
Hardness of Noise-Free Learning for
Two-Hidden-Layer Neural Networks

Sitan Chen
UC Berkeley

sitanc@berkeley.edu

Aravind Gollakota
UT Austin

aravindg@cs.utexas.edu

Adam R. Klivans
UT Austin

klivans@cs.utexas.edu

Raghu Meka
UCLA

raghum@cs.ucla.edu

Abstract

We give superpolynomial statistical query (SQ) lower bounds for learning two-
hidden-layer ReLU networks with respect to Gaussian inputs in the standard
(noise-free) model. No general SQ lower bounds were known for learning ReLU
networks of any depth in this setting: previous SQ lower bounds held only for ad-
versarial noise models (agnostic learning) [KK14, GGK20, DKZ20] or restricted
models such as correlational SQ [GGJ+20, DKKZ20]. Prior work hinted at the
impossibility of our result: Vempala and Wilmes [VW19] showed that general SQ
lower bounds cannot apply to any real-valued family of functions that satisfies a
simple non-degeneracy condition. To circumvent their result, we refine a lifting
procedure due to Daniely and Vardi [DV21] that reduces Boolean PAC learning
problems to Gaussian ones. We show how to extend their technique to other learn-
ing models and, in many well-studied cases, obtain a more efficient reduction. As
such, we also prove new cryptographic hardness results for PAC learning two-
hidden-layer ReLU networks, as well as new lower bounds for learning constant-
depth ReLU networks from label queries.

1 Introduction

In this paper we extend a central line of research proving representation-independent hardness results
for learning classes of neural networks. We will consider arguably the simplest possible setting:
given samples (x1, y1), . . . , (xn, yn) where for every i 2 [n], xi is sampled independently from
some distribution D over Rd and yi = f(xi) for an unknown neural network f : Rd ! R, the goal
is to output any function bf for which Ex⇠D[(f(x) � bf(x))2] is small. This model is often referred
to as the realizable or noise-free setting.

This problem has long been known to be computationally hard for discrete input distributions. For
example, if D is supported over a discrete domain like the Boolean hypercube, then we have a vari-
ety of hardness results based on cryptographic/average-case assumptions [KS09, DLSS14, DSS16,
DV20, DV21].

Over the last few years there has been a very active line of research on the complexity of learning
with respect to continuous distributions, the most widely studied case being the assumption that D is
a standard Gaussian in d dimensions. A rich algorithmic toolbox has been developed for the Gaus-
sian setting [JSA15, ZSJ+17, BG17, LY17, Tia17, GKM18, GLM18, BJW19, ZYWG19, DGK+20,
LMZ20, DK20, ATV21, CKM20, SZB21, VSS+22], but all known efficient algorithms can only
handle networks with a single hidden layer, that is, functions of the form f(x) =

P
k

i=1 �i�(hwi, xi).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

This motivates the following well-studied question:
Are there fundamental barriers to learning neural networks with two hidden layers? (1)

Two distinct lines of research, one using cryptography and one using the statistical query (SQ)
model, have made progress towards solving this question.

In the cryptographic setting, [DV21] showed that the existence of a certain class of pseudorandom
generators, specifically local pseudorandom generators with polynomial stretch, implies superpoly-
nomial lower bounds for learning ReLU networks with three hidden layers.

For SQ learning, work of [GGJ+20] and [DKKZ20] gave the first superpolynomial correlational SQ
(CSQ) lower bounds for learning even one-hidden-layer neural networks. Notably, however, there
are strong separations between SQ and CSQ [APVZ14, ADHV19, CKM20], and the question of
whether a general SQ algorithm exists remained an interesting open problem. In fact, Vempala and
Wilmes [VW19] showed that general SQ lower bounds might be impossible to achieve for learn-
ing real-valued neural networks. For any family of networks satisfying a simple non-degeneracy
condition (see Section 1.1), they gave an algorithm that succeeded using only polynomially many
statistical queries. As such, the prevailing conventional wisdom was that noise was required in the
model to obtain full SQ lower bounds.

