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Abstract

Multi-omics has gained momentum over the past few years especially in plant single
cell-type analysis as they aim to understand cellular molecular networks across different
levels of genetic information flow. For multi-omics sample preparation, molecular
extractions performed non-simultaneously create rooms for variation, inaccurate data,
waste of limited samples, resources and labor. Here we optimized a protocol for 3-in-1
simultaneous extraction of RNA, metabolites, and proteins from the same single
cell-type sample. We adapted a commercially available RNA kit with a few modifications
to obtain high quality starting materials for sequencing and LC-MS/MS-based met-
abolomics and proteomics. RNAs are bound to the column, metabolites were extracted
in a polar solvent and proteins are precipitated using acetone. This creates an all-in-one
workflow using a standard RNA kit. Little training is required to carry out this protocol
as it is simple and easy to use. It may be used with a wide range of plant species and
different amounts of starting materials, including single cells.
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1. Introduction

Arabidopsis thaliana was the first plant species to be fully sequenced and
it has been used as a reference species for plant biology research. To date,
most of the multi-omics studies use different plant tissues like whole leaves,
roots, or root hairs (Becker, Takeda, Borges, Dolan, & Feijo, 2014; Wang,
Lan, & Shen, 2016), seeds (Picard, Povilus, Williams, & Gehring, 2020),
silique, flowers (Mergner et al., 2020), seed coat (Zhang et al., 2022), or
pollen tube (Costa, Silva, & Coimbra, 2020). There have been papers
published that describe 3-in-1 (e.g., DNA, RNA, and proteins (Valledor
et al., 2014), or metabolites, lipids and proteins (Kang, David, Li,
Cang, & Chen, 2021)), 4-in-1 (Vorreiter et al., 2016), and 5-in-1 method
(metabolites, lipids, proteins, starch, and cell wall polymers (Salem, Juppner,
Bajdzienko, & Giavalisco, 2016)). The disadvantages of these methods are
that they are time-consuming and require large amounts of starting material
to get high-quality samples. The tissue types used are available in abundance
and are well-studied compared to single cell-type samples like guard cells
(Zhao, Zhang, Stanley, & Assmann, 2008; Zhu & Assmann, 2017; Zhu
et al.,, 2014), mesophyll cells (Jin et al., 2013), trichomes (Frerigmann,
Bottcher, Baatout, & Gigolashvili, 2012; Yang & Ye, 2013), vasculature
and epidermal cells (Bruex et al, 2012). Studying single cells can
provide deeper insight on molecular processes in different types of cells.
Importantly, it solves the problem of averaging molecular changes from
different types of cells when using whole tissue samples. Furthermore, for
complete understanding of the functions of plant cells, one type of omics
is inadequate (Larkin, 2007). For example, protein levels may not be closely
correlated with their corresponding RNA levels (Shaw, Tian, & Xu, 2021;
Walley et al., 2016). Furthermore, the function of proteins and/or metab-
olites may depend on individual cellular and subcellular localization.
Therefore, multi-omics approaches enable a deeper understanding of plant
biology (Libault, Pingault, Zogli, & Schiefelbein, 2017). The method
described here was developed as a proof-of-concept study where the mate-
rial is not limited to single cells but can be applied to any tissue or organ. The
optimization comprises the addition of acetone to obtain both metabolites
and proteins from the commercially available Qiagen RNA kit. The results
from this method can be used effectively for systems integration of the
multi-level molecular data. To our best knowledge, this is the first 3-in-1
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extraction protocol developed for plant single cell-types like guard cells and
mesophyll cell protoplasts for simultaneous analysis of the RNA, proteins,
and metabolites.

2. Methods

Plant samples are difficult to work with when extracting sequencing
grade high quality RNNA because they contain polysaccharides and phenolic
compounds that are known to reduce the quality of RNNA (Leh, Yong,
Nulit, & Abdullah, 2019; Umesh, Ansari, & Sridevi, 2017). It is imperative
to remove these contaminants through downstream treatments. In recent
years, a few papers have been published for high throughput plant single
cell-type and single-cell extractions (Jin et al., 2013; Misra, Tong, &
Chen, 2015). The multi-omics extraction for plant single cells is important
as it provides different types of molecules from the same sample to avoid any
bias or averaging effects and can help to reduce the variations between
replicate samples.

