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Abstract

Finding strong gravitational lenses in astronomical images allows us to assess
cosmological theories and understand the large-scale structure of the universe.
Previous works on lens detection do not quantify uncertainties in lens parameter
estimates or scale to modern surveys. We present a fully amortized Bayesian
procedure for lens detection that overcomes these limitations. Unlike traditional
variational inference, in which training minimizes the reverse Kullback-Leibler
(KL) divergence, our method is trained with an expected forward KL divergence.
Using synthetic GalSim images and real Sloan Digital Sky Survey (SDSS) images,
we demonstrate that amortized inference trained with the forward KL produces
well-calibrated uncertainties in both lens detection and parameter estimation.

1 Introduction

Strong gravitational lensing events are widely used to validate and parameterize the ACDM model,
the current concordance model in cosmology [1, 2, 3, 4, 5]. Despite extensive study, it remains
challenging to efficiently detect strong lenses and to accurately estimate their characteristics. Because
researchers anticipate that the upcoming Legacy Survey of Space and Time (LSST) will image
roughly 10° lenses [6], such efficient detection is of interest.

Non-generative deep learning detectors are computationally efficient [7, 8, 9], but they sacrifice the
accuracy and uncertainty quantification provided by fully generative models. Additionally, they do
not cope well with blending, instances where multiple galaxies overlap visually. Handling blending is
paramount, as it is anticipated that 62% of imaged galaxies in LSST will be blended [10]. Standalone
deblenders have been developed [11, 12], but they lack probabilistic interpretability. Bayesian
methods have been shown to address these deficiencies yet remain too computationally demanding to
be run on large datasets. A recent work [13] employs a bespoke sampling process to improve upon
Hamiltonian Monte Carlo yet still requires 105 seconds on four Nvidia A100 GPUs for a single lens.
Further, previous works that used variational inference were trained with the reverse KL divergence,
which is known to produce underdispersed posterior approximations [14]. A separate line of work
has studied lens substructure [15, 16]; however, these works presume the identification of a lens.

We propose to detect strong lensing while fitting a generative model for deblending with an inference
procedure that is scalable to modern astronomical surveys. Our method is amortized, supports
calibrated uncertainty quantification, and is available at https://github.com/prob-ml/bliss.

2 Statistical Model

Astronomical images record radiation originating from light sources, such as stars and galaxies.
Catalogs contain properties of these sources, such as their locations and fluxes. It is of interest to
infer the posterior distributions for these properties in addition to those of strong gravitational lenses.
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We propose the following generative model for this task, which extends the BLISS model [17, 18].
First, draw the number of imaged light sources from a Poisson process, S ~ Poisson(un), with
denoting the average density of light sources per square degree of the image and n denoting the
number of square degrees. Then, for each source s = 1, ..., .5, the location and type of the source are

ug | S ~ Unif([0, H] x [0, W]) and as | S ~ Bernoulli(p;), (1)

where p; is the proportion of sources that are stars, and 1 — p; is the proportion that are galaxies. We
use the star and galaxy flux models presented in [18], namely TruncatedPareto( fiin, 0.5) for stars
and a bulge-and-disk model G for galaxies, parameterized by g,. The full specification of g5 is given
in Table 1. Additionally, if a source is a galaxy, whether it is lensed is indicated by

s | (S,as = 0) ~ Bernoulli(py), 2)

where py is the proportion of galaxies that are lensed. We assume that all lensing events require
a pair of galaxies (s,s’), with s acting as a lens and s’ being lensed. The galaxy s’ is initially
rendered unlensed (with g, ), followed by a resampling operation on a grid warped by the singular
isothermal ellipsoid (SIE) lensing potential, parameterized by ¢ := (0, q1, g2, 0, 8, ), whose values
are determined by interactions between s and s’ [19]. Denoting the grid distortion as D,.,, a lens pair
is rendered as

fO,sts’ | (Sa s = 0; Qg = 0775’ = Lgsvgs’ﬂa@) = g(gs) + DT@ (g(gs’)) . (3)

Denote the background photon contribution as (,,, the contribution from a source s to pixel n as
An,s, and the complete set of latent variables as z. See Table 1 for descriptions and priors of such
parameters. Then, the number of photon arrivals observed at pixel n is

s
Xy, | z ~ Poisson (Cn + Z )\n)s> . “)

s=1

3 Variational Inference

We aim to minimize the expected forward KL divergence to approximate the posterior distribution
using forward amortized variance inference (FAVI) [20]. We thus aim to solve

arg;nin E(z,2)~p(2)p(z2) [108(g0(2]2))] - ®)

Because we employ the FAVI loss, we are not restricted to reparameterizable distributions. We thus
use the following variational distribution:

s
dp(217) = a(S) [T a(ts1S)a(as|9)algs|S, as)a(vs|S, as)a(res| S, as, vs)- (6)

s=1

Table 1 gives the distributional form of each factor. Each factor was approximated using a separate
“encoder” neural network, one for each of the following tasks: source count estimation, source
classification, galaxy parameter estimation, lens classification, and lens parameter estimation.