The main contribution of this paper is to answer Question 1 by giving both general SQ lower bounds
and cryptographic hardness results (based on the Learning with Rounding or LWR assumption) for
learning ReLU networks with two hidden layers and polynomially bounded weights. We note that
our SQ lower bound is the first of its kind for learning ReLU networks of any depth. We also show
how to extend our results to the setting where the learner has label query access to the unknown
network.

Reference Num. hidden layers Model of hardness

[DKKZ20, GGJ+20] 1 Correlational SQ

[DV21] 3
Cryptographic

(assuming existence of local PRGs)
This work 2 Full SQ

This work 2
Cryptographic

(assuming hardness of LWR)

Table 1: Summary of known and new superpolynomial lower bounds for learning noise-free shallow
ReLU networks over Gaussian inputs up to sufficiently small (but non-negligible) error. (Definitions
and terminology may be found in Appendix A.)

SQ Lower Bound We state an informal version of our main SQ lower bound:
Theorem 1.1 (Full SQ lower bound for two hidden layers (informal), see Theorem 3.1). Any SQ al-
gorithm for learning poly(d)-sized two-hidden-layer ReLU networks over N (0, Idd) up to squared
loss 1/ poly(d) must use at least d!(1) queries, or have query tolerance that is negligible in d.

We stress that this bound holds unconditionally, independent of any cryptographic assumptions. This
simultaneously closes the gap between the hardness result of [DV21] and the positive results on one-
hidden-layer networks [JSA15, ZSJ+17, GLM18, ATV21, DK20] and goes against the conventional
wisdom that one cannot hope to prove full SQ lower bounds for learning real-valued functions in
the realizable setting.

We also note that unlike previous CSQ lower bounds which are based on orthogonal function fam-
ilies and crucially exploit cancellations specific to the Gaussian distribution, our Theorem 1.1 and
other hardness results in this paper extend to any reasonably anticoncentrated product distribution
over Rd; see Remark C.5.

Cryptographic Lower Bound While Theorem 1.1 rules out most known approaches for prov-
ably learning neural networks (e.g. method of moments/tensor decomposition [JSA15, ZSJ+17,

2

GLM18, BJW19, DGK+20, DK20, ATV21], noisy gradient descent [BG17, LY17, Tia17, GKM18,
ZYWG19, LMZ20], and filtered PCA [CKM20]), it does not preclude the existence of a non-SQ
algorithm for doing so. Indeed, a number of recent works [BRST21, SZB21, ZSWB22, DK21]
have ported algorithmic techniques like lattice basis reduction [LLL82], traditionally studied in the
context discrete settings like cryptanalysis, to learning problems over continuous domains for which
there is no corresponding SQ algorithm.

Our next result shows however that under a certain cryptographic assumption, namely hardness
of Learning with Rounding (LWR) with polynomial modulus [BPR12, AKPW13, BGM+16], no
polynomial-time algorithm can learn two-hidden-layer neural networks from Gaussian examples.
The LWR problem is a close cousin of the well-known Learning with Errors (LWE) problem
[Reg09], except with deterministic rounding in place of random additive errors.
Definition 1.2. Fix moduli p, q 2 N, where p < q, and let n be the security parameter. For any
w 2 Zn

q
, define fw : Zn

q
! Zp/p by fw(x) = 1

p
bw · xep = 1

p
bp

q
(w · x mod q)e, where bte is

the closest integer to t. In the LWRn,p,q problem, the secret w is drawn randomly from Zn
q

, and we
must distinguish between labeled examples (x, y) where x ⇠ Zn

q
and either y = fw(x) or y is drawn

independently from Unif(Zp/p). LWE is similar, except that y 2 Zq/q is either 1
q
((w·x+e) mod q)

for some e 2 Zq sampled from a carefully chosen noise distribution, or is drawn from Unif(Zq/q).
Theorem 1.3 (Cryptographic hardness result (informal), see Theorem 4.1). Suppose there exists a
poly(d)-time algorithm for learning poly(d)-sized two-hidden-layer ReLU networks over N (0, Idd)
up to squared loss 1/ poly(d). Then there exists a quasipolynomial-time algorithm for LWR with
polynomial modulus (i.e., in the regime where n = d, p, q = poly(n), and q/p = poly(n)).

