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a b s t r a c t

Bioprinting involves the fabrication of functional tissue constructs using a combination of biomaterials

and it has the potential to transform regenerative medicine. However, bioprinting faces several chal-

lenges which can be attributed to its high sensitivity to the slightest variation in process parameters,

material constituents, and microenvironmental conditions. This research integrates a physics-based

model with a memory-based data-driven model to provide predictive capabilities for bioprinting. The

hybrid approach uses the long short-term memory (LSTM) network to provide real-time predictions of

the bioprinting process parameters as demonstrated by an illustrated case study.

� 2023 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.

1. Introduction

Regenerative tissue engineering has been impacted by the

emergence of Industry 4.0 which is driven by connectivity, intelli-

gence, and flexible automation [1]. With this, building of scaffolds,

printing of tissues and functional organs such as heart [2], lungs,

bone [3–5] among others can be accomplished. Currently, bioprint-

ing is patterned around the conventional additive manufacturing

processes such as fused deposition modeling (FDM) or stere-

olithography (SLA) [6]. However, it is sensitive to the slightest vari-

ation in material formulations [7–10], process parameters [11–13],

microenvironmental conditions [14,15], especially when biologi-

cally functional parts are to be printed [16].

Machine learning has been applied in biomanufacturing to

unravel hidden, complex, and non-linear patterns that exist in an

input–output dataset for applications in computational biology

[17], protein synthesis [18], and drug development [19,20] to name

a few. Machine learning algorithms [21–24] perform better with

big datasets, however big datasets are limited for bioprinting pro-

cesses due to their high resource intensity [25]. It is worthy to note

that, physics-based models alone cannot sufficiently capture the

reality that goes into bioprinting as it is based on assumptions

made to reduce the model complexity. Thus, it is paramount to

incorporate data-driven approaches that can provide comprehen-

sive understanding and predictive capabilities to bioprinting.

Extensive bioprinting experimentation to determine the out-

come of a bioprinted part is resource intensive (time and cost).

Some works have explored the physics of bioprinting techniques

[26,27] however, challenges still exist. These challenges include:

(1) just a few reported works provide a framework on bioprinting

process, (2) sustaining cell viability [28] and long-term functional-

ity [29], apoptotic effects of bioprinted part based on the sensitive

of cells, tissues, process or environmental variation, (3) high cost,

long bioprinting time, and resource intensity, and (4) insufficient

data repository to aid other forms of data-based prediction models.

For better understanding of the bioprinting process, it is inade-

quate to use experiments, machine learning, or physics-based

model as a stand-alone approach. This research integrates a

physics-based model with a memory-based data-driven model to

provide predictive capabilities for bioprinting.

2. Methodology

In this research, a hybrid physics-based machine learning

model is implemented that integrates the physics-based model

by incorporating output of the physics-based model into the long

short-term memory (LSTM) network. Fig. 1 shows the framework

of the bioprinting process using physics-based data driven model

used in this work. A design of experiment was conducted on an

extrusion bioprinting process to relate input parameter combina-

tions to the desired bioprinting output. Further, a physics-based

model was used to predict bioprinting outcomes for a combination

of bioprinting input parameters that could not be obtained from
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experiments. Datasets were obtained using a combination of

experiments and physics-based model predictions, thereby,

exploring the computational search space for bioprinting. The con-

solidated datasets were stored in a bioprinting data repository for

training the LSTM machine learning model as discussed in detail in

Section 2.1. For the next timestamp, the trained LSTM was used to

obtain the next output prediction. The prediction and the actual

values were compared, and the required update was conducted

via closed-loop control. In this section, a formulated hybrid model

was used to capture all aspects of bioprinting relating to stem-cell

based tissue engineering. These include material formulations,

process parameters, and microenvironmental variables. In this bio-

printing experiment, a polycaprolactone based matrix (2 to 10 w%/

v) was utilized for incorporating calcium magnesium phosphate

nanoparticulates [30]. A four-axis Nordson EFD Janome robot with

a custom extrusion head was used to fabricate 3D scaffold struc-

tures. A sensor array for temperature and humidity (HTU21D-F:

GY21) as well as topographical laser mapping (OptoNCDT 1320:

Micro Epsilon and Sony IMX322 CMOS) was integrated in the bio-

printing process.

