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Abstract

Automated source code summarization is a
popular software engineering research topic
wherein machine translation models are em-
ployed to “translate” code snippets into rel-
evant natural language descriptions. Most
evaluations of such models are conducted us-
ing automatic reference-based metrics. How-
ever, given the relatively large semantic gap
between programming languages and natural
language, we argue that this line of research
would benefit from a qualitative investigation
into the various error modes of current state-
of-the-art models. Therefore, in this work,
we perform both a quantitative and qualitative
comparison of three recently proposed source
code summarization models. In our quan-
titative evaluation, we compare the models
based on the smoothed BLEU-4, METEOR,
and ROUGE-L machine translation metrics,
and in our qualitative evaluation, we perform
a manual open-coding of the most common
errors committed by the models when com-
pared to ground truth captions. Our investiga-
tion reveals new insights into the relationship
between metric-based performance and model
prediction errors grounded in an empirically
derived error taxonomy that can be used to
drive future research efforts.'

1 Introduction and Motivation

Proper documentation is an important component
of modern software development, and previous
studies have illustrated its advantages for tasks
ranging from program comprehension (Garousi
et al., 2015) to software maintenance (Chen and
Huang, 2009). However, manually documenting
software is a tedious task (McBurney and McMil-
lan, 2014) and modern agile development practices

'Our annotations and guidelines are publicly avail-
able on Github https://github.com/SageSELab/

CodeSumStudy and Zenodo: https://doi.org/10.
5281/zenodo.4904024.

tend to champion working code over extensive doc-
umentation (Beck et al., 2001). As such, a range
of important documentation activities are often ne-
glected (Zhi et al., 2015) leading to deficiencies in
carrying out development activities and contribut-
ing to technical debt. Because of this, researchers
have worked to develop automated code summa-
rization techniques wherein machine translation
models are employed to generate precise, seman-
tically accurate natural language descriptions of
source code (Haiduc et al., 2010). Due to the
promise and potential benefits of effective auto-
mated source code summarization techniques, this
area of work has seen constant and growing atten-
tion at the intersection of the software engineering
and natural language processing research commu-
nities (Zhu and Pan, 2019).

Various techniques for automated source code
summarization have been explored extensively over
the past decade. Some of the earliest approaches
made use of a combination of structural code infor-
mation and text retrieval techniques for determin-
ing the most relevant terms (Haiduc et al., 2010),
with follow up work investigating the use of topic
modeling (Eddy et al., 2013). Techniques then
evolved from using information retrieval to canon-
ical machine learning techniques, with Ying and
Robillard (2013) using supervised Naive Bayes
and Support Vector Machine classifiers to iden-
tify code fragment lines that could be used as
suitable summaries. One of the first appearances
of language modeling came from McBurney and
McMillan (2016) who proposed an approach com-
bining a software word usage model, natural lan-
guage generation systems, and the PageRank al-
gorithm (Langville and Meyer, 2006) to generate
summaries. Driven by the advent of deep learning,
current state-of-the-art techniques generally make
use of large-scale neural models and have signifi-
cantly improved the performance of code summa-
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rization tasks. For instance, Iyer et al. (2016) used
Long Short Term Memory (Hochreiter and Schmid-
huber, 1997) with attention (Bahdanau et al., 2015)
to generate summaries from a code snippet. Fol-
lowing this work, researchers have applied sev-
eral deep learning-based approaches to the task of
source code summarization (Zhang et al., 2020a;
Wan et al., 2018; LeClair et al., 2020).

In most works on automated code summariza-
tion, the performance of the generated natural lan-
guage descriptions is evaluated using reference-
based metrics adapted from machine translation,
e.g., BLEU (Papineni et al., 2002) and ME-
TEOR (Lavie and Agarwal, 2007), or text sum-
marization, e.g., ROUGE (Lin, 2004). As such,
most researchers make conclusions based on the
results obtained using these metrics. However, the
code summarization task is a difficult one — due
in large part to the sizeable semantic gap between
the modalities of source code and natural language.
As such, while these metrics provide a general il-
lustration of model efficacy, it can be difficult to
determine the specific shortcomings of neural code
summarization techniques without a more exten-
sive qualitative investigation into their errors.

