
Parla: A Python Orchestration System for
Heterogeneous Architectures

Hochan Lee∗§, William Ruys∗§, Ian Henriksen∗§, Arthur Peters∗§,

Yineng Yan∗§, Sean Stephens∗§, Bozhi You∗, Henrique Fingler∗,
Martin Burtscher†, Milos Gligoric∗, Karl Schulz∗,

Keshav Pingali∗, Christopher J. Rossbach∗, Mattan Erez∗, George Biros∗

∗The University of Texas at Austin

Austin, TX, USA
†Texas State University

San Marcos, TX, USA

Abstract—Python’s ease of use and rich collection of numeric
libraries make it an excellent choice for rapidly developing
scientific applications. However, composing these libraries to take
advantage of complex heterogeneous nodes is still difficult. To
simplify writing multi-device code, we created Parla, a hetero-
geneous task-based programming framework that fully supports
Python’s scientific programming stack. Parla’s API is based on
Python decorators and allows users to wrap code in Parla tasks
for parallel execution. Parla arrays enable automatic movement
of data between devices. The Parla runtime handles resource-
aware mapping, scheduling, and execution of tasks. Compared to
other Python tasking systems, Parla is unique in its parallelization
of tasks within a single process, its GPU context and resource-
aware runtime, and its design around gradual adoption to provide
easy migration of and integration into existing Python applica-
tions. We show that Parla can achieve performance competitive
with hand-optimized code while improving ease of development.

Index Terms—Parallel application frameworks, task based par-
allelism, heterogeneous computing, load balancing and scheduling
algorithms

I. INTRODUCTION

Python has grown to be a powerful and versatile program-

ming language with a rich ecosystem of scientific computing

modules for processing, analyzing, graphing, and reporting

data. Libraries like NumPy, CuPy, and others enable program-

mers to stitch together highly-optimized functions to rapidly

develop powerful scientific applications. Properly leveraging

the power of complex heterogeneous compute nodes, however,

remains a challenge. In particular, unless relying on a domain-

specific framework (e.g., PyTorch [1]), proper GPU device

management requires substantial attention to detail as well as

the use of low-level CUDA runtime calls from CuPy if a pro-

grammer is to maximize performance by efficiently distribut-

ing work across multiple GPUs, colocating work within the

context of a given device, launching asynchronous concurrent

data copies and compute kernels on various devices, properly

synchronizing dependent kernels across CUDA streams, etc.

Managing these facets while having them cooperate with

§Authors contributed equally.

diverse libraries is a challenge that programmers shy away

from, particularly non-experts who are not keen on diving into

the intricacies of multi-accelerator management.

We introduce Parla, a Python tasking system for abstracting

away these worries. Parla embraces heterogeneity in HPC

applications and introduces a task based orchestration layer

to control and connect library functions and kernels within a

single Python process and address space. Parla provides user-

defined function variants that wrap implementations special-

ized to devices. It allows the user to write device-agnostic

tasks or to gradually refine and optimize tasks with device-

specific implementations, without changing the structure of

the program.

A primary design goal of Parla is gradual adoption. Parla

focuses on intra-node architectures and interoperability with

existing Python frameworks and libraries. Parla does not re-

quire the user to port an entire application to a new framework;

rather, converting sequential programs to task-based Parla

applications can be done by gradually wrapping individual

portions of the program in Parla tasks as the programmer

sees fit. Parla provides lightweight wrappers to allow users to

take advantage of familiar data structures within tasks without

manually managing data movement between devices. These

features enable rapid prototyping of parallel and heterogeneous

applications using a familiar Python ecosystem. Furthermore,

Parla tasks operate within a single Python process, lowering

the overheads of data transfer and cross-library calls.

Parla enables users to create coarse-grained tasks by anno-

tating code with its Pythonic @spawn decorator. Tasks may be

assigned dependencies on other tasks, creating a dynamically

spawning task graph as the program executes. Data can be

wrapped in Parla arrays (PArrays) and provided to tasks at

spawn time. Tasks can request device resources, such as an

amount of memory, number of cores, or simply a fraction of

its target device. This allows the user to annotate to avoid over-

subscription and over-allocation. The underlying Parla runtime

enforces dependency ordering within the task graph, assigns

tasks to devices while managing their resources, and launches

tasks for parallel execution. Section III further explains the

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE

Parla API, PArrays, and the Parla runtime.

We implemented several benchmarks in Parla to characterize

its performance-programmability trade-offs empirically. We

achieved comparable performance to state-of-the-art systems

for these applications on from 1 to 4 GPUs, within 35% of

Magma using an unoptimized algorithm and native Python

libraries, even when using a policy for automating device

assignment. Notably, this is achieved with minimal source

code modifications to the serial code.

The main contributions of Parla described in this paper are:

• Parla, a Python tasking system for heterogeneous systems

• A data management layer to schedule data movement and

manage coherency of data between tasks.

• Multi-GPU programming supporting relative data move-

ment and automatic stream management.

• Compatibility with NumPy, CuPy, SciPy, and a range of

other standard HPC Python libraries.

• Support for gradual adoption of Parla in sequential

Python codes.

• A suite of applications that show Parla can achieve com-

petitive performance on common computational tasks.

Parla source code and applications are available at the UT

Parla GitHub repository.1

II. RELATED WORK

In this section, we provide an overview of the work most

closely related to Parla: heterogeneous tasking systems in

Python, and highlight the differences in how we approach

many of the same problems.

A. Heterogeneous Tasking Systems in Python

Parla differs from other Python-based systems for hetero-

geneous tasking in four main ways: (1) in gradual adoption,

(2) by providing tightly integrated heterogeneous support

e.g., CUDA event-based run-ahead scheduling, (3) in flexible

memory management features e.g., PArray, the Parla data

model, and (4) by focusing on performance via single-process

on-node orchestration. Unlike most of the systems described

below, we do not strive to replace or provide a distributed

workflow management system. This means we do not focus

on features for fault tolerance, multiprocess management,

or replacing MPI abstractions. This allows us to focus on

providing performant abstractions for managing accelerators

on a single node. For distributed computing our model is

MPI+Parla.

Ray [2], Dask [3], Parsl [4], and PyCOMPSs [5] are

designed for managing workflows on distributed filesystems,

which leads to design differences. First, the topology and

resources of workers are configured ahead of time by user-

specified files. Some systems such as Dask-CUDA [6] provide

automatic generation of these configuration files for GPU

systems. For each of these systems, resources are viewed as

permanent attributes of a worker process that constrain which

tasks a given worker process can execute. This is a major

1https://github.com/ut-parla/Parla.py

difference from Parla, where worker threads are not tied to

devices. In Parla, any worker thread can take any work from

the queue and configure itself to the needed context. This

enables more flexible and dynamic configuration at runtime.

Another difference with Parla is that these systems prioritize

support for process-based parallelism. Due to overheads from

process creation, management of multiple Python interpreters,

and inter-process communication, they target tasks with 100ms

or larger granularity. This limits their use in algorithms with

parallelism at a finer grain size. Some of these systems do

support a thread-based parallelism but they lose functionality.

As an example, Dask loses data aware scheduling, resource

awareness, and multi-GPU support when it runs with the

thread-centric mode.

By targeting fault-tolerance, these programming models do

not easily enable in-place modifications of data or adding de-

pendencies between tasks without explicit data-dependencies.

In practice, this can lead to inefficient algorithms with extra

memory allocation and data movement. In Dask, Ray, and

Parsl, the ability to specify a user-defined task mapping by

listing specific workers is not easily exposed to the user

and hidden by their abstractions. None of the above tasking

systems integrate directly with the hardware command queues

on GPU devices nor use CUDA event driven synchronization.

