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Describing and measuring instructional quality of mathematics lessons is a common goal
amongst mathematics education researchers. Such work takes several forms such as classifying
and coding instructional moves and student activity or providing high-level rubric-based scores
in relation to categories. In this work, we share an innovative mixed methods approach to
analyzing lesson data that includes both a time-based classification of instruction and an overall
scoring component. Using the Math Habits framework, our project team analyzed a set of 97
fourth-eighth grade mathematics lessons including overall scores. From this qualitative analysis,
we developed quantitative models to predict overall scores and better understand the ways that
individual codes do or do not contribute to overall lesson score characterizations.
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In this report, we share recent work aiming to further both our approach to classroom
observation tool measures and our understanding of which elements of a classroom are salient in
a coding process. This work is situated in a larger validation study focused on the Math Habits
Tool (Melhuish, et al., 2020). The Math Habits Tool decomposes a mathematics classroom into
four types of codeable activities: teaching routines, catalytic teaching habits, student habits of
mind, and student habits of interaction (each of which will be expanded in the next section.) The
categories capture teacher and student activity that characterize student-centered, conceptually-
oriented classrooms. As in many instruments (e.g., Mathematical Quality of Instruction, Hill,
2014), qualitative coders analyze the lesson at two levels: during the lesson and holistically at the
end of the lesson. While coding during the lesson involves identifying time-stamped, individual
occurrences, the holistic codes use a rubric-based approached to make a subjective judgement
call as to the quality of the teacher and student activity.

We frame our contribution as two-fold. First, we make a methodological contribution — the
development of a quantitative model to estimate overall lesson scores after a qualitative coding
process. Notably, we go beyond just using occurrence counts for codes to characterize a class,
but also introduce a measure of spread (the degree these occurrences are found at different times
in the lesson). We conjectured that although spread was not an explicit portion of the coder’s
rubrics, it was likely to inform the qualitative evaluations at the lesson level. For example,
consider this extreme version. Suppose a classroom has ten rich student contributions, but all
occurred within the first five-minute interval. Then the remainder of the class was a lecture.
Contrast this situation with a class where student and teachers are interacting, and ten rich
student contributions occur throughout the lesson. A frequency-based approach would
characterize these two classrooms in the same manner; however, it is unlikely that we would
want such classes to be equivalent.



Second, in order to estimate overall lesson scores, we confronted issues of which codes
“mattered” and in what ways. For example, whether a code occurred spread throughout a lesson
sometimes mattered more than how often (and vice versa, along with other combinations). These
findings have implications for researchers interested in teaching practices and students’
classroom activity.

Background and Framing

Broadly, we take a social cultural approach to the mathematics classroom focusing on social
interactions between people in the classroom. Knowledge is co-constructed in these interactions
between students and between teacher and students. While we largely assume that individual
cognition and social interactions are interrelated (as in Cobb & Yackel, 1996) where individual
understanding is developed via social interactions, we focus on the observable social side.
Further, we specifically attend to components of classroom interactions that may promote sense-
making and mathematical argumentation inclusive of justifying and generalizing. Justifying and
generalizing can support the co-construction of mathematical meaning (Brown &

Renshaw, 2000; Simon & Blume, 1996) and students’ development of conceptual understanding
(Staples et al., 2012). Instruction aligned with such goals reflects a standards-based instructional
approach (as defined in Rubel, 2017 and reflected in standards documents such as the Common
Core, National Governors Association, 2010)

We use the instructional triangle (Hawkins, 2002) to situate our analytic framing focusing on
relationships between teachers, students, and content. We incorporate both Lampert (2001) and
Cohen et al.’s (2003) expansion to capture the mediating role a teacher plays in the student-
content relationship and the relationships between the students themselves. Figure 1 reflects the
components of the Math Habits Framework overlayed on the instructional triangle.
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Figure 1: Instructional Triangle and the Math Habits Framework