Few past studies have examined the failure
modes of neural code summarization models as
we outline in §6. Therefore, to further explore
this topic, in this paper we perform both a qualita-
tive and quantitative empirical comparison of three
neural code summarization models. Our quanti-
tative evaluation offers a comparison of three re-
cently proposed models (CodeBERT (Feng et al.,
2020), NeuralCodeSum (Ahmad et al., 2020), and
code2seq (Alon et al., 2019)) on the Funcom
dataset (LeClair and McMillan, 2019) using the
smoothed BLEU-4 (Lin and Och, 2004), ME-
TEOR (Lavie and Agarwal, 2007), and ROUGE-
L (Lin, 2004) metrics whereas our qualitative eval-
uation consists of a rigorous manual categorization
of model errors (compared to ground truth captions)
based on a procedure adapted from the practice of
open coding (Miles et al., 2013). In summary, this
paper makes the following contributions:

* We offer a quantitative comparative analysis of
the CodeBERT, NeuralCodeSum, and code2seq
models applied to the task of Java method sum-
marization in the Funcom dataset. The results of
this analysis illustrate that the CodeBERT model
performs best to a statistically significant degree,
achieving a BLEU-4 score of 24.15, a METEOR

score of 30.34, and a ROUGE-L score of 35.65.

* We conduct a qualitative investigation into the
various prediction errors made by our three stud-
ied models and derive a taxonomy of error modes
across the various models. We also offer a dis-
cussion about differences in errors made across
models and suggestions for model improvements.

* We offer resources on GitHub? and Zenodo® for
replicating our experiments, including code and
trained models, in addition to all of the data
and examples used in our qualitative analysis
of model errors.

2 Background: Deep Learning for Code
Summarization

This section outlines necessary background re-
garding our chosen evaluation dataset as well as
the three neural code summarization models upon
which we focus our empirical investigation.

2.1 Dataset: Funcom

In this study we make use of the Funcom
dataset (LeClair and McMillan, 2019).* We se-
lected this dataset primarily for three reasons: (i)
this dataset was specifically curated for the task of
code summarization, excluding methods more than
100 words and comments with >13 and <3 words
or which were auto-generated, (ii) it is currently
one of the largest datasets specifically tailored for
code summarization, containing over 2.1M Java
methods with paired JavaDoc comments, (iii) it
targets Java, one of the most popular program-
ming languages.” In order to make for a feasi-
ble training procedure for our various model con-
figurations, and to keep the dataset size in line
with past work to which our studied models were
applied (e.g., the size of the CodeXGlue dataset
from Lu et al. (2021), containing approximately
180000 Java methods and JavaDoc pairs, to which
CodeBERT was applied) we chose to use the first
500,000 method-comment pairs from the filtered
Funcom dataset for our experiments. Note that
we did not use the tokenized version of the dataset
as provided by LeClair and McMillan (2019) as
each of our models has unique pre-processing con-
straints, described in detail in Appendix B.

https://github.com/SageSELab/
CodeSumStudy
*https://doi.org/10.5281/zenodo.
4904024
‘http://leclair.tech/data/funcom/
Shttps://octoverse.github.com
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private void swap (int a, int b)
int temp = a;

{ Encoder Decoder
i (CodeBERT) m

b =temp;
}

Figure 1: Code to text translation using CodeBERT.

2.2 Models

CodeBERT CodeBERT (Feng et al., 2020) is a
bimodal pre-trained model used in natural language
(NL) and programming language (PL) tasks. This
model supports six programming language tasks
in various downstream NL-PL applications, e.g.,
code search, code summarization, etc. The archi-
tecture of the model is based on BERT (Devlin
et al., 2019), specifically following the ROBERTa-
base (Liu et al., 2019) in using 125 million model
parameters. The objectives of training CodeBERT
are masked language modeling (MLM) and re-
placed token detection (RTD). Recently, Microsoft
Research Asia introduced the CodeXGLUE bench-
mark that consists of 14 datasets for ten diversified
code intelligence tasks (Lu et al., 2021). They
fine-tuned CodeBERT in code-to-natural-language
generation tasks. CodeBERT was used as the en-
coder, with a six-layer self-attentive (Vaswani et al.,
2017) decoder. An architecture for code-to-text
translation using the CodeBERT encoder is shown
in Figure 1. The dataset Lu et al. (2021) used is
derived from CodeSearchNet (Husain et al., 2019).

NeuralCodeSum The second technique we
study is NeuralCodeSum (Ahmad et al., 2020).
Here, the authors explored a transformer-based ap-
proach to perform the task of code summarization,
using a self-attention mechanism to capture the
long-term dependencies that are common in source
code. In order to enable the model to both copy
from already seen source code and to generate new
words from its vocabulary, they employed a copy
mechanism (See et al., 2017). One important dis-
tinction of source code that this model takes into
account is that the absolute token position does not
necessarily assist in the process of learning effec-
tive source code representations (i.e., int a=b+c
and int a=c+b; both convey the same mean-
ing). To mitigate this problem, they used the rela-
tive positioning of tokens to encode pairwise token
relations. Additionally, the authors of this model
also explored the integration of an abstract syntax
tree (AST)-based source code representation. How-

ever, they found that the AST information did not
result in a marked improvement in model accuracy.

code2seq The third model we consider in our
study is code2seq (Alon et al., 2019), which is a
widely utilized technique that was originally de-
signed for the task of method name prediction. The
authors of this work focused on capturing the true
syntactic construction of source code by encoding
AST paths. They showed that code snippets which
exhibited differences in lines but that were designed
for similar functionality often have similar patterns
in their AST trees. To take advantage of this obser-
vation, code2seq uses an encoder-decoder architec-
ture that attends to the constructed AST encoding
to generate the resultant sequence. The authors
experimented with Java method name generation
as well as code captioning tasks. They compared
their code captioning approach to CodeNN (Iyer
et al., 2016) using BLEU score, against which it
illustrated improved performance.

