
Cost-efficient Gaussian tensor network embeddings

for tensor-structured inputs

Linjian Ma, Edgar Solomonik
Department of Computer Science, University of Illinois at Urbana-Champaign

{lma16, solomon2}@illinois.edu

Abstract

This work discusses tensor network embeddings, which are random matrices (S)
with tensor network structure. These embeddings have been used to perform di-
mensionality reduction of tensor network structured inputs x and accelerate appli-
cations such as tensor decomposition and kernel regression. Existing works have
designed embeddings for inputs x with specific structures, such as the Kronecker
product or Khatri-Rao product, such that the computational cost for calculating Sx
is efficient. We provide a systematic way to design tensor network embeddings
consisting of Gaussian random tensors, such that for inputs with more general
tensor network structures, both the sketch size (row size of S) and the sketching
computational cost are low.

We analyze general tensor network embeddings that can be reduced to a sequence
of sketching matrices. We provide a sufficient condition to quantify the accuracy
of such embeddings and derive sketching asymptotic cost lower bounds using em-
beddings that satisfy this condition and have a sketch size lower than any input
dimension. We then provide an algorithm to efficiently sketch input data using
such embeddings. The sketch size of the embedding used in the algorithm has a
linear dependence on the number of sketching dimensions of the input. Assum-
ing tensor contractions are performed with classical dense matrix multiplication
algorithms, this algorithm achieves asymptotic cost within a factor of O(

√
m) of

our cost lower bound, where m is the sketch size. Further, when each tensor in
the input has a dimension that needs to be sketched, this algorithm yields the opti-
mal sketching asymptotic cost. We apply our sketching analysis to inexact tensor
decomposition optimization algorithms. We provide a sketching algorithm for CP
decomposition that is asymptotically faster than existing work in multiple regimes,
and show the optimality of an existing algorithm for tensor train rounding.

1 Introduction

Sketching techniques, which randomly project high-dimensional data onto lower dimensional spaces
while still preserving relevant information in the data [43], have been widely used in numerical linear
algebra, including for regression, low-rank approximation, and matrix multiplication [50]. One key
step of sketching algorithms is to design an embedding matrix S ∈ R

m×n with m≪ n, such that for
any input (also called data throughout the paper) x ∈ R

n, the projected vector norm is (1± ǫ)-close
to the input vector, ‖Sx‖2 = (1± ǫ)‖x‖2, with probability at least 1− δ (defined as (ǫ, δ)-accurate
embedding throughout the paper), and the multiplication Sx can be computationally efficient. S is
commonly chosen as a random matrix with each element being an i.i.d. Gaussian variable when x
is dense, or a random sparse matrix when x is sparse, etc.

In this work, we focus on the case where x has a tensor network structure. A tensor network [35]
uses a set of (small) tensors, where some or all of their dimensions are contracted according to some
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pattern, to implicitly represent a tensor. Tensor network structured data is commonly seen in multiple
applications, including kernel based statistical learning [38, 1, 51, 31], machine learning and data
mining via tensor decomposition methods [3, 46, 22, 46], and simulation of quantum systems [49,
27, 44, 15, 16]. Commonly used embedding matrices are sub-optimal for sketching many such data.

For example, consider the case where x ∈ R
sN is a chain of Kronecker products, x = x1⊗· · ·⊗xN ,

where xi ∈ R
s for i ∈ {1, . . . , N}. If S ∈ R

m×sN is a Gaussian matrix, the multiplication Sx has

a computational cost of Ω
(
msN

)
, and the exponential dependence on the tensor order N makes the

calculation impractical when N or s is large.

The computational cost of the multiplication Sx can be reduced when S has a structure that can be
easily multiplied with the target data. One example is when S has a Kronecker product structure,

S = S1 ⊗ · · · ⊗ SN and each Si ∈ R
m1/N×s. When x = x1 ⊗ · · · ⊗ xN , Sx can then be calculated

efficiently via (S1x1)⊗· · ·⊗ (SNxN ), reducing the cost to O
(
Nm1/Ns+m

)
. Another example is

when S has a Khatri-Rao product structure, S = (S1⊙· · ·⊙SN )T and each Si ∈ R
s×m. Sx can then

be calculated efficiently via (ST
1 x1) ∗ · · · ∗ (ST

NxN ), where ∗ denotes the Hadamard product, which
reduces the cost to O(Nms). However, tensor-network-structured embedding matrices that can be
easily multiplied with data may not necessarily minimize computational cost, since the sketch size
sufficient for accurate embedding can also increase. For example, the sketch size necessary for both
Kronecker product and Khatri-Rao product embeddings to be (ǫ, δ)-accurate is at least exponential
in N , which is inefficient for large tensor order N [1]. To find embeddings that are both accurate
and computationally efficient, it is therefore of interest to investigate tensor network structures that
can both yield small sketch size and be multiplied with data efficiently.

Existing works discuss tensor network embeddings with more efficient sketch size than Kronecker
and Khatri-Rao product structure, such as tensor train [41] and balanced binary tree [1]. In par-
ticular, Ahle et al. [1] designed a balanced binary tree structured embedding and showed that the
sketch size sufficient for (ǫ, δ)-accurate embedding can have only linear dependence on N . Using
this embedding to sketch Kronecker product structured data yields a sketching cost that only has a
polynomial dependence on both N and s. However, for data with other tensor network structures,
these embeddings may not be the most computationally efficient.