The Math Habits framework was developed to operationalize specific instructional routines,
moves, and student activity that can be observed within the classroom setting. The coding
categories include: Student Habits of Mind which reflect productive ways students engage in
mathematics; Habits of Interactions which reflect ways students engage with each other around
the mathematics; Catalytic Teaching Habits which capture specific teaching moves that may
engender students in engaging with mathematics and each other’s mathematical ideas; and
Mathematical Productive Teaching Routines. The teaching routines are “recurring, patterned
sequences of interaction teachers and students jointly enact to organize opportunities for student
learning in classrooms” (DeBarger et al., 2011, p. 244). Unlike the other categories, teaching
routines are not identified as instances, but rather over time intervals when they occur. Table 1
includes the categories and subcodes. Each of these categories and subcategories are rooted in
the literature on promoting student-centered instruction and mathematical argumentation (e.g.,
Kazemi, 1998; Staples, 2007; Stein, et al., 2008; Thanheiser & Melhuish, 2022).



Table 1: Math Habits Framework with Variable Names in Parentheticals

Student Habits of Mind

Mathematical (MathHoM) Representations; Connections; Mathematical structure
Reflection (ReflectHoM) Metacognition; Reasoning with mistakes; Making
meaning
Capstone (JGHoM) Justifying; Generalizing

Student Habits of Interaction

Private Reasoning Time (PRHol) Private Reasoning Time
Explaining (ExplainHol) Explaining my reasoning; Exploring multiple
pathways
Engage with Peer (PeerHol) Revoicing; Comparing logic and ideas; Critiquing and
Debating
Question (QuestionHol) Asking genuine questions

Catalytic Teaching Habits

Private Reasoning Prompt (ThinkCTH) Private Reasoning Time Prompt

Sharing Thinking Prompts (ShareCTH) Prompt to share meaning; Prompt to share thinking;
Prompt to share why; Prompt to share representation

Peer Prompts (PeerCTH) Prompt to analyze strategy; Prompt to analyze
mistake; Prompt to compare or connect across
strategies; Prompt to revoice or make sense of strategy
Capstone Habit Prompts (JGCTH) Prompt to justify; Prompt to notice, wonder, or

conjecture

Teaching Routines

Access (AccessTR) Making meaning of tasks, contexts, and/or language

Public Records (RecordsTR) Working with selected & sequenced student math ideas
Teacher; Working with public records of students'
mathematical thinking

Discussion (DiscussionTR)  Orchestrating productive whole class discussions

Groupwork (GroupworkTR)  Structuring mathematically worthwhile student talk;
Conferring to understand students' mathematical
thinking & reasoning

Methods
Data
This study draws on 96 video-recorded lessons (taken near the end of the school year) from 3
school districts stemming from diverse projects. The samples include 33 lessons from District 1
(Melhuish, et al., 2022), 31 lessons from District 2 (Sorto, et al., 2018), and 33 lessons from
District 3 (Kane, et al., 2016). Data on each district can be found in Table 2.
Table 2: Demographic Information on Data Set Districts

District Race/Ethnicity Socio-Economic Status  Language
District 1 56% White 55% eligible for free and 6% Transitional
(grades 19% Black/African reduced lunch Bilingual
4 and 5) American, 11%

Latino/Hispanic

9% Asian



District 2 99% Latino/Hispanic 95% ““‘economically 33% Limited

(grades disadvantaged” English Proficiency
6-8)
District 3 51% Black/African 73% eligible for free and  23% Limited
(grades American, 30% White, reduced lunch English Proficiency
4 and 5) 13% Latino/Hispanic,

4% Asian

All of these lessons had previously been analyzed with the Mathematical Quality of
Instruction (MQI; Hill, 2014) instrument. For the larger databases, we selected a random subset
within MQI strata. For District 2, we included all middle school teachers who had opted into
recording. We sampled in this manner to assure a range of instructional contexts and practices.
Qualitative Analysis