2.1. Physics-based model

In this research, an extrusion-based bioprinting process was

used as a case-study as shown in Fig. 2. The relation that exists

between input parameters (bioprinter specifications, process

parameters, and environmental parameters) and desired output

was modeled as generalized in Eq. (1).

Y ¼ f Xð Þ ð1Þ

where, Y is the target output metric (e.g., print resolution, cell via-

bility) and X is the set of input parameters which include material

property (e.g., viscosity, density, rheology), process parameter index

(e.g., nozzle diameter, speed), and microenvironment index (e.g.,

temperature, humidity). An extrusion-based bioprinting system

uses pressure gradient to deposit bioinks from nozzles using a

CAD based tool path layer-by-layer [2]. For the case study, print res-

olution of printed part was considered as the desired output param-

eter. Print resolution can be linked to the diameter of strands

extruded from the nozzle of the bioprinter. Mathematically, as seen

in the works of [26,31], and [25], the resolution of an extrusion-

based bioprinting can be modeled by Eq. (2):

d ¼ D2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

32 � g � l � m
�

4n

3nþ 1

� �

� DP

s

ð2Þ

The process parameter ranges used in our research are stated.

Wherein, d is the resolution of print (20 to 50 lm), D (15 to 50

lm) and l (10 to 40 mm) are diameter and length of nozzle, respec-

tively, m is print speed (2 to 15 mm/s), g is apparent viscosity of

bioink (50 to 1000 cP), n shear thinning factor (0.5 to 0.9), and

DP (20 to 110 kPa) is the gage pressure (pressure drop between

the reservoir and nozzle). Eq. (2) can be used to generate more

print resolution output data for input parameter combinations

not considered during experiment.

2.2. Data driven algorithms

After understanding the science of bioprinting and formulating

a physics-based model a data-driven approach was implemented

to unravel the hidden, complex, and nonlinear relationship that

exists between the sets of inputs and outputs. Typically, bioprint-

ing processes build components of tissue scaffolds in a hierarchical

fashion [6]. Thus, fabrication of subsequent layers of extra-cellular

matrices that are laden with constituent cells and growth factors is

highly dependent on prior layers. Moreover, the bioprinting pro-

cess being highly sensitive to variations in material formulations,

process parameters, and microenvironment requires real-time

monitoring, prediction, and control at each stage of fabrication.

Thus, each layer has a contributing effect to the overall part qual-

ification. This research considers cumulative accuracy and process

conditioning for printing of a functional tissue-construct from the

initial deposited layer to completion. Memory-based neural net-

works were used to capture time-transient bioprinting phenom-

ena. Candidate memory models include the recursive neural

network (RNN) [32], gated recurrent units (GRU) [33] and long

short-term memory network (LSTM) [19]. In the bioprinting pro-

cess, RNNs are faced with issues of gradient diminishing and explo-

sion problems which are overcome by LSTM. GRU is a special type

Fig. 1. Physics-based memory-based bioprinting process framework.
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of LSTM with only two gates. A simplified LSTM network used in

this research is shown in Fig. 3.

2.2.1. Incorporating Physics-based model into Machine learning

algorithms

For the hybrid model, Eq. (1) was modified to accommodate the

output of the physics-based model as given in Eq. (3) [34]:

YHYB ¼ f HYB X;YPHYð Þ ð3Þ

where YHYB is the prediction from augmenting the original input

parameters, X, with the output of the physics-based model, YPHY .