They do not provide a data abstraction for data on the GPU,

only for data on the host processor of a worker.

PyCOMPSs has a similar notion of separately scheduled

data movement tasks [7]. However, these must be created

manually by the user and are used to read large out-of-disk

files in a distributed system. They are not used for GPU data

movement. PyCOMPSs also supports creating architecture-

specific versions of the same task [8]. These variants are of

the whole task itself and not of arbitrary internal functions.

In contrast, Parla provides a more modular and incremental

approach.

Charm4py [9] also allows the use of native Python libraries

and code, however, their interface still requires significant

alterations to the execution model of user code to set up

‘Chare’ classes and communication channels. Pygion provides

awareness of GPU contexts, resources, and memory movement

similar to what is provided by Parla, but requires a complete

overhaul of user code. Legion’s resource management fea-

tures [10] (used in Pygion) hinge on the use of their region

data structures for managing user data. Though these interfaces

provide remarkable safety guarantees and resource awareness

to the runtime, they also form a practical barrier for adoption

of Pygion into existing codebases—requiring a rewrite to port

existing code to use the provided data structures. Legate [11]

also integrates Legion with Python and addresses the porting

effort imposed by Pygion. Instead of requiring the end user

to port their kernels and data structures to Legion, Legate

directly re-implements most NumPy kernels for Legion and

its data representation. However, while Legate allows those

Python programs that only call NumPy kernels to utilize

Legion without modification, it precludes the use of opaque

library calls and end-user-provided tasks that operate directly

on the ndarrays and other data structures. Machine learning

frameworks Tensorflow [12], PyTorch [1], and MXNet [13] all

provide means to express tensor computation tasks on various

devices. However, these models are generally restricted to

fixed, or generally inflexible, computational pipelines with lim-

ited support for data-dependent computation. These systems

have heuristics for heterogeneous scheduling policies [14].

B. Heterogeneous Tasking Systems

Outside of Python, both StarPU [15] and PaRSEC [16]

provide excellent support for heterogeneous hardware on

distributed systems. Both emphasize GPU contexts, data

prefetching, and have heterogeneous data-aware scheduling

policies available [17]. In particular, ParSEC uses lightweight

tasks driven by CUDA events. OmpSs [18], Hydra [19], and

PTask [20] all provide graph-based dataflow programming

models for offloading tasks across heterogeneous devices.

III. THE PARLA TASKING SYSTEM

This section describes the features and implementation of

Parla. We first describe Parla tasks in Section III-A and the

Parla interface in Section III-B. The Parla system introduces

the PArray data abstraction that manages distributed coherency

for the user and allows the runtime to schedule tasks in a

data-aware manner. Section III-C describes PArray and Sec-

tion III-D describes the Parla runtime. Section III-E describes

Parla’s interoperability with other libraries.

A. Parla Tasks

In Parla, tasks are arbitrary blocks of Python code

that run asynchronously with respect to the enclosing

block. This is similar to the semantics of async blocks in

X10 [21], but different from function-based tasking runtimes,

e.g., Cilk [22], which couple tasks to functions and task

spawns to function calls. Parla uses code blocks instead of

functions for two reasons: (a) it decouples functional abstrac-

tion from parallelism [23], and (b) it allows a program to be

gradually parallelized by adding parallel code blocks around

fragments of sequential code without needing to restructure

the program. Tasks can freely use nested parallelism to spawn

other tasks. They can either wait for those newly spawned

tasks before continuing execution or allow them to run inde-

pendently of the task that spawned them. Task creation can

be data-dependent or otherwise conditional, allowing Parla

to handle arbitrary irregular and dynamic parallelism that is

decided at runtime. Parla tasks may begin executing as soon

as they are spawned and their dependencies have finished

executing. This is the only ordering constraint. There are

no implicit barriers at which execution waits for tasks to

complete.

The Parla runtime dispatches the annotated tasks to worker

threads. All parallel execution occurs within a single process.

When using a CPython implementation of Python, this means

all pure Python code is serialized as each thread must share

and acquire the same Global Interpreter Lock (GIL) to man-

age reference counting of Python objects. However, all high

1 a = numpy.random(n)
2 b = numpy.random(n)
3 partial_sums = numpy.empty(num_gpu)
4 result = 0
5 block_size = n // num_gpu
6 T = TaskSpace("T")
7

8 for i in range(num_gpu):
9 s = slice(i*block_size,(i+1)*block_size)

10 @spawn(T[i], placement=gpu(i))
11 def inner_local():
12 a_part=clone_here(a[s])
13 b_part=clone_here(b[s])
14 partial_sums[i] = a_part @ b_part
15

16 @spawn(T[num_gpu], dependencies=T, placement=cpu)
17 def reduce_task():
18 result = np.sum(partial_sums)
19 await T[num_gpu]

Fig. 1. Inner product in Parla.

a

b

GPU0

CPU

D
ep
.

D
ep
.

P[0] P[1]

GPU1

reduce_task

Fig. 2. The Program Flow for the Inner Product in Figure 1.

performance computation in modern Python is done through

JIT compiled kernels (such as through Numba [24]), a mix of

static and dynamic kernel compilation (like in PyKokkos [25]),

user wrapped kernels from a lower-level language (for example

via a Cython interface to C++), or in Python modules such as

CuPy and NumPy that hide away these pre-compiled routines.

During these calls, the GIL can be released allowing tasks

to schedule and execute in parallel. In our experience, the

GIL is released often enough to achieve good performance

on the types of applications we consider. We observe that

performance is relatively insensitive to repeated short accesses

to the GIL for orchestration. For 1000 independent 50ms tasks,

strong scaling efficiency remains over 90% on 12 workers

when the GIL is held for less than 10ms of the total task

time.

B. The Parla Interface

Parla provides a number of features to help with task

creation and scheduling. To introduce these features and their

interfaces we use a simple sample application: an inner-

product scattered across 2 GPUs (see Figures 1 and 2). In this

application data is initialized on the host machine and copied

to each accelerator, then each device computes the partial

inner-products in parallel, and finally the output is gathered

as a reduction on the host.

Gradual Adoption. Parla can be used to parallelize sequential

programs quickly. As the runtime supports using existing

Python libraries without limitations, there is no need to port

existing libraries to support Parla or to provide Parla wrappers.

Via the @spawn annotations shown in Figure 1, a program-

mer can add tasks to their application to create parallel patterns

with few modifications. The first argument to @spawn is the

task ID (e.g., in @spawn(taskid=T[i]), the task ID is T[i]).

In general task IDs can be arbitrary names, but here T is a task

space, an n-dimensional indexable collection of tasks that can

be used to organize and refer to the tasks later. In particular,

task names are used to specify dependencies between tasks.

An example is Line 16, which lists all other tasks in this task

space as dependencies for the final reduction task. This ensures

that it runs last. In general, task dependencies are specified as

a collection of tasks:

@spawn(dependencies=[task, ...])

Task spaces support slicing to allow subspaces to be used as

the dependencies of other tasks:

@spawn(dependencies=[taskspace[i, :], ...])

Adding dependencies on task spaces expresses more complex

heterogeneous parallel task structures, such as those used

in a blocked Cholesky factorization, with little user effort.

Specifying dependencies through task IDs and spaces gives

the user flexibility in supporting nested task patterns, tasks

that modify disjoint slices of data objects, and handling tasks

with side effects. All task IDs and task spaces can be used as

barriers as seen on Line 19. Parla tasks may block waiting for

an existing task to complete, including ones for a task they

spawned. This is integrated with Python’s async and await

support. As such, any task that needs to block on another task

must be declared with the async keyword. While a task is

blocked, it yields to the scheduler and releases all devices it

is using (potentially allowing those devices to be used by the

tasks it is waiting on). It will reclaim the exact same device

when the awaiting task completes.