3 Design of the Empirical Evaluation

To evaluate the performance of our three models
applied to the task of code summarization, we per-
form both a quantitative and qualitative evaluation
centered upon the following research questions:

RQ;: How effective is each model in terms of pre-
dicting natural language summaries from Java
methods?

RQa: What types of errors do our studied models
make when compared to ground truth captions?

RQs: What differences (if any) are there between
the errors made by different models?

3.1 Evaluation Methodology for RQ;

In this subsection, we discuss how we split the
dataset, the evaluation metrics we use, and how we
configure our studied models for training.

3.1.1 Dataset Preparation and Metrics

To adapt the Funcom dataset for our study, we
first sampled the first 500k function-comment pairs
from the filtered Funcom dataset into training
(80%), validation (10%) and testing (10%) for our
experiment, ensuring that the method-comment
pairs between our training and testing datasets
came from separate software projects (i.e., split by
project), as suggested by the Funcom authors, in or-
der to avoid artificial inflation of performance due
to data snooping (LeClair and McMillan, 2019).



‘ Training Dev Testing
CodeXGlue | 164923 5183 10955
Funcom ‘ 400000 50000 49997

Table 1: Data Statistics. We use the Funcom dataset.

As a comparison to past work, we illustrate the
training, validation and test dataset sizes between
the CodeXGLUE and Funcom datasets in Table 1.
As mentioned earlier we preprocess the sampled
dataset based on the requirements for each of our
chosen models, and provide details in Appendix B.

Prior work has explored the use of several
reference-based metrics, e.g., BLEU, METEOR,
and ROUGE-L for evaluating the performance of
code summarization. In our study we make use
of smoothed BLEU-4 as it was previously used to
evaluate the CodeBERT model (Feng et al., 2020).
BLEU is the geometric average of n-gram preci-
sions between the predicted and reference captions
multiplied by a brevity penalty that penalizes the
generation of short descriptions. We use the BLEU
metric applying a smoothing technique (Lin and
Och, 2004), which adds one count in the case of
n-gram hits to address hypotheses shorter than n.
In addition, we include METEOR (Lavie and Agar-
wal, 2007) and ROUGE-L (Lin, 2004) in our study.
METEOR computes the harmonic mean between
precision and recall based on unigram matches be-
tween the prediction from a model and reference,
also going beyond exact matches to include stem-
ming, synonyms, and lemmatization. ROUGE-L
computes the longest common subsequence-based
F-measure between the hypotheses and references.

3.1.2 Model Configurations and Training

We train, validate and test the three models de-
scribed in §2 for the task of summarizing Java
methods in natural language. A subset of model
hyperparameters for all three studied deep learning
models is shown in Table 2. We preprocess the
dataset for each of the models according to their
individual requirements and select the hyperparam-
eters for each of the models based on the optimal
settings from prior work.Additionally, we apply
some global preprocessing that is common to all
models, taken from recent work on language mod-
eling for code (Mastropaolo et al., 2021). Initially,
we remove all the comments that exist inside meth-
ods, as the commented code could lead to poor
predictions. Next, all the JavaDoc comments are

Hyper- CodeBERT | Neural- code2seq
parameters CodeSum

Batch Size 16 64 512

Beam Size 16 4 0
Optimizer Adam Adam Momentum
Learning Rate | 0.00005 0.0001 0.01+decay
#epochs 15 38 39

Table 2: Model Hyperparameters.

filtered keeping only the description of the method.
Finally, we clean HTML and remove special char-
acters from the JavaDoc captions. We provide a
detailed account of our preprocessing and train-
ing techniques in Appendix B and in our publicly
available resources.

CodeBERT Model Configurations and Train-
ing: We use the open-source implementation®
made available by Microsoft to fine-tune Code-
BERT using the Funcom dataset. We utilized the
optimal model configurations for this model used
to train on the CodeXGlue (Lu et al., 2021) dataset
with hyperparamters tuned on the Funcom dataset.