2.1 Plant growth conditions

A. thaliana plants grown from seeds in short day conditions (22 °C in light
for 8h and 20°C in dark for 16h) with a light intensity of 160 pmol
photonsm™>s™' in a growth chamber using potting mixture (Sungro
Horticulture Propagation Mix). Plants were fertilized once a week by
fertilizer: 20-10-20 Peat-Lite according to manufacturer instructions, and

5-week-old plants were used for the preparation of single cells.

2.2 Single cell-type sample preparation
2.2.1 Preparation of guard cell enriched sample on tape
Equipment and consumables

pH meter

Rocking shaker

Forceps

Petri plates

Scotch tape

Degasser

Falcon tubes

Liquid nitrogen
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Reagents and solvents
1. Opening Buffer: 1L

50mM KCl 3.7¢g
10mM MES 1.95¢

Adjust pH to 6.2 with KOH. Degas for 5min. Store at RT (room tem-
perature). Whenever possible make fresh.
2. Guard cell enzyme in 50mL opening buffer

0.7% Calbiochem cellulysin R10 0.35¢g
0.025% Macerozyme R 10 0.0125¢
0.25% BSA 0.125¢
Y23 Pectolyase 0.1g

Dissolve all the above components together in a 50mL falcon tube and
keep it on the rocker at 10 rocking motions per minute for 12—15min. DO
NOT VOTEX otherwise it will create lot of bubbles. No filtration is
required, although it is preferred.

Procedure for guard cell isolation by a tape-peel method

1. Cut the fully expanded leaves from 5-week-old Arabidopsis plants and
adhere the lower epidermis to the scotch tape of each leaf.

2. Take another scotch tape and put it on the top. The leaves are now sand-
wiched between two layers of scotch tape.

3. With the help of a tweezer, pull apart the two scotch tapes like in Fig. 1.
NOTE: If there are some green mesophyll cells still stuck on the guard
cell side, double tape near the green part to remove it to avoid cell to cell
contamination.

4. Place the guard cell peels in opening bufter (with the guard cells side
touching the opening buffer) under light for 2h. Use a big Petri-plate
and make sure that the peels are not overlapping or sticking with
each other.

5. Place the mesophyll tape-peels in the mesophyll cell digestion enzyme
(with the mesophyll cells side touching the enzyme solution) under dark
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ﬂ After enzyme digestion

Enriched stomatal guard cell Mesophyll cell protoplast

Fig. 1 Scotch tape-peel preparation of guard cells (left) and mesophyll cell protoplasts
(right) before and after enzyme treatment. The cells were tested for viability by fluores-
cein diacetate (FDA) (green in color) and neutral red viability staining. From the lighter
side, guard cells were prepared, and from the darker side mesophyll cell protoplasts
were isolated. A part of this procedure with video has been published earlier
(Lawrence, Pang, Kong, & Chen, 2018).

for 3h on a slow speed rocker. Follow the steps in the next section for
mesophyll cell protoplast preparation.

6. After 2h, put the guard cell peels in the enzyme solution (in small Petri-
dish) for 7min on shaker (25 mL enzyme for 50 peels). NOTE: Do not
over-digest. Keep checking the tape peel under the microscope to pre-
vent over digestion (loss of cells) and optimize the time according to your
batch of enzymes.

7. Wash the peels with opening buffer (in big Petri-dish) for 5min on a
shaker (twice).

8. Transfer the peels back under light for 1 h in the opening buffer (big Petri
dish) to allow recovery after the enzyme shock.