4 Results

All encoders were implemented in PyTorch [21] with standard CNN architectures and employed the
tiling decomposition described in [18]. Each was trained separately on synthetic images from the
generative model, with galaxies rendered using GalSim [22]. Optimization was done using Adam
[23]. Training these models required five hours using eight Nvidia RTX 2080 Ti GPUs. This is a
one-time cost: inference can be run on an arbitrary number of images thereafter without additional
training. We used both synthetic data and images from SDSS for validation.



Name Generative Variational Description

S Poisson(pun) Categorical Number of sources

u U0, H] x [0,W]) log(u) ~ N (pty,02) Location of source

a Bernoulli(ps) Bernoulli(,, ) Type of source

fi Pareto(fumin, @) log(f1) ~ N(uy,,07) Star flux

fr  Pareto( fmin, f) log(fr) ~ N(psr,0%,) Total galactic flux

d,  U[0,1] logit(d,) ~ N (pa, aflp) Disk flux proportion

m ogit { 2~ | ~ o alaxy ellipse angular offset

B u,2n] logit (£ ) ~ N (up,03)  Galaxy ellipse angular off
d,  U[0,1] logit(dg) ~ N (pta,, aflq) Disk minor-to-major axis ratio
by u[o, 1] logit(bg) ~ N (pe, afq) Bulge minor-to-major axis ratio
ag Gamma(ag, B4) log(aq) ~ N (pay,02,) Major axis for the disk

ap Gamma(ay, ) log(ay) ~ N (ta,,02,) Major axis for the bulge

fo Composite Sérsic N/A Galaxy flux

5 Bernoulli(py) Bernoulli(y.,) Indicator of lensing
0 U[OEmin, Obmax]  log(0r) ~ N(pey,03,) Einstein radius

6.  N(0,1) 0 ~ N (po,,05 ) Lens center

6,  N(0,1) Oy ~ N (o, , ng) Lens center y

q u[o, 1] N/A Lens minor-to-major axis ratio
Be U[—r/4,7/4] N/A Lens angular offset

e1 }I_Zﬁ cos(f3¢) logit (£441) ~ N(pe,,02,)  Lens ellipticity (factor 1)

€2 E_Zﬁ sin(B¢) logit (2%) ~ N (pte,,02)  Lens ellipticity (factor 2)

Table 1: Parameters for the generative model and variational distribution. The four partitions of the
table respectively correspond to the detection, star, galaxy, and lens parameters.

4.1 Synthetic Images

The encoders were trained on data generated through the posited forward model, as shown in
Figure 1. Post-training validation was also performed in a number of ways. In particular, Figure 1
also serves as a visual qualitative posterior check. To assess uncertainty calibration, discrete and
continuous latent quantities were handled separately. Discrete quantities, namely galaxy and lens
detection, were plotted with their outputted posterior probabilities against the empirical proportions.
Continuous variable posterior calibration was assessed with coverage percentages for 90% Bayes
credible intervals. Results in Figure 2 reveal well-calibrated posterior distributions for detection
and parameter estimates for both galaxies and lenses. Understanding specific sources of calibration
imperfections is of interest; one plausible cause stems from the limited expressivity of the encoders,
owing to the fact the neural networks have a finite number of layers.

Figure 1: Synthetic images from our generative model. Each is normalized against the brightest object
in the image. The left panel shows the original synthetic images and the right our reconstructions.
Checking the similarity of the reconstructed images serves as an initial qualitative posterior check.



Name Coverage \ Name Coverage

fr 9466% | fr. 91.22%
d,  89.62% | dp,  87.79%
Bs  90.88% | Bse  89.87%
dy  88.11% | dyv  89.05%
by  8729% | by,  89.42%
ag  8724% | aqe  89.24%
ay  9020% | apy  9547%
0p  9439% | e 94.66%
0.  9222% | ey  89.78%
6,  91.50%

Figure 2: Assessment of posterior calibration for detection and continuous parameters, respectively
shown in the graph and table. The blue lines in the graphs represent the ideal calibrations. Bayes
credible intervals were constructed for 90% coverage.

4.2 Sloan Digital Sky Survey (SDSS)

We additionally apply our model to two SDSS images, referencing annotations of lenses from [24].
We demonstrate successful detections in Figure 3, importantly achieved without false positives. The
images were both 1489 x 2048 pixels and inference required just 25 seconds for each image.

Original Reconstruction

Figure 3: The left column shows the original images from SDSS and the right our reconstructions.
The top row is the reconstruction pair for the field containing J114833.14+193003.2 and the bottom
that for J120602.0+514229. The zoom box is to highlight the subregions containing the lenses.

5 Discussion

We have shown that amortized inference performed by FAVI efficiently detects strong lenses and
estimates parameters in both synthetic and real data settings while providing well-calibrated uncer-
tainty estimates. With this foundation, a number of extensions of this research are possible. One is
the use of this approach to infer weak lensing events, whose manifestations in data are quite different.
For this, several non-trivial adjustments would be necessary in both the generative and inference
procedures. Characterization of dark matter substructures is also of great interest and would similarly
require extensions to the SIE model employed here.



6 Impact Statement

This work builds on the use of machine learning to further astronomical and, more generally,
scientific understanding, when addressing problems in which uncertainty quantification is a necessary
component. Beyond direct application of the techniques presented here to the image data gathered in
future astronomical surveys, particularly the recently launched JWST [25], the broader variational
inference methodology we propose could be extended to future scientific queries.
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