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Abstract. We study near-alternating links whose diagrams satisfy conditions general-
ized from the notion of semi-adequate links. We extend many of the results known for
adequate knots relating their colored Jones polynomials to the topology of essential sur-
faces and the hyperbolic volume of their complements: we show that the Strong Slope
Conjecture is true for near-alternating knots with spanning Jones surfaces, their colored
Jones polynomials admit stable coefficients, and the stable coefficients provide two-sided
bounds on the volume of the knot complement.
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2 C. LEE

1. Introduction

Since the discovery of the Jones polynomial and related quantum knot invariants, a cen-
tral problem in quantum topology has been to understand the connection between those
invariants and the geometry of the knot complement. An important example of these quan-
tum invariants is the colored Jones polynomial, which assigns a sequence {JK(v, n)}∞n=2 of
Laurent polynomials from the representation theory of Uq(sl2) to a link K ⊂ S3, and con-
tains the Jones polynomial as the first term of the sequence, see Definition 2.2. Conjectures
such as the Volume Conjecture [Kas97, MM01, MMO+02] and the Strong Slope Conjecture
[Gar11, KT15] predict that the colored Jones polynomial is closely related to the hyperbolic
geometry and topology of surfaces in the knot complement.

Much evidence for this relationship comes from the class of semi-adequate links. They are
a class of links satisfying a diagrammatic condition, see Definition 1.7. An adequate knot
satisfies the Strong Slope Conjecture, see Conjecture 1.5, and certain stable coefficients
of its colored Jones polynomial give volume bounds on the complement of an adequate
knot [DL07, FKP08, FKP11, FKP13]. For these results, a key ingredient is the existence
of essential spanning surfaces, see Definition 1.4, along which the complement may be
decomposed into simpler geometric components. Such surfaces have also been shown to
be fundamental to the characterization of alternating knots [Gre17, How17] and adequate
knots [Kal18].

In this paper, we are motivated by the question of when we can expect the Strong Slope
Conjecture to be realized by spanning surfaces from state surfaces of the knot diagram
beyond semi-adequate knots, and when we can expect the Coarse Volume Conjecture to be
satisfied outside the class of adequate links. Our answer to this question in this paper is the
introduction of the class of near-alternating links, to be defined below in Definition 1.1. For
a near-alternating knot, we find its Jones slopes, and show that there exist essential spanning
surfaces in its exterior realizing the Strong Slope Conjecture. For a near-alternating link,
we prove that the first, second, penultimate, and the last coefficient of its colored Jones
polynomial are stable. If the near-alternating link diagram is prime, twist-reduced, and
highly twisted with more than 7 crossings in each twist region, then the link is hyperbolic
by [FKP08], and we show that these stable coefficients provide coarse volume bounds for
the link exterior. These results closely mirror those for adequate links. However we show
that near-alternating knots are not adequate, thus they give a new class of links satisfying
the above conjectures.

We give the necessary definitions in order to state the main results below. We shall
always consider a knot or a link K ⊂ S3. The theorems and conjectures will be stated in
the fullest generality possible, where it will be indicated whether we are considering a knot
or a link. The indices i, j, k should be considered independently in each instance unless
explicitly stated otherwise.

1.1. Near-alternating link. Let G be a finite, weighted planar graph in S2. For each edge
e of G let ωe ∈ Z \ 0 be the weight. We may replace each vertex v of G with a disk D2 and
each edge e with a twisted band B consisting of |ωe| right-handed (positive) or left-handed
(negative) half twists if ωe > 0, or if ωe < 0, respectively. See Figure 1 for the definition
of right-handed and left-handed half twists in this paper. Note that this is opposite of
the convention where right-handed half twists are negative and left-handed half-twists are
positive, see for example [Con70]. We denote the resulting surface by FG and consider the



JONES SLOPES AND COARSE VOLUME OF NEAR-ALTERNATING KNOTS 3

link diagram D = ∂(FG). Every link diagram D may be represented as ∂(FG) for some
finite, weighted planar graph G.

A path in a weighted graph G with vertex set V and a weighted edge set E is a finite
sequence of distinct vertices v1, v2, . . . , vk such that (vi, vi+1) ∈ E for i = 1, 2, · · · , k − 1.
We define the length of a path W as

`(W ) := 2 +

k−1∑
i=1

(|ωi| − 2), (1)

where ωi is the weight of the edge (vi, vi+1) in W .
A graph G is said to be 2-connected if it does not have a vertex whose removal results in

a disconnected graph. Such a vertex is called a cut vertex.

Definition 1.1. Let D be a non-split link diagram D = ∂(FG), where G is a 2-connected,
finite, weighted planar graph without one-edged loops (an edge between the same vertex)
with a single negative edge e = (v, v′) of weight r < 0 and |r| ≥ 2. Let G \ e be the
graph obtained from G by deleting the edge e and let G/e be the graph obtained from G
by contracting G along e. We say that D is near-alternating if the graph G satisfies the
following conditions.

(1) Let ω be the minimum of `(W ) taken over all paths W in G \ e starting at v and
ending at v′, and let t be the total number of such paths. Then t > 2, and

ω

t
> |r|.

(2) The graph G \ e remains 2-connected, and the diagram De = ∂(FG\e) is prime and
twist-reduced (see [Lac04] for a pictorial definition); the diagram De = ∂(FG/e) is
adequate, see Definition 1.7.

Condition (2) is imposed to ensure that a near-alternating link is −-adequate to reduce
the technicalities in the conditions of the results. See Definition 1.7 for the definition of
+-or −-adequate links.

A link K is said to be near-alternating if it admits a near-alternating diagram. See Figure
1 for an example and the conventions for a negative or a positive twist region.

Example 1.2. A pretzel link P (t1, t2, . . . , tm) is near-alternating if m > 3, t1 ≤ −2 < 0 < ti
for all 1 < i ≤ m, and

min1<i≤m {ti}
m− 1

> |t1|.

Example 1.3.
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Figure 1. An example of a near-alternating link diagram D = ∂(FG) with
the graph G shown in blue and the negatively-weighted edge e = (v, v′). For
this example, we have ω

t = 9
4 > 2.

1.2. The Strong Slope Conjecture. Let D be a link diagram. A Kauffman state σ is a
choice of replacing every crossing of D by the +- or −-resolution as in Figure 2, with the
(dashed) segment recording the location of the crossing before the replacement.

+

−

Figure 2. The +-and −-resolution of a crossing and the corresponding segments.

Applying a Kauffman state results in a set of disjoint circles called state circles. We form
a σ-state graph sσ(D) for each Kauffman state σ by letting the resulting state circles be
vertices and the segments be edges. The all-+ state graph s+(D) comes from the Kauffman
state which chooses the +-resolution at every crossing of D. Similarly, the all-− state graph
s−(D) comes from the Kauffman state which chooses the −-resolution at every crossing of
D.

Let

hn(D) = −(n− 1)2c(D)− 2(n− 1)|s+(D)|+ ω(D)(n2 − 1), (2)

where c(D) is the number of crossings of D, and ω(D) = c+(D) − c−(D), the difference
between the number of positive crossings and the number of negative crossings of D, is the
writhe of D with an orientation. Lastly, |s+(D)| is the number of vertices in the all-+ state
graph. We can now state the main result of this paper.

Let d(n) be the minimum degree of JK(v, n), the nth colored Jones polynomial of K.

Theorem 1. Let K ⊂ S3 be a link admitting a near-alternating diagram D with a single
negative twist region of weight r < 0 and let hn(D) be defined by (2), then

d(n) = hn(D)− 2r(n2 − n). (3)
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This is the main result of the paper. The single negative twist region of the near-
alternating diagram is used to write a special state sum for the colored Jones polynomial,
that is particularly suited to finding the degree.

Now we consider the case when K is a knot. Note that the case for 3-tangle pretzel knots
with a near-alternating diagram was already studied in [LvdV16], and the degree of the
colored Jones polynomial was computed in [HTY00] for a family of pretzel knots which are
generally not near-alternating.

Theorem 1 implies the Strong Slope Conjecture for near-alternating knots which we now
describe. Let N(K) be a tubular neighborhood of K in S3. We will denote by S3 \K the
closure of S3 \N(K). An orientable, connected, and properly embedded surface S ⊂ S3 \K
is essential if it is incompressible, boundary-incompressible, and non boundary-parallel. If
S is non-orientable, then S is essential if its orientable double cover in S3 \K is essential.

Definition 1.4. Let S be an essential and orientable surface with non-empty boundary in
S3 \K. A fraction p

q ∈ Q∪{10} is a boundary slope of K if pµ+ qλ represents the homology

class of ∂S in H1(∂N(K)), where µ and λ are the canonical meridian and longitude basis
of H1(∂N(K)). The boundary slope of an essential non-orientable surface is that of its
orientable double cover.

Let d∗(n) be the maximum degree in v of JK(v, n). Garoufalidis showed in [Gar11] that
since the colored Jones polynomial is q-holonomic [GL05], the functions d(n) and d∗(n) are
quadratic quasi-polynomials viewed as functions from N → N. For a fixed knot K, this
means that there exist integers pK , CK ∈ N and rational numbers aj , bj , cj , a

∗
j , b
∗
j , c
∗
j for

each 0 ≤ j < pK , such that for all n > CK ,

d(n) = ajn
2 + bjn+ cj if n = j (mod pK),

and

d∗(n) = a∗jn
2 + b∗jn+ c∗j if n = j (mod pK).

We consider the sets jsK := {aj} and js∗K := {a∗j}. An element p
q ∈ jsK ∪ js

∗
k is called

a Jones slope. Similarly, define jxK := { bj2 } and jx∗K := { b
∗
j

2 }.
We may now state the Strong Slope Conjecture.

Conjecture 1.5. ([Gar11, KT15]) Let K be a knot. Given a Jones slope of K, say p
q ∈ jsK ,

with q > 0 and gcd(p, q) = 1, there is an essential surface S ⊂ S3 \K with |∂S| boundary
components such that each component of ∂S has slope p

q , and

− χ(S)

|∂S|q
∈ jxK .

Similarly, given p∗

q∗ ∈ js∗K with q∗ > 0 and gcd(p∗, q∗) = 1, there is an essential surface

S∗ ⊂ S3 \K with |∂S∗| boundary components such that each component of ∂S∗ has slope
p∗

q∗ , and

χ(S∗)

|∂S∗|q∗
∈ jx∗K .

An essential surface in S3 \ K satisfying the conditions described in the conjecture is
called a Jones surface.



6 C. LEE

Normalization convention. The difference in our convention from [Gar11, KT15] is that
in this paper the asterisk ∗ indicates the corresponding quantity from the maximum de-
gree d∗(n), rather than the minimum degree, indicated by d(n), of the nth colored Jones
polynomial JK(v, n). Also, we substitute v = 1

A , where A is the variable for the Kauff-
man bracket, for the colored Jones polynomial. See Definition 2.2 for our choice of the
normalization convention.

1.3. Known results. The Strong Slope Conjecture is currently known for alternating knots
[Gar11], adequate knots [FKP11, FKP13], which is a generalization of alternating knots,
see Definition 1.7, iterated (p, q)-cables of torus knots and iterated cables of adequate knots
[KT15], graph knots [MT17, BMT], and families of 3-tangle pretzel knots [LvdV16], as well
as families of 3-tangle Montesinos knots [LYL19]. It is also known for all knots with up to 9
crossings [Gar11, KT15, How], and an infinite family of arborescent non-Montesinos knots
[HD]. The Slope Conjecture is also known for 2-fusion knots [GvdV16].