9. After 1h, freeze the tape peels in liquid nitrogen. Store in —80°C for
further use.
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2.2.2 Mesophyll cell protoplast preparation
This protocol for is adapted from Zhu, Dai, McClung, Yan, and Chen
(2009) with minor modifications.
Equipment and consumables
Petri plates
15mL centrifuge tube
Nylon mesh of 35—75 pm pore size
1.5mL Eppendorf tube
Round bottom 50mL tube
Aspirator
Cold centrifuge
pH meter
Reagents and solvents
Solution 1#
10mM MES-KOH (pH5.5)
0.6 M sucrose
Basic solution: (Solution 2#)
0.5mM CaCl,, 0.5mM MgCl,, 10pM KH,PO,; in 10mM
MES-KOH (pH 5.5)

1 500mL 100mL
MES 1.952¢g 0.976g 0.1952g
0.6 M Sorbitol 109.32¢ 54.66g 10.932¢

Adjust the pH to 5.5 with KOH and make up the volume.
Enzyme solution: (Solution 3)

0.5% (w/v) macerozyme R-10 (Yakult Honsha) 0.25¢g
1% (w/v) Onozuka RS cellulose (Yakult Honsha) 05¢g
0.01% (w/v) pectolyase Y-23(Seishin pharmaceutical) 0.005¢g
0.2% (w/v) BSA (sigma) 0.1g

0.1% (w/v) PVP-40 (sigma) 0.05¢
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Put to 50mL basic solution the day before making the protoplasts. No
need to filter.

Procedure

1.

Place the mesophyll peels in the enzyme solution (15mL for 50 peels)
and digest the leaves at RT degree for 3h with gentle agitation.
Cover the plate with aluminum foil.

Pull out the suspension and after passing it through a nylon mesh of
35—75 um pore size transfer to 15mL centrifuge tube and centrifuge at
150 x ¢ for 10 min.

. Pellet obtained was resuspended in 5mL of solution 1#, first put 1mL

and carefully resuspend the pellet and then carefully add the remaining
4mL of solution 1#.

Carefully add another 5mL of solution 2#, which are layered on the top
of solution 1#.

Centrifuge for 7min at 150 X g, and the interface containing mesophyll
protoplasts is transferred to a new tube (round bottom), and then
resuspended in 5mL of solution 2 (Basic solution).

The suspension was then centrifuged at 150 X ¢ for 3min and the final
pellet was gently resuspended in 10mL of solution 2 (put the first mL
very carefully).

Keep the solution in the dark for 1h and then centrifuge for 5min at
150 X g to pellet the mesophyll cell protoplasts.

R emove the supernatant and flash freeze the pellet. Store in —80 °C until
further use.

2.3 3-in-1 method for simultaneous RNA, metabolite

and protein extraction

2.3.1 RNA extraction
Equipment and consumables.

Qiagen RNeasy Plant mini kit (Cat. No. 74904)

On-column DNase digestion using the RNase-Free DNase Set
Centrifuge (Eppendort 5417R)

RNase free Filter tips, sterile

Pestle mortar

Liquid nitrogen

Kim wipes

Disposable gloves

Nanodrop
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Reagents and solvents.
Actinomycin
Cordycepin
B-Mercaptoethanol (B-ME)
RNA Zap
Ethanol
Acetone
PMSF (Phenylmethylsulfonyl fluoride)

Procedure
Detailed protocol is available on Qiagen website for RNA extraction
(https://www.qiagen.com/us/resources/resourcedetail?id=14e7ct6e-
521a-4ct7-8cbe-bfOfbfa33e24&lang=en). Fig. 2 shows details of step-
by-step the optimization and modifications to the kit that we use to
perform the 3-in-1 extraction.

+10 pl of 100 uM lidocaine

+10 pl of 100 uM camphor sulfonic acid
+60 pl of 10 nM BSA

+0.5 pl PMSF 200 mM

+10 pl betamercaptoethanol

+0.01% cordycepin of 1mg/ml
+0.0033% actinomycinD of 1mg/ml

‘__—/
wLT buffer (make up 1.5ml)

Qiagen RNeasy mini kit

Y

Add acetone for protein & @ On column DNase
precipitation treatment

o/nin-20in glasstube/\ l

Clean up by solid Precipitate proteins RNA

phase extraction \ }

METABOLOMICS PROTEOMICS TRANSCRIPTOMICS
Compound Proteome Gene Expression
Discoverer 3.2 Discoverer 2.5 Package in R