NeuralCodeSum Model Configurations and
Training: We use the open-source implementa-
tion of NeuralCodeSum’ to train the model in our
study. We performed one additional preprocessing
step than typical with this model, splitting camel-
case words. The dropout rate is set to 0.2 and we
train for a maximum of 1000 epochs. Additionally,
we stop training if validation does not improve after
20 iterations.

code2seq Model Configurations and Training:
We make use of the publicly available implementa-
tion of code2seq.® To use the Funcom dataset, we
had to prepare the AST node representation using a
modified dataset build script.” The original dataset
build script was designed to predict the method
name whereas we modify it to predict summaries.
One problem we faced representing Funcom meth-
ods as ASTs is that there were some code examples
which could not be parsed into an AST represen-
tation mainly because of the imposed minimum
code length threshold and the method not having

®https://github.com/microsoft/
CodeXGLUE/tree/main/Code-Text/
code-to-text

"https://github.com/wasiahmad/
NeuralCodeSum

8https://github.com/tech-srl/code2seq

*https://github.com/LRNavin/
AutoComments
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any AST-Paths. As a result, we were able to train
code2seq on only a subset of the Funcom dataset
(40009/50000 ~ 80.02%). To train the model we
made use of large batch sizes (e.g., 256 and 512)
as we noted smaller batch sizes resulted in instabil-
ity. As code2seq was originally designed to predict
method names, we also made some changes in the
model parameters to facilitate longer prediction
sequences, which we give in Appendix A.

3.2 Evaluation Methodology for RQ2 & RQ3

We performed a manual, qualitative analysis on the
output of the three models'® to answer RQz and
RQs3 in order to better understand and compare
the various types of errors each model makes. The
methodology we follow to categorize the model
prediction errors follows a procedure inspired by
open coding (Miles et al., 2013), which has been
used in prior studies to categorize large numbers of
software project artifacts (Linares-Vésquez et al.,
2017, inter alia). Initially, we randomly selected a
small number of samples from our validation split
of the Funcom dataset, and applied each of our
three models to generate captions. The four annota-
tors'! then met and discussed the samples to derive
an initial set of labels that described deviations
from the ground truth. We found that 15 meth-
ods (each with three predictions, one from each of
our studied models) were enough to reach an ini-
tial agreement on the labels. Note that we use the
ground truth captions as a “gold set” in order to ori-
ent our analysis to a shared understanding among
annotators and to limit potential subjectivity.
Next, we conducted two rounds of independent
labeling, wherein three annotators independently
coded a samples of method-comment pairs and
predicted comments, such that two annotators in-
dependently coded each sample. Here we define a
“sample” as a method <+ gold-comment pair, and
the three resulting predictions from CodeBERT,
NeuralCodeSum, and code2seq respectively for the
method. During this process, annotators were free
to add additional labels outside of the initial set if
they deemed it necessary. The first round of label-
ing consisted of 148 samples in total, amounting
to 148 x 3 = 444 predictions from our studied
models. After the independent labeling process,
the authors met to resolve the conflicts among the
labels. This initial round of coding resulted in a

Some examples of the predictions are shown in Ap-
pendix C
' All annotators are also authors of this study.

disagreement on ~ 82% of the samples wherein
author discussion was needed in order to derive a
common agreed upon label. There were two main
reasons for this relatively high rate of disagreement:
(i) the authors created some category labels with
similar semantic meanings, but different labels, and
(ii) some of the authors had different interpretations
of shared meanings. However, through an exten-
sive discussion, the conflicts were resolved and a
shared understanding reached. The second round
of independent labeling consisted of 50 samples,
and resulted in a disagreement rate of only ~ 27%,
illustrating the stronger consensus among authors.
We derive the taxonomy presented in §4 from la-
bels present after both rounds of our open coding
procedure.

4 Evaluation Results

In this section, we will discuss the quantitative and
qualitative results from our empirical study in order
to answer our research questions.

4.1 RQ; Results: Evaluation Based on
Reference-Based Metrics

To perform the evaluation on the Funcom dataset,
we use the optimal hyper-parameters shown in Ta-
ble 2 for the three deep learning models. Neural-
CodeSum could not predict natural language de-
scriptions for some examples (= 80). The most
likely reason for this situation is the errors in pro-
cessing code or docstring tokens. Table 3 shows
the quantitative results obtained based on smoothed
BLEU-4, METEOR, and ROUGE-L scores. The
results show that CodeBERT performs best among
the three models. We believe that the reason we
observe CodeBERT achieving this level of perfor-
mance is that this model is pre-trained on both
bimodal data and unimodal data (wherein bimodal
data refers to the coupled code and natural lan-
guage pairs and unimodal data refers to either nat-
ural language descriptions without code snippets
or code snippets without natural language descrip-
tions (Feng et al., 2020)).

Statistical significance In addition to calculat-
ing the evaluation scores (i.e. smoothed BLEU-4,
METEOR, ROUGE), we conducted statistical sig-
nificance tests for all three metrics to assess the
validity of the obtained results. We took 19009
examples from the test dataset and used pairwise
bootstrap re-sampling (Koehn, 2004) between all



Models Smoothed BLEU-4 | METEOR | ROUGE-L
CodeBERT 24.15 30.34 35.65
NeuralCodeSum 21.50 27.78 33.71
code2seq 18.61 27.31 33.52

Table 3: Evaluation Results with three metrics. CodeBERT is consistently better than the other two models.