A major difficulty in studying the Conjecture is determining the Jones slope of a knot.
Compared to the approaches of the previous results, the techniques developed in this paper
does not rely on specific structure of the graph G giving rise to D = ∂(FG). The choice of
a single negative twist region is made to simplify the exposition. With more work, it would
be possible to extend Theorem 1 to links with diagrams obtained from Murasugi sums of
an adequate diagram with a non-adequate torus link diagram, and highly twisted links with
more than one negative twist region satisfying additional graphical constraints.

Furthermore, preliminary evidence from pretzel links with an arbitrary number of tangles
suggests that the approach developed in this paper may also be used to determine Jones
slopes for links for which the conditions for being near-alternating do not hold. In other
words, if D = ∂(FG) is a link diagram where G is a 2-connected, finite, weighted planar
graph without one-edged loops with a single negative edge of weight r < 0, so that the
quantities ω and t still make sense, we expect that ω

t ≤ |r| implies that the Jones slope is
non-integral, or, it is not realized by a state surface. We explore this in an up-coming paper
on the Slope Conjecture for Montesinos knots [GLvdV].

Another difficulty in approaching Conjecture 1.5 is in finding surfaces with boundary
slopes equal to the Jones slopes and proving that they are essential. In the context of the
Conjecture, Theorem 1 says that jsK = {−2c−(D)− 2r} and jxK = {c(D)− |s+(D)|+ r}.
A surface realizing jsK and jxK from Theorem 1 is a state surface corresponding to a
Kauffman state. In this case, we are fortunate that the criteria for essential spanning
surfaces by the works of Ozawa [Oza11] and Ozawa and Rubinstein [OR12] readily apply
to show that it is a Jones surface.

Definition 1.6. Given a Kauffman state σ on a link diagram D, we may form the σ-state
surface, denoted by Sσ(D), by filling in the disjoint circles in sσ(D) with disks, and replacing
each segment recording the previous location of the crossing by a half-twisted band as shown
in Figure 3.

+ −

Figure 3.
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For a near-alternating knot K with ∂(FG) = a near-alternating diagram D of K for some
graph G, the surface FG is essential by [OR12, Theorem 2.15] and is given by the state
surface Sσ(D) where σ chooses the −-resolution on the |r| crossings corresponding to the
single edge with negative weight r in G, and the +-resolution everywhere else. This surface
is easily visualized from the knot diagram, see Figure 4 for an example.

Figure 4. The surface Sσ(D).

Let |s+(D)| be the number of disjoint circles in s+(D). We show that the boundary slope
and Euler characteristic of this surface match with jsK and jxK .

Theorem 2. Let K ⊂ S3 be a knot admitting a near-alternating diagram D = ∂(FG) with
a single negative twist region of weight r < 0. The surface FG is essential with 1 boundary
component with boundary slope −2c−(D)− 2r and

−χ(FG) = c(D)− |s+(D)|+ r.

To see the Jones surface S∗ ⊂ S3 \K with boundary slope p∗

q∗ matching js∗K and χ(S∗)
|∂S∗|q∗

matching jx∗K , we use the fact that a near-alternating link is −-adequate, see Lemma 4.3,
as defined below. The notation of adequacy is originally due to [LT88].

Definition 1.7. A link diagram D is +-adequate (resp. −-adequate) if its all-+ (resp.
all-−) state graph s+(D) (resp. s−(D)) has no one-edged loops. A link K is semi-adequate
(+-or −-adequate) if it admits a diagram that is +-or −-adequate. If a link K admits a
diagram that is both +-and −-adequate, then we say that K is adequate.

Note that alternating links form a subset of adequate links.
Let

h∗n(D) = (n− 1)2c(D) + 2(n− 1)|s−(D)|+ ω(D)(n2 − 1). (4)

It is well known that for any link diagram D, we have hn(D) ≤ d(n), d∗(n) ≤ h∗n(D) and
the first equality is achieved when D is +-adequate, while the second equality is achieved
when D is −-adequate. This follows from [LT88], [Lic97, Lemma 5.4], and [FKP11, FKP13].
Therefore, if K is +-adequate (resp. −-adequate) then there is a single Jones slope in jsK
(resp. in js∗K).

If D admits a +-(resp. −-)adequate diagram, then [Oza11] implies that the all-+ (resp.
all-−) state surface is essential. An all-+ or all-− state surface was shown by [FKP11,
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FKP13] to realize jsK , jxK , or js∗K , jx
∗
K , respectively. We show that a near-alternating

diagram is −-adequate in Lemma 4.3, so its all-− state surface realizes js∗K and jx∗K . Thus,
the surface FG and the all-− state surface of a near-alternating diagram verify the Strong
Slope Conjecture for these knots, see Corollary 4.4.

As for the question of whether a near-alternating knot can admit a +-adequate diagram,
we show, using the Kauffman polynomial, that a near-alternating knot cannot admit a
diagram that is both +-and −-adequate.

Theorem 3. A near-alternating knot does not admit an adequate diagram.

Theorem 3 does not rule out the possibility that a near-alternating knot admits a +-
adequate diagram that is not also −-adequate. However, it seems a very difficult problem
to determine whether a knot admits a +-adequate or −-adequate diagram, given a diagram
that is not +- or −-adequate, respectively. As far as the author knows, there is no charac-
terization of semi-adequacy that can be applied to decide if a near-alternating knot admits
a +-adequate diagram. It is an interesting question whether the colored Jones polynomial
can be used to develop such a characterization by obstructing the existence of a +-adequate
diagram for a near-alternating knot. The criterion from [Lee19] may be applied if there is
information restricting the number of positive crossings in a diagram. We will pursue this
question in a future project.

Relation to almost alternating links. A diagram of a link is almost alternating if one
crossing change makes the diagram alternating. If a link admits an almost alternating
diagram, then it is said to be almost alternating. Almost alternating links forms another
interesting class of links that have nice topological and geometric properties [ABB+92,
AL17, DL18, Ito18, LS17].

Directly applying the proof of [ABB+92, Theorem 3.1] shows that near-alternating links
form a sub-class of almost alternating links. This may be of independent interest.

Lemma 1.8. Every near-alternating link is almost alternating.

Proof. A near-alternating link admits a near-alternating diagram with a single negative
twist region. We isotope this diagram to be almost alternating as shown in the following
(local) picture.

wrap the strand below the diagram

'negative
twist

region

Figure 5. Local isotopy that turns a near-alternating diagram (left) into an
almost alternating diagram (right). The single crossing change to be made
in the resulting diagram to make it alternating is in the dashed circle on the
right. The two diagrams agree everywhere except for the portion shown.

�
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1.4. Stable coefficients and Coarse volume. Let αi,n be the coefficient of vd(n)+4i of

the reduced colored Jones polynomial ĴK(v, n) := JK(v, n)/J (v, n), where J (v, n) is the

nth colored Jones polynomial of the unknot, and let α′i,n be the coefficient of vd
∗(n)−4i, so

that α0,n, α1,n, α
′
1,n, α

′
0,n are the first, second, penultimate, and last coefficient of ĴK(v, n),

respectively.

Definition 1.9. Let i ≥ 0, the first ith coefficient (resp. last ith coefficient) of the reduced
colored Jones polynomial is stable if αi,j = αi,i+2 (resp. α′i,j = α′i,i+2) for all j ≥ i+ 2.

It is known that for an adequate knot, the first and last ith coefficients are stable for
all i ≥ 0 [Arm13]. The cases i = 0, 1, and 2 were first shown by [Sto04, DL06]. They also
gave explicit formulas for the stable coefficients from the all-+ and all-− state graphs of an
adequate diagram of a knot. These results were used to give a two-sided volume bound for
hyperbolic alternating knots [DL07]. Futer, Kalfagianni, and Purcell used these coefficients
to give two-sided bounds on the volume of a hyperbolic, adequate knot [FKP13]. These
results establish that for an adequate knot that is hyperbolic, the stable coefficients of the
colored Jones polynomial are coarsely related to the volume as defined below.

Definition 1.10. Let f, g : Z → R+ be functions from some (infinite) set Z to the non-
negative real numbers. We say that f and g are coarsely related if there exist universal
constants C1 ≥ 1 and C2 ≥ 0 such that

C−11 f(x)− C2 ≤ g(x) ≤ C1f(x) + C2 ∀x ∈ Z.

The Coarse Volume Conjecture [FKP13, Question 10.13] predicts the existence of a func-
tion B(K) of the coefficients of the colored Jones polynomial of a hyperbolic knot K, such
that B(K) is coarsely related to the hyperbolic volume vol(S3 \K). Here the infinite set Z
is taken to be the set of hyperbolic knots.

We show that a near-alternating knot has stable first, second, penultimate, and last
coefficients which are determined by state graphs of a near-alternating diagram. We give
a two-sided bound on the volume of a highly twisted, near-alternating knot based on these
coefficients.

Let G be a graph without one-edged loops, an edge e = (v, v′) is called multiple if there
is another edge e′ = (v, v′) in G. The reduced graph of G, denoted by G′, is obtained from
G by keeping the same vertices but replacing each set of multiple edges between a pair of
vertices v, v′ by a single edge. The first Betti number of a graph, denoted by χ1(G), is the
number v − e + k, where v is the number of vertices of G, e is the number of edges of G,
and k is the number of connected components of G.

Theorem 4. Let K be a link admitting a near-alternating diagram D = ∂(FG), where G is
a finite 2-connected, weighted planar graph with a single negatively-weighted edge of weight
r < 0. Then

(1) the first and second coefficient, α0,n, α1,n, respectively, of the reduced colored Jones

polynomial ĴK(v, n) of a near-alternating link K are stable. The last and penultimate
coefficient, α′0,n, α

′
1,n, respectively, are also stable.

(2) Write α = α0,n and β = α1,n, and write α′ = α′0,n and β′ = α′1,n for n > 3. We have

|α| = 1 and |β| = χ1(sσ(D)′), where σ is the Kauffman state giving the state surface
FG and χ1(sσ(D)′) is the first Betti number of the reduced graph of sσ(D). Similarly,
we have |α′| = 1 and |β′| = χ1(s−(D)′).
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Furthermore, if the diagram D is also prime and twist-reduced with more than 7 crossings
in each twist region, then K is hyperbolic, and

.35367(|β|+ |β′| − 1) < vol(S3 \K) < 30v3(|β|+ |β′| − 2).

Here v3 ≈ 1.0149 is the volume of a regular ideal tetrahedron. In other words, there is a
function on the stable coefficients of K which is coarsely related to the volume of S3 \K.

The second stable coefficient β is given in terms of the Euler characteristic of the state
surface FG = Sσ(D) in a formula similar to those given in [DL06, DL07] for adequate
knots. Numerical experiments suggest that more coefficients of the reduced colored Jones
polynomial should be stable. However, we do not pursue this question in this paper. For the
two-sided bound on volume, we use estimates based on the twist number of a knot diagram
developed in [FKP08] using the works of Adams, Agol, Lackenby, and Thurston. For other
examples of volume estimates based on link diagrams, see [BMPW15] and [Gia15, Gia16].

Organization. In Section 2, we give a definition of the colored Jones polynomial in terms
of skein theory and summarize elementary results needed for Theorem 1, which is proven
in Section 3 by way of Theorem 5. In Section 4, we prove Theorem 2 by computing the
boundary slope and the Euler characteristic of the surface FG. We show Theorem 3, which
says that a near-alternating knot is not adequate in Section 5. Finally, we compute stable
coefficients and give a coarse volume bound to prove Theorem 4 in Section 6.