Each lesson was then coded independently by two researchers according to the Math Habits
framework. Any discrepancies were resolved via discussion. After an initial round of coding, the
coded lessons were then reviewed by a third member of the research team to identify any coding
drift or inconsistences across the coded lessons. Additionally, discrepancies were identified and
resolved via discussion. Besides coding using the framework, each coder also assigned an overall
rubric-based score for student and teacher activity. Krippendorff’s 0=0.79 and 0=0.57 for overall
student and teacher, respectively. The levels for overall teaching score are as follows: (1) No
evidence of use of Teaching Routines or an attempted Teaching Routine (but without Catalytic
Teaching Habits embedded.) (2) Use of more than one Teaching Routines; some evidence of
Catalytic Habits; OR Use of only one Teaching Routine; but many (variety) of Catalytic Habits.
(3) Multiple Teaching Routines; Catalytic Habits embedded; (4) Multiple Teaching Routines;
Catalytic Habits embedded with pushes towards justifying and/or generalizing. The levels for
overall student codes are as follows: (1) Students engaged in at most a Habit of Interaction or
two and maybe a Habit of Mind; (2) Students engaged in some Habits of Mind and/or Habits of
Interactions (3) Students engaged in multiple Habits of Mind and Habits of Interaction; (4)
Students engaged in multiple Habit of Interaction and maybe a Habit of Mind with justifying
and/or generalizing. As in many rubrics, the overall levels provide some guidance, but also rely
on subjective judgements made by the coders. For this reason, consensus was reached through
discussion.

Quantitative Analysis

In order to examine how individual codes are associated with the overall Teacher and Student
codes, two summary statistics were computed for each lesson and code type: the count and the
spread. The count is simply the total number of occurrences of the code during a lesson. To
compute the spread, the lessons were partitioned into 10 equal intervals. The spread is the
number of intervals in which a code occurred at least once. These two statistics capture the
difference between number of times the behavior is observed and the consistency with which it is
observed throughout the lesson.

Least Absolute Shrinkage and Solution Operator (lasso) models were used to investigate the
relationship between the individual and overall codes. Lasso (James, et al., 2013, pp. 219 - 227)
models use 11 regularization to prevent overfitting, reduce the variance of the coefficient
estimates of a linear model, and perform variable selection. Unlike stepwise techniques used
with standard least squares regression, variable selection in Lasso models does not rely on
normality assumptions. The lasso coefficients minimize the quantity
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where the yi is the overall code for the i lesson, and the xjj are the corresponding scaled
versions of the count and spread summaries for individual codes. The regularization constant, A
is determined separately for the Teacher and Student models via cross-validation.

Results
In this results section, we share estimates from our models and interpretation; however, the
majority of the theorizing and contextualizing of these results can be found in the Discussion
section. Recall, our goal is to create a model that can take the human coders’ individual
timestamped Math Habits codes to predict the human coders’ overall student and teacher codes.
That is, can we use the detailed Math Habits coding with a model to generate the overall codes?
To this end, we needed to examine which (if any) of the individual Math Habits codes were
having more or less impact on overall codes. In this section we present what we learned about
the role of Math Habits codes in relation to overall codes. We begin with Overall Student codes.
Table 3: Coefficients from the LASSO model for Student Codes

Model Coefficients
Code Count Spread
MathHoM -0.208 0.443
ReflectHoM 0.143 0
JGHoM 0 0.273
PRHol 0 0.045
ExplainHol 0.089 0.249
PeerHol 0 0.060
QuestionHol 0.120 0

The coefficients for the lasso model for Overall Student code are shown in Table 3. Recall
that these habits reflect observable ways that students engaged with the mathematics and with
each other around mathematics. The zero coefficients for the count variables for JGHoM
(capstone habits of justifying and generalizing) and PRHol (private reasoning time), and the
spread variable for QuestionHol (asking genuine questions) indicate that lasso dropped those
respective count or spread variables from the model. We use z-scores to interpret the coefficients
of the remaining predictors. For example, for a lesson with one standard deviation more
ReflectHoM (reflection habits of mind) than the average lesson, the predicted overall code
increases by 0.143. We can unpack the slightly more complex case of the mathematical habits of
mind (MathHoM) coefficients where we see a negative relationship. Consider two lessons where
the count for MathHoM differs by one. If the additional code occurs in an “empty” interval, the
count and the spread both increase and the predicted overall code increases. On the other hand, if
the additional code occurs in an interval where MathHoM has already been observed, the
predicted overall code decreases. In this sense, observing the code throughout the lesson is more
beneficial than simply counting a total. On the other hand, some codes only mattered in terms of
count. For example, students asking a genuine question (QuestionHol) is associated with an
increase in the overall code, no matter where it occurs. That is all to say, that some codes matter



where they occur in a lesson (indicated by spread) and some only matter how often they occur
(indicated by count).