3 model predictions. In comparison to Neural-
CodeSum, we found CodeBERT performs better
with a mean score increase (BLEU-4 2.8, ME-
TEOR 2.9, ROUGE 2.2) at a 95% confidence in-
terval, thus indicating a performance delta that is
statistically significant.

4.2 RQ2 Results: Types of errors

In the first round of our study that included 148 x
3 = 444 samples, we were able to classify the
errors for 398 generated natural language descrip-
tions from the models from the validation dataset.
The remaining 46 descriptions that were not clas-
sified as predictions were not made by the models
due to errors in parsing and one error in process-
ing code tokens. This singular error was due to
the fact an entire code snippet was commented out,
and our models do not process commented code.
Thus, we did not include the predictions for the
three different models for that code snippet in our
study. In the other 43 cases, the code2seq model
could not generate predictions because the model
was not able to parse the AST.

Our error taxonomy derived after both rounds
of the open coding process is shown in Fig-
ure 2. The taxonomy consists of seven high-
level categories with each consisting of mul-
tiple lower-level sub-categories. To elabo-
rate, Semantically Unrelated to Code iS a sub-
category of Incorrect Semantic Information.
Note that one category Consistent with Ground
Truth is dedicated to those captions that generally
matched the ground truth, which we include for
completeness. The numbers that are shown be-
side the name of the sub-categories illustrate the
number of errors for CodeBERT, NeuralCodeSum,
and code2seq respectively. The numbers shown
beside the categories’ names represent the cumula-
tive sum of the sub-categories. We provide a small
number of examples of these categorizations in Ap-
pendix C, and provide all labeled examples in our
public resources on GitHub and Zenodo. We make
the following notable observations resulting from
our derived taxonomy:

* Encouragingly, among the samples studied, the
largest category of samples did not display signif-
icant errors, falling into the Consistent with
Ground Truth category (162/535 ~ 30.28%).
This category is the most frequent among all, but
we do see CodeBERT (unsurprisingly) exhibit
the largest number of reasonable summaries.

* The most prevalent error category exhib-
ited among our studied models was that of
Missing Information (148/535 =~ 27.66%)
followed by the Incorrect Construction cate-
gory (110/535 ~ 20.56%). This seems to indi-
cate that one of the biggest struggles for current
neural code summarization techniques is related
to the inclusion of various types of necessary
information in the summary itself, followed by
issues in properly constructing comment syntax.

* The models also either incorrectly recognized or
failed to recognize salient identifiers that were
needed to understand method functionality in
a non-negligible number of cases (71/535 ~
13.2%). This suggests that mechanisms for iden-
tifying focal identifiers i.e., those that might
prominently contribute to describing the func-
tionality, could be beneficial, similar to past work
on identifying focal methods (Qusef et al., 2010).

* Some of the models exhibited generated sum-
maries that over-generalized to the detriment
of the summary meaning (49/535 ~ 9.15%) ,
whereas very few summaries contained extrane-
ous information.

* Further study is needed to gain a better under-
standing of the various facets of the critical infor-
mation and non-critical information that captions
were missing. For instance, we plan to explore
whether the necessary information is contained
within the code itself, or perhaps in semantically
related methods. We leave this for future work.

4.3 RQs3 Results: Comparison of three
different models

One advantage of the formulation of our empirical
study is that we are able to compare the various
shortcomings of our studied models as they relate



Missing Context (1, 2,2) @

Missing Prog. Language Information (0, 0, 2)
+ Missing Attributes that refer to PL specific
information.

Missing Database Information (1, 2, 0)
+ Missing database attributes that provide
needed context to method functionality.

=

Missing Information (65,56,27)

Incorrect Semantic Information (6, 27, 19) = /j‘

Partial Incorrect Information (6, 11, 3)
- Semantically meaningful, with a few errors.

Semantically Unrelated to Code (0, 11, 13)
- Does not capture code context whatsoever.

Algorithmically Incorrect (0, 5, 3)
- Conveys a different algorithmic meaning as
compared to the code.

Missing Critical Information (21, 14, 7)
- Comment is missing critical semantic
information.

Missing Task Elaboration (5, 2, 1)
- Did not describe what code was doing properly.
Missing Non-Critical Information (28, 19, 5)
+ Useful comment but non-critical info missing.
Missing Web-Related Information (0, 1, 0)
- Comment failed to mention web-related
identifier.
Failed to Mention Identifiers (0, 11, 6)
- Does not mention specific variable/attribute
names, often using a generic identifier.
Missing Identifier (5, 3, 7)
- No identifier mentioned at all.
Missing Data Structure Information (2, 0, 1)
- Does not capture relevant data structure info
Missing Syntax Information (2, 6, 0)
- Important syntactic information (e.g. code

[

Incorrect Construction (26, 31, 53)

Consistent with Ground Truth (88, 57, 17) D

Consistent with Specific Info (30, 15, 5)
- Comment matches ground truth well.