Acknowledgements. This is a side project that grew out of a project with Roland van
der Veen. I would like to thank him for our conversations which made this spin-off possible.
I would like to thank Cameron Gordon for suggesting the name “near-alternating.” I would
also like to thank Efstratia Kalfagianni, Stavros Garoufalidis, and Oliver Dasbach for their
comments and encouragement on this work, and for their hospitality during my visits.
Lastly, I would like to thank Mustafa Hajij for interesting discussions on stability properties
of the colored Jones polynomial, Adam Lowrance for pointing out that near-alternating
knots are almost alternating, and Joshua Howie for interesting conversations on the Slope
Conjecture. I would also like to acknowledge the support by NSF grant DMS-1502860.

2. Graphical skein theory

We follow the approach of [Lic97] in defining the Temperley-Lieb algebra. The original
source of the formulas is [MV94]. Let F be an orientable surface (with or without boundary)
which has a finite (possibly empty) collection of points specified on ∂F . A link diagram on
F consists of finitely many arcs and closed curves on F such that

• There are finitely many transverse crossings with an over-strand and an under-
strand.
• The endpoints of the arcs form a subset of the specified points on ∂F .

Two link diagrams on F are isotopic if they differ by a homeomorphism of F isotopic to
the identity. The isotopy is required to fix ∂F .

Definition 2.1. Let A be a fixed complex number. The linear skein module S(F ) of F
is the vector space of formal linear sums over C of isotopy classes of link diagrams in F
quotiented by the relations

(i) D t = (−A2 −A−2)D, and

(ii) = A−1 +A .
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We consider the linear skein module S(D2, n) of the disc D2, visualized as a square, with
n points specified on its top and bottom boundary. For D1, D2 ∈ S(D2, n), there is a natural
multiplication operation D1 · D2 defined by identifying the top boundary of D1 with the
bottom boundary of D2. This makes S(D2, n) into an algebra TLn, called the Temperley-
Lieb algebra. The algebra TLn is generated by crossing-less matchings 1n, e

1
n, . . . , e

n−1
n of

2n points of the form shown in Figure 6.

i i+ 1

1n ein

Figure 6. An example of the identity element 1n and a generator ein of TLn
for n = 6 and i = 2.

Suppose that A4 is not a kth root of unity for k ≤ n. There is an element n in TLn
called the Jones-Wenzl idempotent, which is uniquely defined by the following properties.
For the original reference where the idempotent was defined and studied, see [Wen87].

(i) n · e
i
n = ein · n = 0 for 1 ≤ i ≤ n− 1.

(ii) n − 1n belongs to the algebra generated by {e1n, e2n, . . . , en−1n }.
(iii) n · n = n,
(iv) Let S(R) be the linear skein of the plane. The image of n in S(R) obtained by

joining the n boundary points on the top with the those at the bottom is equal to

4n = (−1)n[n] · the empty diagram on R,

where [n] is the quantum integer defined by

[n] :=
A2(n+1) −A−2(n+1)

A2 −A−2
.

From the defining properties, the Jones-Wenzl idempotent also satisfies a recursion rela-
tion and two other identities as indicated in Figures 7 and 8.

=
[n− 1]

[n]
n

1
n+ 1 1n

n− 1

n 1

+

(5)

Figure 7. A recursive relation for the Jones-Wenzl projector.

Definition 2.2. Let D be a diagram of a link K ⊂ S3 with k components. For each
component Di for i ∈ {1, . . . , k} of D take an annulus Ai via the blackboard framing. Let

fD : S(S1 × I)× · · · × S(S1 × I)︸ ︷︷ ︸
k times

→ S(R2),
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i

i
j

i+ j i+ j (6)

Figure 8. The larger projector absorbs the smaller one.

be the map which sends a k-tuple of elements (s1, . . . , sk) to S(R2) by immersing the
collection of annuli containing the skeins in the plane such that the over- and under-crossings
of D are the over- and under-crossings of the annuli.

The Kauffman bracket 〈S〉 of a skein element S in S(R2) is the polynomial multiplying
the empty diagram after reducing by the skein relation of Definition 2.1. The nth unreduced
colored Jones polynomial JK(v, n) may be defined as

JK(v, n) := ((−1)n−1vn
2−1)ω(D)

〈
fD

(
, , · · · ,

)
︸ ︷︷ ︸

k times

〉
|A=v−1 .

Note that this gives J (v, n + 1) = (−1)n v
−2(n+1)−v2(n+1)

v−2−v2 as the normalization for the
colored Jones polynomial of the unknot.

We will denote the skein

fD

(
, , · · · ,

)
by Dn−1 from now on.

Let

=

a b

c

x

yz

a b

c
,

with x = a+b−c
2 , z = a+c−b

2 , and y = b+c−a
2 .

We will use the identities indicated in Figure 9 to simplify 〈Dn 〉.

Definition 2.3. A triple of non-negative integers a, b, c is called admissible if a, b, and c
are even and |a− b| ≤ c ≤ a+ b.



JONES SLOPES AND COARSE VOLUME OF NEAR-ALTERNATING KNOTS 13

=

∑
c : a,b,c

admissible

a b a b

c

a b

4c

θ(a,b,c)

a b

c

a b

c

= (−1)
a+b−c

2 Aa+b−c+
a2+b2−c2

2and

.
(7)

Figure 9. The fusion and untwisting formulas.

For admissible a, b, c, let θ(a, b, c) be the Kauffman bracket of the skein shown in Figure
10.

a b c

Figure 10.

Lemma 2.4. [Lic97, Lemma 14.5]. Let 4n! := 41 · 42 · · · ·4n and 40! = 1. Also let
x = a+b−c

2 , z = a+c−b
2 , and y = b+c−a

2 , then θ(a, b, c) is given explicitly by the following
formula.

θ(a, b, c) =
4x+y+z!4x−1!4y−1!4z−1!

4y+z−1!4z+x−1!4x+y−1!
. (8)

Let f be a rational function of A, and let deg f be the maximum degree of a Laurent
series expansion of f where the maximum power of A is bounded. For convenience, we will
list the degrees of 4c and θ(a, b, c) here. They are obtained by examining the formulas.

deg4c = 2c, and

deg θ(a, b, c) = a+ b+ c. (9)

We will be using the following lemma from [Arm13].

Definition 2.5. Let S be a crossing-less skein in S(R) decorated by Jones-Wenzl idempo-
tents n, and consider the skein S obtained from S by replacing each of the idempotents

by the identity 1n, so S consists of disjoint circles. The skein S is called adequate if no
circle in S passes through any of the regions previously decorated by an idempotent more
than once.

Lemma 2.6 ([Arm13, Lemma 4]). Let S ∈ S(R2) be a skein decorated by Jones-Wenzl
idempotents n, and S be the skein obtained by replacing each Jones-Wenzl idempotent by
the identity element 1n, then

deg〈S〉 ≤ deg〈S〉.
If S is a crossing-less skein that is adequate, then

deg〈S〉 = deg〈S〉.

We also use an additional identity from [MV94].



14 C. LEE

Lemma 2.7 ([MV94, Lemma 4]). For y ≥ 1,

x

y

z

1

x

y − 1

z

= − [x+y+z][y−1]
[x+y−1][z+y−1]

(10)

The slight difference with [MV94] in the coefficient multiplying the right-hand side is
due to our slightly different convention for the quantum integer. Their [n] is [n− 1] in this
paper.

3. Jones slopes

We prove Theorem 1 in this Section. Let Hn(D) = −hn+1(D) + ω(D)(n2 + 2n). We will
only deal with the Kauffman bracket from now on with the variable A. Theorem 1 then
follows from the following theorem.

Theorem 5. If D is a near-alternating link diagram with a single negative twist region of
weight r < 0, then

deg〈Dn 〉 = Hn(D) + 2r(n2 + n). (11)

3.1. Overview. Our main strategy is to find a suitable state sum for 〈Dn 〉 which has a

degree-dominating term. If D is near-alternating, we may simplify the sum and disregard
many of the terms whose skeins evaluate to zero. This is done in Section 3.2. In Section 3.3,
we highlight the term in the state sum which will be shown to be degree-dominating. The
most laborious step of the proof comes from bounding the degree of a term coming from
another state σ. We do this in Section 3.4, where we characterize the crossings on which σ
chooses the −-resolution by Lemma 3.7. The reason why this gives a bound on the degree
is given by Lemma 3.4. This leads to the important corollary, Lemma 3.10, which we can
apply to the case where D is a near-alternating diagram to bound the degree of the term in
the state sum corresponding to σ. Finally in Section 3.5 we put the estimates together to
finish the proof of Theorem 5. Upon first reading the reader may skip the proof of Lemma
3.7 to get a sense of how it is applied.

3.2. Simplifying the state sum. Let D be a near-alternating link diagram, which means
that it has a single negative twist region of weight r < 0. We fix n. Given the skein
Dn , slide the idempotents along the link strands and make copies until there are four

idempotents framing the negative twist region. See Figure 11 below.
By the fusion and untwisting formulas (7), we may fuse the two strands of the negative

twist region and get rid of the crossings. This results in a sum over the fusion parameter a
such that the triple a, n, n is admissible. For a fixed a consider a Kauffman state σ on the
set of remaining crossings. Applying σ results in a skein Saσ that is the disjoint union of a
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r r

 

Figure 11. Framing the negative twist region with r = −3.

connected component Jaσ decorated by Jones-Wenzl idempotents with circles as shown in
Figure 12. Let

sgn(σ) = # of crossings on which σ chooses the +-resolution

−# of crossings on which σ chooses the −-resolution.

We have

〈Dn 〉 =
∑

σ, a : a, n, n admissible

4a

θ(n, n, a)
((−1)n−

a
2A2n−a+n2−a2

2 )rAsgn(σ)〈Saσ〉. (12)

To simplify notation let d(a, r) = r(2n− a+ n2 − a2

2 ), and we write

〈Dn 〉 =
∑

σ, a : a, n, n admissible

4a

θ(n, n, a)
(−1)rn−r

a
2Ad(a,r)+sgn(σ)〈Jaσ t disjoint circles〉.

(13)

After isotopy, we may assume that Jaσ has the form shown in Figure 12, since other states
evaluate to 0 by the Kauffman bracket with a cup/cap composed with an idempotent.

ac c

Figure 12. Let 0 ≤ c ≤ n, the skein Jaσ , which is the connected component
decorated by the Jones-Wenzl idempotents is shown, where σ has 2c split
strands. The rest are disjoint circles.

Definition 3.1. We say that the Kauffman state σ has 2c split strands, if after isotoping
the connected component Jaσ in Saσ to the form in Figure 12, there are 2c split strands
connecting the top and bottom pairs of Jones-Wenzl idempotents.

To further reduce the number of terms to consider in the sum of (13), we prove the
following lemma.
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Lemma 3.2. Consider a skein S with the following local picture.

n− c

x

c c

yz

a

The skein is zero if a
2 − c > 0.

Proof. Note that y = z = n − x. If a
2 − c > 0, then n − c − x > 0, and the skein S is not

adequate since we have a circle passing through the same idempotent twice, see Figure 13
for an example of the circle.

n− c− x

x

c c

yy

a

x

Figure 13. The circle passing through the same idempotent twice is shown
in blue.