Table 4: Coefficients from the LASSO model for Teacher Codes

Model Coefficients
Code Count Spread
GroupworkTR 0.280 0.096
RecordsTR 0 0.241
DiscussionTR 0 0
AccessTR 0.253 0
ThinkCTH 0 0.058
ShareCTH 0 0.104
JGCTH 0.144 0
ReflectCTH 0.139 0
PeerCTH 0 0
RevoiceCTH 0.056 0.097

Table 4 provides the coefficients for the lasso model for the Overall Teacher codes. Again,
we can notice that different types of activities are differently related to the overall codes. The
teaching routines related to groupwork (GroupworkTR) matter both in terms of how frequently
they occur (counts) and how they spread throughout the lesson (spread). In contrast, the teaching
routines related to public records (RecordsTR) were only significant in terms of how spread they
were throughout the lesson and the meaning making teaching routine (AccessTR) was significant
only in terms of frequency, not spread. If we turn to individual teaching moves (the catalytic
teaching habits), we can see spread is significant for prompts related to private think time and to
share thinking (ThinkCTH; ShareCTH), but overall frequency, but not spread, is significant for
reflection prompts (ReflectCTH). For teacher revoicing (RevoiceCTH), both frequency and
spread were small, but positive predictors of overall score. Finally, we note that the orchestrating
discussion routine (DiscussionTR) and the prompts to engage with peers’ reasoning (PeerCTH)
did not contribute to predicting overall teacher scores.

We also briefly share results about how closely these models fit our overall scores. Table 4
and Table 5 present a crosstabulation comparing the true and predicted codes. In grey, we have
emphasized the lessons where the coders’ overall code matched the predicted code. For the
students, the model correctly predicts 71.1% of our lessons. For the overall teacher score, the
model correctly predicts 76.77% of our lessons. Further, only one lesson in each case is predicted
more than one level off. We can calculate Krippendorf’s a, as we would when comparing coders.
For the overall teacher scores, a=0.879 and for the overall student scores a = 0.813. Both
numbers are over 0.80 indicating substantial agreement. That is, our models are doing a
relatively good job predicting the overall scores arrived at by coders.

Table 5: Crosstabulation of Overall Student Codes: True vs. Predicted
Predicted Overall Code
1 2 3 4 total
Coder Overall Code 1 16 10 0 O 26
2 2 24 6 O 32
0 19




4 0 1 4 15 20
Total 18 41 23 15 97

Table 6: Crosstabulation of Overall Teacher Codes: True vs. Predicted
Predicted Overall Code
1 2 3 4 total

Coder Overall Code 1 24 7 0 O 31
2 1 26 3 O 30
3 0 4 12 1 17
4 0 1 6 12 19
Total 25 38 21 13 97

Discussion

When we code data, we often make (explicit or implicit) inferences based on quantitative
characteristics such as frequency of a code. However, when we consider a setting as complex as
a mathematics classroom, we often rely on not just counts, but subjective judgement calls about
other features such as the degree it feels like a particular activity characterizes a lesson. In fact,
this sort of expert judgement is why qualitative coding can be powerful. Yet, we have found that
it can be quite challenging to come to agreement on lesson level scores because, by nature,
coders are not noticing or perhaps not weighting elements of instruction in the same way. Our
goal with this study was to develop quantitative means to estimate overall scores. We focused on
the measure of spread in addition to count to avoid collapsing some of the dimensionality in a
classroom.

