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Bioprinting involves the fabrication of functional tissue constructs using a combination of biomaterials
and it has the potential to transform regenerative medicine. However, bioprinting faces several chal-
lenges which can be attributed to its high sensitivity to the slightest variation in process parameters,
material constituents, and microenvironmental conditions. This research integrates a physics-based
model with a memory-based data-driven model to provide predictive capabilities for bioprinting. The
hybrid approach uses the long short-term memory (LSTM) network to provide real-time predictions of
the bioprinting process parameters as demonstrated by an illustrated case study.

© 2023 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.

1. Introduction

Regenerative tissue engineering has been impacted by the
emergence of Industry 4.0 which is driven by connectivity, intelli-
gence, and flexible automation [1]. With this, building of scaffolds,
printing of tissues and functional organs such as heart [2], lungs,
bone [3-5] among others can be accomplished. Currently, bioprint-
ing is patterned around the conventional additive manufacturing
processes such as fused deposition modeling (FDM) or stere-
olithography (SLA) [6]. However, it is sensitive to the slightest vari-
ation in material formulations [7-10], process parameters [11-13],
microenvironmental conditions [14,15], especially when biologi-
cally functional parts are to be printed [16].

Machine learning has been applied in biomanufacturing to
unravel hidden, complex, and non-linear patterns that exist in an
input-output dataset for applications in computational biology
[17], protein synthesis [18], and drug development [19,20] to name
a few. Machine learning algorithms [21-24] perform better with
big datasets, however big datasets are limited for bioprinting pro-
cesses due to their high resource intensity [25]. It is worthy to note
that, physics-based models alone cannot sufficiently capture the
reality that goes into bioprinting as it is based on assumptions
made to reduce the model complexity. Thus, it is paramount to
incorporate data-driven approaches that can provide comprehen-
sive understanding and predictive capabilities to bioprinting.
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Extensive bioprinting experimentation to determine the out-
come of a bioprinted part is resource intensive (time and cost).
Some works have explored the physics of bioprinting techniques
[26,27] however, challenges still exist. These challenges include:
(1) just a few reported works provide a framework on bioprinting
process, (2) sustaining cell viability [28] and long-term functional-
ity [29], apoptotic effects of bioprinted part based on the sensitive
of cells, tissues, process or environmental variation, (3) high cost,
long bioprinting time, and resource intensity, and (4) insufficient
data repository to aid other forms of data-based prediction models.

For better understanding of the bioprinting process, it is inade-
quate to use experiments, machine learning, or physics-based
model as a stand-alone approach. This research integrates a
physics-based model with a memory-based data-driven model to
provide predictive capabilities for bioprinting.

2. Methodology

In this research, a hybrid physics-based machine learning
model is implemented that integrates the physics-based model
by incorporating output of the physics-based model into the long
short-term memory (LSTM) network. Fig. 1 shows the framework
of the bioprinting process using physics-based data driven model
used in this work. A design of experiment was conducted on an
extrusion bioprinting process to relate input parameter combina-
tions to the desired bioprinting output. Further, a physics-based
model was used to predict bioprinting outcomes for a combination
of bioprinting input parameters that could not be obtained from
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Fig. 1. Physics-based memory-based bioprinting process framework.

experiments. Datasets were obtained using a combination of
experiments and physics-based model predictions, thereby,
exploring the computational search space for bioprinting. The con-
solidated datasets were stored in a bioprinting data repository for
training the LSTM machine learning model as discussed in detail in
Section 2.1. For the next timestamp, the trained LSTM was used to
obtain the next output prediction. The prediction and the actual
values were compared, and the required update was conducted
via closed-loop control. In this section, a formulated hybrid model
was used to capture all aspects of bioprinting relating to stem-cell
based tissue engineering. These include material formulations,
process parameters, and microenvironmental variables. In this bio-
printing experiment, a polycaprolactone based matrix (2 to 10 w¥%/
v) was utilized for incorporating calcium magnesium phosphate
nanoparticulates [30]. A four-axis Nordson EFD Janome robot with
a custom extrusion head was used to fabricate 3D scaffold struc-
tures. A sensor array for temperature and humidity (HTU21D-F:
GY21) as well as topographical laser mapping (OptoNCDT 1320:
Micro Epsilon and Sony IMX322 CMOS) was integrated in the bio-
printing process.

2.1. Physics-based model

In this research, an extrusion-based bioprinting process was
used as a case-study as shown in Fig. 2. The relation that exists
between input parameters (bioprinter specifications, process
parameters, and environmental parameters) and desired output
was modeled as generalized in Eq. (1).

Y =f(X) (1)

where, Y is the target output metric (e.g., print resolution, cell via-
bility) and X is the set of input parameters which include material
property (e.g., viscosity, density, rheology), process parameter index
(e.g., nozzle diameter, speed), and microenvironment index (e.g.,
temperature, humidity). An extrusion-based bioprinting system
uses pressure gradient to deposit bioinks from nozzles using a
CAD based tool path layer-by-layer [2]. For the case study, print res-
olution of printed part was considered as the desired output param-
eter. Print resolution can be linked to the diameter of strands
extruded from the nozzle of the bioprinter. Mathematically, as seen
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in the works of [26,31], and [25], the resolution of an extrusion-
based bioprinting can be modeled by Eq. (2):
4n

2
d=D *\/3 <3n+1)*AP

The process parameter ranges used in our research are stated.
Wherein, d is the resolution of print (20 to 50 pum), D (15 to 50
pm) and (10 to 40 mm) are diameter and length of nozzle, respec-
tively, v is print speed (2 to 15 mmy/s), n is apparent viscosity of
bioink (50 to 1000 cP), n shear thinning factor (0.5 to 0.9), and
AP (20 to 110 kPa) is the gage pressure (pressure drop between
the reservoir and nozzle). Eq. (2) can be used to generate more
print resolution output data for input parameter combinations
not considered during experiment.