Now if x is zero, we can slide the top two idempotents down to the bottom one by (6)
and get a cap composed with a idempotent which gives 0 for the skein. When x 6= 0, we
show by induction on x that every term in the sum of the skein from repeatedly expanding
the idempotent via (5) has a cap composed with an idempotent after sliding by (6). Thus,
every term in the sum is zero and 〈S〉 is zero. Suppose x = 1, there are two idempotents
and therefore four terms in the sum from expanding via (5), see Figure 14. This takes care
of the base case: For any n, c such that n− c− 1 > 0, we have that 〈S〉 = 0.

n− c− 1

c1

a

n− c− 1

c1

a

n− c− 1

c1

a

n− c− 1

c
1

a

1

n− 1

n− 1

n− 1 n− 1

n− 2

c

n− 1

n− 2

c c

n− 1 n− 1

n− 2

n− 1

n− 2

c

Figure 14. The 4 terms in the expansion of S via the recursion relation (5)
when x = 1.
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Now suppose that x = k + 1 and we have that every term in the expansion of S with
n− c− x > 0 evaluates to 0 by the induction hypothesis for x = k. We expand the pair of
idempotents to get the panel of four figures in Figure 15.

n− c− x

c

a

n− c− x

c

1

a

n− c− x

c

1

a

x− 1 x− 1 x− 1

1

n− c− x

c
1

a

1

x− 1

x− 1 x− 1

n− x
n− x

n− 2

x− 1

n− 2

n− x

c c c

n− x n− x

n− 2 n− 2

c

n− xn− xn− x

Figure 15. If x = k+ 1, expand and then apply the induction hypothesis
to the first 3 figures.

The first three figures clearly reduce to that of the case x = k and n−1− c− (x−1) > 0.
We simplify the last figure by applying Lemma 2.7. This is shown in Figure 16.

= − [2n−x−1][x−2]
[n−2]2

n− x n− x

n− c− x

c
1

a

1

x− 1 n− x

n− c− x

c

a

x− 2 n− x

1
c c

n− 2 n− 2 n− 2 n− 2

Figure 16.

If x− 2 = 0, then we are done. Otherwise, we again expand the top pair of idempotents
to get another panel of 4 figures as shown in Figure 17.
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n− c− x

c

a

x− 2n− x

x− 2

n− c− x

n− x

c

a

x− 2

x− 2

1

n− c− x

n− x

c

a

x− 2

x− 2

1

n− c− x

c

a

x− 2n− x

x− 2

1

1

1 n− 2n− 2

n− x

c

n− 3

n− 2n− 2

n− x

n− 3

n− x

n− 2 n− 2

c c c

n− 3 n− 3

n− x

Figure 17.

The first three cases reduce to the case x = k − 1 with n− 2− c− (x− 2) > 0. For the
last one we repeat the step of Figure 16 using Lemma 2.7 to keep reducing x until it is 0.
Repeat with the step of expanding the top pair of idempotents as in Figure 17 and the step
of Figure 16 as needed. �

By Lemma 3.2, we have that (13) becomes

〈Dn 〉 =
∑

σ, a : a, n, n, admissible

4a

θ(n, n, a)
(−1)rn−r

a
2Ad(a,r)+sgn(σ)〈Jaσ t disjoint circles〉

(14)

=
∑

σ, a : a, n, n, admissible, a
2
≤c

4a

θ(n, n, a)
(−1)rn−r

a
2Ad(a,r)+sgn(σ)〈Jaσ t disjoint circles〉.

(15)

Now let

deg(σ, a) := deg

(
4a

θ(n, n, a)
(−1)rn−r

a
2Ad(a,r)+sgn(σ)〈Jaσ t disjoint circles〉

)
.

3.3. The degree-dominating term in the state sum. Consider the state σ+ which
chooses the +-resolution at all the crossings that remain in Dn after getting rid of the

negative twist region of weight r < 0 using the fusion and the untwisting formulas. We
have that Saσ+ has 0 split strands and thus 〈Jaσ+〉 = 0 for all values of a except a = 0. A
simple computation using Lemma 2.6 shows

deg(σ+, 0) = Hn(D) + 2r(n2 + n). (16)

The strategy to prove Theorem 5 is then to show that

deg(σ, a) < deg(σ+, 0) (17)

for any other Kauffman state σ and a contributing to the state sum.
Given a and σ with 2c split strands such that a

2 ≤ c, the skein Jaσ is adequate, and thus
by Lemma 2.6 and (9),

deg(σ, a) = a− 2n+ d(a, r) + sgn(σ) + deg〈Saσ〉, (18)
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where Saσ is the skein obtained from Saσ by replacing all the idempotents with the identity.

From this we can see that if a
2 < c then Saσ has fewer circles than S2cσ , thus

deg(σ, a) < deg(σ, 2c),

and we may assume that a
2 = c, see Figure 18.

a cc

n− c

a
2

a
2

c− a
2

n− c

n− c

a
2

a
2

a
2 c− a

2

n− c
Jaσ , where a

2 ≤ c Jaσ

a
2

Figure 18.

In order to compare deg(σ, 2c) with deg(σ+, 0), we use the concept of a sequence of states.

3.4. Crossings on which a state σ 6= σ+ chooses the −-resolution. In this section
we characterize the set of crossings on which a state σ 6= σ+ with 2c > 0 split strands
chooses the −-resolution. We describe this by studying sequences of states from σ+ to σ.
The terminology of a sequence of states appears in [Lic97].

Definition 3.3. A sequence s of states starting at σ1 and ending at σf on a set of crossings
in a skein S ∈ S(R) is a finite sequence of Kauffman states σ1, . . . , σf , where σi and σi+1

differ on the choice of the +-or −-resolution at only one crossing x, so that σi chooses the
+-resolution and σi+1 chooses the −-resolution at x.

Let s = {σ1, . . . , σf} be a sequence of states starting at σ1 and ending at σf . Choosing

the −-resolution at a crossing corresponds to locally replacing by in the state

graph. In each application from σi to σi+1 either two circles of Sσi merge into one or a
circle of Sσi splits into two. When two circles merge into one as the result of changing the
+-resolution to the −-resolution, the number of circles of the skein decreases by 1 while the
sign of the state decreases by 2. More precisely, let Sσ be the skein resulting from applying
the Kauffman state σ, we have

sgn(σi+1) + deg〈Sσi+1〉 = sgn(σi) + deg〈Sσi〉 − 4,

when a pair of circles merges from σi to σi+1.
When a pair of circle is split from σi to σi+1 in the sequence, we get instead

sgn(σi+1) + deg〈Sσi+1〉 = sgn(σi) + deg〈Sσi〉.
The above reasoning gives the following lemma which allows us to bound the degree

sgn(σf ) + deg〈Sσf 〉 from applying a Kauffman state σf to the crossings of a skein S, by
considering the number of pairs of circles that are merged in a sequence of states from
σ1 = σ+ to σf .
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Lemma 3.4. Let S be a skein with crossings and s = {σ1, . . . , σf} be a sequence of Kauff-
man states on the crossings of S. If g is the number of pairs (σi, σi+1) in s such that σi+1

merges a pair of circles in σi, then

sgn(σf ) + deg〈Sσf 〉 = sgn(σ1) + deg〈Sσ1〉 − 4g. (19)

We use this to obtain an upper bound of deg(σ, 2c) by considering a sequence starting at
σ+ and ending at σ. We use the technical concept of the flow of a Kauffman state through
a set of crossings.

Definition 3.5. Let x be a crossing and xn be the n-cable. Represent xn so that it is a
skein in S(D2, 2n) and oriented as in the first figure of Figure 19. Consider a Kauffman
state σ on xn, and denote the skein resulting from applying σ to xn by xnσ. We say that σ
has 2k strands flowing through the crossing x if xnσ has 2k arcs connecting 2k points on the
top and the bottom. See Figure 19 for an example.

Note that since 2n is even, there is always an even number of through strands.

All-+ σ

n = 3 n = 3

xn

Figure 19. Left: The 3-cabled crossing x3. Middle: the all-+ state has
0 strands flowing through x. Right: a Kauffman state σ here has 2 strands
flowing through x.

Remark 3.6. This is not a new concept. Works involving the Temperley-Lieb algebra
have defined for an arbitrary crossing-less element of TLm,n (the algebra of skeins in a disk
with m points on top and n points on the bottom) the quantity which counts the number
of strands that connect k points from the top to k points on the bottom and called this
quantity different names. For example, see [Hog19] where the quantity is called the through-
degree, and [Roz14], where the quantity is called the width-deficit. As far as the author is
aware there does not seem to be standard terminology for this quantity. The focus in this
paper with Definition 3.5 is on the skeins from Kauffman states on a set of n2 crossings,
cabled from a single crossing.

Notation and convention for graphical representation. The following technical lemma,
Lemma 3.7, allows us to understand a sequence s from σ+ to σ, if σ flows through a crossing
with a certain number of strands. We essentially characterize the set of crossings on which
σ chooses the −-resolution. It is necessary to first establish some notations and labeling
conventions.

Firstly, we orient the disk D2 with 2n points on the top and bottom containing an n-cabled
crossing xn as shown in Figure 20 and identify it with [−1, 1]×[−1, 1]. Let U1, . . . , Un be the
set of arcs between the 2n points in the top half of the disk, innermost first, from applying
the all-+ state on the set of crossings xn. Similarly we have the lower arcs L1, . . . , Ln.
The arcs cut up the disk into regions containing segments, which correspond to crossings in
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xn before taking the all-+ resolution. Let Cui be the set of crossings whose corresponding
segments in the all-+ state are between Ui and Ui+1. Similarly, we have C`i , and the set of
crossings corresponding to edges between Un and Ln is denoted by Cun = C`n. See Figure
20 for an illustration of these markings.

n n

xn

U3

L3

U1

L1

Cu3 = C`3

C
u

2

C
`

1

C
u

1

C
`

2

n n

Left Right

Figure 20. We indicate the division of the crossings into subsets delim-
inted by the regions and the orientation on the square.

We will represent a Kauffman state σ on xn, xnσ, by taking the all-+ state of xn. Recall
that this consists of the all-+ state circles and edges (dashed segments) corresponding to
taking the +-resolution at every crossing. We make the following modification in order to
represent an arbitrary Kauffman state σ on xn:

(1) If σ chooses the −-resolution at a crossing, replace the corresponding segment in
the all-+ state by a solid red edge.

(2) Remove all other edges from the state.

↔

Figure 21. The correspondence of a red edge with a Kauffman state
choosing the −-resolution at a crossing corresponding to the red edge.

This representation will allow us to consider intersections of arcs in the disk D2 with xnσ.
In particular, in this graphical representation of the Kauffman state σ consisting of black
arcs and red edges, intersection of an arc with a black arc counts as one intersection with
the skein, and an intersection of an arc with a red edge counts as two.

With the orientation on the disk D2 shown as a square, it should be clear what we mean
by an edge being on the left/right of another edge. This also explains what it means for a
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The graphical representation of σ The actual skein xnσ

Figure 22. The picture shows an example of how one can recover the skein
resulting from the application of a Kauffman state σ from a representation
of black arcs and red edges. Note how the intersection of the blue arc with
the red edge counts as two intersections of the blue arc with the skein xnσ.

crossing in xn to be on the left/right of another crossing. We will frequently not distinguish
between a crossing and its corresponding edge in the all-+ state whenever we are merely
concerned with their relative positions.

Lemma 3.7. Let S be a skein with crossings, but without Jones-Wenzl idempotents, σ be a
Kauffman state on S, and let xn be an n-cabled crossing contained in S, with xnσ the result
of applying σ to the crossings in xn.

(a) If σ has 2k strands flowing through x, then σ chooses the −-resolution on a set of k2

crossings Cσ of xn, where Cσ = ∪ni=n−k+1(ui ∪ `i) is a union of crossings ui ⊆ Cui and

`i ⊆ C`i , such that
• ui, `i each has k − n+ i crossings for n− k + 1 ≤ i ≤ n.
• For each n − k + 2 ≤ i ≤ n, and a pair of crossings c, c′ in ui (resp. `i) whose

corresponding red edges in the all-+ state of xn are adjacent, there is a crossing c′′

in ui−1 (resp. `i−1), where the end of the red edge corresponding to c′′ on Ui (resp.
Li) lies between the ends of c and c′.