Lastly, Parla tasks capture variables from the enclosing

scope by value. If a variable is reassigned in the outer scope

after spawning a task, it will not affect the variable value

observed inside the task. This is used in Line 14 to capture

the index i at spawn time. Data structures referenced by

variables are not copied, so mutable data (e.g., arrays and

other buffers) are still shared between tasks. For comparison,

standard Python functions capture variables by reference,

meaning that reassignments to variables in the outer scope

will also affect functions that captured that variable.

Heterogeneous Placement and Assignment. Parla allows

each task to specify the valid set of devices it can run on to

aid with effective task scheduling across devices. This is done

via the placement keyword argument to the @spawn decorator

used to create a task.

placement=[device, device_type, data, task]

The placement restrictions of a task are specified as the

collection of tasks, data, and/or devices. If a task ID or data

block is given, this specifies the device where the correspond-

ing task ran, or where that data is currently located. These

specifications can refer to a particular device, a set of devices

for the runtime to choose from, or a type of device architecture.

The tasking runtime determines which device is used from the

set of valid placements.

Currently, tasks support placement on two architectures:

CPUs and CUDA-capable GPUs. Placing a task on a GPU

notifies the runtime that the task should be treated as a

GPU task, allocating resources on the device and receiving

special context from the runtime such as a dedicated CUDA

stream and different mapping considerations—we detail these

provisions in III-D. GPU tasks should be thought of as code

that launches one or several GPU kernel(s) to process device-

side data. Given the nature of calling GPU code in Python,

some amount of work does occur on the CPU during a GPU

task, e.g., to call into the CuPy runtime and asynchronously

launch kernels. However, we assume that these CPU-side

routines are trivial, only briefly acquiring the GIL on a single

core during kernel launches; and so we do not provision CPU-

side resources to handle GPU tasks. While tasks that need to

perform both CPU- and GPU-side computations are allowed,

Parla can hide scheduling overheads via run-ahead scheduling

when a task ends in an asynchronous CUDA kernel.

Execution Context Management. Parla manages some con-

text switching in external libraries to ensure that the thread

of execution where a task runs is configured for the desired

device. For example, for CuPy, the context stores the current

device and streams for all of its API calls as a thread-local

object. Parla automatically switches the current device for

tasks that utilize a single GPU and runs each task on its

own stream. In contexts where it is available, events on the

stream are used to manage task dependents to enable run-ahead

scheduling. Contexts perform the required synchronization

calls to guarantee that operations run in a valid order.

Device-based Dispatch. Parla provides annotations to over-

load and specialize functions for different device architectures.

When called within a task environment, the function will

dispatch the appropriate implementation. The use of these

task variants can be seen in Figure 8 on Line 1. Variants

make it easy for a user to encapsulate such high-performance

implementations for a specific device behind a simple in-

terface. Parla does not aim to be a kernel generator or a

code transformer to create device code. For writing archi-

tecture specific implementations, we rely on being provided

a user implementation via hand-written kernels, via code

transformers such as PyKokkos [25] or Numba [24], or via

API compatibility between CuPy and NumPy for architecture-

generic tasks.

Manual Relative Data Movement. Cross-device communi-

cation is a critical concern when building a heterogeneous

application. To help manage communication, Parla provides

interfaces with varying degrees of automation that allow the

user to specify data movement relative to the current device or

a specific data object. This interface is built on top of CuPy,

which supports direct device-to-device transfers, and NumPy.

When either the CPU or a single GPU is used for a given task,

data can be copied to where the current task is running using

the clone_here function. This is demonstrated on Lines 12-

13 in Figure 1 to move the host data to the current device.

Similarly, Parla provides a copy function that can be used to

copy data between arrays regardless of their location.

Automatic Scheduled Data Movement. In addition to manual

movement within a task, Parla provides PArray, an intelligent

lightweight wrapper for CuPy and NumPy ndarrays. PArrays

can have multiple valid locations and be accessed by mul-

tiple tasks on different devices simultaneously. By putting a

PArray in the input, output, or inout keyword arguments

to the @spawn decorator its movement will be automatically

scheduled to the mapped device before the task launches

if it is not already available there. This automatic copying

of PArray across devices is referred to here as automatic

data movement. To ensure memory coherence when multiple

devices are accessing the same PArray, a coherence protocol

is used. To eliminate unnecessary data movement and improve

parallelism, automatic data movement for slices of PArray

objects is supported. More details are in subsection III-C.

Using these features allows the scheduler to track more infor-

mation about data flow to make more intelligent scheduling

decisions. Parla does not force programs to use this specific

data management or coherence system. This allows better

compatibility with libraries that include their own optimized

data management tools and enables full programmer control

over data movement.

Resource-Aware Tasks. The resource usage of a task can be

specified using abstract resources that apply to all devices.

Resources are provided by devices and occupied by currently

running tasks. Parla supports two resources: abstract compute

units (ACUs) and memory.

@spawn(memory=bytes, acus=n)

Memory is specified in bytes and represents the amount of

data allocated on the device during the execution of the

task. Abstract compute units are used to represent fractional

load. (e.g. two tasks that take 0.5 ACUs can fit on a single

device). ACUs provide a simple representation of the compute

resources that a task can effectively use.
Parla is designed to support arbitrary resources on devices

contexts. These resource specifications allow the scheduler to

schedule multiple tasks per device provided that the needed

resources are available.
For convenience, both the memory and the placement can

be specified simultaneously through data:

@spawn(data=[array, ...])

If a task uses PArray objects memory is tracked automatically

by the scheduler. The resource specifications for a given task

are not enforced in any way by Parla. They simply provide a

measure of task resource use so that the scheduler can schedule

additional tasks as long as additional resources are available on

a device. In the case of CPU libraries, existing interfaces, like

OMP_NUM_THREADS [26], must be set appropriately to ensure

that the number of cores per task is an accurate representation

of how many cores will actually be used. Similarly, a task

that uses a certain amount of GPU memory must take care to

ensure that it does not allocate more than its requested amount.

Extensibility. Parla only supports CPUs and CUDA GPUs, but

the runtime has been designed to be extensible as new plat-

forms and hardware mature. Architecture support is enabled

through abstract task environments. These manage hardware

resources, platform specific local variables and context con-

figurations, synchronization, and events. Architecture support

can be extended by providing these primitives through the

environment class.

C. The Parla Array (PArray)

Efficient data management is a key challenge for per-

formance on heterogeneous systems. However, existing data

structures like NumPy or CuPy arrays are designed for a

single device and provide limited information to the runtime.

To alleviate this limitation, Parla introduces a wrapper for

ndarrays called the Parla Array, or PArray.

Design Principles. Figure 4 shows an example of a PArray.

Abstractly, a PArray manages a single object (i.e., the ndarray)

that may have copies on several devices. The Parla system

uses an MSI (Modified/Shared/Invalid) protocol similar to that

used in cache-coherent systems to ensure that these copies are

transparent to the programmer. In addition, PArrays support

non-overlapping slices and manage coherency on a slice-by-

slice level. Tasks can request and produce data in finer-grained

units rather than an entire PArray. To simplify the protocol and

improve memory usage and performance, the Parla coherency

protocol does not provide an ordering protocol for multiple

overlapping writers.
In the spirit of gradual adoption, PArrays are an optional

Parla feature and are not required for Parla tasks. Programmers

may use their own objects within tasks and PArrays are

provided as a tool for enabling automatic data movement.
Using PArrays provides two advantages when using Parla.