1
Z*q*l*v*

(2)

2.2. Data driven algorithms

After understanding the science of bioprinting and formulating
a physics-based model a data-driven approach was implemented
to unravel the hidden, complex, and nonlinear relationship that
exists between the sets of inputs and outputs. Typically, bioprint-
ing processes build components of tissue scaffolds in a hierarchical
fashion [6]. Thus, fabrication of subsequent layers of extra-cellular
matrices that are laden with constituent cells and growth factors is
highly dependent on prior layers. Moreover, the bioprinting pro-
cess being highly sensitive to variations in material formulations,
process parameters, and microenvironment requires real-time
monitoring, prediction, and control at each stage of fabrication.
Thus, each layer has a contributing effect to the overall part qual-
ification. This research considers cumulative accuracy and process
conditioning for printing of a functional tissue-construct from the
initial deposited layer to completion. Memory-based neural net-
works were used to capture time-transient bioprinting phenom-
ena. Candidate memory models include the recursive neural
network (RNN) [32], gated recurrent units (GRU) [33] and long
short-term memory network (LSTM) [19]. In the bioprinting pro-
cess, RNNs are faced with issues of gradient diminishing and explo-
sion problems which are overcome by LSTM. GRU is a special type
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Fig. 3. Simplified and color-coded LSTM Model used for bioprinting.

of LSTM with only two gates. A simplified LSTM network used in
this research is shown in Fig. 3.

2.2.1. Incorporating Physics-based model into Machine learning
algorithms

For the hybrid model, Eq. (1) was modified to accommodate the
output of the physics-based model as given in Eq. (3) [34]:

YHYB :fHYB(Xv YPHY) (3)

where Yyyp is the prediction from augmenting the original input
parameters, X, with the output of the physics-based model, Ypyy.

2.3. The LSTM regression model

A sequential regressor was instantiated for the LSTM using the
TensorFlow module in Python which has an input layer, one hid-
den layer, and an output layer. From the consolidated dataset,
training and test dataset were split according to the considered
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time interval. The training and test dataset were further prepared
based on our selected timesteps of 3. (Xiraining, YpHy.training) and
Ynys training Were the training data input and output, respectively.
Correspondingly we have (Xiest, Ypuvest) and Ypyprese. Then, a
LSTM was instantiated. An input layer was added with units equal
to 2, activation function to be ReLU, the return sequence was set to
true, and appropriate input shape of (batches, timesteps, features)
was maintained as required by LSTM input shape, and a dropout of
0.2 was used. A hidden layer was added with units equal to 5, acti-
vation function as RelLU, and a dropout of 0.2. Lastly, an output
layer was added with units equal to 1. The LSTM model was com-
piled with Adam as the optimizer and mean square error (MSE)
was used as the loss function. The sequential regressor was fitted
on the (Xtraininga yPHY.traim'ng) and YHYB.training With 500 eDOChS‘ and
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a batch size of 1. For the test input data, (Xtest, Y pry test ), Predictions
were made on the trained LSTM regressor. Finally, line plots of pre-
dicted and actual bioprinted resolutions were obtained to show the
capability of the LSTM at different time intervals.

3. Results and discussions

The results of the LSTM model to track and control the bioprint-
ing process based on variations in input conditions are shown in
Fig. 4. Five input parameters (viscosity, gauge pressure, growth fac-
tor concentration, build orientation, and printing speeds) and Ypyy
were considered for an output parameter (print resolution). A com-
bination of these parameters was used to predict two different res-
olutions for bioprinting - high (20 pm) versus low (50 pm).
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Fig. 4. Bioprinting resolution from IoT sensor against LSTM predictions for (a) 10 s, (b) 30 s, and (c) 50 s feedback.
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The LSTM model was tested at different time intervals of 10 s,
30 s, and 50 s, respectively. Fig. 4a shows that the LSTM faithfully
tracks the actual bioprinted resolution at an interval of 10 s.
Fig. 4b and 4c shows the resolution at every 30 s and 50 s interval,
respectively. However, in these cases there was a slight lag from
the LSTM compared to the actual IoT sensor measurements.
Although tracking the bioprinting at a short interval (10 s) might
seem accurate, capturing data and predicting at higher time inter-
vals (30 and 50 secs) would yield little trade-off in resolution, and
save resources. Furthermore, monitoring and capturing data every
10 s could lead to the need for more computer memory and high
computational machines. Extended monitoring could serve better
if the lag is not large.

From the preliminary results, the LSTM model serves as a means
of tracking the events that occur at every layer of the 3D printed con-
struct as seen in Fig. 4. The LSTM network parameters can be tuned
based on the type of biomanufacturing process being considered as
demonstrated in this research. The optimal input parameters at each
layer are further implemented via closed-loop feedback actuators
and sensors to effect the necessary change on the next printing layer.
Our results shown for bioprinting resolution are extensible to other
process parameters, thereby, permitting continuous monitoring and
control for optimal tissue regeneration.

4. Conclusions

This paper demonstrates a combination of a physics-based and
data-driven model to complement the shortcomings of stand-
alone models in bioprinting process. LSTM was used as the
machine learning model based on its ability to track relevant and
important information of each layer throughout the process. The
impact of different time intervals for updating the LSTM with
respect to the desired output was demonstrated. Updating every
10 s shows that the proposed LSTM faithfully tracks the resolution
of the bioprinted 3D construct. On the other hand, extended time
of 30 s and 50 s show minor lags which could be used for processes
where tradeoff are acceptable. Further work should consider
including an optimization model which can update the process
parameters to enhance the functionality of the bioprinted 3D
constructs.
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