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Abstract—This paper proposes an efficient verification and
debugging method for arithmetic divider circuits. The technique
involves setting select signals to some predefined constants in
order to reduce the design to easily verifiable circuit components.
These components are then verified using logic equivalence
checking and SAT tools. An important feature of the proposed
approach is that it naturally enables debugging by identifying
and localizing bugs through proper selection of accessible signals.
This method can verify and debug large restoring dividers within
single minutes using synthesis and verification tools, such as ABC.
The general debugging concept proposed here is applicable to
both the restoring and non-restoring dividers. To the best of our
knowledge the proposed debugging capability is not offered by
any of the existing verification tools.

I. INTRODUCTION

Considerable progress has been made in recent years in ver-
ification of arithmetic circuits, such as multipliers, multiply-
accumulate, and other components of arithmetic data-path,
both in the integer and finite field domain [1] [2]. However,
formal verification of gate-level divider circuits has not been
well developed, with only a few exceptions [3] [4] [5].
Furthermore, not much progress has been made in terms of
debugging of the divider circuits.

This paper describes a novel formal verification and de-
bugging method for gate-level divider circuits, illustrated with
a restoring divider, the type commonly used in industry
for computation in integer and fixed point arithmetic. The
method is based on setting some accessible signals of the
circuit to predefined constants to identify and isolate its
essential subfunctions, namely quotient bit generation and
partial remainder generation, and enable their verification.
The proposed verification scheme is done by using gate-
level functional verification of circuit components without any
reverse engineering. The main contribution of the paper is that
it replaces the current state-of-the art, but memory-intensive
symbolic computer algebra (SCA) and algebraic rewriting
technique, successfully applied to multipliers [1] [6] [7] with a
novel functional technique targeting gate-level implementation
of array dividers.

The rest of the paper is organized as follows. Section II
provides the necessary background and detailed review the
related work in this field. Sections III and IV address the issues
of verification and debugging, respectively. Finally, Sections
V and VI present the results and conclusions.

II. BACKGROUND AND RELATED WORK
A. Theorem Proving

A popular technique employed in industry in arithmetic
circuit verification is Theorem Proving [8] [9][10] Theorem
provers are inductive, non-automated reasoning systems that
use mathematical models to verify functional correctness of
the design. These systems typically concentrate on proving
correctness of the underlying algorithms of arithmetic designs
and on the resulting architectures rather than of the low-
level hardware verification. The proof relies on a carefully
constructed set of rewriting rules and complex formulas to
represent the circuit and requires an in-depth, domain-specific
user knowledge of the design and the system The success of
the proof relies on the choice of the rules and on the order in
which they are applied to the system, with no guarantee of a
successful conclusion.

Another class of formal verification employs model check-
ing, which has been used to verify a table-based SRT di-
vision implemented in an Intel Pentium Processor [11][12].
Although effective and able to catch (post mortem) the in-
famous Pentium bug in its FDIV instruction, this approach
requires generating a checker circuit, which itself needs to
be proved. However, no reliable means were offered for the
verification of the checker circuit itself. Other theorem proving
and model checking techniques tried in divider verification
include [13][14]; however it was reported that in some cases
it took two and a half person-years to complete the proof.

B. Canonical Diagrams

Many of the formal verification techniques employ various
canonical diagrams, such as BDDs [15] and *BMDs [16], or
resort to SAT-based approach for equivalence checking. Some
of those methods have been used in proving correctness of the
SRT divider as well [17][18], but were considered only for a
single gate-level stage of the divider.

C. Symbolic Computer Algebra

A different approach to formal verification of arithmetic
circuits that emerged in recent years is based on symbolic
computer algebra (SCA). In this approach, the specification of
an arithmetic function and its implementation are represented
in algebraic (rather than Boolean) domain as polynomial
rings. The verification problem is then posed as checking if
the implementation satisfies the specification using canonical



Groébner basis, known in computer algebra lexicon as ideal
membership testing [19].

An alternative approach to arithmetic verification of gate-
level circuits has been proposed in [1], using algebraic rewrit-
ing of the specification polynomial. With this approach, the
polynomial representing encoding of the primary outputs
(called the output signature) is transformed by a series of
backward rewriting steps into a polynomial expressed in terms
of the primary inputs (the input signature). The transformation
uses algebraic models of circuit elements, such as logic
gates or bit-level arithmetic modules. The method effectively
derives arithmetic function of the circuit from its gate-level
implementation. This method has been successfully used to
verify complex adders and large multipliers [6][7]. A thorough
review of the state-of-the-art computer algebra methods for
multiplier circuit verification can be found in [20].

