the diameter of T' is
D. Let o be some tree metric induced by T. We assume that ||a— é&||s < €/(40DnP) for some € < 1.
Suppose we run the procedure 8 with input T,T,a,d. Let T™, T™* be two arbitrary consecutive
topologies in this process, corresponding to move m. Let U, be the set of quartets where T™, T™+1
disagree. Then,

Tm+1 Tm ‘Um‘ﬁ
7 @) = T )] <

(17)

2.

ze{-1,1}"

Proof. We are going to prove this inductively on the total number of moves m. Suppose we are in
the first move, m = 1 of round ¢ = 1 and epoch t = 1. By applying Lemma 8, we have that

Z ‘fgl (a) N f;FO (a)‘ - Z Z wanzmyxufgl\{w’z’y’u} (a)

ze{-1,1}" ze{-1,1}" |{w,z,y,u}ely
< Y Ayl D ‘ FTM\ e ()
{w,z,y,u}elin re{-1,1}"

Now, notice that since there have not been any other changes to the topology of T except for
the first move, 7° = 7" and furthermore, the expression ff w2y} () is actually the probability
distribution on the leaves of a tree that has edge weights that agree with «, except for edges that
belong to some path of the quartet {w, z,y,u}, which have weight 0. Hence, we can remove the

absolute value and this gives us

@ - el Y Ausgal)
ze{—1,1}" {w,z,y,u}ely

Finally, by applying Lemma 9 we get

€ B e|Uq|
40Dn®  2Dn*

> @) - @) < [tf2on

ze{-1,1}"

hence the base case is true.
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Now suppose the claim holds for all moves m’ < m. First, we define the vector a*?¥* € [0, 1}(3)
as

QU _ Qs if the path Py; does not have common edges with any of the paths in the quartet {w, z,y,u}
ki 71 0, otherwise

Clearly, a™?¥" is also a metric on T', which is induced by the same weights as «, except that all

edges on paths of the quartet {w, z,y, u} have weight 0. By again applying Lemma 8 and Lemma 9,
we can get

2.

N = M@ €3 Bugala) DD | s quany

rze{—1,1}" {w,z,y,u}eUm rze{—1,1}"
€ m
Sopm Y| guem) (19
{w,z,y,u}EUm

Now, let’s fix a quartet {w,z,y,u} € Uys. The graph T \ {w, z,y,u} is a tree where all edges
that belong to some path of the quartet {w, z,y,u} have been removed. The problem is that other
changes have happened in the topology of T' before it reaches the current state T™. Therefore, the

{w,z,y,u} (awzyu) WZYU

quantity ff ™\ corresponds to the
initial tree metric on T', with some edges set to 0. Hence, we cannot get rid of the absolute value
and claim that this quantity sums up to 1. Instead, our strategy will be to relate this quantity
to some other quantity that is a probability distribution. To describe this probability distribution,
consider the collection of subtrees that are obtained from 7" by removing all paths of the quartet
{w, z,y,u}. These partition the set of leaves into subsets S;, one for each subtree. Let G,, be the
forest that is obtained by taking for each subset on leaves S; the subtree induced by 7'(when we say
induced, it is implicit that the function BINARY is applied to make the subtree have all non-leaves
with degree 3). We will show how to relate fgm\{w’z’y’u}(awzy“) with f&m(a®?¥"). Notice that by
definition, a™?#¥" is clearly a metric induced from G,, and so the latter quantity is a probability
distribution.

Our strategy for relating these two quantities will be to interpolate between T \ {w, z,y, u}
to Gy,. The way to do this interpolation is using Algorithm 3. In particular, the following Lemma
shows that in order for Algorithm 3 to transform G, to T™ \ {w, z,y, u}, it will need strictly less
moves than the ones needed to transform T' to ™1,

is no longer a distribution over a tree, since «

Lemma 11. Let M be the number of moves needed for Algorithm 3 to transform T to T™% . Then,
it is possible to transform G, to T™ \ {w, z,y,u} using a number of moves that is strictly smaller
than M.

Proof. The idea of the proof is very simple and relies on the fact that we can simply "copy" the
moves made from T to T ! except when these moves aim at making a cherry with two leaves that
belong to different subtrees of GG, in which case no move is necessary. To be more formal, let R be
the number of epochs that Algorithm 3 needs to reach T™%! starting from T. Then, we will show
that we can reach T\ {w, z,y, u} using a number of epochs R’ such that R" < R. Furthermore, we
will argue that each of the R’ epochs has at most the same number of moves as the corresponding
one starting from R. We do this by examining one by one the R epochs from T to 7™*! and
deciding how to potentially change it. First of all, let’s remember that at the start of each epoch ¢,
Algorithm 3 chooses two nodes i, j; and makes them siblings with parent p;, thus making a larger
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subtree that agrees with T. The relative topology inside this subtree will never be altered by the
algorithm again. We call this process fizing the subtree with root p,. When we refer to the subtree
of 7, and j; we mean the connected component that results when we remove path P;,;, from the
graph at epoch t. We denote {is, j; }+ the sequence of epochs produced from 7" to 77 and {i}, j; }+
the sequence of epochs that transforms G,, to T™ \ {w, z,y, u}.

We will inductively prove that at any epoch in the sequence {it, j;}, if a subtree with root p;
has been fixed after that epoch and if this subtree is contained in some component of G,,, then
this subtree will also be fixed under sequence {i},j;}. In proving the inductive step, we will also
describe how to define the sequence of epochs {i}, j;}. After proving this claim, we will explain why
it implies the statement of the Lemma.