Consistent but Missing Specific Info (56, 35, 12)
- Comment matches ground truth mostly, but
misses some important specific information.

Improves upon Semantic Meaning (2, 6, 0)
+ The predicted comment matches the ground
and improves capturing method meaning.

Consistent but with Unnecessary Info (0, 1, 0)
- Accurate but has some unnecessary info.

Incorrect Identifier/Attribute (5, 19, 15)
+ Correctly identifies a variable or attribute, but
uses it incorrectly.

Incomplete Sentence (1, 1, 10)
+ Predicted comment is grammatically
incomplete.

Repetition (0, 7, 27)
- Comment contains unnecessary repetition of a
word or fragment between 2-3 times.
Extreme Repetition (0, 2, 1)
- Comment contains unnecessary repetition of a
word or fragment more than 2-3 times.

Focusing Only on Method Name (20, 1, 0)
- When comment focuses mostly on the method
name, which provides an incomplete but
partial description of the functionality.

Grammatical Errors (0, 1, 0)
- Grammatical Error is present in predicted

Extraneous/Unnessecary
Information Included (2, 3, 4)

v

Unnecessary Data Structure Info (1, 0, 0)
- Adds unnecessary data structure info to
comment.

Unnecessary File Information (0, 1, 1)
- Adds unnecessary file information to
comment.

Unnecessary Incorrect Information (1, 2, 3)
- Adds information to comment that is both
incorrect and unnecessary.

Over-Generalization (7, 21, 21) E g

Different Meaning (2, 3, 3)
- Comment over-generalizes on the meaning of

ordering) is missing. ST

the code functionality.

Missing Exception (1, 0, 0)

- Does not mention relevant exception info
Missing Conditional Information (1, 0, 0)

- Misses code branching information

The numbers shown for each category
illustrate the number of instances

found for (CodeBERT, NeuralCodeSum,
and code2seq) respectively

Algorithmically Incorrect (1, 6, 3)

- Overgeneralizes to the point of incorrectness
Missing Attribute Specification (4, 12, 15)

- Uses generic names such as var.

Figure 2: Taxonomy of the Errors Between the Generated Summaries and the Ground Truth

to our qualitative error analysis. To this end, we
make the following notable observations:

* The most frequent error categories for Code-
BERT and NeuralCodeSum are Consistent
but Missing Specific Information (Code-
BERT: 56/197 ~ 28.42% and NeuralCodeSum:
35/197 ~ 17.77%). However, for code2seq,
the most frequent category is Repetition
(27/141 = 19.15%).

* A non-negligible number of predictions from
CodeBERT fall into the focusing Only on the
Method Name category (20/197 =~ 10.15%).
This may suggest a reliance of the model on
descriptive method names in order to produce
reasonable summaries.

* NeuralCodeSum and code2seq produce a small
number of predictions that are Semantically
Unrelated to Code. However, we did not find
any such cases for CodeBERT.

» Similar to our quantitative evaluation, we find
that CodeBERT performs best, but suffers from
a large number of errors related to Missing
Information. In future work, we will inves-
tigate the adaptation of source coverage tech-

niques (Cohn et al., 2016; Mi et al., 2016) to
our task to mitigate this issue.

5 Discussion & Learned Lessons

Takeaway 1: The CodeBERT model illustrates
improved performance on the Funcom dataset
as compared to CodeXGLUE, likely due to
the filtering steps undertaken in its construc-
tion. Previously, the CodeBERT model was fine-
tuned on the CodeXGlue dataset and the smoothed
BLEU-4 score obtained on the Java dataset was
17.65 (Lu et al., 2021). However, we fine-tuned
the model on the Funcom dataset and obtained a
smoothed BLEU-4 score of 24.15. We believe there
are two primary contributing factors to this obser-
vation: 1) A higher volume of data, and 2) filtering
strategies. CodeXGLUE only provides 164923
training examples, whereas we used 400000 Java
Methods and Javadoc pairs during he fine-tuning
process. Moreover, The CodeXGLUE dataset is
obtained from CodeSearchNet and the documents
that contain special tokens (e.g., <img> or https:)
are filtered. In our preprocessing, we did not com-
pletely remove such data in the preprocessing; we
only remove the HTML and special characters from
the JavaDoc captions. We hypothesize that such
characters may contain important information and



as such lead to more effective predicted summaries.
Takeaway 2: Models that rely on statically pars-
ing source code can lead to high numbers of
missing/incomplete predictions. The preprocess-
ing for the code2seq model includes generating
strings from the AST node representation of each
method. Unfortunately, it is difficult (or impos-
sible) to construct a suitable AST representation
for methods that fall under a certain token length
threshold. As a result, about 19.98% of the original
dataset could not be fed into the code2seq testing
module, and for which we could not generate any
prediction for these examples.