The rewriting technique, however, is plagued by an ex-
cessive number of polynomials generated during rewriting,
many of them converging later during rewriting and vanishing;
these vanishing monomials should be detected and removed
early during the rewriting. Several modifications have been
reported in the literature to improve the efficiency of the
technique by finding proper ordering of terms and removing
vanishing monomials as early as possible [7][2]. However,
those techniques have been largely applied to multipliers and
have not been successful in verifying gate-level dividers.

D. Algebraic Rewriting and SAT

Recently, a promising approach has been proposed to use
a combination of symbolic computer algebra (SCA) and SAT
in a method called SAT-based Information Forwarding (SBIF)
[5], applied specifically to dividers. This work recognizes the
failure of a straightforward application of algebraic rewriting
caused by the excessive number of vanishing monomials,
which can be summarized as follows: 1) There is a large num-
ber of equivalent and antivalent signals present in the circuit
that converge causing many monomials to vanish. To identify
those monomials, the circuit is simulated with input vectors
satisfying the input range constraint, 0 < X < D - 2771
where n is the size of the divider D. The signals that fall
in the same equivalence class are then checked using SAT
to be classified as equivalent or antivalent. This is supported
by signal propagation from the primary inputs, hence termed
as "SAT-based Information Forwarding" (SBIF). The affected
monomials are removed before they get propagated further to
avoid potential memory blowout. 2) Another important source
of the problem is that practical integer divider circuits are
optimized based on the input constraint, 0 < X < D - on—1,
In the resulting architecture the MSB cells in the upper levels
of the divider have unused outputs, as shown later in Figures
1 and 2 making them "unclean" for backward rewriting.
This deprives the rewriting process of the monomials that
are essential to annihilate other monomials. These redundant
polynomials are analogous to don’t cares (DC) in logic circuits
and are modeled as satisfiability don’t cares. Basically, the
input constraint implies that certain value combinations at the

input to atomic blocks cannot occur. Instead of computing all
don’t cares, the paper proposes a method to choose a subset of
the DCs that will minimize the polynomial size at that level. To
support this method, they extract atomic blocks (half and full
adders) and use BDDs and standard Boolean logic techniques
to compute satisfiability DCs at the inputs to these blocks.
When the size of the polynomial increases by some predefined
rate, they stop the procedure, backtrack to the previous step,
apply the ILP optimization to reduce the vanishing monomials,
and continue with polynomial rewriting.

This approach proved rather efficient in restricting the size
of the intermediate polynomials. It can handle non-restoring
256-bit and 512-bit dividers in 16.5 min and 162 minutes, re-
spectively. One must note, however, that this method depends
on the extraction of the HA/FA blocks to gain access to the
their inputs on which to apply don’t cares. Furthermore, this
technique does not help in proving an important constraint on
the value of the final R remainder relative to the divisor D,
namely that R < D. The authors resort to BDDs to solve this
problem; this however is the most expensive part of the method
as it requires variable ordering and time-intensive construction
of the BDDs.

E. Hardware Rewriting

Yet another attempt to divider verification applies a some-
what controversial technique of hardware rewriting [4][21].
It accomplishes verification by appending the circuit with
a block that implements an inverse function, followed by
logic resynthesis. If the circuit under verification is correct,
the resulting logic becomes trivially redundant. The method
works well for dividers only when applied to individual layers
(each producing a quotient bit), but not for the entire circuit.
However this approach does not address debugging.

F. Debugging

Despite all these advances in arithmetic circuit verification,
very little work has been done on actual debugging, i.e.,
identifying and fixing logical design errors that change the
functionality of the design. Most of the work in debugging
concentrates on detection of manufacturing faults in logic cir-
cuits using fault (mostly stuck-at fault) modeling techniques.
These methods rely on simulation or manufacturing tests to
identify potential faults and do not apply to arithmetic circuits,
where the goal is to find logical errors, and where the space
for such faults is too large. In [22] an automated method is
proposed to generate tests to detect potential logical faults in
arithmetic circuits. However, the method handles only gate
replacement or signal inversion as the adopted fault model. In
contrast, the work proposed here can handle arbitrary type of
logic errors without simulation or fault modeling.