Suppose the claim holds for all epochs prior to t(for ¢ = 1 the claim is trivial). Suppose then
that at epoch t i; and j; become cherries with parent p;. Let T be the topology at the start of the
epoch and let GL, be the corresponding topology at the start of epoch ¢ under the sequence {7}, j;}.
Suppose first that the subtrees of i, j; belong to the same component of 79"*. Then, inductively, we
know that iz, j; exist also in G!, and their subtrees have already been fixed by the sequence {7}, j;}.
In that case, we set i, = 4;,j; = j; and set the movement of 7, to j;, to be the same as the one
from 4; to j;, but on the induced component of G, that i;, j; belong to. We call this a true epoch.
Since the paths in an induced subtree can only stay the same or become smaller than the ones in
the original tree (after applying operation BINARY), the number of moves required to move 7, to j;
is at most the number of moves required to move i; to j;. Once we move 7} to become sibling with
Jji, the new subtree with root pj has also been fixed for the sequence {7}, j;}, proving the inductive
hypothersis in that case. Now, suppose that i, j; belong in different subtrees of G,,. There are two
cases: either both i, j; exists as nodes in G! , or at least one of them does not exist. If they both
exist, then again by the inductive hypothesis, it follows that the subtrees s, j; have also been fixed
in G .. In that case, it must be the case that the entire component of i; in G, is equal to that
subtree (otherwise we would be able to connect i; to some other sibling and enlarge it). Hence, in
that case no movement takes place and we trivially set i, = j; = i; to denote that this is not a true
epoch. The point is that there is no need to move them again until we reach 7"\ {w, z, y, u}, so our
choice not to move them is correct. Now, let’s examine the case that either i; or j; does not exist
in G!,. Suppose i; does not exist w.l.o.g. Then, this means that it is a parent of two subtrees that
do not belong to the same component of G,. Thus, this means that there is no reason to connect
these subtrees, hence we also trivially set i) = j; = i;. We call this epoch fake. The inductive step
is now complete.

The induction we just proved shows that the sequence {i},j;} leads to 7™ \ {w, z,y,u} when
started from Gy,. Also, it is clear that the true number of epochs in {i}, j;} at any given time is at
most the ones in {i;, j;}, since some epochs might be fake. In fact, if {i;, j;} reaches T™*! at epoch
R, the number of true epochs R’ in {i}, j;} should be strictly smaller than R. The reason is that
at epoch R, ir and jr belong to different components of 79" \ {w, z,y,u} by definition (since we
remove the path from w to u). Hence, the last epoch R will not be a true epoch for {i},j/}. Since
we have also argued that the number of moves in epochs of {i},j;} is at most the corresponding
number for epochs in {i, j; },this concludes the proof of the Lemma.

O

Let M be the total number of moves required by Algorithm 3 to transform 7' to 7! and M’
the moves to transform G, to T™ \ {w, z,y,u}. The point of Lemma 11 is that M’ < M. Let
Gm =G GL. ... ,G%/ = T"\ {w, z,y,u} be the sequence of graphs in the interpolation. By
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triangle inequality, we have

fgm\{w,z,y,u} (awzyu)

fOm(a) — £97 ()

< ‘foEn (awzyu)

Ml
+2
s=1
As we have already explained, the first term on the right hand side corresponds to a distribution,
hence we can remove the absolute values. The remaining terms have the form of the left hand
side of (17), which is what we want to bound in general. However, these differences are applied to

graphs that are obtained after at most M’ moves of Algorithm 3. Hence, we can apply the inductive
hypothesis (17). If U/ is the set of quartets that change from G3;! to G%,, then,

M/’ . . . M!
> @) - 18 @) < g YOI
s=1

ze{-1,1}" s=1

It remains to bound the sum Z££1 |UZ|. This is equal to the total number of quartets that have

changed topology until move M’, starting from G,, (if a quartet has changed multiple times, we
count the number of times it has changed in this sum). We argue that

M/
> |Ug < Dn?
s=1

The reason is the following: there is a total of (Z) quartets, so it suffices to bound the number of times
that any specific quartet {w, z,y,u} changes topology. First of all, we have already argued that a
quartet changes topology at most once every epoch. In order for a quartet to change topology during
some epoch, at least one of it’s leaves should be moved to some different position. By Observation 5
we know that a leaf is moved at most [D/2] times in total. Hence, a quartet changes topology at
most 4[D /2] times in total. Hence,

M’ n
> (Uil < (4>2D < Dn*
s=1

Combining everything together, we get

Z ‘fgﬂm\{w,z,y,u}(awzyu) < Z ff?n,(awsz) +

ze{-1,1}" ze{-1,1}"

€

pabnt=1+e¢

This holds for all {w, z,y,u} € Uy,,. Hence, by using (18) we get

> @ @) < g X [ e
ze{-1,1}" {w,z,y,u}eUnm,

|Um|6
Dn4

€
< opilUnl(1+6) <

since € < 1. This is the inductive claim that we wanted to prove.
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We are now ready to conclude the proof of Theorem 4. To do it, we simply use Lemma 10 to
transition from 7" to T'. Then, we use the bound for the fixed topology to change a to &.

Proof of Theorem 4. We can assume without loss of generality that T has a smaller diameter than T,
otherwise we just reverse the roles of T, T. We run Algorithm 3 with input 7, T, a, which produces
asequence T'=T°72% ... . TM = T, where each element of the sequence corresponds to some move.
We have that

Vi = Y |- @
ze{-1,1}"

< Y fHe-fdel+ Y |fe-f@ (19)

ze{—-1,1}" ze{—-1,1}"

Define € = 40Dn’¢. Let us divide into cases.