Fig. 2 Detailed flowchart of 3-in-1 extraction of RNA, metabolites, and proteins with
minor modifications to the Qiagen RNA kit using Arabidopsis guard cells and mesophyll
cell protoplasts. Instead of discarding the flow through from the RNA kit, this method
uses it for protein and metabolite extractions. BSA, bovine serum albumin; PMSF,
phenylmethylsulfonyl fluoride; SPE, solid phase extraction.


https://www.qiagen.com/us/resources/resourcedetail?id=14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24&lang=en
https://www.qiagen.com/us/resources/resourcedetail?id=14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24&lang=en
https://www.qiagen.com/us/resources/resourcedetail?id=14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24&lang=en
https://www.qiagen.com/us/resources/resourcedetail?id=14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24&lang=en
https://www.qiagen.com/us/resources/resourcedetail?id=14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24&lang=en
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10.

11.

12.

13.

. To 1mL of RLT buffer from the kit add 10 pL of 100 pM lidocaine

(positive mode internal standard), 10pL of 100 pM camphorsulfonic
acid (negative mode internal standard), 60 pL of 10nM BSA (protein
internal standard), 0.5puL 200mM phenylmethylsulfonyl fluoride
(PMSF, a serine protease inhibitor), 10puL p-ME, 0.01% cordycepin
of 1mg/mL stock (in water), 0.0033% (v/v) actinomycin D of
1mg/mL stock (in DMSO). Make up the volume to 1.5mL using
RLT buffer for 1 sample.

. Grind stomata tape-peel samples in the pestle and mortar with liquid

nitrogen and then add the above 1.5mL solution. To the mesophyll cell
protoplast add directly the above 1.5mlL solution and vortex.

. Put the ground samples in R Nase-free, liquid-nitrogen—cooled, 2mL

microcentrifuge tube. Vortex vigorously.

. Transfer the sample to a QIAshredder spin column (lilac) placed in a

2mL collection tube. Centrifuge at 17,900 X ¢ for 2min.

. The flow-through from the collection tube is transferred to a new 2mL

microcentrifuge tube. (NOTE: Do not transfer the cell-debris pellet).

. Add 0.5 volume of 100% ethanol and mix completely. Do not

centrifuge.

. Transfer the supernatant (with precipitate) to RNeasy Mini spin col-

umn (pink) in a 2mL collection. Centrifuge for 15s 10,600 X g.

. The column has the RNA and from the flow-through extract the

metabolites and proteins.

. Transfer the flow-through to a glass tube and add four volume

of ice cold 100% acetone Keep in -20 °C overnight for protein
precipitation (follow next two sections for metabolite and
protein extractions).

To the column (containing RNA) add 350 uL R W1 buffer to prepare
for on column DNase treatment. Centrifuge for 15s at 10,600 X g.
Discard the flow-through.

For 1 sample add 80pL of DNase I incubation mix (10pL DNase I
stock solution +70pL Bufter RDD) on the centre of the column.
NOTE: Invert mix, DO NOT VOTEX the incubation mix.
Keep this for 30 min at room temperature.

Add 350 pL Buffer RW1 and centrifuge for 15s at 10,600 x g. Discard
the flow-through.

Add 500 pL Bufter RPE to the RNeasy spin column. Centrifuge for
15s at 10,600 X g. Discard the flow-through.
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14.

15.
16.

17.
18.

19.

Add 500 pL Bufter RPE centrifuge for 2min at 10,600 X g. Discard the
flow-through.

Do a dry spin at 10,600 X ¢ for 1 min.

Place the column in a new 1.5mL tube. Add 35 pL of R Nase-free water
directly to the center of column membrane. Keep at RT for 10 min.
Centrifuge at 10,600 X ¢ for 1min to elute the RNA.

Preform nanodrop to check RNA concentration and integrity. The
A260/A280 ratio of 1.9-2.1

Run a 1% agarose gel to check the two RINA bands as shown in Fig. 3A

2.3.2 Metabolite extraction
Equipment and consumables

Nitrogen blower

SPE clean up using vacuum: Oasis HLB 3CC (60mg) extraction
cartridges (part no. WAT094226).