An attempt to provide automatic debugging of complex
multipliers is described in [23]. However it uses a combination
of symbolic computer algebra (SCA) and Boolean satisfiabil-
ity (SAT) and suffers from a large number of intermediate
polynomials generated during rewriting that may overload the
memory. The method proposed in [24] also computes a set of



corrector polynomials that are added to the original circuit
to compensate for the error. All of these methods require
significant computational resources to compute Groebner basis
or to perform memory intensive rewriting and do not scale to
larger circuits. Furthermore, these approaches are limited to
correcting errors in multipliers and do not apply to other types
of arithmetic circuits, such as dividers.

The work on debugging of divider circuits is almost non-
existent. A notable exception in this domain is the work of
[3]. In this work, a reverse-engineering techniques are used
to extract components of arithmetic operators from the gate-
level circuit and compared with an architectural model of the
divider using structural matching.

In contrast, the debugging method proposed in this paper
applies the controllability and observability techniques com-
monly used in testing, but without assuming any particular
type of fault. While the SCA methods consider only one type
of fault, the gate replacement or signal inversion, our approach
can handle an arbitrary fault type: wrong or missing gate,
missing or crossed wires, incorrect logic composed of several
gates, etc. The method can significantly reduce the debugging
times for large divider circuits up to 1024 bit-widths in a
matter of single minutes.

III. VERIFICATION APPROACH

A. Restoring Divider

Arithmetic operation of the divider can be described as X =
Q-D+R, where X, D, Q, R are the dividend, divisor, quotient
and remainder, respectively. In this work we consider an array
divider X/D of the restoring type, shown in Figure 1. In this
architecture, the vectors D, () and R are n-bit wide, and the
bit-width of a dividend is 2n-1. To ensure the same bit-width
of D and () and to guarantee that the resulting quotient ¢ will
not overflow, condition X < 2"~ D is imposed on the inputs,
X, D [25]. With this condition the divider can be implemented
with minimum area as shown in the figure, rather than having
layers 2n-1 bit wide.
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Fig. 1: Restoring integer divider - general architecture

The division is performed by a repeated subtraction of
the dividend by a divisor D shifted to the right by one
bit after each subtraction, basically mimicking the standard

long division algorithm. If the result of a subtraction is non-
negative, the subtraction takes place; otherwise the subtraction
is not performed and the partial remainder is propagated to
the next level. The last subtraction step produces the final
remainder R. To the best of our knowledge all commercial
restoring array dividers use this algorithm. In contrast, in a
non-restoring divider each layer performs subtraction and a
correction is made in the subsequent layer if the result of the
subtraction is negative.

Each step of the division process corresponds to a physical
layer 7 which performs a controlled subtraction and produces
quotient bit ¢;. The layers are labeled from n — 1 on top to 0
at the bottom. The inputs to layer ¢ are the product R;; and
D, and outputs are R; and g;.

All known works in divider verification rely on the knowl-
edge of layered structure of gate-level implementation, where
each layer implements one step of division producing a
quotient bit g;. The layers are either provided explicitly in the
structured HDL/Verilog input and preserved during synthesis
(e.g., using "don’t touch" directives of the Synopsys DC
compiler); or can be extracted using reverse engineering with
structural matching, such as in the works of [3][5]. In contrast,
in our approach, the internal layered structure of the divider
does not need to be provided. Instead, our method will identify
the names of signals on the layer boundaries, enabling its
verification and debugging. This is achieved by selectively
setting some internal signals to predefined constants and
synthesizing the circuit, which will expose the boundary signal
names. This section describes the details of this procedure.

B. Layer Identification

Our approach to layer identification is based on the premise
that, while the subtractor logic can be optimized "horizon-
tally", i.e., from the LSB at the right of the subtractor of layer
1 to its MSB and ¢; on the left, the "vertical" logic between
the layers (from R;y; at the top of the layer to R; at its
bottom) is never simplified. This hypothesis has been stated
in [3] as Theorem 2 as follows: "In an array divider there
is no way to optimize logic of adjacent rows". This feature,
crucial to our approach, has been verified and confirmed in our
experiments by synthesizing a divider from a generic Verilog
code (shown later in Figure ??) with Synopsys DC, as well as
with Yosys/ABC synthesis tools. In all cases we were able to
gain access to the intermediate signals on the layer boundaries,
without knowing their internal signal names.