DataEmbedding

Figure 1: Illustration
of target data and em-
bedding. Blue edges
have larger weights
than the red edge.

Our contributions In this work, we design algorithms to efficiently
sketch more general data tensor networks such that each dimension to be
sketched has size lower bounded by the sketch size and is a dimension of
only one tensor. One of such data tensor networks is shown in Fig. 1. In
particular, we look at the following question.

For arbitrary data with a tensor network structure of interest, can we au-
tomatically sketch the data into one tensor with Gaussian tensor network
embeddings that are accurate, have low sketch size, and also minimize the
sketching asymptotic computational cost?

Different from existing works [1, 17, 26, 29] that construct the embedding
based on fast sketching techniques, including Countsketch [8], Tensors-
ketch [37], and fast Johnson-Lindenstraus (JL) transform using fast Fourier
transform [2], we discuss the case where each tensor in the embedding contains i.i.d. Gaussian
random elements. Gaussian-based embeddings yield larger computational cost, but have the most
efficient sketch size for both unconstrained and constrained optimization problems [9, 40]. This
choice also enables us use a simple computational model to analyze the sketching cost, where tensor
contractions are performed with classical dense matrix multiplication algorithms. Note that a related
work [29] builds tree tensor network embeddings based on Countsketch for getting low-rank tensor
network approximation of an input tensor.

While we allow for the data tensor network to be a hypergraph, we consider only graph embeddings,
(detailed definition in Section 2), which include tree embeddings that have been previously stud-
ied [1, 10, 4]. Each one of these embeddings consisting of NE tensors can be reduced to a sequence
of NE sketches (random sketching matrices). In Section 3, we show that if each of these sketches is
(ǫ/
√
NE , δ)-accurate, then the embedding is at least (ǫ, δ)-accurate.

In Section 4, we provide an algorithm to sketch input data with an embedding that not only satisfies
the (ǫ, δ)-accurate sufficient condition, but is computationally efficient and has low sketch size.
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Given a data tensor network and one data contraction tree T0, this algorithm outputs a sketching
contraction tree that is constrained on T0. This setting is useful for application of sketching to
alternating optimization in tensor-related problems, such as tensor decompositions. In alternating
optimization, multiple contraction trees of the data x are chosen in an alternating order to form
multiple optimization subproblems, each updating part of the variables [39, 25, 28]. Designing
embeddings under the constraint can help reuse contracted intermediates across subproblems.

The sketch size of the embedding used in the algorithm has a linear dependence on the number
of sketching dimensions of the input. As to the sketching asymptotic computational cost, within
all constrained sketching contraction trees with embeddings satisfying the (ǫ, δ)-accurate sufficient
condition and only have one output sketch dimension, this algorithm achieves asymptotic cost within
a factor of O(

√
m) of the lower bound, where m is the sketch size. When the input data tensor

network structure is a graph, the factor improves to O(m0.375). In addition, when each tensor in the
input data has a dimension to be sketched, such as Kronecker product input and tensor train input,
this algorithm yields the optimal sketching asymptotic cost.

At the end of Section 4, we look at cases where the widely discussed tree tensor network embeddings
are efficient in terms of the sketching computational cost. We show for input data graphs such that
each data tensor has a dimension to be sketched and each contraction in the given data contraction
tree T0 contracts dimensions with size being at least the sketch size, sketching with tree embeddings
can achieve the optimal asymptotic cost.

In Section 5, we apply our sketching algorithm to two applications, CANDECOMP/PARAFAC (CP)
tensor decomposition [14, 13] and tensor train rounding [36]. We present a new sketching-based al-
ternating least squares (ALS) algorithm for CP decomposition. Compared to existing sketching-
based ALS algorithm, this algorithm yields better asymptotic computational cost under several
regimes, such as when the CP rank is much lower than each dimension size (the length/number
of elements in each dimension) of the input tensor. We also provide analysis on the recently intro-
duced randomized tensor train rounding algorithm [10]. We show that the tensor train embedding
used in that algorithm satisfies the accuracy sufficient condition in Section 3 and yields the optimal
sketching asymptotic cost, implying that this is an efficient algorithm, and embeddings with other
structures cannot achieve lower asymptotic cost.

2 Definitions
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Figure 2: An example of tensor di-
agram notation.

We introduce some tensor network notation here, and pro-
vide additional definitions and background in Appendix A.
The structure of a tensor network can be described by an undi-
rected hypergraph G = (V,E,w), also called tensor diagram.
Each hyperedge e ∈ E may be adjacent to either one or at
least two vertices, and we refer to hyperedges with a dangling
end (one end not adjacent to any vertex) as uncontracted hy-
peredges, and those without dangling end as contracted hyper-
edges. We refer to the cardinality of a hyperedge as its number
of ends. An example is shown in Fig. 2. We use w to denote a function such that for each e ∈ E,
w(e) = log(s) is the natural logarithm of the dimension sizes represented by hyperedge e. For a
hyperedge set E, we use w(E) =

∑
e∈E w(e) to denote the weighted sum of the hyperedge set.

