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Abstract

Telescopes capture images with a particular point
spread function (PSF). Inferring what an image
would have looked like with a much sharper PSF,
a problem known as PSF deconvolution, is ill-
posed because PSF convolution is not an invert-
ible transformation. Deep generative models are
appealing for PSF deconvolution because they can
infer a posterior distribution over candidate im-
ages that, if convolved with the PSF, could have
generated the observation. However, classical
deep generative models such as VAEs and GANs
often provide inadequate sample diversity. As
an alternative, we propose a classifier-free con-
ditional diffusion model for PSF deconvolution
of galaxy images. We demonstrate that this diffu-
sion model captures a greater diversity of possible
deconvolutions compared to a conditional VAE.

1. Introduction

High-fidelity galaxy models are important for deblend-
ing (Melchior et al., 2021), analyzing lens substruc-
ture (Mishra-Sharma & Yang, 2022), and validating the anal-
ysis of optical surveys (Korytov et al., 2019). Traditional
galaxy models rely on simple parameteric profiles such as
Sersic profiles (Sérsic, 1963). However, these models fail to
capture the rich structures that are visible in modern surveys.
As a result, there is growing interest in using deep gener-
ative models, such as variational autoencoders (VAEs), to
represent galaxies (Regier et al., 2015; Castelvecchi, 2017;
Lanusse et al., 2021).

Deep generative models of galaxies are fitted with images
that have been observed with a particular point-spread func-
tion (PSF). It is thus necessary to account for the PSF in
fitting these galaxy models, to disentangle the measurement
process from the physical reality.
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Because PSF convolution is not an invertible transformation,
multiple deconvolved images are compatible with the ob-
served image. Traditional deconvolution methods produce
only one deconvolved image that is compatible with the
image (Vojtekova et al., 2021). Deep generative models are
an appealing alternative because they infer a distribution of
deconvolved images that are compatible with an observation.
Although conditional VAEs and conditional GANs (Schaw-
inski et al., 2017; Fussell & Moews, 2019; Lanusse et al.,
2021) can provide a distribution of deconvolved images,
both are known to produce insufficient diversity in their
outputs (Salimans et al., 2016).

Diffusion models are a recently developed alternative to
VAESs and GANSs that excel at producing diverse samples.
Diffusion models have been successfully applied to solve
inverse problems (Kawar et al., 2022; Remy et al., 2023;
Adam et al., 2022; Song et al., 2022). However, training
diffusion models with PSF convolved data to learn a rep-
resentation of physical reality that is decoupled from the
measurement process is not as straightforward as with a
VAE. If we simply add a PSF convolution layer to the end
of the diffusion model’s decoder, as we can with a VAE,
training is no longer tractable.

Instead, we propose to model PSF-convolved galaxy im-
ages with a classifier-free conditional diffusion model (Ho
& Salimans, 2021) and to condition on the observed PSF.
In training this model, we make use of paired data sources,
e.g., both ground-based and space-based telescopes. We
used a conditional VAE as a baseline and compared the
methods using a novel evaluation method. We find that
CVAE:s tended to produce high percentages of invalid de-
convolutions due to missing high-frequency details in recon-
structions, resulting in lower sample diversity compared to
conditional diffusion models. Our code is available from
https://github.com/yashpatel5400/galgen

2. Methods

Let = denote the observed (PSF-convolved) image, let
y denote the latent “clean” image, and let II denote the
PSF. Then, neglecting pixelation and measurement noise,
x = I % y. We investigate classifier-free conditional dif-
fusion models for solving the deconvolution task and we
consider conditional VAEs as a baseline to compare against.
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Figure 1. A CVAE is employed with a partially fixed decoder
consisting of a deterministic convolution with the known PSE.