First, the Parla runtime is able to automatically prefetch data

contained in a PArray to a task’s device. Second, the runtime

is able to make more informed task mapping decisions based

on data locality when PArrays are used. That said, while

gradually migrating to, or optimizing a Parla program, the

programmer may rely on a less informed scheduler rather

than using PArrays. Conversely, an expert programmer may

forego PArrays through user-constructed data-movement tasks

or choose their own mappings.

PArray Interfaces. The PArray interface is compatible with

NumPy and CuPy ndarrays to enable users to easily migrate

applications to Parla. For example, the computation in Line 12

in Figure 3 is the same as what one would write when using a

NumPy array. NumPy/CuPy ndarrays and Python built-in lists

can be converted to PArray objects via the asarray method.

An example is shown in Figure 3 in Lines 1-2. PArray objects

can be converted back to NumPy/CuPy ndarray via the .array

class method. This is useful when they need to be passed to

functions that require a ndarray type.
PArray objects used in a task are specified in the decorator.

An example is shown below.

1 a = parla.asarray(numpy.random(n))
2 b = parla.asarray(numpy.random(n))
3 partial_sums = numpy.empty(num_gpu)
4 result = 0
5 block_size = n // num_gpu
6 T = TaskSpace("T")
7

8 for i in range(num_gpu):
9 s = slice(i*block_size,(i+1)*block_size)

10 @spawn(T[i], input=[a[s],b[s]])
11 def inner_local():
12 partial_sums[i] = a[s] @ b[s]
13

14 @spawn(T[num_gpu], dependencies=T, placement=cpu)
15 def reduce_task():
16 result = numpy.sum(partial_sums)
17 await T[num_gpu]

Fig. 3. Inner product in Parla with PArray.

Fig. 4. Overview of PArray.

@spawn(input=[array1, ...], inout=[array2, ...],
output=[array3, ...],)

This permits the scheduler to generate automatic data move-

ment tasks before the task launches, prefetching data to a task’s

device before the task executes (Section III-D).

D. The Parla Runtime

The Parla runtime ensures that task dependency require-

ments are met, maps tasks to compute devices, and launches

tasks on worker threads for execution. The primary goal of

the Parla runtime is to maximize overall system utilization and

efficiency for a variety of workloads on any hardware topol-

ogy, making Parla programs both performant and portable.

The Parla runtime also provides a mapping API enabling

users to exploit machine- or application-specific knowledge

to enhance performance. In the following sections, we explain

the design principles of the Parla runtime and describe our

implementation.

Design Principles. To properly leverage the compute capa-

bilities of all devices in a heterogeneous node, the runtime

is designed around two basic principles. The first is data

locality: Tasks ought to be scheduled near their data to

minimize unnecessary data movement. The second is load

balancing: Work ought to be evenly distributed over devices

when possible. These principles pose a trade-off, as in complex

Spawned Task Queue Map tasks to
devices

Create data-move
tasks

Wait for callbacks of
dependees

Launcher assigns tasks to
worker threads

GPU0CPU

Schedule ready
tasks to device
queues Inputs

= A, B

move
A

move
B

GPU1

Task completes
and notifies
dependent tasks

(1)
(2)

CPU GPU

GPU

(3)

(4)
(5)

(6)

(7)

(8)

Task is
spawned

Fig. 5. The Parla runtime.

task graphs it often proves difficult to maintain a balance of

work while limiting data movement between devices.

Our runtime is also designed to keep GPUs saturated with

useful work. We make use of CUDA events to map and launch

GPU tasks early, keeping GPU command queues full when

possible. We hide latency by overlapping GPU computation

and communication, masking the cost of data movement

when it must occur. When users take advantage of PArrays,

we decouple a task’s data movement from its computation,

separately scheduling copy operations to prefetch data blocks

as soon as their dependencies resolve. We call a task that

prefetches data blocks a data-move task, and a task that

performs computation a compute task.

Implementation. We demonstrate our implementation by

walking through the lifetime of a task from spawn to comple-

tion. The basic structure of the scheduler is shown in Figure 5.

When a task is spawned into a FIFO queue for mapping. The

runtime mapper runs periodically via callbacks from worker

threads. It uses a greedy policy to assign tasks to suitable

devices. Figure 6 contains the pseudocode for the mapper’s

priority calculation (Lines 1 to 12). A task’s required PArrays

are used to determine how much data is local to each device

and the cost of moving non-local data (Lines 3 to 7). Each

device is penalized for its current load based on the number

of tasks already mapped to it (Line 8). Additional factors, such

as whether the task has a dependency already mapped to the

given device, are also considered (Line 9). These factors are

weighted and combined to determine an overall priority for

each device. Devices receive a higher priority for more data

locality and lower priority if they already have a heavy load

(Line 10). The task is mapped to the device with the highest

priority (Line 12). Occasionally, no suitable device is found

(e.g., because no device has enough free memory to satisfy

the task’s memory requirements); in this case, the task is re-

enqueued and processed the next time the mapper runs.

1 def mapper(task: Task):
2 for d in device_candidates(task):
3 for parray in task.inputs:
4 if d.has_parray(parray):
5 local_data += w0 * parray.nbytes
6 else:
7 non_local_data += w1 * parray.nbytes
8 device_load = w2 * d.mapped_task_count
9 depend_load = w3 * d.has_depend(task.dep)

10 d.priority = local_data + depend_load
11 - non_local_data - device_load
12 task.device = find_best_device(cand_devices)
13

14 def launcher():
15 for d in available_devices():
16 if d.active_compute_tasks < compute_threshold:
17 compute_task = compute_task_queue[d].pop()
18 thread_pool.launch(compute_task, d)
19 if d.active_data_tasks < data_threshold:
20 datamove_task = data_task_queue[d].pop()
21 thread_pool.launch(data_task, d)

Fig. 6. The Parla runtime pseudocode.

Once a task is mapped, the runtime creates a data-move

task for each of the task’s PArrays that need to be moved. A

data-move task is an independent task scheduled and executed

prior to its parent task for the sole purpose of gathering data

to the parent task’s mapped device. While the parent task must

wait for all of its dependencies to complete before executing,

each data-move task only needs to wait until the particular

dependency producing its PArray has completed. This enables

prefetching data before the compute task is scheduled to run.

Dependencies of these data-move tasks are inferred from the

dependencies of the parent compute tasks that write to this

PArray. Each device is associated with a set of FIFO queues

for storing tasks ready to be launched. Once mapped, a task

waits for its dependencies to resolve. When it becomes valid

to run, the runtime scheduler dispatches it to a device queue

based on its mapping. The runtime maintains a pool of worker

threads for executing tasks. Whenever a device is free, the

runtime launcher assigns a dedicated worker thread to the

task at the head of the queue and begins the task’s execution.

Worker threads are responsible for executing user code within

a task as well, setting up the device context, and notifying

dependent tasks and resource pools of task completion. Python

code executed by a worker thread does acquire the GIL, so

while many worker threads may have work to do, only one

runs at a given time. Task parallelism is achieved when tasks

call into compiled code and release the GIL. When a task

completes it returns its worker thread to the runtime resource

pool.

GPU Tasks. The runtime launcher has special provisions for

GPU tasks. Every GPU task, whether its compute or for data

movement, is launched on its own dedicated CUDA stream.

As GPU tasks contain asynchronous CUDA kernel launches,

these kernel launches are enqueued into the GPU’s device-side

hardware command queue for execution; keeping this queue

saturated with work minimizes wasted time between kernels.