The procedure is based on the following observation: the
quotient bit g; produced as the MSB of each subtraction step
serves as an internal select signal, which determines whether
the input vector R, or the difference R;y; — D is produced
at the output, R;. As long as such a select signal derived
from q; is available in the synthesized logic, it can be used
to control the behaviour of the conditional subtractor, to then
reason about its correctness. Obviously, one cannot count on
finding the name sel; in that logic, since the signal names
can be changed during synthesis. Instead, we look for the
appearance of ¢;, which as a primary output will be preserved
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Fig. 2: Restoring divider, schematic. Arrows illustrate identification of boundary signals for Layer 1 by setting sely, selo = 0.

in the synthesized code, to appear as input to some logic. This
is shown in the fragment of the Verilog code of the synthesized
5-bit divider in Figure 3. Here the signal ¢; that appears on
the input side of the logic (lines 2 and 8) will be replaced by
a new name sel; to provide the desired control.

.names

X[4] new_n32_[q[1]]

00 0 sell

.names X[31] new_n34_

10 1

.names X[3] D[2] new_n35_

10 1

.names new_n34_ new_n4@_ new_n4l_
99 1 /;SDH

.names X[2] new_n42_

10 1

.names X[2] D[1] new_n&43_

10 1

.names new_n42_ new_n48_ RO[2]
90 0 /bscH

.names X[1] new_n51_

10 1

Fig. 3: Fragment of the bli f code (ABC) showing quotient bit
q1 appearing as input signal to nodes 59 and 65, changed to

sel; and then set to a desired constant.

The correctness of this essential hypothesis (Theorem 2)

has been confirmed by running several experiments: with
designs synthesized from structured (layered) and unstructured
(generic) Verilog code, each synthesized using different syn-
thesis engines (Yosys/ABC and Synopsys DC). In all cases
the quotient signal g; appearing as input to some other logic
(in addition to providing the required output quotient bit) has
always been retained. By gaining access to that signal (the
fanout of ¢;) one can control the operation of the layer by
either performing subtraction (with sel; = 1) or a straight
transfer of the vector R; 11 to R; (with sel; = 0), which will
be used to reason about the functional correctness of the layer,
without explicitly extracting it.

The result of boundary identification for Layer 1 of the bug-
free divider from Figure 2 is shown in Figure 4. It is an AIG
(And-Invert Graph) logic diagram generated by ABC [26] after
synthesizing the logic with sely = sels = 0. The nodes of the
AIG diagram are AND gates and the dotted lines represent
inverters. Interpretation: in the following, examine the set of
nodes encircled by a blue oval, representing the internal logic
of layer 1 in bit position 2 (middle column) and compare the
node names with signals names in Figure 2

« Note the dotted line connecting output Ry[2] with node
n49, labeled in Figure 2 as R;[1]. This determines the
lower boundary signal R;[1] as the logic node n49.



o Similarly, the solid line connecting input X [2] with node
n42, labeled in Figure 2 as R»[0], determines the upper
boundary signal R3[0] as node n42.

C. Layer Verification

Once the signal names for the layer boundaries have been
found, we can perform verification of the layer. Recall that the
operation of each layer implements a controlled subtraction,
governed by the equation : R; = R;y1 — sel; D, where sel;
is derived from ¢; as described above. To verify if a given
layer performs its intended function we consider two cases,
determined by the value of sel;.

e Vertical flow verification (checking if the signals at the
top boundary R, of layer ¢ are connected to the signals
at its bottom boundary R;): when sel; = 0, the partial
remainder vector at the input of the layer is passed
directly to its output, i.e., R;11 = R;.

e Horizontal flow verification (checking if the data flow
along the subtractor in layer 7, from its LSB to MSB,
indeed performs the subtraction): when sel; = 1 the layer
performs subtraction, R; = R; 11 — D.