A tensor network embedding is the matricization of a tensor described by a tensor network, and each
embedding can be described by S = (GE , Ē), where GE = (VE , EE , w) shows the embedding
graph structure and Ē ⊆ EE is the edge set connecting data and the embedding. In this work we
only discuss the case where GE is a graph, such that each uncontracted edge in EE is adjacent
to one vertex and contracted edge in EE is adjacent to two vertices. Let E1 ⊂ EE be the subset
of uncontracted edges, S is a matricization such that uncontracted dimensions in Ē are grouped
into the column of the matrix, and dimensions in E1 are grouped into the row. We use N = |Ē|
to denote the order of the embedding, and m = exp(w(E1)) denotes the output sketch size. We
use GD = (VD, ED, w) to represent the data tensor network structure, and use G = (GD, GE) to
denote the overall tensor network structure.

Within the tensor network G = (V,E,w), the contraction between two tensors represented by
vi, vj ∈ V is denoted by (vi, vj). The contraction between two tensors that are the contraction
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outputs of Wi ⊂ V , Wj ⊂ V , respectively, is denoted by (Wi,Wj). A contraction tree on the tensor
network G = (V,E,w) is a rooted binary tree TB = (VB , EB) showing how the tensor network
is fully contracted. Each vertex in VB can be represented by a subset of the vertices, W ⊆ V , and
denotes the contraction output of W . The two children of W , denoted as W1 and W2, must satisfy
W1 ∪W2 = W . Each leaf vertex must have |W | = 1, and the root vertex is represented by V . Any
topological sort of the contraction tree represents a contraction path (order) of the tensor network.

3 Sufficient condition for accurate embedding
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Figure 3: Illustration of embedding linearization. Each gray
vertex denotes a tensor of the embedding, each white vertex
denotes an identity matrix, and each white box denotes a
permutation matrix.

We consider the scenario where the
data tensor networks have a general
hypergraph structure, while the em-
beddings have a graph structure, thus
some embeddings, such as those with
a Khatri-Rao product structure [41,
9], are not considered in this work.
Such embeddings can be linearized to
a sequence of sketches. Let NE =
|VE | denote the number of vertices in
the embedding, in each linearization,
each vertex is given an unique index
i ∈ [NE ]

1 and denoted vi. The ith
tensor is denoted by Ai, and Ai denotes its matricization where we combine all uncontracted
dimensions and contracted dimensions connected to Aj with j > i into the row, and other di-
mensions into the column. The embedding can then be represented as a chain of multiplications,
S = MNE

PNE
· · ·M1P1, where Mi is the Kronecker product of identity matrices with Ai for

i ∈ [NE ], and Pi is a permutation matrix. We illustrate the linearization in Fig. 3 using a fully con-
nected tensor network embedding. We show in Theorem 3.1 a sufficient condition for embeddings
to be (ǫ, δ)-accurate.

Theorem 3.1 ((ǫ, δ)-accurate sufficient condition). Consider a Gaussian tensor network embedding
where there exists a linearization such that each Ai for i ∈ [NE ] has row size Ω(NE log(1/δ)/ǫ2).
Then the tensor network embedding is (ǫ, δ)-accurate.

Proof. Based on the composition rules of JL moment [18, 19] in Lemma A.2 and Lemma A.3 in

the appendix, in the linearization all MiPi satisfy the strong
(

ǫ
L
√
2N

, δ
)

-JL moment property so S

satisfies the strong (ǫ, δ)-JL moment property. This implies the embedding is (ǫ, δ)-accurate.

Theorem 3.1 is a sufficient (but not necessary) condition for constructing (ǫ, δ)-accurate embedding.
It also implies that specific tree embeddings are (ǫ, δ)-accurate, as we show below.

Corollary 3.2. Consider a Gaussian embedding containing a tree tensor network structure, where
there is only one output sketch dimension with size m = Θ

(
NE log(1/δ)/ǫ2

)
, and each dimension

within the embedding has size m. Then the embedding is (ǫ, δ)-accurate.

Proof. Consider the linearization such that vertices are labelled based on the reversed ordering of a
breath-first search from the vertex adjacent to the edge associated with the output sketch dimension.
Each Ai has row size m = Θ

(
NE log(1/δ)/ǫ2

)
thus the embedding satisfies Theorem 3.1.

One special case of Corollary 3.2 is the tensor train [36] (also called matrix product states
(MPS) [45]) embedding, where the embedding tensor network has a 1D structure along with an
output dimension adjacent to one of the endpoint tensors. Tensor train is widely used to efficiently
represent high dimensional tensors in multiple applications, including numerical PDEs [12, 42],
quantum physics [44], high-dimensional data analysis [20, 21] and machine learning [6, 47, 33].
Since the tensor train embedding contains N vertices, Corollary 3.2 directly implies that a sketch
size of m = Θ

(
N log(1/δ)/ǫ2

)
is sufficient for the MPS embedding to be (ǫ, δ)-accurate. This

embedding has already been used in applications including tensor train rounding [10] and low rank
approximation of matrix product operators [4].