If we consider our results, we can see that in some cases spread was more important,
some cases count, and in yet others, they played out in more complex ways. We return to a
couple of examples to conjecture what might account for these differences. If we turn to the
overall teacher scores, we can see that both Orchestrating Discussion and prompts to engage with
peers’ ideas did not contribute to predicting overall scores. First, these are types of codes that are
theoretically related. In order to orchestrate discussion, our codebook required that multiple
students are engaged with each other’s ideas in some way. This typically occurs when teachers
make related prompts for engagement. From a simplistic view, the rubric would reward both
types of activities with higher overall scores. However, if we examine the data, we can note two
features that may account for this result. First, the DiscussionTR and the PeerCTHs were only
meaningfully different for teachers with an overall high score. For example, the mean spread for
the DiscussionTR for overall high teachers was 3.1 (meaning, on average, discussion happened
in 3 of 10 intervals) and mean count was 6.9 (meaning on average discussion happened 7 times
per lesson). In contrast, spread was less than one for all other levels of overall score and less than
two for mean count. Rather than gradual increases, this routine served to discriminate between
high level lessons from other levels. This leads to the second point, the high-level lessons all had
higher spreads and counts in other categories. Theoretically this makes sense. It is likely that in a
class where a teacher orchestrates discussion, there is also overlap with other teaching routines
like using public records of students thinking — in many cases the discussion is about such a
record. Thus, these codes are not contributing new information about the overall teaching in the
lesson.

Now let’s contrast two teaching routines that both were significant but in different ways.
Working with Public Records of Student Thinking and Selecting & Sequencing (RecordTR)



mattered in terms of spread whereas Making Meaning of Task & Terms (AccessTR) mattered in
terms of counts. In this case, we conjecture the way these routines operate in the classroom may
account for the difference. Engaging students in making meaning around tasks and terms is a
routine that comes up when students encounter an idea, task, or piece of language in which they
may be unfamiliar. This is likely to occur at specific points in the lesson such as when a task is
launched. In contrast, working with records of students’ ideas may be threaded throughout the
lesson. Thus, the number of occurrences of meaning making may be more salient than the spread
of meaning making. However, the spread of record use is likely a more salient feature of overall
teaching.

If we turn to the student codes, we see the relationship between observed math habits of
mind (including capstone habits) and overall scores are more linked to spread. These habits
include things like Reasoning with Representations, Structure, Connections, and Justifying and
Generalizing. Frequencies alone may paint a misleading picture because a single student
contribution may embed many of these habits (e.g., justifying a result by use of a pattern within a
table). A short span of time with high counts is not as meaningful as occurrences spaced
throughout a lesson (reflected in spread), thus theoretically spread is likely to be more salient. A
second explanation may be that at a certain threshold, frequency might not contribute new
information. That is, a class with 20 instances and a class with 30 instances of habits of mind are
both likely at a high level and the difference of 10 instances does not contribute something new.
In contrast, the spread is capped at the interval number and any difference has the potential to
provide meaningful information that characterizes a lesson across time.

For space limitations, we will not unpack all of the differences in how the codes are
operating but will spend a brief amount of time comparing the difference in the ExplainHol
(students explaining their thinking) and the MathHoMs. Explaining mattered in terms of both
count and spread, although with a relatively small coefficient for count. The threshold to explain
one’s thinking is much lower than the threshold for that thinking to include math habits of mind
(which reflect higher level reasoning). Explaining was by far the most frequently observed
student activity at all levels of overall student code. The mean number of occurrences of explain
was 6.4 for the Overall Student =1 classes and 39.8 for the Overall Student=4 classes. However,
for lessons that received the lowest overall score, the mean spread was less than 3 intervals
whereas in highest lessons, it was nearly 9 intervals. Both frequency and spread appear to
provide important information to characterize a lesson.

This leaves several questions open for future research. First, are these relationships a
consequence of the coders and rubrics or a consequence of how these activities unfold in the
classroom? This is work that could be further addressed with additional qualitative analysis of
the classrooms as well as attention to classrooms where overall codes as assigned by the model
diverged from overall code as determined by the qualitative coders. Second, how might we
develop more accurate models and measures when considering coding at this grainsize? Spread
and count provided a start, but other measures such as interrelated (different types of codes
within a timespan), existence (binary), or alternative models (such as non-linear models) could
lead to additional insights.
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