These steps are implemented by setting the sel signals to the
corresponding values, resynthesizing the circuit under those
values, and observing the result of the simplified circuit on
logic level. This is explained below with the example of
vertical verification for Layer 1 shown in the AIG graph,
Figure 5 for sel; = 0. Direct wires connecting the layer’s
inputs X5, R2[0] and R2[1] to its outputs R1[0], R1[1] and
R1[2] indicate the correctness of the computation for sel; = 0.
Logic synthesis tools such as ABC can readily accomplish this
reduction, while also providing the needed signal names of
the output vector R;_;. This process is then repeated for each
layer, by selectively setting sel; to O for that layer. Advantage
of using ABC as synthesis tool is that it automatically exposes
signal names of partial remainders (layer boundary), which
otherwise (except for the very top and bottom layers) are
hidden and not recognizable in the input Verilog or a blif
file. Now, that the boundary signal names are known, the
horizontal flow verification is achieved by simply running a
combinational equivalence checking (CEC) of ABC.

Once all the layers have been verified for the vertical and
horizontal flows, the proof is concluded by showing that the
composition of such detected layers indeed implements a
divider, that is that: X = Q- D + R and 0 < R < D. This
can be done by recalling that each layer ¢ implements the
computation R; = R;1 — sel;D. The proof requires that we
consider the computation of each division step across the entire
length of the dividend X, rather than just over n bits. With this,
the arithmetic function of each division step can be rewritten
as: PR; = PR;y1 — sel;2°71D. Here PR; is a (2n — 1)-
bit wide (rather then just m-bit) partial remainder: in the top
layer it includes the entire X, and in each consecutive layer the
upper-significant bits of X are replaced by intermediate partial
products coming from higher layers, to be finally replaced
by the final remainder R in the lower n bits. That is, PR;

decreases at each iteration by half and PR; < 2¢D. With this,
it can be shown by induction that X = @ - D + R and (for
i =0) R < D. A complete proof basically follows the formal
proof of the array division given in [25].

IV. DEBUGGING APPROACH

Important feature of our approach that distinguishes it from
other works on the subject is that it naturally facilitates
debugging. The verification technique described in Section III
exploits the effect of setting the select signal sel; to a constant,
assuming that the circuit is bug-free. If the assignment of
sel; to 0 does not simplify the logic by connecting the
corresponding inputs and outputs of that layer, there must
be a bug on a vertical logic path from R;y; to R; at the
corresponding bit position. Similarly, if setting sel; to 1 does
not produce a subtractor (verified with a CEC tool), the
horizontal logic path propagating the borrow,,; signal along
the subtractor is faulty.

Assume that the divider has a logic error in cell k of layer
l. This will cause the horizontal verification to fail during
combinational equivalence checking (CEC) for that layer.
Having access to all partial remainder signals (boundaries) of
each layer, we can examine the internal logic of the cell (a
half- or full-subtractor) by scanning the layer from its LSB
to its MSB to determine in which cell (column) the fault
occurred. To do that we need to access a given cell, which
requires gaining access to its borrow,,; signal. This is done by
setting R;41[k] and D[] to predetermined controlling values
that will make the cell observable. Similar to verification, the
debugging process is composed of the vertical and horizontal
flow debugging, as described next.

A. Vertical Flow Debugging

As described earlier, in a functionally correct circuit, setting
sel; to 0 in a given layer and synthesizing the circuit reduces
the logic between signals R;;; and R; to bare wires. Figure
5, presented earlier, shows the AIG logic diagram generated
by ABC after such a reduction in case when there are no bugs.
In case of a bug, the direct connection between the respective
signals will contain some logic, as shown in Figure 7. The
erroneous logic on the path R2[0] to R1[1], outlined by the
blue oval, indicates the bug in this layer at this bit position.
Since the subtractor cells are very shallow, it will contain only
a few, easy to examine logic gates.

B. Horizontal Flow Debugging

To find potential bugs in the "horizontal" logic of layer <,
we set sel; = 1, which results in the layer performing sub-
traction, R; = R;+1 - D. Standard combinational equivalence
check (CEC) of ABC is performed using any of the trusted
"textbook" subtractor circuits as reference.