1Throughout the paper we use [N ] to denote {1, . . . , N}.
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Note that the tensor train embedding introduced in this work and [10] adds an output sketch dimen-
sion to the standard tensor train, and restricts the tensor train rank to be the sketch size m. This is
different from the recent work by Rakhshan and Rabusseau [41], where they construct an embed-
ding consisting of m independent tensor trains, each one with a tensor train rank of R. A sketch

size upper bound of m = Θ
(
1/ǫ2 · (1 + 2/R)N log2N (1/δ)

)
is derived for that embedding to be

(ǫ, δ)-accurate. However, this bound has an exponential dependence on N .

4 A sketching algorithm with efficient computational cost and sketch size

We find Gaussian tensor network embeddings GE that both have efficient sketch size and yield effi-
cient computational cost. We are given a specific data tensor network GD that implicitly represents
a matrix M ∈ R

s1s2...sN×t, and want to sketch the row dimension of the matrix. We assume that
size of each dimension to be sketched, si for i ∈ [N ], is greater than the sketch size m, and each
one of these dimensions is adjacent to only one tensor. The goal is to find a Gaussian embedding
GE satisfying the following properties.

• GE ∈ G(ǫ,δ), where G(ǫ,δ) contains all embeddings not only satisfying the (ǫ, δ)-accurate sufficient
condition in Theorem 3.1, but also only have one output sketch dimension (|E1| = 1) with size

m = Θ
(
NE log(1/δ)/ǫ2

)
. This guarantees that the embedding is accurate and the output sketch

size is linear w.r.t. the number of vertices in GE . Note that although the data can be a hypergraph,

the embeddings considered in G(ǫ,δ) are defined on graphs.

• To fully contract the tensor network system (GD, GE), this embedding yields a contraction tree
with the optimal asymptotic contraction cost under a fixed data contraction tree. The data contrac-
tion tree constraint is useful for application of sketching to alternating optimization algorithms, as
we will discuss in Section 5. This can be written as an optimization problem below,

min
GE

min
TB

Ca(TB(GD, GE)), s.t. GE ∈ G(ǫ,δ), T0(GD) ⊂ TB(GD, GE), (4.1)

where TB(GD, GE) denotes a contraction tree of the tensor network (GD, GE), Ca denotes the
asymptotic computational cost, and T0(GD) ⊂ TB(GD, GE) means the contraction tree TB is
constrained on T0 (the detailed definition and a simple example are shown in Definition 1 and
Appendix B.1, respectively).

Definition 1 (Constrained contraction tree). Given G = (GE , GD) and a contraction tree T0 of GD,
the contraction tree TB for G is constrained on T0 if for each contraction (A,B) ∈ T0, there must

exist one contraction (Â, B̂) ∈ TB , such that Â ∩ VD = A and B̂ ∩ VD = B.

𝐺

𝑒 𝑒 𝑒 𝑒

Figure 4: Illustration of the
embedding. The black box
includes the Kronecker prod-
uct embedding and the orange
box includes the embedding
containing a binary tree of
small tensor networks.

Algorithm We propose an algorithm to sketch tensor network
data with an embedding containing two parts, a Kronecker prod-
uct embedding and an embedding containing a binary tree of small
tensor networks. The embedding is illustrated in Fig. 4. The Kro-
necker product embedding consists of N Gaussian random matrices
and is used to reduce the weight of each edge in Ē, the set of edges
to be sketched. The binary tree structured embedding consists of
N − 1 small tensor networks, each represented by one binary tree
vertex. Each small tensor network is used to effectively sketch the
contraction of pairs of tensors adjacent to edges in Ē. The em-
bedding with a binary tree structure may not be a binary tree tensor
network, since each tree vertex is not restricted to represent one ten-
sor. The binary tree is chosen to be consistent with the dimension
tree of the data contraction tree T0, which is a directed binary tree
showing the way edges in Ē are merged onto the same tensor in T0.
The detailed definition of dimension tree is in Appendix B.1.

We first introduce some notation before presenting the algorithm.
Consider a given input data tensor network GD = (VD, ED, w) and its given data contraction tree,
T0. Below we let Ē = {e1, e2, . . . , eN} to denote the edges to be sketched. Let ND = |VD|. Based
on the definition we have N ≤ ND and T0 contains ND − 1 contractions. Let one contraction path
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of T0, which is a topological sort of the contractions in T0, be expressed as

{(U1, V1), . . . , (UND−1, VND−1)}, (4.2)

where (Ui, Vi) represents the contraction of two intermediate tensors represented by two sub-
set of vertices Ui, Vi ⊂ VD. The ND − 1 contractions can be categorized into N + 2 sets,
D(e1), . . . ,D(eN ),S, I, as follows, and these sets are illustrated with an example in Appendix C.

• Consider contractions (Ui, Vi) such that both Ui and Vi are adjacent to edges in Ē. S contains all
contractions with this property.