(b) Consider a sequence s = {σ+, . . . , σf = σ} of Kauffman states on the crossings of S and
let xn be a set of n-cabled crossings in S. Let σ+ be the Kauffman state which chooses
the +-resolution at every crossing in xn, but agrees with σ on all other crossings of S.
Suppose that in Sσ+, the n arcs joining the top 2n points belong to n circles disjoint
from the n arcs joining the bottom 2n points, which also belong to n disjoint circles.
Let σ flow through x with 2k through strands. Then sequence s contains a subsequence
σ+, . . . , σ

′
f with length k2 such that Sσ′f has n fewer circles than Sσ+.

As an example, if n = 3 and σ flows through a crossing x with 4 strands, then σ chooses
the −-resolution on a subset of crossings of xn of the form as shown in Figure 23. There
may be other crossings on which σ chooses the −-resolution, but the claim is that there
must be a subset of crossings on which σ chooses the −-resolution of the form as described
in Lemma 3.7.

In Cσ = ∪32(ui ∪ `i), we have that u3 = `3 contains 2 crossings and u2, `2 each contains 1
crossing. The red edge in the all-+ state of xn corresponding to the crossing in u2 has an
end on U3 between the ends of the red edges corresponding to the two crossings in u3. The
same is true of the edge corresponding to the crossing in `2. The total number of crossings
in Cσ is then = 4 = 22, which makes the total number of crossings of xn on which σ chooses
the −-resolution to be ≥ 4.
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n = 3

xn

n = 3 n = 3

xn

n = 3n = 3

xnσ

Figure 23. A subset of crossings on which σ chooses the −-resolution
satisfying the conditions of Lemma 3.7 is marked red in the second figure
from the left.

Proof of (a). For a Kauffman state σ which has 2k strands flowing through a crossing x,
we first show that there are k2 crossings on which σ chooses the −-resolution. If we draw
a line from the left end of the square to the right end, it must have ≥ 2k intersections with
the curves of the skein resulting from applying the state. Isotope link strands so that the
set of crossings C`i for 1 ≤ i < n is between the horizontal lines at height h = −n−i

n and

h = −n−i+1
n (Recall that we identify the disk containing xn with [−1, 1]×[−1, 1]). Similarly,

isotope link strands so that the set of crossings Cui for 1 ≤ i < n is between the horizontal
lines at height h = n−i

n and h = n−i+1
n . Now we isotope the crossings of Cun = C`n so that

it is between h = − 1
n and h = 1

n , see Figure 24.

Beginning with the set of crossings Cun = C`n, we see that σ must choose the −-resolution
on k crossings, since the horizontal line H at h = 0 must intersect the resulting skein at least
2k times. Now isotope H so that it enters and exits the region containing the crossings
in Cun−1. Then for Cun−1, σ must choose the −-resolution on a set of k − 1 crossings in
1
n < h < 2

n , since a pair of vertical lines provides 2 intersections with H between the
two heights bounding the set of crossings in Cun−1. We repeat this argument for Cui for
n − k + 1 ≤ i ≤ n − 1, isotoping H to enter and exit the region bounding crossings of Cui
each time and noting that H would already have 2(n− i) intersections with the strands of
the skein. Then for each i, σ must choose the −-resolution on k − (n− i) crossings in Cui .

h = 1
n

h = − 1
n

h = 2
n

H

h = 1
n

h = − 1
n

h = 2
n

H

Figure 24. The horizontal regions containing the crossings, the horizontal
line H (in blue) and the isotopies are shown for Cun and Cun−1.

The same argument works by symmetry when we consider lines intersecting the lower
crossings C`i . Taking the sum over n − k + 1 ≤ i ≤ n, the total number of these crossings
on which σ has to choose the −-resolution is

k + 2
k−1∑
i=1

i = k2.
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For the second part of (a) which specifies the structure of Cσ, we first prove that we
can find a set of crossings C ′σ of xn on which σ chooses the −-resolution, where C ′σ =
∪ni=n−k+1(u

′
i ∪ `′i) is a union of crossings u′i ⊆ Cui and `′i ⊆ C`i , such that

* u′i, `
′
i each has two crossings for n−k+1 < i < n, and one crossing for i = n−k+1.

When i = n and k = 1, then u′n = `′n has one crossing. Otherwise, u′n = `′n and it
has two crossings.

* The two crossings in u′n = `′n are furtherest possible in the sense that the two
segments corresponding to the crossings in the all-+ state are furtherest possible.
i.e., every segment corresponding to a crossing in Cun = C`n on which σ chooses the
−-resolution lies between.

* For each n − k + 1 ≤ i < n, the end(s) of the segment(s) corresponding to the
crossing(s) in u′i (resp. `′i) on Ui+1 (resp. Li+1) lie(s) between the two segments
corresponding to the crossings in u′i+1 (resp. `′i+1). If there are two crossings in u′i
(resp. `′i), then they are the furtherest possible satisfying this condition.

See Figure 25 for an illustration of these requirements.

Figure 25. The red edges correspond to the crossings in C ′σ.

Proof. For i = n, we know that a horizontal line H in D has to intersect with xnσ in
at least 2k points. Therefore, the number of crossings in Cun = C`n on which σ chooses
the −-resolution is at least k, and we may take the two furtherest crossings for the set
u′n = `′n. (There is nothing to prove if k = 1, because then we can just take one crossing
for u′n = `′n and we have the set C ′σ, which will also satisfy the conditions for Cσ.) For
i = n− 1, n− 2, . . . n− k+ 1, if there are not two crossings in Cui for which the ends of the
corresponding segments on Ui+1 lie between the segments from the crossings of u′i+1, then
we can isotope H such that it has fewer than 2k intersections with the skein xnσ, see Figure
26 below.
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C u
i+
1

C u
i

H

Figure 26. The red segments correspond to the crossings in C ′σ. If all
the red edges in Cui lie outside of the two red segments in Cui+1, then we
can draw the blue arc as shown to have only two intersections with xnσ while
entering and exiting the region between Ui and Ui+1 containing Cui .

We argue by assuming that u′i+1 is already inductively constructed, and we would like
to pick a set of crossings in Cni to construct u′i. Assuming that there are no crossings in
Cui on which σ chooses the −-resolution, and whose corresponding segments lie between
those of the crossings in u′i+1, Figure 26 shows an isotopy that will result in fewer than 2k
intersections between H and xnσ. For i ≥ n−k+2, there has to be at least 4 intersections of
H with xnσ in the region between Ui and Ui+1, since H will have at most 2(n−i) intersections
before entering/exiting. This gives at least two crossings in Cui on which σ chooses the −-
resolution whose corresponding segments are between those of u′i+1 . If i = n− k + 1 then
we require at least two intersections, hence the single crossing that we can pick for u′n−k+1.
The argument for constructing `′i is completely symmetric.

�

To complete the rest of the proof of (a), we add crossings to C ′σ inductively to get a
set Cσ which satisfies the remaining requirements. Let |u′i| and |`′i| denote the number of
crossings in u′i and `′i, respectively. Let u′i (resp. `′i) be such that |u′i| ≥ 2 (resp. |`′i| ≥ 2).
Dividing the disc in half with a vertical line 0 × h, we label the crossings in u′i (resp. `′i)to
the left of the vertical line by − and the crossings to the right of the vertical line by +,
so −x denotes a left crossing and −u′i (resp. −`′i) denotes the entire set of crossings in u′i
(resp. `′i) to the left of the vertical line.

Algorithm for constructing Cσ. We start with the constructed set C ′σ that satisfies the
three conditions marked by *.

(1) Consider the difference k−|u′n|, if this difference is 0 then terminate. C ′σ is already a
set of edges which satisfies the assumptions of part (a) of the lemma. Set Cσ = C ′σ.

(2) Otherwise, for i = n, n − 1 . . ., n − k + 1, set C = k − n + i − |u′i|. We assume
inductively that C ′σ satisfies the following for n− k + 1 ≤ i ≤ n:

(i) An edge in −u′i with two edges above and below to the left of it, is the leftmost
possible for all edges to the right of the two edges. Similarly, An edge in +u′i
with two edges above and below to the right of it, is the rightmost possible for
all edges to the left of the two edges. We assume the same with u′i replaced by
`′i.
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(ii) Let ±p be the midpoint of an edge whose corresponding crossing, say ±x, is in
±u′i , then there are two arcs H±, where H− starts at (-1, 0) and ends at −p,
and H+ starts at p and ends at (1, 0), such that the numbers of intersections
of H+ and H− with xnσ are given by (not counting the intersections with −p
and p):

If x ∈ −u′i, |H− ∩ xσ| = 2
(
# of crossings to the left of −x in u′i

)
+ (n− i). (20)

If x ∈ +u′i, |H+ ∩ xσ| = 2
(
# of crossings to the right of +x in u′i

)
+ (n− i). (21)

That these assumptions are valid through every iteration of i follows from Lemma
3.8. Before we prove the lemma, we proceed with the algorithm with those assump-
tions.

If C = 1: Let −x be the rightmost edge in −u′i. There is an edge x′ in C ′σ above in u′i−1
and another edge x′′ below it in u′i+1, both to the right of −x. There are only a
few possibilities for the edges in Cui on which σ chooses the −-resolution (shown
in red) to the right of −x, whose ends on Ui and Ui+1 are not to the right of
both x′ and x′′, respectively. They are shown as slanted dashed edges in Figure
27.

or−x

x′

x′′

−x

x′

x′′

Cui Cui

Figure 27. The thickened dashed edges indicate possible multiple edges.

Let −p be the midpoint of −x and −p′ be a point between U i and U i+1 im-
mediately to the right of both x′ and x′′ and to the left of any crossings in Cui
on which σ chooses the −-resolution to the right of both x′ and x′′. Either we
can draw an arc from the left of −p to −p′ that only has 2 intersections with
xnσ, see Figure 28, or, there are two choices for the existence of a red edge y in
either Cui+1 or Cui−1. This is shown in Figure 29.

or−p
−p′ −p′

−p

x′

x′′

x′

x′′

Cui Cui

Figure 28. The point −p is marked with a red dot and the point −p′ is
marked with a black dot.
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−p −p′
−p1 −p′1y −p −p′

−p1 −p′1
y

or
Cui

Cui+1
Cui

Cui−1

Figure 29. The edges y for both of these cases prevent the arcs as in
Figure 28 from being drawn without two more intersections with xnσ.

Without loss of generality we will just assume that it is in Cui−1 where we have
the edge y, and we consider the rightmost such edge. Now we consider −x1
which is the nearest edge in u′i−1 to the left of y. Let −p1 be the midpoint of
−x1 and −p′1 be the point between y and the nearest edge −z1 = x′ in u′i−1 to
the right of y. Again, we see if we can draw an arc from the left of p1 to p′1
that only has 2 intersections with Ui−1. If not, there exists another red edge y1
which obstructs this. We repeat the same steps with y1 to obtain a necessarily
finite sequence of edges y, y1, . . . , ym. For ym we draw an arc from the left of
−pm to −p′m that has only 2 intersections with xnσ. Then, we connect −p′j with

−p′j−1 for each j with an arc that is parallel to the rest of yj ’s and to the left
of the −zj ’s, see Figure 30 below.

or

−pm−1 −p′m−1

ym−x1−pm
−p′m

ym−1

−p′m−1−pm−1

−pm ym−xm −pm

ym−1

−zm

−zm − 1

−zm

Figure 30. We extend to −p′m−1 the arc going from −pm to −p′m by
another arc parallel to ym−1.