Case 1: Suppose € < 1. Then, the first term of the RHS of (19) can be bounded using the
successive steps of the interpolation process. In particular, since e = €’/ (40Dn5), we can apply
Lemma 10 to get

- 1 | Unale’
Y @@ <X Y |- 1 e < Y 2
ze{-1,1}" m=1ge{-1,1} m=1

By the proof of Lemma 10, this implies that
Z ‘fch() fT( )‘ D Dn = ¢ = 40Dn’¢
ze{-1,1}"

As for the second term of the RHS of (19), it is essentially the difference when we substitute & with
« in the fixed topology T'. Hence, we can directly apply Theorem 3 to get

> i@ -l <

ze{-1,1}"

Overall, this gives us
TV (u, jt) < 42Dnde

which proves inequality (14) in that case.
Case 2: Assume ¢’ > 1. Then,

TV (u, 1) <1< 40Dn’e

which means that (14) trivially holds in that case too. The proof is now complete.
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8 Proof of Theorem 2 (unknown topology)

8.1 Outline

In this section, we will present an algorithm that takes samples from the leaves of some tree Ising
model with tree T* and weight 0* and estimates a topology T together with weights on the edges, so
that the distributions on the leaves of T' and T are e-close in TV distance. The number of samples
will be polynomial in n and 1/e.

We will use the results in Daskalakis et al. [2009] about learning phylogenetic trees without
assuming any upper /lower bounds on the edge weights. We will show how we can use the guarantees
of this prior work to obtain an algorithm for finding a good enough topology. Before explaining the
result formally, we first want to give an intuition. We discuss how the output might be different
from the original tree. Firstly, without sufficient samples, it is impossible to determine the existence
of edges that are far away from leaves. In such cases, the algorithm of Daskalakis et al. [2009] will
omit those edges and output a forest, as shown in Figure 12.

Figure 12: A forest that is created by deleting edges: the true tree contains all the solid and dashed
edges. Yet, the algorithm of Daskalakis et al. [2009] might not be able to identify some of the edges
because they do not sufficiently correlate with the leaves, and so it will return a forest. In the
example here, the forest is obtained from the original tree by removing the dashed edges. The three
connected components of the output forest are colored red, blue and green.

Secondly, the algorithm may fail to split the tree in a topologically sensible way. This means
that it will return a forest, yet, in contrast with the example in Figure 12, it is impossible to obtain
this forest by cutting some edges in the ground truth tree. Still, the topology within each connected
component in this forest is preserved, as illustrated in Figure 13 (a)-(b). After splitting the tree into
two subtrees, those subtrees might contain some internal nodes of degree 2. Such nodes cannot be
identified from the leaves, and they will be contracted, as shown in Figure 13 (c).
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Figure 13: Splitting a tree into subtrees in a more complicated fashion: In (a), the true tree contains
both the solid and dashed edges. Yet, the algorithm might not identify completely the topology.
Instead it will return two subtrees. Yet, the subtrees are not topologically sensible: one tree will
contain the leaves {1,2,3,5} and the other will contain {4,6,7,8}. The red edges correspond to the
first tree, the blue edges to the second tree, while the dashed edges are shared by both trees. In
figure (b), we split the original tree into the two subtrees, one containing the red and dashed edges
and the other the blue and dashed edges. Notice that in Figure (b), the nodes labeled a-f have
degree 2. Information theoretically, it is impossible to identify hidden nodes of degree 2. Indeed, the
same leaf distribution is obtained by removing each of these nodes, connecting its neighbors, and
adjusting the weight of the new edges. Hence, the output of the algorithm will not have degree-2
nodes: instead, the transformation described above, that removes degree-2 nodes, will be performed.
In (c) we demonstrate the result of removing such degree-2 nodes.

The two transformations that are applied to a tree in Figure 12 and Figure 13 can be viewed
as a single transformation: separating the tree into subtrees, while preserving the topology within
each subtree. This can be seen in Figure 14.
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Figure 14: Separating a tree into multiple subtrees: In (a), the original tree contains all solid,
dashed and dotted edges. It is split by the algorithm to three subtrees. The first subtree contains
leaves {1,2,3} and the red and dashed edges. The second subtree contains {4,5,6} and the blue
and dashed edges. The third contains {7,8} and the green edges. Notice that the dashed purple
edge is contained in two trees, while the dotted black edge is contained in no tree. Notice that the
first and second subtrees intersect while the third subtree is disjoint from the other subtrees. In (b)
we see the output of the algorithm.

Yet, the algorithm of Daskalakis et al. [2009] might not be able to tell the exact topology within
each subtree. In this case, the output will just contract some of the internal edges of this subtree.
See Figure 15 (a)-(c) for an example of a contracted subtree. In Figure 15 (d) we depict some of

the possible topologies that the algorithm could have confused between, which led to contracting a
specific edge.
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(d) ()