2.3. The LSTM regression model

A sequential regressor was instantiated for the LSTM using the

TensorFlow module in Python which has an input layer, one hid-

den layer, and an output layer. From the consolidated dataset,

training and test dataset were split according to the considered

Fig. 2. (a) Isometric view of extrusion-based bioprinter showing set of layered 3D printed construct (b) bioprinter setup with components (c) exploded view of the 3D printed

construct and hydrogel on substrate.

Fig. 3. Simplified and color-coded LSTM Model used for bioprinting.
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time interval. The training and test dataset were further prepared

based on our selected timesteps of 3. Xtraining ;YPHY ;training

� �

and

YHYB;training were the training data input and output, respectively.

Correspondingly we have Xtest ;YPHY ;testð Þ and YHYB;test . Then, a

LSTM was instantiated. An input layer was added with units equal

to 2, activation function to be ReLU, the return sequence was set to

true, and appropriate input shape of (batches, timesteps, features)

was maintained as required by LSTM input shape, and a dropout of

0.2 was used. A hidden layer was added with units equal to 5, acti-

vation function as ReLU, and a dropout of 0.2. Lastly, an output

layer was added with units equal to 1. The LSTM model was com-

piled with Adam as the optimizer and mean square error (MSE)

was used as the loss function. The sequential regressor was fitted

on the Xtraining ;YPHY ;training

� �

and YHYB;training with 500 epochs, and

a batch size of 1. For the test input data, Xtest ;YPHY ;testð Þ, predictions

were made on the trained LSTM regressor. Finally, line plots of pre-

dicted and actual bioprinted resolutions were obtained to show the

capability of the LSTM at different time intervals.

3. Results and discussions

The results of the LSTM model to track and control the bioprint-

ing process based on variations in input conditions are shown in

Fig. 4. Five input parameters (viscosity, gauge pressure, growth fac-

tor concentration, build orientation, and printing speeds) and YPHY

were considered for an output parameter (print resolution). A com-

bination of these parameters was used to predict two different res-

olutions for bioprinting - high (20 lm) versus low (50 lm).

Fig. 4. Bioprinting resolution from IoT sensor against LSTM predictions for (a) 10 s, (b) 30 s, and (c) 50 s feedback.
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The LSTM model was tested at different time intervals of 10 s,

30 s, and 50 s, respectively. Fig. 4a shows that the LSTM faithfully

tracks the actual bioprinted resolution at an interval of 10 s.

Fig. 4b and 4c shows the resolution at every 30 s and 50 s interval,

respectively. However, in these cases there was a slight lag from

the LSTM compared to the actual IoT sensor measurements.

Although tracking the bioprinting at a short interval (10 s) might

seem accurate, capturing data and predicting at higher time inter-

vals (30 and 50 secs) would yield little trade-off in resolution, and

save resources. Furthermore, monitoring and capturing data every

10 s could lead to the need for more computer memory and high

computational machines. Extended monitoring could serve better

if the lag is not large.

From the preliminary results, the LSTMmodel serves as a means

of tracking the events that occur at every layer of the 3Dprinted con-

struct as seen in Fig. 4. The LSTM network parameters can be tuned

based on the type of biomanufacturing process being considered as

demonstrated in this research. Theoptimal input parameters at each

layer are further implemented via closed-loop feedback actuators

and sensors to effect thenecessary changeon thenext printing layer.

Our results shown for bioprinting resolution are extensible to other

process parameters, thereby, permitting continuousmonitoring and

control for optimal tissue regeneration.

4. Conclusions

This paper demonstrates a combination of a physics-based and

data-driven model to complement the shortcomings of stand-

alone models in bioprinting process. LSTM was used as the

machine learning model based on its ability to track relevant and

important information of each layer throughout the process. The

impact of different time intervals for updating the LSTM with

respect to the desired output was demonstrated. Updating every

10 s shows that the proposed LSTM faithfully tracks the resolution

of the bioprinted 3D construct. On the other hand, extended time

of 30 s and 50 s showminor lags which could be used for processes

where tradeoff are acceptable. Further work should consider

including an optimization model which can update the process

parameters to enhance the functionality of the bioprinted 3D

constructs.
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