There is only a single intersection of the arc between −p′j and −p′j−1 with xnσ
because of assumption (i). Putting all these arcs together, we get an arc from
−p′m to −p′ that has m intersections with xnσ. Now

# of edges in u′i−j to the left of −pj = (# of edges in u′i to the left of −p)−m. (22)

Using assumption (ii) on −pm, we get an arc H− from (−1, 0) to −p′ with the
number of intersections with xnσ as follows. The arc H− = H−1 ∪ H

−
2 is the

union of two arcs: The arc H−1 from (−1, 0) just to the left of −pm, and the
arc H−2 from −pm to −p′. Their intersections with xnσ are respectively given
by using (20).

|H−1 ∩ x
n
σ| = 2

(
# of crossings to the left of −xm in u′i−m

)
+ n− (i−m), and

|H−2 ∩ x
n
σ| = m, based on the preceding discussion.
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Taking the intersections of H−1 and H−2 together, the number of intersections
between H− and xnσ is

|H− ∩ xnσ| = 2
(
# of crossings to the left of −x′ in u′i

)
+ n− i.

Similarly, with the same argument replacing − with +, “right” with “left,” and
“left” with “right”, we can get another arc H+ from (1, 0) to +p′ that has the
number of intersections with xnσ given by

|H+ ∩ xnσ| = 2
(
# of crossings to the right of +p′ in u′i

)
+ n− i.

Now consider the straight line segment L from −p′ to +p′. If σ does not choose
the −-resolutoin on any crossing in Cui between −p′ and +p′, then we get an
arc H ′′ = H− ∪ L ∪H+ that has ≤ 2(k − 1) < 2k intersections with xnσ, which
is a contradiction. We add this crossing to u′i and move on to the next i in the
iteration.

If C > 1: This is similar to the case when C = 1. The arguments are the same except
that at the last stage we can add a furtherest pair of edges, each marked with
− and + for left and right, to u′i. After this we move onto the next i in the
iteration.

(3) We repeat from Step (1) until k − |u′n| = 0.

Running the same algorithm for `′n with the obvious adjustment by symmetry gives us
Cσ.

Lemma 3.8. Every iteration of C ′σ through the algorithm satisfies conditions (i) and (ii).

Proof. For the first iteration of C ′σ, condition (i) is vacuously true. For a crossing in −u′i,
the arc as shown satisfies condition (ii). The same arc by reflection also works for a crossing
in +u′i.

h = 0

p

Figure 31. There are no other intersections of the blue arc with xnσ other
than those shown because the initial construction of C ′σ requires that each
pair in u′ are the furtherest possible, one of the conditions marked by ∗.

For each subsequent iteration of C ′σ, the edges added are specifically chosen to satisfy
both (i) and (ii). �

Proof of (b). This is immediate by considering the sequence of states σ1 = σ+, σ2, . . . , σ
′
f , . . . , σf =

σ where the first part of the sequence from σ+ to σ′f comes from changing the resolution

from + to − on the set of k2 crossings with structure as described in part (a), and counting
the number of circles in σ′f .
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σ′f Sσ1=σ+ Sσ2 Sσ3 Sσ4=σ′f
Figure 32. In this example, n = 3 and we show σ′f as well as the skeins of

a sequence of states from σ+ to σ′f . The number of through strands here is

4, thus k = 2 and we change the resolutions on 22 = 4 crossings, resulting in
a sequence of length 4.

�

Definition 3.9. Let D be a link diagram and G be a 2-connected, weighted planar graph
such that D = ∂(FG). For a positively-weighted edge ε of G corresponding to a maximal
positive twist region T in D = ∂(FG), orient the n-cabled twist region Tn as an element in
S(D2, 2n), so that all the crossings are as in Figure 23. We say that a Kauffman state σ
in the state sum of (13) on Dn flows through ε with 2k strands if the skein in S(D2, 2n)

resulting from applying σ to the n-cabled twist region Tn has 2k arcs connecting 2k points
on the top and the bottom.

An immediate consequence of Lemma 3.7 is the following.

Lemma 3.10. Let D be a link diagram and G be a 2-connected, weighted planar graph
such that D = ∂(FG). Let ε = (v, v′) be an edge in G corresponding to a maximal positive
twist region with ω ≥ 2 crossings, and σ is a Kauffman state from the state sum of (13) on
Dn that flows through ε with 2k strands. Let σ+ be the Kauffman state that chooses the

+-resolution all the crossings in Tn but agrees with σ everywhere else. Then the sequence of
states from σ+ to σf contains a subsequence σ+, . . . , σ

′
f of length ωk2 and Sσ′f has (ω− 2)k

fewer circles than Sσ+.

Proof. If σ flows through the edge ε with 2k strands than it flows through every crossing
in T represented by ε with at least 2k strands. We apply Lemma 3.7(a) and add up the
number of crossings on which σ chooses the −-resolution over each xn for a crossing x ∈ T .
This gives that σ chooses the −-resolution on at least ωk2 crossings. In a twist region with
ω crossings we have that in the all-+ state on Tn there are (ω− 1) sets of n disjoint circles.
Thus we can apply part (b) of Lemma 3.7 ω − 2 times. �

3.5. Proof of Theorem 5. Now we complete the proof of Theorem 5. Recall that from
Section 3.2 we have

〈Dn 〉 =
∑

σ, a : a, n, n, admissible , a
2
≤c

4a

θ(a, n, n)
(−1)rn−r

a
2Ad(a,r)+sgn(σ)〈Jaσ t disjoint circles〉,

and we would like to show that

deg(σ, a) < deg(σ+, 0),
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where deg(σ+, 0) = Hn(D) + 2r(n2 + n), and deg(σ, a) is the maximum degree of a term
indexed by σ, a in the state sum of 〈Dn 〉. Recall also that 2c is the number of split strands

of σ and that by (18), we need only to consider states σ with parameter a such that a
2 = c.

If σ is a state with a = c = 0 that is not the all-+ state, then it must choose the −-
resolution at a crossing in a positive maximal twist region, which will merge at least one
pair of circles compared to the all-+ state. Hence, a sequence s from σ+ to σ for a = 0
contains at least one pair of states that merges a pair of circles. This implies that

deg(σ, 0) ≤ deg(σ+, 0)− 4,

so

deg(σ, 0) < deg(σ+, 0).

If σ is a state with c > 0, then the skein Jaσ can be decomposed along a square (D2, 2n)
with 2n points marked above and below, containing the Jones-Wenzl idempotents as shown
in the following figure, so that we get two skeins S1 and S2 in S(D2, 2n).

S2

S1

n

Figure 33. The link diagram is obtained by composing two skeins in
S(D2, 2n). The skein S1 is enclosed by the square and the skein S2 is outside
of it.

Now in S2 with σ applied we have at least 2c strands connecting the 2c points at the top
to the 2c points at the bottom on the boundary of the disk D2.

Let D = ∂(FG) be a near-alternating link diagram and G \ e be the graph obtained from
G by deleting the single edge e = (v, v′) of negative weight r. Let t be the total number of
paths W1, . . . ,Wt from v to v′ in G \ e. Let 2ki be the number of strands with which the
state σ flows through a path Wi for 1 ≤ i ≤ t, see Figure 34 for an example.

We have
t∑
i=1

2ki ≥ 2c.
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n = 3

3

G

v

v′

W1 W2

W3

W4

a

e

Figure 34. There are four paths W1,W2,W3, and W4 from v to v′ in G\e
in this example, where W1 and W2 share an edge. A skein Saσ is shown with
its connected component Jaσ and disjoint circles with 6 split strands. The
state σ flows through path W1 with 2 strands, W2 with 2 strands, W3 with
0 strands, and W4 with 2 strands.

Without loss of generality we may assume

t∑
i=1

2ki = 2c,

since if
∑t

i=1 2ki > 2c for a state σ, then deg(σ, 2c) < deg(σ′, 2c) for another state σ′ for

which
∑t

i=1 2k′i = 2c.
We can construct a sequence s from σ+ to σ by changing the resolution from +-to −-

on the set of crossings xn for each crossing x in a maximal positive twist region, beginning
with the crossings in the twist regions in W1, then W2, and so on until Wt. For each walk
Wi with 2ki strands flowing through we apply Lemma 3.10 to estimate deg(σ, 2c) relative
to deg(σ+, 0).

Let

deg(σ+, 2c) := deg

(
42c

θ(n, n, 2c)
(−1)rn−rcAd(2c,r)+sgn(σ+)〈J2c

σ+ t disjoint circles〉
)
.

For each edge ε of a path Wi, σ flows through it with at least 2ki strands. Thus, we can
find a subsequence σ1, . . . , σf in a sequence from σ+ to σ corresponding to changing the
resolutions on the crossings in the n-cabled twist region Tnε for this edge, that is of length
ωεk

2
i and with the skein Sσf having (ωε − 2)ki fewer circles than σ1. Recall that ωε is the

number of crossings in the twist region corresponding to ε. This implies a decrease of degree
by at least

−2ωεk
2
i − 2(ωε − 2)ki.
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We sum over all the edges in Wi to get the total amount of decrease in degree for this
path. Moving on to the next path for the sequence, it may happen that multiple paths
Wi1 , . . . ,Wip share the same edge, but then the decrease in degree from this single edge
would be

−2ωε

 p∑
j=1

kij

2

− 2(ωε − 2)

p∑
j=1

kij ≤ −2ωε

p∑
j=1

k2ij − 2(ωε − 2)

p∑
j=1

kij .

Thus without loss of generality, we may assume that none of the paths share edges and
sum the decrease in degree over the edges of each path to get

deg(σ, 2c) ≤ deg(σ+, 2c)−

(
t∑
i=1

(ω − 2)(2k2i + 2ki) + 4k2i

)
(23)

where ω = min1≤i≤t {`(Wi)}. Recall `(Wi) is the length of a path defined by (1). We get

deg(σ, 2c) ≤ deg(σ+, 0)−

(
t∑
i=1

(ω − 2)(2k2i + 2ki) + 4k2i

)
− 2c2r − 2cr. (24)

Since
∑t

i=1 2ki = 2c, the ki’s form a partition of c. The following lemma shows that we
may replace it by a minimal partition.

Definition 3.11. Let P = {n1, . . . , nt} be a nonnegative integer partition of n where the
ni’s may be zero, so n = n1 + · · ·+nt. We say that a partition of n into t parts is a minimal
partition, denoted by Pm, if it has the minimal m = max1≤i≤t ni out of all partitions of n
into t parts.

Lemma 3.12. Fix n and t. A minimal partition Pm = {m1, . . . ,mt} of n into t parts is
unique up to rearrangement of indices. If P = {n1, . . . nt} is another partition of n into t
parts, then

t∑
i=1

m2
i ≤

t∑
i=1

n2i .

Proof. A minimal partition Pm may be constructed as follows. If n ≤ t then the partition has
m1 = m2 = · · · = mn = 1 and mn+1 = mn+2 = · · ·mt = 0. If n > t, let j = n (mod t). The
partition Pm has m1 = m2 = · · · = mj = bn/tc+ 1 and mj+1 = mj+2 = · · · = mt = bn/tc.
The partition is minimal, since we may obtain any other partition of n into t parts from
Pm by subtracting 1’s from a non-zero summand and adding 1 to any other. Similarly, it is
unique up to rearrangement.