Option 1 3 4 5 6
Option 2 3 6 5
Option 3 5 6 3

Figure 15: An example of edge contraction. In (a), we see the original tree. In (b), the algorithm
splits the tree into two subtrees. Yet, the algorithm could not figure exactly the topology of the
left subtree. Instead, it contracts the dashed edge, and the result is shown in (¢). The reason
for the contraction is: the algorithm could not tell the true topology. In (d), we show multiple
topologies that the algorithm might confuse between, leading it to contract the edge. These are
labeled Option 1-3.
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Before we give the formal proof, let us give an imprecise intuition of the approach. In particular,
we show how to compare between the output of the algorithm and the true topology. For the simple
case where the output is obtained from the true tree by only deleting edges, these edges are “distant”
from the leaves, and so they cannot influence the leaf distribution significantly. Thus, it suffices
to study the more complicated case where the subtrees are mot obtained by simply cutting edges
from the true tree. Here, we first compare the true tree to a tree where all edges that appear in
two different subtrees have been contracted, as shown in Figure 16 (b). In the next step, each edge
corresponds only to one subtree, and we can detach the different subtrees, as shown in Figure 16 (c).
Lastly, we can reconstruct the edges that were previously contracted, as shown in Figure 16 (d).
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Figure 16: Analyzing the difference between the true topology and the output of the algorithm. In
(a), the true tree contains the union of solid and dashed lines. Yet, the algorithm splits the tree into
two subtrees, with leaves {1,2,5,6} and {3,4,7,8}. In (d), we can see the output of the algorithm.
In order to compare between the true and output topologies, we construct two auxiliary forests:
In (b), we contract all the edges that are shared between the two subtree. In this example, this
amounts to contracting the dashed edge. Then, in (c), we split the different subtrees. In (d), we
reconstruct the edge that was previously contratfed. Yet, we reconstruct this edge separately for
each subtree.



We can bound the total variation distance for each of these steps using the following guarantees:
(1) edges that appear in multiple subtrees have weight close to 1. Hence, contracting them, which is
equivalent to changing their weight to 1, does not influence significantly the total variation distance.
(2) Leaves of different trees have a small correlation. Hence, detaching the different subtrees does
not incur a high cost in total variation.

8.2 Definitions and probabilistic lemmas

We begin with some notations that are specific for this section: given a tree 7' = (V, E) with weights
0. on the edges e € E, denote the resulting distribution over the values z = (z1,...,z,) on the
leaves by Pryg[z]. The total variation distance between two leaf-distributions of two models, (T',6)
and (1”,0') is denoted by TV (Prpg[z], Pryv ¢[x]). The values on the internal nodes are denoted by
Yy for each internal node v € V, and Prpg[z,y] denotes the joint distribution over the leaves and
internal nodes. We continue with some definitions:

Definition 5 (Edge contraction). Given a graph G = (V, E) and an edge e = (u,v) in the graph,
we say that a graph G' = (V' E') is obtained from G by contracting e if G' is the result of removing
e from the graph and identifying u and v as a single vertex. Namely, if the new edge is denoted z,
then

V' =V \ {u,v}U{z}

and
E =FE\{(u,w): we VI\{(v,w): weV}u{(z,w): (u,w) eV} .

For an example of an edge-contraction, see Figure 15 (b)-(c): The dashed edge in (b) is con-
tracted, resulting in the graph shown in (c).
We now define the contraction of all degree-2 nodes:

Definition 6. Given a graph G = (V, E), we say that G' = (V', E') is obtained from G by contract-
ing all the degree-2 nodes, if G' is obtained from G wusing the following process:

e G+ G.
e While G' contains a node w of degree 2:
— Contract one of the edges incident with w.

For an example of a contraction of degree-2 nodes, see Figure 13, (b)-(c): In (b), there are some
nodes of degree 2, labeled a-f. In (c), we can see the result of contracting these nodes.

Definition 7 (Subtrees induced by a set of leaves). Given a tree T and a subset S of the leaves of
T, the subtree of 1" induced by S is the tree that is obtained from T by removing all the edges and
all the nodes that are not in any path between two leaves i,j € S.

In other words, the subtree of 7" induced by S is the minimal subtree of 7' that contains S.
For an example, in Figure 13 (a), a tree is depicted, and its subtrees induced by {1,2,3,5} and
{4,6,7,8} are depicted in Figure 13 (b-1) and (b-2), respectively.

Throughout the proof, we will modify graphs by contracting edges. Whenever we contract an
edge, we identify its two endpoints as a single vertex. If we contract multiple edges, the resulting
graph may identify even more than two edges of the original as one edge. If a graph T’ is the
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result of multiple edge-contractions applied on a graph T, then, for each vertex v’ of T", the set of
preimages of v' under the transformation from T to T" is defined as the set of all vertices of T that
were identified into v". To be more formal, we provide the following definition:

Definition 8. Let T" = (V' E') be obtained from T = (V, E) via a sequence of edge contractions.
For any vertex v/ € T', the set of preimages of v under the transformation from 7' to 1" is defined
as the following set, which we denote here by Ay :

o Start with the tree T', and define A, = {v} for each v € V.

e For any contraction of an edge (u,v) into a single vertex w:
— Define Ay = Ay U Ay,

e Return A, for each vertex v' € V',

Lastly, notice that if we contract edges then some of the nodes might change names. Hence, an
edge that was connecting between two nodes (u,v) in the original tree, might connect two other
nodes in the contracted tree. Yet, the edge’s function remain the same. Hence, we define the
analogue of an edge e in the contracted graph:

Definition 9. Let 1" be a tree that results from another tree T via a sequence of edge contractions.
Let (u,v) be an edge in T that is not contracted. Then, the analogue of (u,v) in T” is the obtained
from (u,v) in the following fashion:

o Set e + (u,v).
e For any contraction of edge (z,w) into a node q that T undergoes:
— Ifu € {z,w} then ¢ + (q,v).
— Otherwise, if v € {z,w} then ¢ < (u,q),
e Return €.
We continue with presenting some auxiliary lemmas that will be used for the proof.

Lemma 12. Let T'= (V, E) and let (6¢)ecr denote some weight-vector on the edges. Let §' denote
a weight vector that differs only on one edge ¢'. Then, TV (Pryglz], Prrg [z]) < (0L, — 6e/]/2.