GPU tasks are dispatched by the Parla scheduler before their

dependencies are complete. Each GPU task records a CUDA

1 @spawn(placement=gpu)
2 def simple_task():
3 ...
4

5 for i in range(100):
6 @spawn(placement=gpu(i % 4))
7 def round_robin_task():
8 ...

Fig. 7. Specifying specific mapping decisions.

event upon completion and dependency ordering is enforced

by event synchronization. If a task has a dependency, it simply

waits on that dependency’s recorded event at the start of its

own execution. In this way, the task can be dispatched to a

worker thread early to wait on the event. This allows more

scheduling overhead to be hidden while the task executes.

Each GPU also has two dedicated device queues: one for

compute tasks and another for data-move tasks. Launching

separately from each queue on dedicated streams increases the

effective overlap of computation and communication. Figure 6

shows pseudocode of the runtime launcher (Lines 14 to 21).

To prevent oversubscription of the copy engines and active

compute tasks, we limit to three tasks of each type running

on a device at any given time.

Tuning. As with all components of Parla, the runtime is

designed with gradual adoption in mind. The baseline mapping

policy is suitable for a variety of use cases. However, different

applications and topologies will naturally result in different

computation and memory access patterns, and finding one

policy to fit all scenarios is a difficult task. As such, the Parla

API provides means for users to leverage their own knowledge

in making mapping decisions.

A user needs to specify only minimal information for tasks

to run correctly. For example, to run a task on the GPU, a

user need only specify the architecture, as shown in Line 1 of

Figure 7. If users wish to leverage application- or machine-

specific features to improve the mapping schemes, the Parla

@spawn API enables them to specify necessary memory size

or ranges of devices. As an example, Figure 7 Line 6 demon-

strates a user’s ability to map tasks within a for loop in a

round-robin order based on the iteration count of the loop,

ensuring that work is evenly distributed across devices.

E. Parla Interoperability

We have highlighted Parla’s ability to seamlessly interop-

erate with NumPy, CuPy, and Numba. Beyond intra-node

interoperability, Parla can be combined with other systems

to support tasking not only across devices but also compute

nodes. A common pattern in scientific computing is MPI+X:

MPI is used for distributed programming combined with some

other system for intra-node programming. Parla does not

directly address distributed programming because it fits this

methodology. It can be used for intra-node programming in

the familiar and powerful MPI environment. Both Numpy [27]

and CuPy [28] already interoperate cleanly with the Python

bindings for MPI [29]. We validated the use of MPI in Parla

programs but exclude further discussion from this paper due

to space constraints.

IV. APPLICATIONS

We use a range of both real and synthetic benchmarks

to demonstrate the features and performance of Parla. We

compare Parla’s performance with theoretical estimates and

3rd party libraries, or a manual implementation of the same

algorithm with Python’s threading module. In complexity

estimates, ω is average bandwidth. p is the number of devices,

and l is the communication latency.

Synthetic Graphs. With a configuration file we specify for

each task: what other tasks they depend on, the data they

will read or write to, how long the task will run, where they

have valid placements, and how often they access and hold

the Python GIL.

The runtime of each task is enforced by a busy wait on

the device. As this busy waiting represents work given to

an external library we release the GIL while computation is

happening. Each task has a setting to interrupt this work at

intervals to acquire and hold the GIL for a set interval. For

all tests considered here, this is only done once and held for

200 microseconds.

For the simplicity of presentation and analysis, we focus on

three prototypical graphs. In the serial graph, each task simply

depends on the previously launched task. They each perform

read and write operations on the same data. The optimal

"user" placement decision is keeping all tasks on the same

device. In the independent graph, each task only performs a

read operation and every 64th launched task shares the same

data. Here the optimal "user" placement is to distribute the

tasks evenly in a round-robin order. The reduction graph is

an inverted tree where each task reads data passed to it by

its two parents and writes to the data of its left parent as

output. Optimal "user" placement is to distribute the largest

subtrees evenly among the devices, assigning tasks to the same

placement as their left parent once the width of the level is

less than the number of devices. In all of these tests, the data

blocks start evenly distributed across the GPUs in a round-

robin manner.

Block Matrix Multiplication. We compute C = ABT by a

block-row decomposition. Each task corresponds to multiply-

ing together a block of rows from A and a block of rows from

B to get a square sub-block of C. The full matrix B needs

to be communicated to each GPU in slices at a time. This

simple algorithm leads to a complexity of O(N
3

p
+ lp+ N2

ω
).

Our 3rd party comparison is the ‘cublasMg’ multi-GPU matrix

multiplication sample code.

Jacobi Stencil. We implemented a distributed 2D 4-point

stencil across GPUs using a 1D block-row partitioning. This

process corresponds to a naive iterative solver for the heat

equation with a Dirichlet boundary condition. The stencil

itself is written in Python for the GPU using the Numba JIT

compiler [24]. At each iteration we update and communicate

the values on the boundary. Each task is the stencil update

of a single block-row and its boundary. Each iteration has

1 @specialized
2 def ltriangle_solve(a,b):
3 scipy.linalg.blas.dtrsm(a,b)
4

5 @ltriangle_solve.variant(gpu)
6 def gpu_ltriangle_solve(a,b):
7 cupy.cuda.cublas.dtrsm(a,b)
8

9 @spawn(tri_solve[j,i],
10 dependencies=[gemm[j,i,0:i], potrf[i]],
11 placement=gpu,
12 inout=[a[i,j]],
13 input=[a[i,i]])
14 def TRSM():
15 ltriangle_solve(a[i,i],a[i,j])

Fig. 8. TRSM kernel for blocked Cholesky in Parla

complexity O(N
p
+l+

√
N
ω

), where N is the number of degrees

of freedom.

Block Cholesky Factorization. We compute A = LLT via a

right-looking block Cholesky factorization. Data is initialized

in a block row-cyclic distribution with blocks of size b. This is

a common tasking benchmark as it is a simple to understand

application with a surprisingly complicated task graph. We

compare performance with a theoretical estimate computed via

the critical path length on a level-by-level synchronous version

of the same algorithm. For a 3rd party comparison, we show

the performance of the optimized MAGMA implementation

of a left-looking multi-GPU block Cholesky.

Our implementation takes advantage of the specialized

variants for heterogeneous support. Figure 8 depicts CPU and

GPU kernels for the triangular solve kernel for device-based

dispatch. Lines 1 and 5 show the specialized variant for CPU

and GPU respectively. This allows kernels to be dispatched

to CPU or GPU devices dynamically at runtime. However,

for this algorithm with fixed size blocks having the CPU

steal work from the GPUs leads to degraded performance

(Section V-F). The data management API for PArrays can be

seen on Lines 12-13.

N-body. A 2D gravitational N -body solver [30] using a level

grid-decomposition. We apply the standard rank-1 approxima-

tion to compute the far-field interaction with local bodies as

the influence between them and the center of mass of the far

box. In the time stepping scheme, each particle computes the

total force exerted by other particles and updates its velocity

and position. The kernels are implemented using the GPU-

vectorization hints in Numba. There are four main task types

in this implementation: (1) mapping a group of particles to

a grid, (2) computing the center of mass for each box in

a set of boxes (spatial regions), (3) taking a group of grid

boxes and computing all interactions between boxes in a

set, and (4) updating positions of a group of particles given

computed forces on them. We maintain two applications, a

version with Parla and a manually threaded version without

Parla for comparison. The Parla app uses the slicing data

movement features of PArray to select the points for evaluation

at each iteration.