Note that here we may actually improve the LWR hardness assumption required from quasipolyno-
mial to any mildly superpolynomial function of the security parameter (see Remark 4.2).

Under LWR with polynomial modulus, we also show the first hardness result for learning one hidden
layer ReLU networks over the uniform distribution on {0, 1}d (see Theorem 4.3).

We discuss existing hardness evidence for LWR as well as its relation to more standard assump-
tions like LWE in Appendix A.3. From a negative perspective, Theorem 1.3 suggests that the
aforementioned lattice-based algorithms for continuous domains are unlikely to yield new learn-
ing algorithms for two-hidden-layer networks, because even their more widely studied discrete
counterparts have yet to break LWR. From a positive perspective, in light of the prominent role
LWR and its variants have played in a number of practical proposals for post-quantum cryptography
[CKLS18, BGML+18, JZ16, DKRV18], Theorem 1.3 offers a new avenue for stress-testing these
schemes.

Query Learning Lower Bound One additional benefit of our techniques is that they are flexible
enough to accommodate other learning models beyond traditional PAC learning. To illustrate this,
for our final result we show hardness of learning neural networks from label queries. In this setting,
the learner is much more powerful: rather than sample or SQ access, they are given the ability to
query the value f(x) of the unknown function f at any desired point x in Rd, and the goal is still to
output a function bf for which E[(f(x) � bf(x))2] is small. The expectation here is with respect to
some specified distribution, which we will take to be N (0, Idd).

In recent years, this question has received renewed interest from the security and privacy communi-
ties in light of model extraction attacks, which attempt to reverse-engineer neural networks found in
publicly deployed systems [TJ+16, MSDH19, PMG+17, JCB+20, RK20, JWZ20, DG21]. Recent
work [CKM21] has shown that in this model, there is an efficient algorithm for learning arbitrary
one-hidden-layer ReLU networks that is truly polynomial in all relevant parameters. We show that
under plausible cryptographic assumptions about the existence of simple pseudorandom function
(PRF) families (see Section 5) which may themselves be based on standard number theoretic or
lattice-based cryptographic assumptions, such a guarantee is impossible for general constant-depth
ReLU networks.
Theorem 1.4 (Label query hardness (informal), see Theorem 5.1). If either the decisional Diffie–
Hellman or the Learning with Errors assumption holds, then the class of poly(d)-sized constant-
depth ReLU networks from Rd to R is not learnable up to small constant squared loss " over
N (0, Idd) even using label queries over all of Rd.

3

Note that the connection between PRFs and hardness of learning from label queries over discrete
domains is a well-known connection dating back to Valiant [Val84]. To our knowledge, however,
Theorem 1.4 is the first hardness result for query learning over continuous domains.

1.1 Discussion and Related Work

Hardness for learning neural networks. There are a number of works [BR89, Vu06, KS09,
LSSS14, GKKT17, DV20] showing hardness for distribution-free learning of various classes of
neural networks.

As for hardness of distribution-specific learning, several works have established lower bounds with
respect to the Gaussian distribution. Apart from the works [GGJ+20, DKKZ20, DV21] from the
introduction which are most closely related to the present work, we also mention the works of
[KK14, GKK19, GGK20, DKZ20] which showed hardness for agnostically learning halfspaces and
ReLUs, [Sha18] which showed hardness for learning periodic activations with gradient-based meth-
ods, [SVWX17] which showed lower bounds against SQ algorithms for learning one-hidden-layer
networks using Lipschitz statistical queries and large tolerance, and [SZB21] which showed lattice-
based hardness of learning one-hidden-layer networks when the labels yi have been perturbed by
bounded adversarially chosen noise. Our approach has similarities to the “Gaussian lift” as studied
by Klivans and Kothari [KK14]. Their approach, however, required noise in the labels, whereas we
are interested in hardness in the strictly realizable setting. We also remark that [DGKP20, AAK21]
showed correlational SQ lower bounds for learning random depth-!(log n) neural networks over
Boolean inputs which are uniform over a halfspace.