Proof. Due to the equivalent definition of total variation in terms of coupling, it is sufficient to
produce a coupling between = ~ Prp and 2’ ~ Pryv g such that Pr[z # 2'] < |0/, — 6./|/2. While
z and 2’ denote the values of the leaves, we will use y and 3 to denote the values on the internal
nodes, such that (z,y) and (z/,y’) are jointly sampled from Pry g and Pryv g, respectively. We will
produce a coupling between (z,y) and (z’,y’) such that Pr[(z,y) # (2/,y')] < 0., — 6./|/2 and this
suffices to conclude the proof.

Let ¢/ = (u,v) denote the single edge where 6 and 6’ differ. We produce the coupling as follows:

e We start by sampling ¥, uniformly from {—1,1} and y], =y,

e Then, we sample y, such that Prly, = y,] = (1 + 0.)/2. Similarly, we sample y, such that
Prly, = v.] = Prlyl, = y,] = (1 +6.)/2. Note that we can couple y, and vy, such that

Prly, # yo] = TV (Yo | Yu, Vo | Yu) = [0 — 0L]/2.
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e Next, we will sample the remaining values of z,y conditioned on y, and ¥,, and the remaining
values of a/,y’ conditioned on y,, and y,. If y, = y,, and y, = y,, then these two conditional
distributions are the same, hence, we can sample such that (z,y) = (2/,7). Otherwise, we
will sample xz,y, 2’ and vy arbitrarily.

Notice that with probability 1 — |0 — 6.,|/2, yu = v,, and y, = y,,. Hence, Pr[(z,y) = («/,¢')] >
1 — 1|0 — 6.,]/2, as required to complete the proof. O

Lemma 13. Let T be a tree and 0 a weight-function on its edges. Let T be obtained from T by
contracting an edge e with 0, = 1 and let 0’ denote the restriction of 6 to the edges of T'. Then, for
any values © = (x1,...,x,) on the leaves, Prrglx] = Pro g/ [x].

Proof. Notice that by contracting the edge, the pairwise correlations a;; between any two leaves do
not change, hence the leaf distributions are identical (this is a known fact and it also follows directly
from Lemma 5). O

8.3 Proof body

We are ready to present the results of Daskalakis et al. [2009]. They are written in a slightly different
way than was originally present, but we translate their guarantees to our notation. (See Section 8.5
for translating their guarantees).

Theorem 5. There is a polynomial-time algorithm, for learning some unknown tree T* = (V*, E*),
whose properties are presented below. Its inputs are:

o Approximate correlations, d&uj, for any two leaves i,j € [n|. These satisfy the guarantee that
there exists an Ising model Prr« g+, whose correlations oj; satisfy: \a;‘j — ;5| < n, for any two
leaves i, and for some n € (0,1/2].

o Parameters £,6 > 0 such that €0 > n.

The algorithm outputs a forest, whose connected components are trees, Ty = (Vl,El),...,TR =
(Vir, ER) with the following guarantees: (below, C' > 0 is a universal constant)

o Let S, denote the set of leaves of Ty for any v € [R]. Then, {S1,...,Sgr} is a partition of the
set of leaves of T*.

e Forallr =1,...,R, denote bg T, = (Vi, Ey) the subtree of T™ induced by Sy, as defined in
Definition 7. Then, each tree T, is obtained from T, using the following operations:

— Contract a subset of the edges. Only edges e of weight 05 > 1 — C& can be contracted.

— Contract all the nodes of degree-2 from the resulting tree.
e Any edge e that is common to more than one of the trees {11,...,Tr}, satisfies 05 > 1 — C&.
o Any leaves i,j that belongs to different sets from {Si,. .., Sr}, satisfy |aj;| < CV5.

For example, in Figure 15 (a) a tree is depicted, whereas the output of the algorithm is given
in Figure 15 (c). Since the dashed edge e connecting nodes a and b is contracted in the output, its
weight must satisfy 6% > 1 — Q(&). Further, since nodes 1 and 7 reside in different subtrees in the
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output of the algorithm, their correlation must satisfy |aj,| < O(v/§). For another example, see
Figure 13: in (a), the original tree is depicted, whereas, the output is the forest in (¢). The induced
trees T and Th are shown in (b). Since the dashed edges in (a) are shared by both induced subtrees,
their weight satisfies 6% > 1 — Q(&).

Below, we will prove the following central Lemma:

Lemma 14. Let n > 0 be a parameter and T* be an unknown tree with weight vector 0* and pairwise
correlations a* between the leaves. Suppose we execute Algorithm 2 with the following inputs:

e Pairwise correlations G;j that satisfy |&ij — aj;| < n.
e Parameters §,§ such that £§ > n and & = Cy/n, for some universal constant Cy > 0.
e Parameter 1 that satisfies 1 = Con& +n, for some universal constant Co > 0.

Recall that the algorithm outputs a weighted forest, and denote the forest by F and the weights by 0.
Then, TV (Prr- g«[z],Pr 5[z]) € O(n3¢ + n?V6 +n). (We note that an Ising model over a forest is
defined by taking the different tree components to be independent.)

The remainder of this section is dedicated to the proof of Lemma 14. In Section 8.4 we conclude
the proof of Theorem 2 (unknown topology), by substituting the parameters £, § and n appropriately
using the finite-sample estimates.

To analyze the algorithm, we will create auxiliary trees T = (V(i), E (i)) with weight function

0 and pairwise correlations az(-j-) (for 4 = {1,2,3}) that interpolate between the true parameters

T*,60*, and the Algorithm 2’s output (F,0). To bound the total variation distance between (7°*,6*)
and (F, 9~), we apply triangle inequality after individually bounding the total variation of the leaf dis-
tributions (i) between (7%, 0*) and (T'™™,0M), (ii) between (7™, 9M)) and (7®,0)), (iii) between
(T®,03)) and (T®),0®)), and (iv) between (T3),03)) and (F,0).