Block Low-Rank (BLR) Matrix Multiplication. For a rank-

TABLE I
PARLA DATA MOVEMENT SUPPORT

Manual Automatic

Prefetching •
Data-Aware Scheduling •
Distributed Coherency •
Load Balancing Scheduling • •
User Placement • •

structured matrix A, we compute a compressed approximation

Ã ≈ A by decomposing it into blocks (of size b) and

taking tiled low-rank factorizations over the matrix (via the

Singular Value Decomposition). The matrix starts on the host

machine and is streamed across the GPUs for compression.

The compressed form is then used to apply y = Âx.

V. EVALUATION

A. Evaluation Setup and Design

We perform five runs for each benchmark. If not specified

otherwise, we report the median over these samples. All

experiments were conducted on the Frontera cluster [31] of

the Texas Advanced Computing Center (TACC) [32]. All GPU

data was collected on a system with 4 NVIDIA Quadro RTX

5000 GPUs and dual-socket Intel Xeon E5-2620s (total of

16 cores, hyperthreading disabled). Each pair of RTX 5000s

on the same socket is connected with Peer-to-Peer (P2P)

communication links. All other communication between them

must pass through the host machine. CPU scaling data was

collected on dual-socket Intel Xeon Platinum 8280s (total of

56 cores, hyperthreading disabled).

To understand the performance of Parla features for dif-

ferent data movement and placement policies, we performed

a differential analysis on three synthetic applications and five

real applications, those mentioned in Section IV. The synthetic

applications were run with a task size of 16ms. Each task

communicated 50MB of data. This configuration gives a ratio

of 2:1 between computation and communication time. Serial is

a chain of 150 tasks, Reduction is an 8 level binary tree, and

Independent is 300 tasks. For the real applications we used

the following sizes: BLR (N = 104, b = 2.5k), Cholesky

(N = 28k, b = 2k), Jacobi (N = 30k, iter = 500),

Matrix Multiplication (N = M = K = 32k), and N-body

(N = 10M , d = 2). All tests are strong-scaling and all tasks

launched on the GPU. We summarize the Parla configurations

that were tested in Table I.

B. Data Management

We compare the performance of PArray features (Automatic

Data Movement) with data movement via clone_here (Manual

Data Movement). The comparisons are shown in Figure 9 and

Figure 11. These benchmarks are performed with the same

user-specified optimal placement policy to remove the influ-

ence of the scheduler’s mapping policy from the comparison.

This ensures that the same pattern of data movement occurs

in each.

Data management through PArrays schedules the data-move

task as a distinct task from the user-defined compute tasks.

This enables prefetching of the required data and overlapping

communication with computation. As an example, we isolate

this behavior with a longer chain of the DAG presented in

Figure 10. On this chain of tasks every other task reads and

writes data that the second next task will read. The odd

tasks skipped by the above always read a new untouched

piece of data. Each task is mapped to the device (tid/2)%2.

This ensures that data is always copied at each step without

using any cached data from the coherence protocol. This DAG

has 9 data copies. By using two P2P links and two copy-

engines per device all communication can be completed in 6

rounds when overlapped optimally. The optimal execution time

without data movement is 0.35 seconds, Parla achieves 0.351

seconds without data movement. In Figure 11 we observe that

prefetching is able to achieve close to the optimally overlapped

performance at each data size.

PArrays enable a coherence protocol. As such, if a PArray

has already been copied to a device and remains in a valid

state, no additional copy is performed. Both of these opti-

mizations benefit the suite of applications shown in Figure 9.

The impact is highly application-dependent. First, notice that

in nearly all cases the additional runtime overhead incurred

by automatic data movement is negligible compared to the

manual data movement. The serial synthetic workload has

strict chained dependencies among tasks and cannot benefit.

The independent synthetic workload, the matrix multiplication,

and the BLR have no dependencies among their compute

tasks. For these cases, it is hard to expect benefits from

data prefetching as manual movement is also colocated with

streams. The Cholesky factorization is a computation-intensive

application which masks the impact of a data movement

policy. On reduction, there is a benefit when gathering the

initial data to the subtrees at the leaf level and when one of

the parents finishes before the other. For these cases, automatic

data movement improves runtime about 23% over manual

movement within a task on 2 GPUs. On 4 GPUs the degree of

the overlap decreases. Similar behavior is seen when gathering

the initial blocks for BLR and N-body from the host machine.

Second, the coherency protocol for sliced objects can im-

prove performance significantly. Flexible finer-grained data

movement without large blocks increases memory bandwidth

and overlaps more data copy operations. The PArray-based

N-body improves runtime about 24% over the manual data

movement. For Jacobi, we observe a performance hit due

to coherence overhead, contention of bandwidth with FIFO

scheduled boundary copies, and some locking around concur-

rent reads of a particular PArray object. This is ongoing work

and can be improved by better scheduling of data-move tasks.

C. Resource-Aware Mapping Policy

We study the performance of the mapping policy described

in III-D. The objective of the default mapping policy is

to make task placement decisions automatically (Automatic

Data Movement + Greedy Based Mapping) with comparable

Serial Reduction Independent

BLR Cholesky Jacobi Matmul Nbody

1 2 4 1 2 4 1 2 4

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

0

50

100

150

0

2

4

6

0

20

40

0

1

2

3

4

0

5

10

15

20

25

0.0

2.5

5.0

7.5

0

20

40

60

0

1

2

3

#GPUs

T
im

e
 (

s
)

Non−Parla

Automatic Data Movement + Greedy Based Mapping

Automatic Data Movement + User Chosen Mapping

Manual Data Movement + User Chosen Mapping

Fig. 9. Runtime (s) comparison for Parla features [Automatic Data Movement/Greedy Mapping Policy, Automatic Data Movement/User Placement, Manual
Data Movement/User Placement] and non-Parla implementations on 1 to 4 GPUs.

Fig. 10. DAG for prefetching example with (right) and without (left)
prefetching tasks. Tasks for data movement are shown in yellow. Tasks for
computation are shown in grey. Untouched initial data is represented by black
nodes. Red edges represent a data dependency.

0.0 0.2 0.4 0.6

Time (seconds)

640

64

32

D
a
ta

S
iz

e
(M

B
) Manual

Automatic

Ideal

Fig. 11. Total Runtime of DAG shown in Figure 10 for different sized data
transfers. We compare the performance of automatic data movement using
PArrays with manual data movement inside a task.

performances to the hand-tuned mapping (Automatic Data

Movement + User Chosen Mapping). Figure 9 shows that the

runtime differences between the hand-tuned mapping and the

default policy do not exceed 0.5%. In many cases, this policy

is able to achieve a balance between managing device load

and data movement.

D. Comparison with Third Party Codes

Figure 9 shows comparisons between Parla and Non-

Parla implementations. First, we evaluated our Cholesky

factorization with a state-of-the-art multi-GPU implementa-

tion, MAGMA [33]. MAGMA’s implementation outperforms

Parla’s as it adopts optimizations to delay GEMM updates

and coalesces them into larger blocks. This leads to fewer

launch overheads, higher bandwidth, and improved memory

locality. Even with the algorithmic differences, the simple

Parla implementation with CuPy is able to achieve close

performance. Using the observed GEMM, TRSM, and POTRF

times in CuPy, we compute the expected theoretical runtime

for a bulk synchronous version of the algorithm without data

movement. This gives 24.4, 13.4, and 8.4 seconds on 1, 2, and

4 GPUs respectively. This is less than a 3% relative difference

from the Parla implementation. As this estimate assumes lower

parallelism than Parla but no communication overhead, we are

within a reasonable performance range.