For the statement that
∑t

i=1m
2
i ≤

∑t
i=1 n

2
i , there is nothing to prove if P = Pm. Let

m′ = max1≤i≤t ni and m = max1≤i≤tmi. Since Pm is minimal and unique up to rearrange-
ment we can assume that m′ > m, m′ = n1 in P , and m = m1 in Pm. Suppose m′ = m+ k
for some integer k > 0. This means that we may write

P = {m1 + k,m2 − k2, . . . ,mt − kt},

where k2, . . . , kt ≥ 0 and k = k2 + · · ·+ kt. Now we have

t∑
i=1

n2i = (m1 + k)2 + (m2 − k2)2 + · · ·+ (mk − kt)2 =

(
t∑
i=1

m2
i

)
+ 2m1k + k2 +

t∑
i=2

(−2miki + k2i ).
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Thus

2m1k + k2 +
t∑
i=2

(−2miki + k2i ) ≥ 2m1k + k2 − 2m1k +
t∑
i=2

(ki)
2 ≥ 0.

This concludes the proof of the lemma. �

Finally, replacing {ki} by a minimal partition Pm = {m1, . . . ,mt} using Lemma 3.12, we
have

deg(σ, 2c) ≤ deg(σ+, 0)−

(
t∑
i=1

(ω − 2)(2m2
i + 2mi) + 4m2

i

)
−
(
2c2r + 2cr

)
. (25)

If |r| < ω
t with |r| ≥ 2 and t > 2, then the difference

−

(
t∑
i=1

(ω − 2)(2m2
i + 2mi) + 4m2

i

)
−
(
2c2r + 2cr

)
(26)

is negative, so

deg(σ, 2c) < deg(σ+, 0)

for every other Kauffman state σ with 2c > 0 split strands. Since we also know this
inequality for σ with 2c = 0 split strands, this shows that deg〈Dn 〉 = deg(σ+, 0) and

finishes the proof of the theorem.

4. Boundary slope and Euler characteristic

In this section, we prove Theorem 2 and verify that there exists an essential spanning
surface which realizes the Jones slope jsK = {−2c−(D) − 2r} and the quantity jxK =
{c(D) − |s+(D)| + r} of a near-alternating link K determined in Section 3. Let D be a
near-alternating diagram with surface FG, such that D = ∂(FG) for a 2-connected, weighted
planar graph G as in Definition 1.1, is called a pretzel surface. It is shown to be essential
under certain conditions on the graph G in [OR12].

Theorem 6. [OR12, Theorem 2.15] Let G be a 2-connected planar graph in S2 with edges
e1, . . . , en having weights ω1, . . . , ωn ∈ Z.

(1) If |ωi| ≥ 3 for all i, then the surface FG is essential.
(2) If ω1 ≤ −2 and ωi ≥ 2 for i = 2, . . . , n, and the surface FG is not essential, then G

has an edge, say e2, that is parallel to e1 (i.e., e2 is another edge on the same pair
of vertices as e1) such that ω1 = −2 and ω2 = 2 or 3.

Remark 4.1. Note that the original wording of the theorem in [OR12] says “algebraically
incompressible and boundary incompressible” instead of “essential.”

The surface FG is clearly also a state surface from the state that chooses the −-resolution
on all the crossings in the single negative twist region of D, and the +-resolution on all the
rest of the crossings. A formula for the boundary slope of a state surface for a knot is given
by the following lemma.

Lemma 4.2 ([FKP13]). Let D be a diagram of an oriented knot K, and let σ be a Kauffman
state of D. Then the state surface Sσ(D) has as its boundary slope

2c−+(σ)− 2c+−(σ),
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where c−+(σ) is the number of positive crossings where the −-resolution is chosen, and c+−(σ)
is the number of negative crossings where the +-resolution is chosen.

If K is a near-alternating knot, we can apply Theorem 6 to show that FG is an essential
surface for K. If the maximal negative twist region of weight r < 0 in a near-alternating
diagram D of K has r = −2, the only way the surface FG is not essential via condition (2)
of Theorem 6, is if G has an edge e2, that is parallel to e1 corresponding to the negative
twist region, such that e2 has weight 2 or 3. However, the condition on the diagram being
near-alternating implies that if an edge is parallel to e1, then it must have more than 6
crossings, since it would give a path in G \ e1 between v and v′ where e1 = (v, v′), and we
require that the length of such a path be greater than 2t, where t is the total number of
paths, while t > 2.

We verify that FG is indeed a Jones surface realizing the Jones slope jsK and jxK from
Theorem 1 by computing its boundary slope and Euler characteristic using Lemma 4.2.

Boundary slope. A pretzel surface comes from the state σ which chooses the −-resolution
at each crossing in the negative twist region of the near-alternating diagram D, and this is
the only difference between σ and the all-+ state. Either all these crossings are positive, or
they are all negative. We use Lemma 4.2 to compare the boundary slope of this state to the
boundary slope of the all-+ state which is 2c−+(σ+) − 2c+−(σ+) = 0 − 2c+−(σ+) = −2c−(D).

Suppose the crossings in the twist region are positive, then we get 2c−+(σ) − 2c+−(σ) =

2(c−+(σ+) − r) − 2c+−(σ+) = −2c−(D) − 2r as the boundary slope. If the crossings in the
twist region are negative, we also get

2c−+(σ)− 2c+−(σ) = 2c−+(σ+)− 2(c+−(σ+) + r) = −2c−(D)− 2r (27)

for the boundary slope, and we are done.

Euler characteristic. It is clear that the Euler characteristic of the surface is

χ(S+(D))− r = (|s+(D)| − r)− c(D) = −(c(D)− |s+(D)|+ r). (28)

Proof of Theorem 2. We obtain the degree d(n) of the nth colored Jones polynomial
JK(v, n) by adjusting the degree of the Kauffman bracket from Theorem 5 by the writhe.
The essential surface of Theorem 6 realizes jsK and jxK by the preceding computation of
boundary slope and Euler characteristic of this surface.

Lemma 4.3. A near-alternating link is −-adequate.

Proof. Applying the −-resolution to all the crossings in a near-alternating diagram D, we
see that the all-− state graph of D is given by the dual graph of G \ e with |r| − 1 vertices
attached from the single negative twist region. Since |r| ≥ 2, each of the segments resulting
from applying the −-resolution to the crossings in the negative twist region connects a
pair of distinct vertices in s−(D), so if D is not −-adequate, then De = ∂(FG\e) is not
−-adequate. Note that De is an alternating diagram, and De is reduced because the graph
G \ e is required to be 2-connected from the assumption on a near-alternating diagram.
Otherwise, a vertex of the edge corresponding to the nugatory crossing would be a cut
vertex, contradicting the assumption that G\e is 2-connected by condition (2) of Definition
1.1. Thus, De is adequate by [Lic97, Proposition 5.3] since it is reduced and alternating.
This implies that D is −-adequate. �

Corollary 4.4. Near-alternating knots satisfy the Strong Slope Conjecture.
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Proof. By Theorem 1, which is directly implied by Theorem 5 by substituting A = v−1 and
adding the writhe term, the minimum degree of the nth colored Jones polynomial is

d(n) = −(n− 1)2c(D)− 2(n− 1)|s+(D)|+ ω(D)(n2 − 1)− 2r(n2 − n).

Expanding and gathering terms of n with the same powers, we get

d(n) = n2(−c(D)− 2r + ω(D)) + n(2c(D)− 2|s+(D)|+ 2r) + (−c(D) + 2|s+(D)| − ω(D)).

Since c(D) = c−(D) + c+(D) and ω(D) = c+(D)− c−(D), we get

d(n) = n2(−2c−(D)− 2r) + n(2c(D)− 2|s+(D)|+ 2r) + (−c(D) + 2|s+(D)| − ω(D)).

This means that

jsK = {−2c−(D)− 2r}, and jxK = {c(D)− |s+(D)|+ r}.

These match the boundary slope of FG computed by (27) and the negative of the Euler
characteristic of FG computed by (28), respectively. As for js∗K and jx∗K , Lemma 4.3 and
[FKP11] prove the existence of an essential surface realizing the statement of Theorem 2
concerning the quadratic and linear growth rates of d∗(n). This concludes the proof of
Theorem 2.

�

5. Near-alternating knots are not adequate

We show that a near-alternating knot does not admit an adequate diagram. The criterion
for an adequate knot from the colored Jones polynomial is the following result due to
Kalfagianni [Kal18]. For large enough n let

s1(n)n2 + s2(n)n+ s3(n) = d∗(n)− d(n) = (a∗j − aj)n2 + (b∗j − bj)n+ (c∗j − cj).

Theorem 7 ([Kal18, Theorem 4.2]). For a knot K let c(K) and gT (K) denote the crossing
number and the Turaev genus of K, respectively. The knot K is adequate if and only if for
some n > nK , we have

s1(n) = 2c(K), and s2(n) = 4− 4gT (K)− 2c(K). (29)

Furthermore, every diagram of K that realizes c(K) is adequate and it also realizes gT (K).

We will begin by proving the analogue of [LT88, Lemma 8] concerning the Kauffman
polynomial for a near-alternating knot. Recall that for a link diagram D, the Kauffman
two-variable polynomial ΛD(a, z) is defined uniquely by the following [Lic97, Theorem 15.5]

• Λ (a, z) = 1, where is the standard diagram of the unknot.

• ΛD(a, z) is unchanged by Reidemeister moves of Type II and III on the diagram D.
• Λ (a, z) = aΛ (a, z). The kink in the diagram D is locally straightened out

by a Reidemeister move of Type I at the expense of multiplying by a.
• The Kauffman polynomials of diagrams locally differing in the following pictures

are related as follows.

Λ (a, z) + Λ (a, z) = z
(

Λ (a, z) + Λ (a, z)
)
. (30)
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Diagrams which locally differ in one of the four pictures in (30) are denoted by D+, D−,
D0, and D∞, respectively.

We will need the following useful results by Thistlethwaite [Thi88] with a minor change
of notation.

Theorem 8 ([Thi88, Theorem 4]). Let D be a c(D)-crossing link diagram which is a con-
nected sum of link diagrams D1, . . . , Dk. Let Λ(a, z) =

∑
r,s ur,sa

rzs for D, and let b1, . . . , bk
be the lengths of the longest bridges of D1, . . . , Dk, respectively. Then for each non-zero co-
efficient ur,s, |r|+ s ≤ c(D) and s ≤ c(D)− (b1 + · · ·+ bk).

Theorem 9 ([Thi88, Theorem 5]). Let D be a connected, alternating diagram with c(D) ≥ 3
crossings, and let G be the graph associated with the black-and-white coloring of the regions
of D for which the crossings of D all have positive sign. Let ΛD(a, z) =

∑
ps(a)zs, and let

χG(x, y) =
∑
vr,sx

rys. (Here χG(x, y) is the Tutte polynomial of G.) Then

pc(D)−1(a) = v1,0a
−1 + v0,1a, and

pc(D)−2(a) = v2,0a
−2 + (v2,0 + v0,2) + v0,2a

2.

In fact, Thistlethwaite remarks immediately following this theorem in [Thi88] that the
coefficient pc(D)−1(a) may be written as κ(a+ a−1) with κ > 0 if D is a prime, alternating
diagram with at least two crossings.

We prove a mild generalization of [LT88, Lemma 8] using the same argument which
applies in the setting of near-alternating diagrams.

Lemma 5.1. Let D be a near-alternating diagram of a link with a maximal negative twist
region of weight r < 0 with |r| ≥ 2. Then, the z-degree of ΛD(a, z) is c(D)− 2.