• Consider contractions (Ui, Vi) such that the only edge in Ē that is adjacent to the contraction
output is ej , Ē(Ui ∪ Vi) = {ej}. We let D(ej) contains contractions with this property. When
D(ej) is not empty, we let X(ej) ⊂ V represent the sub network contracted by D(ej). When
D(ej) is empty, we let X(ej) = vj , where vj is the vertex in the data graph adjacent to ej .

• The remaining contractions in the contraction tree include (Ui, Vi) such that both Ui and Vi are
not adjacent to Ē, and contractions where Ui or Vi is adjacent to at least two edges in Ē, and the
other one is not adjacent to any edge in Ē. We let I contain these contractions.

Algorithm 1 Sketching algorithm

1: Input: Input data tensor network GD, data
contraction tree T0 expressed in (4.2)

2: for each ei ∈ Ē do
3: // Sketch with Kronecker product embedding

4: W ← contract and sketch X(ej)
5: Replace the contraction output of X(ej) by

W in T0

6: end for
7: for each contraction (Ui, Vi) in S ∪ I do
8: if i ∈ S then
9: // Sketch with binary tree embedding

10: Wi ← contract and sketch (Ui, Vi) (de-
tailed in Appendix C.1)

11: else
12: Wi ← contract(Ui, Vi)
13: end if
14: Replace the contraction output of (Ui, Vi)

by Wi in T0

15: end for
16: return WND−1

The sketching algorithm is shown in Algo-
rithm 1, and the details are as follows,

• One matrix in the Kronecker product
embedding is used to sketch the sub
data network X(ej), which guarantees
that two sketch dimensions to be merged
onto one tensor will both have size
Θ(N log(1/δ)/ǫ2). For the case where
D(ej) = ∅, we directly sketch X(ej) = vj
using an embedding matrix. For the case
where D(ej) 6= ∅, we select k(ej) ∈ D(ej)
and apply the sketching matrix during the
contraction (Uk(ej), Vk(ej)). The value of

k(ej) is selected via an exhaustive search
over all |D(ej)| contractions, so that sketch-
ing X(ej) has the lowest asymptotic cost.

• One small tensor network (denoted as Zi)
represented by a binary tree vertex in the
binary tree structured embedding is used to
sketch the contraction (Ui, Vi) when i ∈ S ,
which means that both Ui and Vi are adja-

cent to Ē. Let Ûi, V̂i denote the sketched
Ui and Vi formed in previous contractions

in the sketching contraction tree TB , such that Ûi ∩ VD = Ui and V̂i ∩ VD = Vi, the structure of

Zi is determined so that the asymptotic cost to sketch (Ûi, V̂i) is minimized under the constraint

that Zi is in G(ǫ/
√
N,δ), so that it satisfies the (ǫ/

√
N, δ)-accurate sufficient condition and only

has one output dimension. In Appendix C.1, we provide an algorithm to construct Zi containing
2 tensors, so that the output sketch size of Zi is Θ(N log(1/δ)/ǫ2).

The total computational cost of Algorithm 1 consists of three components: the cost of determining
the embedding structure, the cost of determining the sketching contraction tree, and the cost of
sketching. The first two components are O(N) and are therefore negligible in comparison to the
cost of sketching.

Analysis of the algorithm The embedding constructed during Algorithm 1 contains Θ(N) ver-
tices, and the output sketch size is m = Θ(N log(1/δ)/ǫ2). Therefore, the sketching result both has
low sketch size and is (ǫ, δ)-accurate. Below we discuss the optimality of Algorithm 1 in terms of
the sketching asymptotic computational cost. We first discuss the case when each vertex in the data
tensor network is adjacent to an edge in Ē.

Theorem 4.1. For data tensor networks where each vertex is adjacent to an edge in Ē, the asymp-
totic cost of Algorithm 1 is optimal w.r.t. the optimization problem in (4.1).
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We show the detailed proof of the theorem above in Appendix D.1. Therefore, Algorithm 1 is
efficient in sketching multiple widely used tensor network data, including tensor train, Kronecker
product, and Khatri-Rao product. As we will discuss in Section 5, Algorithm 1 can be used to design
efficient sketching-based ALS algorithm for CP tensor decomposition.

Note that the embedding in Algorithm 1 may not be a tree embedding. As we will show in Section 6,
for cases including sketching a Kronecker product data, Algorithm 1 is more efficient than sketching
with tree embeddings. On the other hand, for some data tensor networks, sketching with a tree
embedding also yields the optimal asymptotic cost, which we will show in Theorem 4.3.

For general input data where each data vertex may not adjacent to an edge in Ē, Algorithm 1 may
not yield the optimal sketching asymptotic cost, but is within a factor of at most O(

√
m) from the

cost lower bound. Below we show the theorem, and the detailed proof is in Appendix D.2.

Theorem 4.2. For any data tensor network GD, the asymptotic cost of Algorithm 1 (denoted as c)
satisfy c = O(

√
m · copt), where copt is the optimal asymptotic computational cost for the optimiza-

tion problem (4.1) and m = Θ(N log(1/δ)/ǫ2). When GD is a graph, c = O
(
m0.375 · copt

)
.