Second, we evaluate our matrix multiplication against

cuBLAS’s multi-GPU implementation [34], which is opti-

mized for NVIDIA GPUs. Note that scaling at 4 GPUs is

hampered here due to there only being two P2P links. This

bottlenecks the large data transfers to communicate block-

columns of B onto all devices. In this evaluation, Parla’s

matrix multiplication showed comparable, but slightly better

performance than the architecture-specialized library. Last,

BLR and N-body, are compared against a non-Parla bulk-

synchronous implementation using the same task structure and

Python’s native threading module. In these cases we see an

advantage to using the tasking runtime and data movement

features. In summary, Parla enables the developement of

performant parallel algorithms with native Python libraries.

E. Comparison with Dask

O
u

t−
o

f−
M

e
m

o
ry

O
u

t−
o

f−
M

e
m

o
ry

CPU GPU

1 2 4 8 16 1 2 3 4

0

20

40

60

80

CPU cores or GPUs

T
o

ta
l

R
u

n
ti

m
e

 (
s

)
Parla Dask

Fig. 12. Total Runtime of Cholesky Factorization of Parla and Dask.

254 10 40

Workers

0.00

0.25

0.50

0.75

1.00

E
ffi

ci
en

cy

Parla

254 10 40

Workers

0.00

0.25

0.50

0.75

1.00

E
ffi

ci
en

cy

Dask (Process)

20 404 10 40

Workers

0.00

0.25

0.50

0.75

1.00

E
ffi

ci
en

cy

Dask (Thread)

Size [ms]

1.6

3.2

6.4

12.8

25.6

51.2

102.4

20 404 10 40

Workers

0.00

0.25

0.50

0.75

1.00

E
ffi

ci
en

cy

w/ GIL

Dask

Parla

Fig. 13. Strong Scaling of Parla and Dask for a range of task granularities
from 1.6 ms to 102.4 ms on 1000 independent tasks. The GIL is released
for the entire task time. Parla [top-left], Dask (Process) [top-right], and Dask
(Thread) [bottom-left] are compared. Parla achieves performance only slightly
worse than Dask (Thread) while providing GPU support and memory man-
agement features similar to those in Dask (Process). Efficiency is calculated
w.r.t ideal runtime. In "w/GIL" [bottom-right] we run 1000 50ms tasks. This
time the GIL is held for 10% of total task time (5ms).

In Figure 13, we compare the strong scaling efficiency of

Parla and Dask (where the efficiency is computed w.r.t to

theoretically obtained optimal wall-clock time) for a set of

1000 independent CPU tasks at different task sizes. Although

Dask with the threading backend achieves slightly better

performance when scaling to more threads even at small

task sizes, it does not have the mapping policy, resource

management, or GPU support of its process-based equivalent

or of Parla. Dask also has the advantage of a static task

graph. Unlike Parla, the task graph is not streamed and the

tasks are not being spawned and running at the same time.

Its simplified scheduler leads to less overhead. Parla achieves

better performance than Dask (Process) at all configurations.

For a smaller number of workers, Parla remains competitive

with Dask (Thread). We can see that the optimal task sizes

for using Parla are greater than 20ms. In the bottom-right

sub-figure of Figure 13, we compare the robustness of Parla

and Dask to 50ms tasks that hold the GIL for 10% of

their execution time (5ms). In this regime, Parla achieves

significantly better performance when running with less than

12 workers.

Figure 12 shows a runtime comparison of a blocked

Cholesky factorization (N = 20k, b = 2k) in Parla and in Dask

on multiple CPU cores and GPUs on a single node. Both

implementations use the same computation kernels and task

structure. However, Parla uses in-place modifications while

Dask communicates copies as data Futures. Parla experiments

are run with automatic data movement and the default greedy-

based mapping policy. Dask experiments are run with the

LocalCluster threading backend for CPU and the process

backend for GPUs via Dask-CUDA that creates a single

worker for each device. We use their default mapping policy in

each of these modes, and enable work stealing and the DAG

optimization functions. Parla and Dask showed comparable

runtimes on the CPU tests. On the GPU tests, Dask-CUDA

got out of memory on 1 and 2 GPUs, and showed around 5x

slowdown on 3 and 4 GPUs due to load imbalance, scheduling

overheads, and inter-process communication.

F. Demonstration of Task Variants

0 1 2 4

GPUs

0

2

4

6

8

10

T
im

e
(s

)

Batched Cholesky with Variants

CPU + X GPUs

X GPUs

Fig. 14. Time for 300 independent Cholesky factorizations (N = 2k) with
heterogeneous dispatch.

To demonstrate that heterogeneous dispatch can be useful,

we construct the following example: the independent batched

Cholesky factorization of 300 matrices of size 2000×2000 on

the host machine. We provide two function variants that per-

form the factorization of a single matrix: a host CPU Cholesky

function via BLAS on 6 threads and a GPU Cholesky function

that copies data to the device, performs the factorization with

cuBLAS, and copies back via manual data movement. On this

system, the GPU Cholesky function is about twice as fast as

the CPU Cholesky kernel and takes 0.03 seconds. Figure 14

shows the runtime of this test when mixing the two variants

compared to using the GPU kernel alone. When we use fewer

than 4 GPUs, there is a benefit to using the CPU to pick up

work while the GPUs are busy.

VI. CONCLUSIONS

Parla provides a Python-based programming system for

heterogeneous parallel programming along with a flexible

resource-aware runtime. All Parla components integrate seam-

lessly with the existing scientific Python ecosystem allowing

applications to reuse existing code or gradually adopt Parla.

Simple annotations and data wrappers enable programmers to

gradually adopt Parla to build powerful, multi-device HPC

applications. Features such as data prefetching and distributed

PArrays exhibit an advantage to user-written threaded code.

We’ve shown that Parla allows the development of parallel

Python programs that achieve competitive performance and

scale well within a single process on a heterogeneous system.

The Parla team continues to improve Parla’s interface,

data structures, and runtime system. Future work includes

multi-device tasks, improving the mapping, prefetching, and

data eviction policies, and integrating past task runtime and

variants into those policies. Work-stealing will be needed to

help load-balancing as we increase the batch size of mapped

tasks. Of particular note, Parla does not currently infer task

dependencies from data dependencies. While this provides

additional flexibility, adding a closer integration of data futures

and inferring dependencies from general ND-slices of data is

a key challenge to address for ease-of-use. Additionally, work

continues on incorporating Parla into larger HPC applications.

VII. ACKNOWLEDGMENTS

This material is based upon work supported by NSF award

CNN-2006943, CNS-1846169, and CCF 1922862; by the U.S.

Department of Energy, Office of Science, Office of Advanced

Scientific Computing Research, Applied Mathematics program

under Award Number DE-SC0019393; and by the U.S. De-

partment of Energy, National Nuclear Security Administration

Award Number DE-NA0003969. Any opinions, findings, and

conclusions or recommendations expressed herein are those

of the authors and do not necessarily reflect the views of

the DOE, and NSF. Computing time on the Texas Advanced

Computing Centers Stampede system was provided by an

allocation from TACC and the NSF.

REFERENCES

[1] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,

G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,

A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Rai-

son, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,

J. Bai, and S. Chintala, “PyTorch: An imperative style,

high-performance deep learning library,” in Advances in

Neural Information Processing Systems, 2019, pp. 8024–

8035.

[2] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,

E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan

et al., “Ray: A distributed framework for emerging

{AI} applications,” in Operating Systems Design and

Implementation, 2018, pp. 561–577.

[3] Dask Development Team, Dask: Library for dynamic

task scheduling, 2016.

[4] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford,

R. Kumar, L. Lacinski, R. Chard, J. M. Wozniak,

I. Foster, M. Wilde, and K. Chard, “Parsl: Pervasive

Parallel Programming in Python,” in Proceedings of

the 28th International Symposium on High-Performance

Parallel and Distributed Computing, ser. HPDC ’19.