Proof. We induct on |r| ≥ 2. Note that if D is a near-alternating diagram with a negative
twist region of weight r < 0 and |r| ≥ 2, then the same diagram with the maximal negative
twist region replaced by a negative twist region of 2 crossings is still near-alternating. Thus
it is valid to consider the base case with |r| = 2 fixing the rest of the diagram D. For
|r| = 2, switching the top crossing in the twist region with weight r results in an alternating
diagram D− isotopic to one with c(D) − 2 crossings by a Type II Reidemeister move. By
Theorem 8, we see that the z-degree of ΛD−(a, z) is strictly less than c(D) − 2. One of
the nullifications of this crossing results in a non-alternating diagram D0, with c(D) − 1
crossings and a bridge of length 3. Thus by Theorem 8, the z-degree of ΛD0(a, z) is at most
c(D)−4. The other nullification produces a removable kink and results in a prime (c(D)−2)-
crossing alternating diagram D∞, as required by condition (2) in Definition 1.1 defining a
near-alternating diagram. Applying Theorem 9 and the subsequent remark, we get that
the zc(D)−3 term of ΛD∞(a, z) has coefficient κa−1(a−1 + a) with κ > 0. Plugging this into
the defining relation (30) with D+ = D, D−, D0, and D∞, we get that the coefficient of

zc(D)−2 in ΛD(a, z) is the same as the coefficient of zc(D)−3 in ΛD∞(a, z), which is nonzero.
This takes care of the base case. For |r| > 2, D0 is a near-alternating diagram with |r| − 1
negative crossings in the negative twist region, and that is where we apply the inductive
hypothesis. We get

ΛD+(a, z) + ΛD−(a, z)︸ ︷︷ ︸
z-degree ≤ c(D)− 3

= z( ΛD0(a, z)︸ ︷︷ ︸
z-degree = c(D)− 3

+ ΛD∞(a, z)︸ ︷︷ ︸
z-degree ≤ c(D)− 4

).
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This shows that the z-degree of ΛD(a, z) = ΛD+(a, z) is determined by the z-degree of
ΛD0(a, z) with the same coefficient. After multiplying ΛD0(a, z) by z, we finish the proof of
the theorem. �

Using Theorem 7, 8, 9, and Lemma 5.1, we prove Theorem 3, which we restate here.

Theorem 3. A near-alternating knot does not admit an adequate diagram.

Proof. Given a knot K with a near-alternating diagram D having a negative twist region
of weight r < 0 such that |r| > 2, suppose that K also admits a non-alternating, adequate
diagram DA. Then DA has a bridge of length ≥ 2 and c(DA) = c(D) + r by Theorem 1
and 7. But this contradicts Lemma 5.1 by Theorem 8, since Lemma 5.1 implies that the
z-degree of ΛD(a, z) for D is c(D) − 2, but Theorem 8 applied to DA would imply that
ΛDA

(a, z) has z-degree ≤ c(D) + r−2. This is because D and DA are related by a sequence
of Type I, II, and III Reidemeister moves. A Type I Reidemeister move only affects the
a-degree of ΛD(a, z), while the Type II and III moves leave ΛD(a, z) invariant. Thus the
only other possibility is that it admits a reduced, alternating diagram with c(D) + r, with
|r| = 1 imposed by Lemma 5.1, but this contradicts the assumption that |r| > 2. �

6. Stable coefficients and volume bounds

In this section we prove Theorem 4, which we reprint here for reference.

Theorem 4. Let K be a link admitting a near-alternating diagram D = ∂(FG), where G is
a finite 2-connected, weighted planar graph with a single negatively-weighted edge of weight
r < 0. Then

(1) the first and second coefficient, α0,n, α1,n, respectively, of the reduced colored Jones

polynomial ĴK(v, n) of a near-alternating link K are stable. The last and penultimate
coefficient, α′0,n, α

′
1,n, respectively, are also stable.

(2) Write α = α0,n and β = α1,n, and write α′ = α′0,n and β′ = α′1,n for n > 3. We have

|α| = 1 and |β| = χ1(sσ(D)′), where σ is the Kauffman state giving the state surface
FG and χ1(sσ(D)′) is the first Betti number of the reduced graph of sσ(D). Similarly,
we have |α′| = 1 and |β′| = χ1(s−(D)′).

Furthermore, if the diagram D is also prime and twist-reduced with more than 7 crossings
in each twist region, then K is hyperbolic, and

.35367(|β|+ |β′| − 1) < vol(S3 \K) < 30v3(|β|+ |β′| − 2).

Here v3 ≈ 1.0149 is the volume of a regular ideal tetrahedron. In other words, there is a
function on the stable coefficients of K which is coarsely related to the volume of S3 \K.

Recall the nth-reduced colored Jones polynomial is defined as

ĴK(v, n) = JK(v, n)/J (v, n). (31)

Note that since a near-alternating link K with a near-alternating diagram D is −-adequate,
if we write

ĴK(v, n) = αnv
d̂(n) + βnv

d̂(n)+4 + · · ·+ β′nv
d̂∗(n)−4 + α′nv

d̂∗(n), (32)

where d̂(n) is the minimum degree and d̂∗(n) is the maximum degree of ĴK(v, n), respec-
tively, then |β′n| = χ(s−(D)′) and |α′n| = 1 by [DL06, Theorem 3.1]. So what we need to
determine is |αn| and |βn|.
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We will first establish the stability of coefficients in Section 6.1, then prove the two-sided
volume bounds in Section 6.2.

6.1. Stability of coefficients. We shall apply the following result from [DL06] to a +-
adequate diagram approximating the alternating link diagram D.

Theorem 10. [DL06, Theorem 3.1] Let D be a +-adequate link diagram and K be the link

with diagram D. Write ĴK(v, n) as in (32). Then we have for all n,

|αn| = 1 and |βn| = χ1(s+(D)′).

Lemma 6.1. Let D be a near-alternating link diagram and K be the link with diagram D.

Write ĴK(v, n) as in (32). Then we have for all n,

|αn| = 1 and |βn| = |χ1(sσ(D)′)|,

where σ is the Kauffman state that chooses the −-resolution on crossings in the negative
twist region of D and the +-resolution for all other crossings.

Proof. From the proof of Theorem 5 we see that the skein in the state sum realizing the
degree comes from the state σ+ which restricts to the +-resolution on crossings outside of
the maximal negative twist region. The last coefficient αn is just the last coefficient of 〈S0σ+〉
from 〈Dn 〉 of (12) realizing the degree, so |αn| = 1. For the penultimate coefficient βn, as

long as ω
t > |r| with |r|, t ≥ 2, the inequality (26) implies that no skein Saσ from another

state σ with c > 0 split strands contributes to the penultimate coefficient. Therefore, we
need only to consider the contribution of other skeins σ with c = 0 split strands.

For a skein σ with 0 split strands we may remove the r half twists on n strands on the
portion of the skein decorated by idempotents by reversing the fusion and untwisting of the
maximal negative twist region, so

∑
a : a, n, n admissible

〈Saσ〉 = (−1)nrAr(n
2+2n)〈Sσ〉,

where Sσ is the new skein without the r half twists on n strands. In a process similar to
that in [DL06], we consider Kauffman states (now on all the crossings of Sσ) which chooses
the −-resolution on a single crossing corresponding to a segment between a pair of circles in
the state graph s+(Sσ). They determine the penultimate coefficient of 〈Dn 〉 since all other

terms have lower degree. Let De be the reduced, alternating diagram obtained from D by
removing from s+(D) the edges corresponding to the crossings in the negative twist region
of D, then recovering a link diagram by reversing the application of the all-+ Kauffman
state. See Figure 35 below for an example.
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DeD

Figure 35.

We know De is reduced because of condition (2) on D in Definition 1.1 of a near-
alternating diagram, since De = ∂(FG/e) where G/e is the graph G with the negative
edge e contracted. There is a bijection between the set of Kauffman states of De which
contribute to the last and penultimate coefficients of 〈De〉 and the set

SC := {Sσ : σ chooses the −-resolution on a single crossing of c(Dn) \ rn}
by

σ ∈ SC 7→ σ on De.

This implies that the penultimate coefficient of the sum∑
σ with c=0, σ∈SC

〈Saσ〉 =
∑

σ with c=0, σ∈SC
(−1)nrAr(n

2+2n)〈Sσ〉

is equal to the 2nd coefficient of the colored Jones polynomial of the link with the diagram
De. Thus, they also have the same 2nd coefficient for the reduced polynomial. Since De

is adequate, we may apply Theorem 10 to De. This gives that the 2nd coefficient of its
reduced colored Jones polynomial is e′r − vr + 1, where e′r is the number of edges in the
reduced all-+ state graph s+(De)

′ and vr is the number of vertices of s+(De)
′. We compare

this to the data from D, where e′ is the number of edges of the reduced graph sσ(D)′ and
v is the number of vertices in sσ(D)′. We get

|βn| = e′r − vr + 1 = e′ + r − (v + r) + 1 = e′ − v + 1 = |χ1(sσ(D)′)| (33)

The stability of these coefficients follows from the stability of the lst and 2nd coefficient of
the colored Jones polynomial of the link represented by De since the computation was done
independent of n. �

6.2. Two-sided volume bounds from stable coefficients α, β, α′, and β′. The fol-
lowing theorem from [FKP08] provides volume bounds on a hyperbolic link complement
based on the number of twist regions in a diagram of the link.

Theorem 11 ([FKP08, Theorem 1.2]). Let K ⊂ S3 be a link with a prime, twist-reduced
diagram D. Assume that D has tw(D) > 2 twist regions, and that each region contains at
least 7 crossings. Then K is a hyperbolic link satisfying

0.70735(tw(D)− 1) < vol(S3 \K) < 10v3(tw(D)− 1),
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where v3 ≈ 1.0149 is the volume of a regular ideal tetrahedron.

Theorem 12 ([FKP08, Theorem 1.5]). Let K be a link in S3 with an adequate diagram D
such that every twist region of D contains at least 3 crossings. Then

1

3
tw(D) + 1 ≤ |β|+ |β′| ≤ 2tw(D).

We use Theorem 11 and Theorem 12 to relate the number of twist regions tw(D) of a
link diagram D to the stable coefficients α, β, α′, and β′, obtained in the previous section.
In particular we show the following:

Lemma 6.2. Let K be a link with a near-alternating diagram that is prime and twist-reduced
with at least 3 crossings in every positive twist region of D. Then

|β|+ |β′| − 1 ≤ 2(tw(D)− 1), and |β|+ |β′| − 2 ≥ tw(D)− 1

3
.

Proof. Let De = ∂(FG\e) be the link diagram corresponding to G \ e as in Definition 1.1,
see Figure 36 for an example.

D De

Figure 36.

We can immediately apply Theorem 12 to De. By assumption, De is prime, alternating,
and twist-reduced. Let e′+, v+ be the number of edges and vertices in the reduced all-+
state graph of De, and e′−, v− be the number of edges and vertices in the reduced all-−
state graph of De. In particular we get

tw(De)

3
+ 1 ≤ e′+ + e′− − v+ − v− + 2 ≤ 2tw(De).

Since D has one more twist region than De, this gives

tw(D)− 1

3
+ 1 ≤ e′+ + e′− − v+ − v− + 2 ≤ 2(tw(D)− 1).
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Note that D is −-adequate and we assume that |r| > 2. Let e′ be the number of edges in
the reduced graph of sσ(D) and v = |sσ(D)|, and let e′D, vD be the number of edges and
the number of vertices in the reduced graph of s−(D), respectively. Using the result (33)
above on |β|, |β′| we get

|β|+ |β′| = e′ − v + 1 + e′D − vD + 1.

Substituting for quantities from s+(De)′ and s−(De)′ gives

|β|+ |β′| = e′+ + e′− − v+ − v− + 2 + 1.

So then

|β|+ |β′| − 1 ≤ 2(tw(D)− 1) and |β|+ |β′| − 2 ≥ tw(D)− 1

3
.

�

Proof of Theorem 4. Lemma 6.2 combined with Theorem 11 then implies that

.35367(|β|+ |β′| − 1) < vol(S3 \K) < 30v3(|β|+ |β′| − 2).

�
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