Before defining the first intermediate distribution, (T(l), 9(1)), we recall some definitions. First,
recall that the algorithm of Daskalakis et al. [2009] returns a forest whose connected components
are (Tl, ... ,TR). Each T, is a modification of 7, which is defined as the subtree of T* that is
induced by the set of leaves of T,.. As an intermediate step, we start by modifying 7* according to
the induced subtrees T7,...,Tr. Note that initially, we consider T, instead of T, as T, is closer to
T* than 7.

We start by defining 7)) as the tree that is obtained from 7™ by contracting all the edges
that appear in more than one induced tree T} Further, the edge-weight for (1) equals 6* on all
the remaining (non-contracted) edges. Note that 71 still has a single connected component. (For
example, in Figure 17, we contract the purple-dashed lines in (a) because they appear both in the
induces red and blue trees. This results in the tree depicted in (b).)

We would like to bound the total variation distance between Prp« g-[z] and Proa g [z]. Notice
that for each contracted edge e, we have from Theorem 5 that 6, > 1—C¢ for some universal constant
C > 0. Contracting each such edge e is equivalent to modifying 6. to equal 1, as argued in Lemma 13.
Hence, the total variation distance for each contraction is bounded by C¢§/2 from Lemma 12. By
the triangle inequality, since we contract at most O(n) edges, then TV(Prys g« [z], Prra) gy [z]) <

Next, we continue to present the second intermediate model, parameterized by TR = (V(Q) JE (2))
and #®). To obtain T?® = (V@ E®) and 6, recall that each vertex of T = (V) EM) may
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Figure 17: A depiction of the intermediate trees, W, T3 and T®) in the analysis of the algorithm.
The original tree T* contains all the edges in (a). The output forest partitions the leaves into three
connected components: S; = {1,2,5}, So = {3,4,6,7,8} and S3 = {9,10,11}. The tree 73, which
is the subtree of 7™ induced by S1, contains the red and purple-dashed edged. The tree T contains
the blue and purple-dashed edges. And T3 contains the green edges. In (b), we depict T(Z), which
is obtained by contracting all the edges that are shared among multiple subtrees 7., for r = 1,2, 3.
In this example, those are the purple-dashed edé&s. In (c), we depict T(Q), which is obtained from
T®@ by adding auxiliary nodes: for each internal node v and each subtree T} that it touches, we
create a new node v", connect it with v with an edge of weight 1, and further, connect to v" all the
edges in T, that were incident with v in 7. The forest T®) is obtained from 7@ by removing all
the edges that are incident with the nodes a, b, ¢, d, e. These are the dashed edges.



correspond to multiple vertices of T* since T(!) was obtained by contracting edges in T*. For any
v e VY, we denote by A, the set of preimages of v under the transformation from 7* to 7'(") (see
Definition 8 and the paragraph above this definition). In other words, A, is the set of nodes of
T* that were contracted into v. Denote by p(v) the set of indices r € {1,..., R} of trees T, that
intersect a node that was contracted into v. In other words, p(v) is the set of indices r such that
Ay, NV, # 0, where V,. is the set of vertices of the subtree T).. Intuitively, for the construction of
T@ | we would like to make p(v) copies of node v, each for a subtree that contains v. To be precise,
T®@ is constructed as follows:

e The set of vertices V(2 of T3 is obtained from V(1) by adding a new vertex v", for each v
and r such that r € p(v).

e For any v € V(Y and r € p(v), define an edge (v,v") of weight ) (v, v") = 1.
e For any edge (u,v) € E(l), define a new edge in E® according to the following considerations:

— If |p(u) N p(v)| = 1, denote {r} = p(u) N p(v) and add an edge (u",v") in E?, with
weight 981 o) = 98)”). This replaces the edge (u,v).

— If |p(u) N p(v)| = 0, add an edge (u,v) to E®) with weight 98)”) = 9&)”)

— It is impossible that |p(u) N p(v)| > 1, otherwise, (u,v) would have been contracted.

(See Figure 17 for an example of a tree T(Q).) We note that TW can be obtained from T3 by
contracting all the edges (v,v") for v € V) and r € p(v). Hence, from Lemma 13, Prre) go (2] =
Prra g [x] for all values = on the leaves. In particular,

TV( Pr [z], Pr [x})zo.
7@ @ 1) )

Next, we define 7®) and 3. Recall that the vertices of T'® are of two types: (1) vertices that
are copies of those in V(1); and (2) vertices v” for v € V1) and r € p(v). Then, T3 is obtained from
T®) by removing all the edges incident to the vertices of category (1), as depicted in Figure 17 (c).
This creates a forest, and we remove from this forest each connected component that is disconnected
from the leaves. We prove the following lemma:

Lemma 15. There are R connected components in T(3), and the sets of leaves of the connected com-
ponents are exactly the sets of leaves of 11, ..., Tr. Namely, for each T, there exists one connected
component of T that has the same leaf-set as T.

Proof. First, we argue that any two leaves that are in the same tree 7)., are also in the same connected
component of 7). Let i, j be two leaves of T} and consider the edges on the path P between them
in T,.. For any such edge (u,v), there are two possibilities: (1) This edge was contracted at some
point, and there is some w € TM such that u, v € A,,. (2) This edge was not contracted, and there
exist some (w, z) in EM) that is the analogue of (u,v) in T (see Definition 9 and its preceding
discussion). By definition of T, this edge is moved in T®@ to connect (w", 2"). In particular, the
path from i to j in 7@ contains only vertices of the form ¢”. Hence, this path is not disconnected
in T from the graph.