Efficiency of tree tensor network embedding We discuss cases where tree tensor network em-
beddings can be optimal w.r.t. the optimization problem in (4.1). Tree embeddings, in particular the
tensor train embedding, have been widely discussed and used in prior work [41, 10, 4]. We design
an algorithm to sketch with tree embeddings. The algorithm is similar to Algorithm 1, and the only
difference is that for each contraction (Ui, Vi) with i ∈ S , such that both Ui and Vi are adjacent
to edges in Ē, we sketch it with one tensor rather than a small network. Below, we present the
optimality of the algorithm in terms of sketching asymptotic cost.

Theorem 4.3. Consider GD with each vertex adjacent to an edge to be sketched and its given
contraction tree T0. If each contraction in T0 contracts dimensions with size being at least the
sketch size, then sketching with tree embedding would yield the optimal asymptotic cost for (4.1).

We present the proof of Theorem 4.3 in Appendix E. As we will show in Section 6, for tensor
network data with relatively large contracted dimension sizes such that the condition in Theorem 4.3
is satisfied, sketching with tree embedding yields a similar performance as Algorithm 1. However,
for data where the condition in Theorem 4.3 is not satisfied, Algorithm 1 is more efficient. For
example, when the data is a vector with a Kronecker product structure, sketching with Algorithm 1

yields a cost of Θ(
∑N

j=1 sjm + Nm2.5) and sketching with a tree embedding yields a cost of

Θ(
∑N

j=1 sjm+Nm3). We present the detailed analysis in Appendix C.2 and Appendix E.

5 Applications

Alternating least squares for CP decomposition On top of Algorithm 1, we propose a new
sketching-based ALS algorithm for CP tensor decomposition. Throughout analysis we as-
sume the input tensor is dense, and has order N and size s × · · · × s, and the CP rank is
R. The goal of CP decomposition is to minimize the objective function, f(A1, . . . , AN ) =∥∥∥X −

∑R
r=1 A1(:, r) ◦ · · · ◦AN (:, r)

∥∥∥
2

F
, where Ai ∈ R

s×R for i ∈ [N ] are called factor ma-

trices, and X denotes the input tensor. In each iteration of ALS, N subproblems are solved se-

quentially, and the ith subproblem can be formulated as Ai = argminA
∥∥LiA

T −Ri

∥∥2
F
, where

Li = A1⊙· · ·⊙Ai−1⊙Ai+1⊙· · ·⊙AN consists of a chain of Khatri-Rao products, and Ri = XT
(i)

is the transpose of ith matricization of X .

Multiple sketching-based randomized algorithms are proposed to accelerate each subproblem in CP-

ALS [5, 24, 30]. The sketched problem can be formulated as Ai = argmin
A

∥∥SiLiA
T − SiRi

∥∥2
F
,

where Si is an embedding. The goal is to design Si such that the sketched subproblem can be solved
efficiently and accurately. In Table 1, we summarize two state-of-the-art sketching methods for
CP-ALS. Larsen and Kolda [24] propose a method that sketches the subproblem based on (approx-
imate) leverage score sampling (LSS), but both the per-iteration computational cost and the sketch
size sufficient for (ǫ, δ)-accurate solution has an exponential dependence on N , which is inefficient
for decomposing high order tensors. Malik [30] proposes a method called recursive leverage score
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sampling for CP-ALS, where the embedding contains two parts, Si = Si,1Si,2, and Si,2 is an em-

bedding with a binary tree structure proposed in [1] with sketch size Θ(NR2/δ), and Si,1 performs

approximate leverage score sampling on Si,2Li with sketch size Θ̃(NR/ǫ2). This sketching method
has a better dependence on R in terms of per-iteration cost. For both algorithms, the preparation cost
shown in Table 1 denotes the cost to go over all elements in the tensor and initialize factor matrices
using randomized range finder. As is shown in [24, 26], randomized range finder based initialization
is critical for achieving accurate CP decomposition with sampling-based sketched ALS.

CP-ALS algorithm Per-iteration cost Sketch size (m) Prep cost

Standard ALS Θ(sNR) / /

LSS [24] Θ̃(N(RN+1 + sRN )/ǫ2) Θ̃(RN−1/ǫ2) Θ(sN )

Recursive LSS [30] Θ̃(N2(R4 +NsR3/ǫ)/δ) Θ(NR2/δ) and Θ̃(R/(ǫδ)) Θ(sN )

Algorithm 1 Θ̃(N2(N1.5R3.5/ǫ3 + sR2)/ǫ2) Θ̃(NR/ǫ2) Θ(sNm)

Table 1: Comparison of asymptotic algorithmic complexity between standard CP-ALS, CP-ALS
with leverage score sampling (LSS), CP-ALS with recursive leverage score sampling (recursive
LSS), and sketching CP-ALS with Algorithm 1. The third column shows the sketch size sufficient
for the sketched linear least squares to be (1 + ǫ)-accurate with probability at least 1− δ. By using

Θ̃, we neglect logarithmic factors, including log(R) and log(1/δ).

We propose a new sketching algorithm for CP-ALS based on Algorithm 1. Each Si is generated on
top of the data tensor network Li and its given data contraction tree Ti, with the sketch size being

m = Θ(NR log(1/δ)/ǫ2) = Θ̃(NR/ǫ2). The contraction trees Ti for i ∈ [N ] are chosen in a fixed
alternating order, such that the resulting embeddings Si for i ∈ [N ] have common parts and allow
reusing contraction intermediates. We leave the detailed analysis in Appendix F.2.