2.1. Conditional VAE

VAEs model the data distribution as a transformation of a
lower-dimensional latent space (Kingma & Welling, 2013).
An encoder g, maps the input x to a distribution over a
low-dimensional latent expression z, which defines an ap-
proximate posterior distribution ¢, (z | x); a decoder pg
maps z to the original data space through a generative
model py(z | z). Conditional VAEs (CVAEs) (Sohn et al.,
2015) extend VAEs by conditioning both the encoder and
decoder on auxiliary variables ¢, which may be denoted as
4o(2 | z,c) and pg(x | 2, c), respectively.

We investigate a CVAE in which ¢ = II and the final layer
of the decoder is fixed to be a convolution with the known
PSF, as in Lanusse et al. (2021) and illustrated in Figure 1.
With this approach, for each draw from the latent space, a
candidate deconvolved image is produced as an intermediate
result in the decoder, which is the quantity targeted by infer-
ence. For training, we take the loss to be a weighted-variant
of the ELBO for the joint distribution p(z,y | z)
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Note that the first term targets the reconstruction of the
deconvolved image. The hyperparameter weighting terms
« and 8 asymmetrically weight the PSF-convolved and
deconvolved reconstructions, a formulation similar to the
(B-VAE (Higgins et al., 2017), which we found to improve
the reconstruction of high-frequency details in samples.

2.2. Conditional Diffusion Models

Conditional diffusion models, an extension on denoising
diffusion probabilistic models (Ho et al., 2020), are trained
with the following loss function:

Loitt = Eoo[1, 7] x0,e. ||I€0 — €0(xe,t,0)[]7] . (2)

where €g(x;, t, ¢) predicts the noise added to x; (the latent
variable for time step ) and c is the conditioning informa-
tion. We set ¢ = (x,II). Therefore, at inference time, to
deconvolve the image » € R¥1**2_ a deconvolved image
y is sampled by first sampling 2o ~ N (0, Ik, ky &k, ) and
then taking 7" denoising steps conditioned on (z, IT).

2.3. Evaluation Metrics

Recent works such as Hackstein et al. (2023) have inves-
tigated metrics for the related task of generating galaxy
images. However, the task of galaxy generation is distinct
from ours, as we are seeking to produce diverse candidates
conditional on a single observed image. Thus, simply mea-
suring the recovery of the marginal distribution p(y) of
deconvolved images is insufficient to assess performance
for our task. Furthermore, no paired reference data is avail-
able that provides observations of x paired with multiple
draws of y for each z.

Instead, to assess the diversity of samples from the posterior
p(y | «,II), we propose the following metric, where a given
q must satisfy the specified constraint:
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Here, e represents an allowed slack and V denotes the total
variance of y given both x and II. By adding the constraint,
we ensure that high-scoring methods produce valid decon-
volutions. To avoid favoring methods that generate images
with imperceptible pixel-level variance, we compute V over
image featurizations, defined by mapping the domain of im-
ages ) to image features F with a pre-trained InceptionV3
network; this idea is inspired by the Fréchet inception dis-
tance (FID). That is, for distributions p(y | ) and ¢(y | x)
defined over the space of images, we fit two distributions,
N(u ?(ff i, Eyzl’ i) and NV (u 7(;"1, E;’i) respectively, over featur-
izations of the image space. Note that these distributions
are fitted separately for each z; in a test collection {z; } ,,
(@) s(a) Y

giving a collection of distributions {A\ (“y\x»v s

Finally, the objective is estimated as
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3. Experiments

We experiment with galaxy images produced by the Illus-
trisTNG simulator (Pillepich et al., 2018). This dataset
provides a synthetic testbed similar in structure to the paired
dataset of ground- and space-based telescope images that
motivates our work. We construct a dataset consisting of
tuples {(x;, y;, I1;) }_; by convolving each clean image y;
with a PSF II; sampled from a collection. We view the use
of the clean image y; as an idealized surrogate for space-
based telescopes.