Supelco Visiprep ™ 24

Pipette

Savant SPD1010 SpeedVac Concentrator, Thermo Fisher Scientific
Laminar

Centrifuge

Reagents and solvents

Bradford reagent (Sigma Aldrich B6916-500ML)
Promega sequencing grade modified trypsin (V5111)
Methanol

0.1% FA (formic acid) (v/v) water

Acetone.

M1 M2 M3 MW GCl1 GC2 GC3

M e

A

Fig
gel

.3 Electrophoresis of RNA and protein samples. (A) RNA (1 pg) loaded on 1% agarose

, and (B) protein (20 ug) loaded on 10% SDS-PAGE gel. M, mesophyll cell protoplasts;

GG, guard cells; MW, molecular weight marker.
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Procedure

1.

10.

11.

12.
13.

14.
15.
16.
17.

18.

After addition of four volumes of ice-cold acetone to the flow-through
and incubate overnight at —20 °C, centrifuge at 15,300 X ¢ for 30 min.

. Collect the supernatant in a new glass tube for metabolite extraction

and the pellet (for protein extraction).
Use nitrogen blower to evaporate all the acetone to get the metabolite.
Add 500 pL of 0.1% FA water to the glass tube.

. Place the oasis HLB cartridge on the Supelco Visiprep™ 24 vacuum

manifold. Do not turn on the vacuum.

. Condition the HLB cartridge with 2mL methanol. Let it flow by

gravity.

. Equilibrate the HLB cartridge with 2mL 0.1% FA water. Set the vac-

uum to 5" Hg.

. Switch off the vacuum before loading the 500 pL sample on the HLB

cartridge. Set the vacuum at lowest pressure and let the sample come
down drop-by-drop.

. Slowly increase the pressure and let the entire sample come down in the

collection tube.

Stop the vacuum and apply 2mL 0.1% FA water. Apply vacuum again
at 5” Hg.

Continue applying vacuum to remove any residual wash solvents.
Switch oft the vacuum.

Replace the collection tube with 2mL Eppendort tube.

Apply 2mL of 100% methanol to the HLB cartridge and let it flow
through by gravity.

Switch on the vacuum pump and collect the elution solvent.

Speed vac the eluted sample and store in —20°C.

Resuspend in 25 pL of 0.1% FA water.

Sonicate 5min, vortex 30min at 4°C and then centrifuge at
15,300 X ¢ for 30 min.

Send 13 pL for MS analysis and store the remaining 12 pL at —20°C as
backup sample.

2.3.3 Protein extraction
Equipment and consumables.

Millipore Zip Tip (C18, REF-ZTC18S960)

Reagents and solvents.

100% acetonitrile (ACN)
50 and 25mM Ammonium bicarbonate (ABC)
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Water 10mL Final Con.

Ammonium bicarbonate 79mg 100mM

10mM DTT in 100mM ABC (10pL 1M DTT + 990 pL 100 mM ABC)
55mM fresh chloroacetamide in 100mM ABC

100mM ABC TmL Final Con.
chloroacetamide 5.14mg 55mM
25mM ABC

1% formic acid (FA) (v/v) water

Procedure for Acetone Precipitation of Protein

19. After adding four volumes of ice-cold acetone to the flow-through and
incubate overnight at —20 °C, centrifuge at 15,300 X ¢ for 30 min.

20. Collect the supernatant in a new glass tube (for metabolite extraction)
wash the pellet with 100 pL ice-cold ethanol.

21. Air-dry the pellet till the smell of ethanol goes away. Over drying will
make the pellet difficult to dissolve in urea buffer.

22. After performing Bradford assay for determining protein concen-
tration run SDS-PAGE gel 20 pg protein for each sample was loaded
in each well and ran till 1cm. Stain and de-stain the gel overnight
(Fig. 3B).

23. Wash the gel with water 2 X and take a photo for your record.

24. Cut the gel bands into small pieces on a clean glass plate using a scalpel
and transfer to a 1.5mL tube

25. Store these cut gel bands in —80 °C until use.

In-gel trypsin digestion

1. Add Solution 1 25mL ACN+25mL 50mM ABC) to the gel pieces
2. Shake for 2-3h, till the blue color is completely gone. Remove
solutionl
3. Add 200pL of 100% ACN
Keep on the shaker for 10 min. Discard the supernatant
5. Add 200pL of 100% ACN

>
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10.
11.