There have also been works on hardness of learning from label queries over discrete domains and
for more “classical” concept classes like Boolean circuits [Fel09, CGV15, Val84, Kha95, AK95].

SQ lower bounds for real-valued functions. A recurring conundrum in the literature on SQ lower
bounds for supervised learning has been whether one can show SQ hardness for learning real-valued
functions. SQ lower bounds for Boolean functions are typically shown by lower bounding the sta-
tistical dimension of the function class, which essentially corresponds to the largest possible set of
functions in the class which are all approximately pairwise orthogonal. Indeed, the content of the
hardness results of [GGJ+20, DKKZ20] was to prove lower bounds on the statistical dimension
of one-hidden-layer networks. Unfortunately, for real-valued functions, statistical dimension lower
bounds only imply CSQ lower bounds. As discussed in [GGJ+20], the class of d-variate Hermite
polynomials of degree-` is pairwise orthogonal and of size d

O(`), which translates to a CSQ lower
bound of d⌦(`). Yet there exist SQ algorithms for learning Hermite polynomials in far fewer queries
[APVZ14, ADHV19].

Further justification for the difficulty of proving SQ lower bounds for real-valued functions came
from [VW19], which observed that for any real-valued learning problem satisfying a seemingly in-
nocuous non-degeneracy assumption—namely that for any pair of functions f, g in the class, the
probability under the input distribution D that f(x) = g(x) is zero—there is an efficient “cheating”
SQ algorithm (see Proposition 4.1 therein). The SQ lower bound shown in the present work circum-
vents this proof barrier by exhibiting a family of neural networks for which any pair of networks
agrees on a set of inputs with Gaussian measure bounded away from zero.

Open question. All known positive results for one hidden layer that run in time polynomial in all
parameters require various assumptions on the underlying network. This leaves open the tantalizing
possibility of strengthening our results to apply to worst-case one hidden layer networks.

1.2 Technical Overview

Our work will build on a recent approach of Daniely and Vardi [DV21], who developed a simple
and clever technique for lifting discrete functions to the Gaussian domain entirely in the realizable
setting. Our main contributions are to (1) make their lifting procedure more efficient so that two
hidden layers suffice and (2) show how to apply the lift in a variety of models beyond PAC. For the
purposes of this overview we will take the domain of our discrete functions to be {0, 1}d, but our
techniques extend to Zd

q
with q = poly(d).

4

Daniely–Vardi (DV) lift. At a high level, the DV lift is a transformation mapping a Boolean ex-
ample (x, y) labeled by a hard-to-learn Boolean function f to a Gaussian example (z, ey) labeled
by a (real-valued) ReLU network f

DV that behaves similarly to f in that f
DV(z) approximates

f(sign(z)), where for us sign(t) denotes [t > 0] and is applied elementwise. The key idea is to use
a continuous approximation gsign of the sign function, and to pair it with a “soft indicator” function
bad : Rd ! R+ that is large whenever sign(z) 6= gsign(z), and that can be implemented as a one-
hidden-layer network independent of the target function. One can show that whenever f is realizable
as an L-hidden-layer network over {0, 1}d, the function f

DV(z) = ReLU(f(gsign(z))�bad(z)) can
be implemented as an (L+ 2)-hidden-layer network satisfying

f
DV(z) = ReLU(f(sign(z))� bad(z)).

This property allows us to generate synthetic Gaussian labeled examples (z, fDV(z)) from Boolean
labeled examples (x, f(x)), and thereby reduce the problem of learning f to that of learning f

DV.