Our dataset consists of 9718 images, each 128 x 128 pixels,
with 7774 used for training and 1944 reserved for validation.
Evaluation of the aforementioned FID-like and variance
metrics was performed on the validation set. Note that
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Figure 2. Candidate deconvolutions from the CVAE model. It can be seen that the generated samples shown are roughly valid inverse
mappings by comparing them following convolution with the PSF (bottom row, columns 2—4) to the original PSF-convolved image
(bottom row, column 1). However, high-frequency details, such as the belt of stars along the middle and other regions highlighted with red
circles, are lost in reconstruction.
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Figure 3. Candidate deconvolutions from the conditional diffusion model. It can be seen that the generated samples shown are roughly valid
inverse mappings by comparing them following convolution with the PSF (bottom row, columns 2—4) to the original PSF-convolved image
(bottom row, column 1). Additionally, high-frequency details (highlighted with red circles) are prominently captured in deconvolutions,
enabling a greater diversity of reconstructions.
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Figure 4. A representative sample from CVAE:s trained to convergence with different choices of weights for the deconvolved and convolved
image reconstructions, i.e. « and 3 respectively. Observe that increasing the weight of the clean reconstruction tends to result in the loss

of high-frequency detail.

inference does not use the clean images. PSFs were taken
to be discretized two-dimensional isotropic Gaussians on
grids of size 10 x 10 with varying choices of o € [2.0, 4.0]
discretized in intervals of 0.5.

All experiments were implemented in PyTorch (Paszke
et al., 2019). A standard U-Net architecture was used
for the DDPM denoiser €g(-). Our implementation of the
DDPM was based on the “Conditional Diffusion MNIST”
project (Pearce et al., 2022). Our CVAE employed a stan-
dard CNN-based architecture for both the encoder and de-
coder, with transposed convolutional layers used in the de-
coder. The observed PSF was included as an additional
channel after it was encoded by a one-layer CNN network
for both the DDPM and CVAE. The diffusion model was
trained for 500 epochs with a minibatch size of 96, whereas
the VAE model was trained for 600 epochs with a minibatch
size of 128. For optimization, we used Adam (Kingma &
Ba, 2014) with a learning rate of 10~%. We trained the dif-
fusion model using one Nvidia A100 40G GPU, while the
VAE model was trained using one Nvidia 2080 Ti GPU. We
used 7' = 950 DDPM time steps. DDPM inference required
10 seconds per sample, while CVAE inference required just
0.01 seconds per sample.

Our CVAE was trained with asymmetric weights for decon-
volved and convolved reconstructions, whose selection is
justified by the results of Figure 4. To then assess the quality
of the results according to Equation 3, we first confirmed
the validity of the samples across both the CVAE and the
diffusion model by convolving them with the known PSF
to ensure approximate recovery of the original images with
a slack of ¢ = 10~%. Although both accurately capture
the low-frequency details, the CVAE fails to capture the
high-frequency variation, resulting in visibly distinct recon-
structed images compared to the originals (Figures 2 and
3).

Next, we discard samples with insufficient similarity be-

Table 1. Percent of retained samples and conditional variance met-
rics for samples generated by the diffusion and CVAE models.
Quantitative results confirm the greater diversity apparent in vi-
sualizing the valid samples produced by the diffusion model over
those from the CVAE.

Metric Diffusion CVAE
Percent Retained 100% 53.9%
Variance 15.86 15.13

tween the reconstruction they imply and the original image.
The proportion of samples retained for each method, which
serves as a performance metric, is given in Table 1. We
find that the diffusion model produces greater variety than
the CVAE, as can be seen in Figures 2 and 3 and in Ta-
ble 1. This variety manifests itself in subtle variations of
high-frequency details that are equivalent under the forward
convolution map.

4. Discussion

We investigated the sampling diversity of both CVAEs
and conditional diffusion models that have been trained
to perform PSF deconvolution. Diffusion models produce
a greater diversity of valid deconvolution candidates com-
pared to CVAEs, suggesting that they are preferable for
downstream inference tasks. In future work, we may ap-
ply conditional diffusion models to settings in which both
the source PSF and the target PSF vary, by conditioning
on the target PSF too. This extension would let us train
high-fidelity disentangled galaxy models solely with images
from ground-based surveys.
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