12.
13.
14.
15.
16.
17.
18.
19.
Zip
1)
(2)
3)

4
)

(6)
(7

®)
)

(10)

. Keep on the shaker for 5min, remove supernatant. Speed vac 1 min

(optional)

. Reduce by adding100 pL of 10 mM dithiothreitol (DTT) and keep for

45min at RT

. Alkylate with 100 pL of 55mM chloroacetamide in darkness at room

temperature for 1h

. Discard the supernatant. Add 500 pL of 100%ACN. After 5min on the

shaker, discard the supernatant
Speed vac for 5min
Add trypsin (Sequencing grade, Promega, Madison) to a trypsin:
protein ratio of 1:50 (w/w) and incubate 37 °C overnight
Remove supernatant in new 1.5mL tube
Add 100pL 1% FA and 2% ACN to the gel pieces
Remove the supernatant and collect in same 1.5mL supernatant tube
To the gel pieces add 50 pL of 80 ACN:20 water with 0.1%FA
Vortex for 30 min
Transfer the buffer from gel tube and add to the supernatant tube
Add 50 pL of 60% (v/v) ACN
Mix all supernatant and speed vac. Sample can be stored at —20°C
tip clean up (optional)
After digestion the dried peptides were dissolved in 20 pL 0.1% FA water
Sonicate 5min, then vortex 30 min
The zip tip pipette tip was equilibrated with 10 pL of 100% ACN (5 x)
and 10pL of 0.1% FA water (5 X).
The peptides mixture (samples) was loaded into the tip by taking 25 pL
aliquots, pipetted up and down slowly 20 times
Elute the sample with 5pL elution buffer (80% can+0.1% FA) with
pipetting up and down 10 times. Repeat it one more time
Repeat steps 3—5
Retain the flow-through until your mass spec proteomic data is
confirmed
The enriched samples were dried down in speed vac and kept at
—20°C until use
When mass spec is ready dissolved the dried peptides in 25pL 0.1%
FA solution. Sonicate 5min, vortex 30min at 4 °C, and then centri-
fuge at 15,300 X ¢ for 30 min
Send 13 pL for MS analysis and store 12 pL in —80°C as backup
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2.4 Sample processing and data analysis

RNA sample concentration and integrity are measured using a nanodrop
instrument. The A260/A280 ratio of pure RINA samples should be between
1.9 and 2.1. To visually check if RNA is intact, analyze the sample using a
1% agarose gel. The presence of two RINA bands (28S and 18S) is a clear
indicator of intact RNNA. For untargeted mass spectrometry-based analysis
of metabolites, the dried samples were resuspended in 25pL of 0.1% FA
water. Analyzed on an Thermo Fisher Scientific. Separation was obtained
on an Accucore™ C18 HPLC Columns (Catalog number: 17126-
102130) with particle size of 2.6 pm, diameter of 2.1 mm, length 100 mm
(Thermo Fisher Scientific). Mobile phase A was water with 0.1% FA
and Mobile phase B was acetonitrile with 0.1% FA with a flow rate of
350puL/min. A 40min gradient was used for separation in both positive
and negative mode. Q-Exactive mass spectrometer and liquid
chromatography Vanquish-Flex (Thermo Fisher Scientific, San Jose, CA,
USA). The LC gradient is set to 22min: 30% of B, 30min: 98% of B,
31min: 98% of B, 32min: 98% of B, 8 min stop run. Full MS1 used the
Orbitrap mass analyzer with a resolution of 70,000, scan range (m/z) of
200-1000m/z and normalized collision energy Of 30. Data analysis was
performed using Compound Discoverer 3.1 (Thermo Fisher Scientific,
San Jose, USA). The results showed 1434 and 1200 metabolites were iden-
tified in negative and positive ion modes, respectively. The data was cleaned
by filtering out the metabolites without MS/MS and where the name of
metabolite does not appear in spectral libraries. For removing the duplicates,
we made sure that there are good-shaped peaks and kept the ones with
high FISH score. Manual inspection was done to remove non-plant metab-
olites and contaminants. Venn diagram in Fig. 4A indicates a total of 118
metabolites were obtained from just guard cells and 190 from mesophyll cell
protoplasts, with 50 metabolites being identified in both cell types.