New York, NY, USA: Association for Computing

Machinery, Jun. 2019, pp. 25–36. [Online]. Available:

https://doi.org/10.1145/3307681.3325400

[5] E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R. M.

Badia, J. Torres, T. Cortes, and J. Labarta, “Pycompss:

Parallel computational workflows in python,” The

International Journal of High Performance Computing

Applications, vol. 31, no. 1, pp. 66–82, 2017. [Online].

Available: https://doi.org/10.1177/1094342015594678

[6] RAPIDS, “Dask-cuda,” 2022. [Online]. Available: https:

//docs.rapids.ai/api/dask-cuda/nightly

[7] H. Elshazly, J. Ejarque, and R. M. Badia, “Storage-

Heterogeneity Aware Task-based Programming Models

To Optimize I/O Intensive Applications,” IEEE Trans-

actions on Parallel and Distributed Systems, pp. 1–1,

2022, conference Name: IEEE Transactions on Parallel

and Distributed Systems.

[8] R. Amela, C. Ramon-Cortes, J. Ejarque, J. Conejero,

and R. M. Badia, “Executing linear algebra

kernels in heterogeneous distributed infrastructures

with PyCOMPSs,” Oil & Gas Science and

Technology – Revue d’IFP Energies nouvelles,

vol. 73, p. 47, 2018, publisher: EDP Sciences.

[Online]. Available: https://ogst.ifpenergiesnouvelles.fr/

articles/ogst/abs/2018/01/ogst180064/ogst180064.html

[9] J. J. Galvez, K. Senthil, and L. Kale, “CharmPy: A

Python Parallel Programming Model,” in 2018 IEEE

International Conference on Cluster Computing (CLUS-

TER), 2018, pp. 423–433.

[10] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Le-

gion: Expressing locality and independence with logical

regions,” in International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis,

2012, pp. 1–11.

[11] M. Bauer and M. Garland, “Legate numpy: Accelerated

and distributed array computing,” in Proceedings of the

International Conference for High Performance Comput-

ing, Networking, Storage and Analysis (SC19), 2019.

[12] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,

S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-

ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-

enberg, D. Mané, R. Monga, S. Moore, D. Murray,

C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,

K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vié-

gas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,

Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine

learning on heterogeneous systems,” 2015.

[13] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,

T. Xiao, B. Xu, C. Zhang, and Z. Zhang, “MXNet:

A flexible and efficient machine learning library for

heterogeneous distributed systems,” ArXiv, 2015.

[14] R. Mayer, C. Mayer, and L. Laich, “The TensorFlow

Partitioning and Scheduling Problem: It’s the Critical

Path!” arXiv:1711.01912 [cs], Nov. 2017, arXiv:

1711.01912. [Online]. Available: http://arxiv.org/abs/

1711.01912

[15] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacre-

nier, “Starpu: a unified platform for task scheduling on

heterogeneous multicore architectures,” Concurrency and

Computation: Practice and Experience, pp. 187–198,

2011.

[16] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Her-

ault, and J. J. Dongarra, “PaRSEC: Exploiting Hetero-

geneity to Enhance Scalability,” Computing in Science

Engineering, vol. 15, no. 6, pp. 36–45, Nov. 2013,

conference Name: Computing in Science Engineering.

[17] M. Gonthier, L. Marchal, and S. Thibault, “Memory-

Aware Scheduling of Tasks Sharing Data on Multiple

GPUs with Dynamic Runtime Systems.” IEEE, May

2022, p. 1. [Online]. Available: https://hal.inria.fr/

hal-03552243

[18] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Mar-

tinell, X. Martorell, and J. Planas, “Ompss: a proposal for

programming heterogeneous multi-core architectures,”

Parallel processing letters, pp. 173–193, 2011.

[19] Y. Weinsberg, D. Dolev, T. Anker, M. Ben-Yehuda, and

P. Wyckoff, “Tapping into the fountain of cpus: on

operating system support for programmable devices,” in

Architectural Support for Programming Languages and

Operating Systems, 2008, pp. 179–188.

[20] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and

E. Witchel, “Ptask: operating system abstractions to

manage gpus as compute devices,” in Symposium on

Operating Systems Principles, 2011, pp. 233–248.

[21] V. A. Saraswat, V. Sarkar, and C. von Praun, “X10:

Concurrent programming for modern architectures,” in

Principles and Practice of Parallel Programming, 2007,

p. 271.

[22] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.

Leiserson, K. H. Randall, and Y. Zhou, “Cilk: An ef-

ficient multithreaded runtime system,” in Principles and

Practice of Parallel Programming, 1995, pp. 207–216.

[23] A. M. Peters, D. Kitchin, J. A. Thywissen, and W. R.

Cook, “Orco: A concurrency-first approach to objects,”

in Object-Oriented Programming, Systems, Languages,

and Applications, 2016, pp. 548–567.

[24] Anaconda, “Numba: A high-performance Python

compiler,” 2018. [Online]. Available: https://numba.

pydata.org/

[25] N. Al Awar, S. Zhu, G. Biros, and M. Gligoric, “A perfor-

mance portability framework for python,” in Proceedings

of the ACM International Conference on Supercomput-

ing, 2021.

[26] L. Dagum and R. Menon, “OpenMP: an industry standard

API for shared-memory programming,” IEEE computa-

tional science and engineering, pp. 46–55, 1998.

[27] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gom-

mers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor,

S. Berg, N. J. Smith et al., “Array programming with

numpy,” Nature, pp. 357–362, 2020.

[28] Preferred Networks, inc., “CuPy: A NumPy-compatible

matrix library accelerated by CUDA,” 2020. [Online].

Available: https://cupy.chainer.org/

[29] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo,

“Parallel distributed computing using Python,” Advances

in Water Resources, vol. 34, no. 9, pp. 1124–

1139, 2011, new Computational Methods and Software

Tools. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S0309170811000777

[30] D. Heggie and P. Hut, The Gravitational Million–Body

Problem: A Multidisciplinary Approach to Star Cluster

Dynamics. Cambridge University Press, 2003.

[31] D. Stanzione, J. West, R. T. Evans, T. Minyard, O. Ghat-

tas, and D. K. Panda, “Frontera: The evolution of lead-

ership computing at the national science foundation,” in

Practice and Experience in Advanced Research Comput-

ing, 2020, pp. 106–111.

[32] “Texas Advanced Computing Center (TACC), The

University of Texas at Austin,” 2018. [Online]. Available:

https://www.tacc.utexas.edu/

[33] A. Haidar, A. YarKhan, C. Cao, P. Luszczek, S. Tomov,

and J. Dongarra, “Flexible linear algebra development

and scheduling with cholesky factorization,” in High Per-

formance Computing and Communications, Cyberspace

Safety and Security, and International Conference on

Embedded Software and Systems, 2015, pp. 861–864.

[34] NVIDIA, “cuBLAS,” 2021. [Online]. Available: https:

//developer.nvidia.com/cublas

	Introduction
	Related Work
	Heterogeneous Tasking Systems in Python
	Heterogeneous Tasking Systems

	The Parla Tasking System
	Parla Tasks
	The Parla Interface
	The Parla Array (PArray)
	The Parla Runtime
	Parla Interoperability

	Applications
	Evaluation
	Evaluation Setup and Design
	Data Management
	Resource-Aware Mapping Policy
	Comparison with Third Party Codes
	Comparison with Dask
	Demonstration of Task Variants

	Conclusions
	Acknowledgments