Improving the DV lift. Our first technical contribution is to introduce a more efficient lift which
only requires one extra hidden layer. Our starting point is to observe that a variety of hard-to-learn
Boolean functions f like parity and LWR take the form f(x) = �(h(x)) for some ReLU network
h whose range T over Boolean inputs is a discrete subset of [0, poly(d)] of polynomially bounded
size, and for some function � : T ! [0, 1]. For such compressible functions (see Definition 2.1),
one can write f(x) = �(h(x)) =

P
t⇤2T

�(t⇤) [h(x) = t
⇤]. Again, we would like to implement

lifted function f
M : Rd ! R using gsign and bad so that it approximates f(sign(z)) except when

bad indicates that gsign 6= sign. To this end, we might hope to implement, say,

f
M(z) =

X

t⇤2T

�(t⇤) [h(gsign(z)) = t
⇤] [8j : bad(zj) ⌧ 1].

Here we now view bad as a univariate function, and whenever it is small, we can be sure gsign =
sign. Suppose that we could build a one-hidden-layer network N(s1, . . . , sd; t) that behaves like
[t = 0] [8j : sj ⌧ 1]. Then we could realize f

M as an (L+ 1)-hidden-layer network:

f
M(z) =

X

t⇤2T

�(t⇤)N(bad(z1), . . . , bad(zd); h(gsign(z))� t
⇤).

While many natural attempts to build such an N run into difficulties, we construct a suitably relaxed
version of N that turns out to suffice for the reduction. To gain some intuition for our construction,
the starting observation is that the following inclusion-exclusion type formula vanishes identically
whenever any of the sj is 1:

 (s1, s2, s3)� (1, s2, s3)� (s1, 1, s3)� (s1, s2, 1)

+ (s1, 1, 1) + (1, s2, 1) + (s1, 1, 1)� (1, 1, 1).

For a suitable choice of , one might hope to build N out of such a formula by taking sj = bad(zj)
for every j. But the natural generalization of this expression to d inputs would have size 2d,
which runs the risk of rendering the resulting SQ lower bounds vacuous. Our final construction
(Lemma 2.6) instead resembles a truncated inclusion-exclusion type formula of only quasipolyno-
mial size, which may be of independent interest. Since the SQ lower bounds for Boolean functions
that we build on are exponential, by a simple padding argument we still obtain a superpolynomial
SQ lower bound for our lifted functions.

Hard one-hidden-layer Boolean functions and LWR. To use this lift for Theorems 1.1 and 1.3,
we need one-hidden-layer networks that are compressible and hard to learn over uniform Boolean
inputs. For SQ lower bounds, we can simply start from parities, for which there are exponential
SQ lower bounds, and which turn out to be easily implementable by compressible one-hidden-layer
networks. For cryptographic hardness, Daniely and Vardi [DV21] used certain one-hidden-layer
Boolean networks that arise from the cryptographic assumption that local PRGs exist (see Section
A.4.1 therein). Unfortunately, these functions are not compressible. For this reason, we work instead
with LWR: it turns out that the LWR functions are compressible and, conveniently, the hardness
assumption directly involves uniform discrete inputs.

5

Hardness beyond PAC. While the DV lift is a priori only for showing hardness of example-based
PAC learning, we can extend it to the SQ and label query models by simple simulation arguments.

2 Compressing the Daniely–Vardi Lift

In this section we show how to refine the lifting procedure of Daniely and Vardy [DV21] such that
whenever the underlying discrete functions satisfy a property we term compressibility, we obtain
hardness under the Gaussian for networks with just one extra hidden layer.
Definition 2.1. Let q > 0 be a modulus.1 We call an L-hidden-layer ReLU network f : Zd

q
! [0, 1]

compressible if it is expressible in the form f(x) = �(h(x)), where

• h : Zd
q
! T is an (L� 1)-hidden-layer network such that |h(x)|  poly(d) for all x;

• h has range T = h(Zd
q
) such that T ✓ Z and |T |  poly(d); and

• � : T ! [0, 1] is a mapping from h’s possible output values to [0, 1].
Remark 2.2. To see why such an f is an L-hidden-layer network in z, consider the function � :
T ! R. Because T ✓ Z and |T |  poly(d), � is expressible as (the restriction to T of) a piecewise
linear function on R whose size and maximum slope are poly(d), and hence as a poly(d)-sized
one-hidden-layer ReLU network from R to R. By composition, x 7! �(h(x)) can be represented by
an L-hidden-layer network.