Takeaway 3: Some of the generated summaries
provide a semantic meaning similar to the
ground truth, despite exhibiting fewer n-gram
matches. Our studied models can generate sum-
maries that contain relevant semantic informa-
tion which can be useful for code comprehension
despite not perfectly matching the ground truth.
For instance, let’s consider the following example
ground truth for a Java method, “this method sets
the text for the heading on the component”. The
generated summary from the CodeBERT model is
“sets the heading caption”. Comparing these two
descriptions will not necessarily result in a high
BLEU-4 score. This suggests that a modification
to the evaluation procedure for these models may
provide a more realistic characterization of model
performance in practice. For instance, measuring
BERTScore in addition to other metrics for eval-
uation (Zhang et al., 2020b)!? may help to better
capture semantic similarities compared to purely
symbolic similarities.

Takeaway 4: Future techniques for Neural
Code Summarization should carefully consider
techniques for mitigating potential errors re-
lated to Missing Information, and Incorrect
Construction as these are the most preva-
lent error types observed in our taxonomy.
Our error taxonomy provides concrete indica-
tors on where different types of models stand
to gain performance in order to make them
useful for downstream deployment. In partic-
ular, we suggest that future research focuses
on rectifying Missing Critical Information
and Missing Non-Critical Information rather
than Grammatical Errors Or Unnecessary File
Information.

Takeway 5: Future studies should explore the

Phttps://github.com/Tiiiger/bert_score

combination of AST traversal based and self-
attention mechanism-based approaches to per-
form robust comment generation. AST-based
approach is useful to provide syntax level infor-
mation and it follows the structural tree traver-
sal method to capture the global information. At
the same time, we can see this approach is prone
to errors like Repetition and Semantically
Unrelated to Code. On the other hand, a self-
attention mechanism is useful to capture the local
information. So a multi-modal approach where
standard encoders can be utilized to combine both
AST-based and attention-based approaches can be
a viable direction to explore further.

Takeway 6: Robust evaluation metric(s) should
be developed that specifically focus on source
code - natural language translation. Source code
is fundamentally different from the natural lan-
guage from a number of perspectives. For instance,
it exhibits less significant word order dependency,
the significance of appropriate syntax naming and
mentioning, etc. So a robust code to natural lan-
guage translation evaluation metric should consider
assessment from both local and global levels. Stan-
dard machine translation metrics like BLEU, ME-
TEOR, ROUGE do not fully cover these factors.
As such, we encourage future work to study and de-
velop new forms of automated metrics for assessing
this special case of machine translation.

6 Related Work

6.1 Code to Comment Translation

Source code summarization is a topic of great inter-
est in software engineering research. The aim is to
automate a portion of the software documentation
process by automatically generating summaries of
a given granularity for a source code snippet (e.g.,
methods) to save developer effort. Techniques have
evolved from using more traditional Information
Retrieval (IR) and machine learning methods to
utilizing artificial neural networks.

One of the earliest deep-learning-based source
code summarization techniques is that by Iyer et al.
(2016). The authors used an attention-based neural
network to generate NL summaries from source
code. The approach was applied to the C# pro-
gramming language and SQL. Given the strong
syntax associated with programming languages, re-
searchers have also experimented with utilizing
AST information for source code summarization.
Hu et al. (2018) used an AST traversal method to
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generate summaries. Additionally, LeClair et al.
(2019) utilized structural code information by en-
coding ASTs. Our goal in this study is to pro-
vide an overview on the performance of a vari-
ety of techniques, both sequence based (i.e., Code-
BERT, NeuralCodeSum), and structure-based (i.e.,
code2seq), in order to examine differences in quan-
titative and qualitative performance across differ-
ent types of models. Recently, a more complex
retrieval-augmented mechanism was introduced
that combines both retrieval and generation-based
methods for code to comment translation (Liu et al.,
2021). Finally, Bansal et al. (2021) recently pro-
posed a method that uses a vectorized represen-
tation of source code files. We plan to explore
additional techniques such as these in future work.

6.2 Empirical Studies of Code Summaries
and Code Summarization

Although many deep learning models are capable
of generating summaries from source code, very
few researchers have focused on evaluating the er-
rors made by the models from a human perspective.
During an early study on this topic, Ying and Ro-
billard (2013) tried to understand whether code
summaries achieved the same level of agreement
from multiple human perspectives. McBurney and
McMillan (2016) performed a comparison based
on the similarities of the summaries generated by
a newly proposed model which aimed at including
context in code summaries. However, most recent
work on code summarization models, e.g., (LeClair
etal., 2020; Bansal et al., 2021) depend on machine
translation metrics to measure the performance of
the code summarization task. However, a recent
study showed a necessity of revised metrics for
code summarization (Stapleton et al., 2020).