Next, we argue why two leaves 4,j in two different trees 7, and T}, respectively, cannot be
connected in T®). Indeed, the parent of leaf i in 7@ must be of the form v while the parent of
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j must be of the form v*. Notice that in 7®) there is no edge connecting a vertex from v” with a
vertex from v3, hence, these two leaves are necessarily disconnected.
O

We would like to use Theorem 1 to bound the total variation distance between Prpe) g2) [x] and
Prye) g [x], by analyzing the change in the pairwise correlations. To do so, we use the fact that the
pairwise correlations that have changed are only those between leaves i, j of different trees 7). and
T, respectively, and by Theorem 5 we have that in 1™ those have correlation |a;‘j| < C/$ where
0 is defined in Theorem 5 and C > 0 is a universal constant. Notice that, though, the correlation
between two leaves in T3 can be greater than their correlation in 7%. As argued above, the
correlation in 7@ equals that in 70, To compare between the correlations in TW and T*, recall
that T is obtained from T by contracting edges. Yet, any contracted edge has weight at least
1 — C¢, hence, contracting the edge can increase the correlation by at most 1/(1 — C¢). Since any
path between two leaves can contain at most n edges, the contraction can increase the correlation
by at most 1/(1—C¢&)™. By assumption, £ < 1/(Cn), hence this factor is at most a constant. Under
that assumption, the correlation in T between any two leaves of different subtrees 7} is bounded
by O(\/S) Since in T®) their correlation becomes 0, this implies that the pairwise correlations
change by at most O(V/9).

Hence, for any 1, 7, |a§?) - al(.?)| < O(V$). Since T® and T®) both share the same underlying
graph (as removing edges can be done by just replacing the weight with 0), it follows from Theorem 1
that the total variation distance between the leaf distributions of 7@ and 7® is bounded by
O(n>V5).

Next, we would like to bound the total variation distance between the leaf distribution of 7®)
and the output of the algorithm. Since T®) and F have the same connected components, the leaf
distributions of both factorize the same. In particular, the leaf-sets Sy,...,Sr of T1,...,T, are
independent in these product distributions. To bound the total variation distance between the leaf
distributions of T7®) and F, it suffices to bound the total variation distance with respect to each
connected component separately, and then sum the bounds for each component. Hence, we will
fix some r € {1,..., R}. For this end, let us analyze the weights 6. given by Algorithm 2 on the
tree 1. Recall that the last step of this algorithm is to use Algorithm 1 on the tree T, with some
parameter ' > 0 and correlations &;; that were estmated from samples of the original tree 7.
Further, recall that Algorithm 1 is guaranteed to return some weights 6. on the edges, such that the
pairwise correlations between the leaves, which we denote by @&;;, are 7/-close to the correlations &;;
that were given to it as input, namely, |&;; — &;;| < n for any pair i, j of leaves. Yet, Algorithm 1
will succeed only if there exist such weights 6. that satisfy the above constraint. To that end, we
claim the following:

Lemma 16. Fiz r € {1,...,R}. Then, there exist weights 9§j to the edges of T, such that the
corresponding pairwise correlations, a;j satisfy |a§j — Gyj| <+ O(ng) for any leaves i,j € S,.

Proof. Notice that it is sufficient to find weights 0 such that |o}; —aj;| < O(né), since |&;; —aj;| <,
by the assumption in Lemma 14. Since 7. is the subtree induced by the set of leaves S, our goal
;j is O(n&)-close to the pairwise correlation of i and j accross T,. Hence, this is
what we will do. As a first solution, we propose to set for each edge e its weight 0. to equal its
corresponding weight 0% in 7. Recall, though, that in the process of transforming T; to T;, there
are two modifications, which implies that we cannot exactly match the edges of T; with those of .

We elaborate below on the transformations and how to set 6. given these transformations.

is to show that «
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e The first transformation is obtained by contracting some edges of weight 6, > 1 — O(&). For
these contracted edges, we will not define .. Contracting these edges changes the pairwise
correlations between the leaves by at most O(n¢), since there can be at most O(n) edges along
each path.

e The second transformation is a contraction of some nodes of degree 2. Yet, for each such
contraction, there is an easy way to modify the weights such that the pairwise correlations
over the leaves does not change. In particular, if u is a node and v, w are its neighbors, then u
is being deleted from the graph and v, w are being connected. If we set the weight of the new
edge as a multiplication of the weights of the two old edges, then the pairwise correlations
between the leaves do not change. In particular, we will define # under this logic: we will
track the changes from T} to T}, and whenever a degree-2 node is being contracted, we modify
the weights accordingly: if edges e and e’ were contracted to €”, we set the weight of €’ to
equal the multiplication of weights of e and €.

Using the above definition of ¢ and the above analysis, it follows that |a;; — aj;| < O(n§). This
suffices to complete the proof, as explained above. ]

It follows from Lemma 16 that the execution of Algorithm 1 succeeds, if it is run with 7/ = Cné+n
and a sufficiently large C' > 0. This implies that for any 4,5 € Sy, |a;; — &s5] <7’ <n+O(nf). By
the triangle inequality, |di; — ;| < 21+ O(n€). Lastly, following the analysis above, it is easy to
show that also |a§?) — aj;| < O(nf). Indeed, the only modification from 7" to T®) that affects the
pairwise correlation between 7,5 € S, is the contraction of edges of % > 1 — O(&). This affects the
pairwise correlation by O(n). By the triangle inequality, we derive that |&;; — az(.]?-’)| < O(n€ + ).
The last step would be to apply Theorem 1 (same topology) to compare between the distribution
over T; and its corresponding connected component in 7). Yet, this theorem would apply only
if the two components have the same topology. While they do not, we note that both trees are
contractions of the same tree T,. Hence, we can view both distributions as defined over the tree T,
where the contracted edges have weight 1. By Theorem 1 (same topology) we derive that the total
variation distance between the two distributions over S, is bounded by O(né|Sy|?). By summing
over all r, we derive that

o (T(?Rgm l Prjx]) =¢ (ngz |5r|2> <0(n%¢).