We then need to to identify the faulty cell and take care of
the propagation of the bout signal, culminating at the genera-
tion of quotient bit g;. This is done by scanning the subtractor
layer, starting at the LSB and setting R;11[0] = 0, as shown
in Figure 8. As indicated in the figure, this will connect D[0]
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RI[0] RI[1] RI[2)

X1 DI0] D1 R2(0] R2(1] b2 R2[2]

Fig. 5: Vertical flow verification, sel; = 0: layer 1 in a bug-
free circuit. Note the direct connections: R2[1] — R1[2],
X1 — R1[0], and R2[0] — R1[1], demonstrating that the
layer is bug-free.

to boutg, providing access to signal bout (hidden in the code
under an unknown name). Moving to the next significant bit,
we now set the bouty = 0 and R;y1[1] = 0, to gain access
to bout;, then setting it to 0 as input to the next cell, etc.
This procedure is similar to what has been done for layering
in Section III-B, but now used for extracting the names of
signals bouty, instead of the layer boundaries. This process is

R1[0] RI[1] RI1[2] q

f f T T

X1 R2[0] R2[1] Constl

Fig. 6: Horizontal verification: Layer 1 without a bug. Note
the direct connections between the signals of the input and
output partial remainders.

repeated for the remaining cells, each time running the CEC
on the reduced cell against a reference subtractor circuit.

Since setting bouty, to O is essential, we need to verify if the
signal identified as bouty, indeed performs its expected borrow
function. To do this, we extract a logic cone and compare it
using CEC with the reference borrow logic function. This
can be done efficiently using command cone in ABC and is
instantaneous since the borrow logic is very shallow. The cell
that does not pass the CEC test is faulty, and its logic should
be analyzed, repaired, or replaced by a correct HS/FS logic.
Figure 8 demonstrates this process for the cells in the top layer
(Layer2) of our divider circuit.

The horizontal and vertical debugging process is automated;
it identifies of a bug in form of a small circuit (half- or full-
subtractor) containing only a handful of logic gates.



RI[0] RI[1] RI2) q

R2(0] X1 Dl1] DI0] R2(1] D[2] R2[2]

Fig. 7: Vertical debugging of Layer 1 with a bug; notice the
logic block on the path R2[0] — R1[1], indicating a fault.

V. RESULTS

The verification and debugging method described in this pa-
per was implemented in Python communicating with ABC for
logic reduction and CEC via file transfers. All the major com-
ponents of verification and debugging have been automated,
including: identifying quotient g; signals and replacing them
by sel; as needed; setting sel; to the required constants for
layer identification; identifying the layer boundaries (partial
product terms R;); applying vertical verification with sel; = 0
and horizontal verification with sel; = 1; determining the
position of the layer ¢ and column £ in case of an error; and
identifying erroneous logic in case of a bug. The entire flow
is not yet automated, with files passed manually between the
different procedures.

Our technique was tested on restoring divider circuits with
dividend bit-widths ranging from 5 to 1023. The designs used
in the experiments were generated in two different ways:

1) Written in structural Verilog with layers provided ex-
plicitly. a) They were parsed using Yosys and synthe-
sized with ABC; b) They were also synthesized by
Synopsys DC compiler without don’t touch directives,
i.e. without preserving the layer boundaries using the
NanogateOpenCell library.

2) Written in generic, unstructured Verilog, shown below
and: a) synthesized using Yosys/ABC; and b) synthe-
sized by Synopsys DC compiler.

module div_rest (X,D,Q,R);

parameter n= ...;
input [2n-2:0] X;
input [n-1:0] D;
output [n-1:0] Q;
output [n-1:0] R;
assign Q = X/D;
assign R = X%D;
endmodule

In all cases we were able to detect the quotient output bits
q; appearing as input to some internal logic, allowing us to
replace them by the corresponding select sel; signals, needed
to perform layer identification and debugging.

The results of our experiments are shown in Table I. It
gives the CPU times in seconds for the individual steps in
comparison with other divider verification methods reviewed
in Section II. Specifically, the Table columns describe the
following:

1) Size of the divider (dividend bit-width)
2) Layered Hardware Rewriting of [4] [21]
3) SCA SBIF/DC method of [5]

4) Auto-debug method of [3]

5) This work: Layer detection

6) This work: Vertical debugging

7) This work: Horizontal debugging

The only meaningful comparison in terms of debugging can
be made with the work of [3], other methods do not provide
debugging facility. However, the largest divider included in
their experiments has only bit-width of 64. As one can see
from the table, our method can verify bug-free dividers orders
of magnitude faster than other methods, including a 1023-
bit divider verified in 16.2 minutes, something that no other
method could handle.

The debugging results are presented in an estimated fash-
ion, by adding the execution time of individual components
performed separately. Specifically, for a divider with n layers,
each being n — bit wide, detecting a fault in layer [ at bit/cell
k takes the following time: Ty (I, k) = T + T, + (I+1) -t +
(k+1)-t., where

e T = CPU time for detecting layer boundaries; (column
4 of the Table);

o T, = time of vertical verification of all layers (Col. 5);

e t, = time of horizontal verification (CEC) of one layer
(Col. 6/n); and

e t. = CEC verification time of one cell.