The generated peptides were solubilized in 25 pL 0.1% FA in water and
analyzed on Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific,
San Jose, CA, USA). Liquid chromatographywas carried out using a
180 min gradient with 0.1% FA in 100% water (solvent A) and 100%
ACN (solvent B). Peptides were separated on Acclaim PepMapTM 100
pre-column (75 pm X 2 cm, nanoViper C18, 3pm, 100 A) combined with
an Acclaim PepMapTMRSLC (75 pm X 25 cm, nanoViper C18, 2pm,
100 A). The following gradient of solvent B in solvent A: starting at 2%,
for 140min, 35% at 160min, 95% 165min, 95% at 170min, 2% at
176 min, and 2% at 180min with a flow rate of 350nL/min. Full-scan
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Fig.4 Venn diagram (for metabolites, A) and PCA plot (for proteins, B) of guard cells and
mesophyll cells showing cell type differences.

MS spectra were acquired in apositive ionmode in Orbitrap MS with scan
range of 4002000 m/z and a resolution of70,000. The normalized collision
energy was 35. Data analysis was performed on Proteome Discoverer 2.5
(Thermo Fisher Scientific, San Jose, USA) using the following parameters
for the identification and quantification of proteins: TAIR 10 database with
mass tolerance of 10ppm and fragment mass tolerance of 0.02Da.
LC-MS/MS Proteomics data processing was performed on Q-Exactive
Plus using label-free quantitative proteomics. After applying the filter of
FDR (false discovery rate) of less than 1%, unique peptides numbered
greater than or equal to 2, In Proteome Discoverer2.5, the number of pro-
teins identified with high confidence were 2599 out of 3943 total proteins.
The peptide groups identified were 22,514. Median data normalization was
done using R-statistics in METABOANALYST. The cell type differences
were obvious in the 3D PCA plot (Fig. 4B). Guard cells seem to have
completely different profile than mesophyll cells. A twofold change
cut-oft along with a P-value of less than 0.05 were used to determine dif~
ferences in single-cell type, where a total of 789 proteins were increased
and 994 were found to be decreased in guard cell by mesophyll cell ratio.

2.5 Safety considerations and standards

Please follow the safety considerations, standards, and regulations mentioned
on all chemical label. Use nitrile gloves, masks, and safety goggles. While
working with proteins special care should be taken to avoid keratin contam-
ination especially from skin and hair. Follow your lab guideline for proper
hazardous and bio-hazardous waste separation and disposition. When work-
ing with RNA make sure you autoclave and treat pestle and motor with
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RNA zap. Filter tips should be used when you are dealing with RNA. Make
sure to use clean glass wear for metabolomics experiment. Do not use plastic
when dealing with acetone. Always use glass. Dispose the glass waste in the
proper glass bin.

2.6 Troubleshooting & Optimization

Problem Solution

Reproducibility issues Between the biological replicates keep the
weight of sample same. If using peels, use
the exact same number of peels

Some molecules are liable to Make sure the storage conditions are

degradation and changes and therefore maintained properly. Light and cold

need to preserve integrity of the sample sensitive chemicals should be
appropriately handled and stored

Over-digesting of protein samples Make sure you note the timing of trypsin
addition. Do not exceed more than 17h
for overnight trypsin digestion. Use the
same amount of trypsin for all samples

Glass tubes breaking in centrifuge Make sure the glass tubes are centrifuge
compatible and check the manufacturer
label up to what speed they can tolerate

3. Summary

The method outlined above is simple, cost-eftective, and reproducible
for users of all levels. Using a commercially available kit with some modi-
fications provides efficient separation of 3 cellular components from 1
sample. A major merit of using this 3-in-1 multi-omics method lies in that
it can use limited amount of starting material to provide maximum informa-
tion across omics platforms and is applicable to various plant materials, such
as organs, tissues, and cells.
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