£ r=1

By summing up the total variation distances between the auxiliary distributions parameterized
by 79| this concludes the proof of Lemma 14.

8.4 Concluding the proof of Theorem 2 (unknown topology)

We use Lemma 14. First of all, let us optimize £ and ¢ for a fixed value of n. This can be achieved by
selecting § = n%/?n?/3 and ¢ = n/?n=2/3. We note that the requirement & < O(1/n) if n < O(1/n).
The final bound is O(n7/31'/3). To get this below €, we have to set n < O(e®/n7). This requires a
sample of size n > Q(log(n/8)/n?) = Q(n'*log(n/d)/e°).
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8.5 Translating the notation of Daskalakis et al. [2009]

We note that Daskalakis et al. [2009] uses a different notation. For convenience, we explain the
translation in the Ferromagnetic setting where «;j,0;; > 0, however, in order to transition to the
non-Ferromagnetic setting one would simply have to replace these quantities with their absolute
values, |a;;| and |0y|, respectively.

Instead of edge weight 0y ¢y, Daskalakis et al. [2009] use the metric diy = —log )} ¢). Instead
of a; ;j they use the metric d; ; = —log o j. They denote the true (underlying) metric by d, whereas
they assume that the algorithm receives a (7, M)-distorted metric on the leaves, denoted d. This
means that \cfm- —d;j| < 7 whenever d; ; < M. Using our notation, this means that |logd;; —
log o} j\ < 7 whenever oj; > e~ M. Equivalently,

—71 < log &;; — log ozzj < 7 whenever a;‘j > e M

which is equivalent to
e’ < &;j/a;; <€ whenever aj; > e™M (20)

We will show how their guarantees can be implied from our guarantees. First, notice that in order
for (20) to hold, it is sufficient to assume that 7 <1 and

(1—-7/2) <dyj/aj; < (1+7/2) whenever a;; > eM
If we substitute £ = 7/2 and § = e=M | the last inequality substitutes to
a; ;—&az; < Gy <o +&a;;  whenever a;; >0

which is equivalent to
|&ij — a; ;| < &aj;  whenever aj; > 6 . (21)

Eq. 21 is guaranteed to hold if [&; j — ;] ;| < 4. Since in Theorem 5 we assume that |&; ; —a; ;| <,
it suffices to assume that n < £§ in order to imply (21), which in turn implies the conditions in the
paper of Daskalakis et al. [2009].

9 Information theoretic bound

Upper bound. While the result below was known, we prove it for completeness.

Theorem 6. There is an algorithm that, given m samples from the leaf-marginal of some tree
structured Ising model with n leaves, returns another tree structured Ising model whose total variation
distance to the original model is bounded by €, with sample complexity m = O(nlog(n/e)/e?).

While it is apparent that the family of tree-structured Ising models is infinite, we will select a
finite set which is an e-cover in total variation, and then we will use the following result to learn in
total variation distance over a finite set:

Theorem 7 (Yatracos [1985]). Let €, > 0. Given a finite family C of distributions and m samples
from some arbitrary distribution u, there exists an algorithm such that, with probability 1— 46, returns
a distribution i € C that satisfies:

TV(n, i) <3 mETV(n,v) +e,
ve
with sample complexity m = O(log(|C|/5)/€?).
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In order to apply Theorem 7, we will construct an e-cover to the set of tree structured Ising
models.

Lemma 17. For any € > 0, there exists a family C of tree-structured Ising models of log cardinality
log |C| < O(nlog(n/e)), such that for any tree structured Ising model, there exists some model from
C such that the total variation distance between these the two leaf distributions of these models is
bounded by e.

Proof. For completeness, we prove this lemma using Theorem 1, yet, there are more direct ways to
prove this lemma.
Each element of C will be parameterized by the following;:

e A tree topology, with n leaves labeled 1,...,n. There can be at most n®™ distinct trees.

e For each edge of the tree, its weight 6, is one of {0,1/M,2/M,... 1}, where M = O(n3/¢).
There can be at most MP™ possibilities to select the weights.

We derive that |C| < (n/e)?(),

Given some tree T" and weight 6, we will find an element of C that approximates it. In particular,
we will take the element from C that has the same structure and additionally, each of its weights are
1/M close to . It is easy to see from (1) that the pairwise correlations between the leaves «j, are
O(n/M)-close in absolute value between the two models. Hence, by Theorem 1 (fixed topology),
the two models are O(n®/M) < e close in total variation between the leaf distributions, provided
that M > Q(n3/e). O

To conclude the proof, we use the algorithm of Theorem 7, applying it on an €/4-cover using
the construction in Lemma 17.

Lower bound In order to learn latent tree-structured Ising models, when the topology is unknown,
the sample complexity is lower bounded by Q(nlog(n)/e?). This follows from Koehler [2020]: they
prove that the number of samples that are required to learn a full tree from samples is Q(n log(n)/€2),
yet, this proof extends directly to the setting of latent nodes.
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