Perhaps the most closely related study to ours is
that conducted by Gros et al. (2020). In this study,
the authors question the validity of the formulation
of code summarization as a machine translation
task. In doing so, they apply code and natural lan-
guage summarization models to several recently
proposed code summarization datasets and one
natural language dataset. They found differences
between the natural language summarization and
code summarization datasets that suggests marked
semantic differences between the two task settings.
Additionally, the authors carried out experiments
which illustrate that reference-based metrics such
as BLEU score may not be well suited for mea-

suring the efficacy of code summarization tasks.
Finally, the authors illustrate that IR techniques
perform reasonably well at code summarization.
While this study derives certain conclusions that
are similar to those in our work (e.g., the need for
better automated metrics) our study is differenti-
ated by our manually derived fault taxonomy.

To the best of our knowledge, no other study has
taken on a large-scale qualitative empirical study
with the objective of categorizing and understand-
ing errors between automatically generated and
ground truth code summaries. Thus, we believe
this is one of the first papers to take a step toward
a grounded understanding of the errors made by
neural code summarization techniques — offering
empirically validated insights into how future code
summarization techniques might be improved.

7 Conclusion & Future Work

In this work we perform both quantitative and
qualitative evaluations of three popular neural
code summarization techniques. Based on our
quantitative analysis, we find that the CodeBERT
model performs statistically significantly better
than two other popular models (NeuralCodeSu, and
code2seq) achieving a smoothed-BLEU-4 score of
24.15, a METEOR score of 30.34, and a ROUGE-L
score of 35.65. Our qualitative analysis highlights
some the most common errors made by our studied
models and motivates follow-up work on improv-
ing specific model attributes.

In the future, we aim to expand our analysis to
additional retrieval-augmented summarization tech-
niques and to expand the scope and depth of our
neural code summarization model error taxonomy.
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A Hyper-parameters

In Table 4, we show the hyper-parameters that are
used in our adapted models. Code2seq model could
not be trained using batch size 64 or 128 because of
the instability occurred from the longer comment
length. Originally, this model was designed to pre-
dict the method name. So we trained the model
using batch size 512 in our final experiment and it
required 39 epochs to train the model.

Hyper- CodeBERT | Neural- Code2Seq

parameters CodeSum

Maximum 256 150 200

Source Length

Batch Size 16 64 512

Beam Size 16 4 0

Optimizer Adam Adam Momentum

Learning Rate 0.00005 0.0001 0.01+exp.
decay

#epochs 15 38 39

Dropout rate 0.1 0.2 0.25

#Attention 12 8 -

heads

Early stopping True True True

#layers 6 6 -

Table 4: Model Hyperparameters



B Data Prepossessing

We had to perform several preprocessing steps
to make the dataset ready for training. Among
all the three models, we removed comments in-
side methods, removed tags, clean HTML, low-
ercasing characters, removing special characters.
For the NeuralCodeSum model, we applied an
additional sub-tokenization step. For code2seq,
we needed to prepare the AST representation
of the code snippets. To do this, we used a
modified JavaExtractor!® which locates the
Java methods and put them in a file where each
line is for one method. Subtokenization is per-
formed in between to tokenize the CamelCase
attributes (i.e. ["ArrayList"->["Array",
"List"]11). The original dataset build script was
designed to put the method name in the prediction
window. The modified one puts the comment in-
stead of a method name. In Table 5, a Java code,
comment and the equivalent one line dataset in-
stance (AST representation) is presented. While
performing this step, some methods could not be
parsed as this AST representation mainly because
of the minimum method length threshold required
for the parsing. In total, we could transform 80.02%
of our training dataset on which we trained the
code2seq model. All the steps used in preprocess-
ing are shown in Table 6.

C Case Study

In Table 7, model predictions are given with the
ground truth and assigned error categories.

Bhttps://github.com/LRNavin/
AutoComments
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Original Method | public Type getType() { return mtype; }

Comment returns the type of this technical information

AST represtation | returns|the|typel|of|this|technical|information
type,ClsO|Mth|Nml, get|type type,ClsO|Mth|Bk|Ret |NmO, m|type
get |type,Nml |[Mth |Bk|Ret |[NmO, m|type

Table 5: AST representation of java method for code2seq training

Preprocessing CodeBERT | Neural- Code2Seq
CodeSum

removed comments | v’ v v

inside methods

removed tags for | v v v

comments and

methods

HTML cleaning v v v

Sub-tokenization v v

Lowercase v v v

removing special | v’ v v

characters

Table 6: Preprocessing
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