The Table shows the debugging time as an average time
between the LSB cell in the top layer and the MSB cell in
the bottom layer. We should point out that the time T, (l, k) is
the debugging time for debugging all cells in the faulty layer
[ up to the cell k.

VI. SUMMARY AND CONCLUSIONS

The proposed verification of integer restoring divider cir-
cuits is based on structural analysis of the overall design
and the functional verification of circuit’s components (lay-
ers). The verification is accomplished in two phases: 1)
extracting boundaries of computational layers that perform
conditional subtraction; and 2) verifying arithmetic functions
they perform. The main advantage of this approach is that
it naturally integrates verification with debugging. The faulty
logic detected during verification is automatically localized
to a shallow logic which can be corrected with minimum
user intervention. The proposed approach does not require
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Fig. 8: Horizontal debugging; cell separation: setting X [k] = 0 to gain access to bout[k] signals from D[k].

TABLE I: Restoring Divider Debugging times in CPU seconds

Dividend Layer‘ed HR-SAT Auto-debug ] Vgﬂﬁcatiqn times ip seconds A(t‘his work) Don't care opt
bits time (s) T2/(TO+T1) (s) Layer detection Vertical verif | Horizontal verif CEC of all Debflgging time (s) [5]
[21] [3] Ty, sel=0 T, sel=1 tp *n cells t. *n time

5 0.09 4.3/4.9 0.11 0.12 0.13 0.03 0.26 0.16

7 0.12 - 0.15 0.16 0.18 0.04 0.33 0.48

13 0.21 4.4/5.8 0.25 0.26 0.30 0.07 0.51 -

17 0.27 10.5/11 0.32 0.34 0.40 0.09 0.65 1.91

23 0.48 - 0.44 0.47 0.56 0.12 0.88 3.82

33 0.68 22.3/21.6 0.62 0.65 0.80 0.17 1.2 6.79

65 4.48 39.2/42.9 1.29 1.32 1.63 0.33 2.37 28.86

95 12.96 - 2.02 1.98 1.97 0.48 3.27 70.22

127 18.56 - 2.93 2.66 3.76 0.64 4.94 148.18
255 123.46 - 9.75 5.89 10.52 1.28 11.91 989.91
511 - - 5143 13.76 108.97 2.56 70.45 9,668.70
1023 - - 426.94 35.01 512.28 5.12 295.05 TO (>24 CPU hours)

structural reverse engineering of the circuit. The only as-
sumption it currently makes for debugging is that the ripple-
carry implementation of the subtractor circuits needed to find
each cell of the subtractor is faulty (but can verify it for any
implementation of the subtractor); but even this can be handled
by analysing the structure of the subtractor, if implemented
e.g., as a carry-look-ahead circuit.

Our method differs from the traditional debugging ap-
proaches, which classify the bug as a wrong gate type or gate
with wrong polarity. Our approach is more general since it can
cover a larger class of bugs, including: incorrect gate, incorrect
signal polarity, missing gate, wrong or missing wiring, or a
set of gates implementing a faulty behaviour. For example, if
the fault is caused by incorrectly implementing an XOR logic
function as f =a-b+a’ - b, instead of f =a’-b+a-V, our
approach will indicate the problem with this logic (not just
the gate), instead of trying to point out that one AND gate
has wrong input polarity and the NOR should be replaced by
OR. The logic at this level is so shallow that it is better to
leave it to the designer to quickly see the problem and fix the
bug. We believe that this is more practical and useful.

The described approach to verification and debugging is

directly applicable to other array-type dividers (a predominant
type used in industry, available e.g., from Design Ware of
Synopsys), such as non-restoring division. The only difference
is in setting other signals to the respective constants and
drawing a conclusion if the reduced circuit implements the
required function. For example, in case of a non-restoring
division, each layer performs either subtraction or addition, de-
pending on the value of the quotient g;. Setting ¢; = 1 should
configure the layer to perform subtraction, while setting g; = 0
should configure it for addition. Vertical verification is not
needed in this case. Application to other, drastically different
division schemes, such as table-based SRT or Goldschmidt-
based division remains to be examined.
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