The ALS per-iteration cost is Θ(N(m2.5R+smR)) = Θ̃(N2(N1.5R3.5/ǫ3+sR2)/ǫ2). We present
the detailed sketching algorithm and its cost analysis in Appendix F.3. When performing a low-rank
CP decomposition with s ≫ R1.5 and ǫ is not too small so that ǫ = Θ(1)2, the per-iteration cost

is dominated by the term Θ̃(N2sR2/ǫ2), which is Θ(NRǫ/δ) = Ω(NR) times better than the per-
iteration cost of the recursive LSS algorithm. For another case of a high-rank CP decomposition with
R ≫ s, which happens when one wants a high-accuracy CP decomposition of high order tensors,

the per-iteration cost of our sketched CP-ALS algorithm is dominated by the term Θ̃(N3.5R3.5/ǫ5),

and the cost ratio between this algorithm and the recursive LSS algorithm is Θ̃(N1.5δ/(ǫ5R0.5)).
For this case, our algorithm is only preferable when N1.5δ/ǫ5 is not too large compared to R0.5.

Although our proposed sketching algorithm yields better per-iteration asymptotic cost in multiple
regimes compared to existing leverage score based sketching algorithms, some preparation compu-
tations are needed to sketch right-hand-sides SiRi for i ∈ [N ] before ALS iterations, and this cost is
non-negligible. On the other hand, this algorithm has better parallelism, since it involves a sequence
of matrix multiplications rather than sampling the matrix. We leave the detailed experimental com-
parison of computational efficiency of different sketching techniques for future work.

Tensor train rounding Given a tensor train, tensor train rounding finds a tensor train with a lower
rank to approximate the original representation. Throughout analysis we assume the tensor train has
order N with the output dimension sizes equal s, the tensor train rank is R < s, and the goal is to
round the rank to r < R. The standard tensor train rounding algorithm [36] consists of a right-to-left
sweep of QR decompositions of the input tensor train (also called orthogonalization), and another
left-to-right truncated singular value decompositions (SVD) sweep to perform rank reduction. The
orthogonalization step is the bottleneck of the rounding algorithm, and costs Θ(NsR3). Recently,
[10] has introduced a randomized rounding algorithm called “Randomize-then-Orthogonalize”. Let
X denote a matricization of the tensor train data with all except one dimension at the end grouped
into the row, the algorithm first sketches X with a tensor train embedding S, then performs a se-
quence of truncated SVDs on top of SX . The sketch size m of S is r plus some constant, and is
assumed to be smaller than R. The bottleneck is to compute SX , which costs Θ(NsR2m).

2As is shown in [26], in practice, setting ǫ to be 0.1-0.2 will result in accurate sketched least squares with
relative residual norm error less than 0.05.
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We can recast the problem as finding an embedding satisfying the linearization sufficient condi-
tion with sketch size m, such that the asymptotic cost of computing SX is optimal given the data
contraction tree that contracts the tensor train from one end to another. Our analysis (detailed in
Appendix G) shows that the sketching cost for the problem is lower bounded by Ω(NsR2m), thus
the sketching algorithm in [10] attains the asymptotic cost lower bound and is efficient. Note that
sketching with Algorithm 1 yields the same asymptotic cost, despite using a different embedding.

6 Experiments

We conduct multiple experiments to demonstrate the efficacy of our proposed embeddings. Below
we first justify the theoretical analysis in Theorem 4.1 and Theorem 4.3 via testing the sketching
performance on tensor train inputs and Kronecker product inputs. We then perform experiments to
demonstrate that the accuracy of our proposed sketching algorithms is comparable to that of state-of-
the-art sketching techniques for CP decomposition and tensor train rounding. Our experiments are
carried out on an Intel Core i7 2.9 GHz Quad-Core machine using NumPy [34] routines in Python.

Sketching tensor train and Kronecker product inputs We compare the performance of gen-
eral tensor network embedding used in Algorithm 1 (called TN embedding), tree embedding dis-
cussed in Theorem 4.3, and the baseline, tensor train embedding [10], in sketching tensor train
input data in Fig. 5. The input tensor train data has order 6, and the dimension size is 500.
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Figure 5: Results for sketching tensor train inputs. Each point denotes
the mean value across 25 experiments, and each error bar shows the
25th-75th quartiles.
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Figure 6: Results for sketching Kronecker product inputs.

We test the sketching per-
formance under different
tensor train ranks. For a
given rank, we randomly
generate 25 different in-
puts, with each element
in each tensor being an
i.i.d. variable uniformly
distributed within [0, 1].
Additional experiments
with Gaussian-distributed
input tensor train data are
presented in Appendix H.
For each input x and a spe-
cific embedding structure,
we calculate the relative
sketching error twice under
different sketch sizes, and
record the smallest sketch
size such that both of its
relative sketching errors

are within 0.2,
‖Sx‖2

‖x‖2

≤ 0.2. We also calculate the number of floating point operations (FLOPs)

for computing Sx under the smallest sketch size based on the classical dense matrix multiplication
algorithm. As can be seen, tree and tensor train embeddings are as efficient as TN embedding in
terms of number of FLOPs under relatively high tensor train rank (when rank is at least 32), but
are less efficient than TN embedding when the tensor train rank is lower than 32. The results are
consistent with the theoretical analysis in Theorem 4.3, which shows that tree embeddings yield the
optimal asymptotic cost when the input tensor train rank is at least the output sketch size, but the
asymptotic cost is not optimal when the tensor train rank is low.

We also compare the performance of TN, tree, and two baselines proposed in [41], tensor train and
Khatri-Rao product embeddings, in sketching Kronecker product inputs in Fig. 6. Each dimension
size of the Kronecker product input is fixed to be 1000, and we test the sketching performance under
different tensor orders. For each input x and a specific embedding structure, we record the smallest
sketch size such that its relative sketching error is within 0.1. As can be seen, compared to Khatri-
Rao product embedding, the sketch size of TN, tree and tensor train embeddings all increase slowly
with the increase of tensor order, consistent with the theoretical analysis that these embeddings have
efficient sketch size. In addition, the cost in FLOPs of TN embedding is smaller than tree and tensor
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train embeddings. This is consistent with the analysis in Theorem 4.1 and its following discussions,
showing that TN embedding yields the optimal asymptotic cost for Kronecker product inputs, but
tree and tensor train embeddings do not.

CP decomposition and tensor train rounding We perform experiments to demonstrate that the
accuracy of our proposed sketching methods for CP-ALS and tensor train rounding is comparable
to that of state-of-the-art sketching techniques. For both applications, we evaluate accuracy based

on the final fitness f for each algorithm, defined as f = 1 − ‖T −T̃ ‖F

‖T ‖F
, where T is the input tensor

and T̃ is the reconstructed low-rank tensor.

CP rank 2 5 10

Sketch size 25 64 100

CP-ALS 0.737 0.804 0.838

LSS [24] 0.739 0.773 0.789

Algorithm 1 0.737 0.770 0.801

Table 2: Comparison of the final fitness of different
CP decomposition algorithms under different CP ranks
and sketch sizes. 10 ALS iterations are performed for
all algorithms before the final fitness are calculated.

TT rounding rank 1 4 11 20

Sketch size 4 9 16 25

TT-SVD [36] 0.734 0.862 0.944 0.981

TT embedding [10] 0.573 0.757 0.882 0.951

Algorithm 1 0.527 0.761 0.866 0.948

Table 3: Comparison of the final fitness of different
tensor train rounding algorithms under different tensor
train rounding ranks and sketch sizes.

For CP-ALS, we conduct experiments on
a Time-Lapse hyperspectral radiance im-
age [32], which is a 3-D tensor with di-
mensions of 1024 × 1344 × 33. This in-
put data is used to demonstrate the applica-
bility of our method in real-world scenar-
ios. Standard CP-ALS, sketched CP-ALS
using Algorithm 1, and sketched CP-ALS
with approximate leverage score sampling
(LSS) [24] are compared. The output CP
decomposition fitness under varying CP
ranks and sketch sizes is shown in Ta-
ble 2. As can be seen, sketching with Al-
gorithm 1 yields comparable fitness with
the algorithm that sketches with approxi-
mate leverage score sampling. Note that
the computational cost of Algorithm 1 is
lower that LSS especially when the CP
rank is low and the tensor dimension is
large, as stated in Table 1.

We use 9 images from the Time-Lapse hy-
perspectral radiance image dataset for ten-
sor train rounding, and reshape the input data to an order 6 tensor with size 9×32×32×28×48×33.
We use the TensorLy [23] library to truncate the input tensor to a tensor train with a rank of 30.
On top of this tensor train, we evaluate the accuracy of various approaches, including tensor train
SVD [36], randomized algorithm using tensor train embedding [10], and randomized algorithm us-
ing Algorithm 1. The fitness of the truncated tensor trains are displayed in Table 3 for a variety of
rounding rank thresholds and sketch sizes. As can be seen, sketching with Algorithm 1 has com-
parable accuracy with the baseline algorithm (sketching with tensor train embedding). In addition,
both sketching algorithms also have similar complexity as is analyzed in Section 5.

7 Conclusions

We provide detailed analysis of general tensor network embeddings. For input data such that each
dimension to be sketched has size greater than the sketch size, we provide an algorithm to efficiently
sketch such data using Gaussian embeddings that can be linearized into a sequence of sketching
matrices and have low sketch size. Our sketching method is then used to design state-of-the-art
sketching algorithms for CP tensor decomposition and tensor train rounding. We leave the analysis
for more general embeddings for future work, including those with each tensor representing fast
sketching techniques, such as Countsketch and fast JL transform using fast Fourier transform, and
those containing structures cannot be linearized, such as Khatri-Rao product embedding. It would
also be of interest to look at other tensor-related applications that could benefit from tensor network
embedding, including tensor ring decomposition and simulation of quantum circuits. We also leave
the high-performance implementation of the algorithm for general tensor networks as future work.
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