We now formally state a theorem which captures our “compressed” version of the DV lift. The
version of this theorem for L+ 2 layers is implicit in [DV21]. In technical terms, our improvement
consists of removing the single outer ReLU present in their construction. Thus, while our construc-
tion still has three linear layers, it has only two non-linear layers. By a standard padding argument,
we also obtain Corollary C.6, which lets us work with polynomial-sized neural networks.
Theorem 2.3 (Compressed DV lift). Let q = poly(d) be a modulus. Let C be a class of compressible
L-hidden-layer poly(d)-sized ReLU networks mapping Zd

q
to [0, 1]. Let m = m(d) = !d(1) be a

size parameter that grows slowly with d. There exists a class CM of (L+1)-hidden-layer d⇥(m)-sized
ReLU networks mapping Rd to [0, 1] such that the following holds:

Suppose there is an efficient algorithm A capable of learning CM over N (0, Idd) up to squared loss
d
�⇥(m). Then there is an efficient algorithm B capable of weakly predicting C over Unif(Zd

q
) with

advantage d
�⇥(m) over guessing the constant 1/2 in the following sense: given access to labeled

examples (x, f(x)) for x ⇠ Unif(Zd
q
) and an unknown f 2 C, B satisfies E

⇥�
B(x) � f(x)

�2⇤
<

E
⇥�

1
2 � f(x)

�2⇤� d
�⇥(m), where the probability is taken over both x and the internal randomness

of B. We refer to CM as the lifted class corresponding to C.

The proof of Theorem 2.3 leverages certain one-hidden-layer gadgets. The first two gadgets are
inherent to the original DV lift (extended to work with general Zq as opposed to just {0, 1}), while
the third is one of our main technical contributions and essential to obtaining an improvement in
depth. Proofs are deferred to Appendix C.

Start by letting I0, I1, . . . , Iq�1 be a partition of R into q consecutive intervals each of mass 1/q
under N (0, 1) (e.g., when q = 2, I0 = (�1, 0) and I1 = (0,1)). Note that these intervals will
have differing lengths, which we denote by |Ij |, and the shortest ones will be the ones closest to
the origin. Still, by Gaussian anti-concentration, we know that each |Ij | � ⇥(1/q). Let thresq :
R ! Zq be the piecewise constant function that takes on value k on Ik. Clearly, when t ⇠ N (0, 1),
thresq(t) ⇠ Unif(Zq). Let R1, . . . , Rq be intervals such that Rk ✓ Ik�1 [Ik and Rk contains the
boundary point between Ik�1 and Ik, and such that each Rk has mass �/q for some � ⌧ 1 to be
picked later. Let S1, . . . , Sq be slightly larger intervals such that Rk ⇢ Sk for each k 2 [q � 1], and
each Sk has mass 2�/q. By Gaussian anti-concentration again, each |Sk| � ⇥(�/q). Notice that by
construction, Pz⇠N (0,1)[z 2 [kRk] = � and Pz⇠N (0,1)[z 2 [kSk] = 2�.
Lemma 2.4. Let � > 0, q > 0, and intervals Ik, Rk, Sk for k 2 Zq be as above. There exists a
one-hidden-layer ReLU network N1 : R ! R with O(q) units and weights of magnitude O(q/�)
such that N1(t) = thresq(t) if t /2 [kRk.

1Our results are stronger when q is taken to be a large polynomial in the dimension, but the Boolean q = 2
case is illustrative of all the main ideas.

6

Lemma 2.5. Let � > 0, q > 0, and intervals Ik, Rk, Sk for k 2 Zq be as above. There exists a
one-hidden-layer ReLU network N2 : R ! [0, 1] with O(q) units and weights of magnitude O(q/�)
such that

N2(t) is

8
<

:

= 1 if t 2 [kRk

= 0 if t 2 R \ [kSk

� 0 otherwise
.

Note that when q = 2, N1 and N2 play the role of “gsign” and “bad” from the technical overview.

To motivate the third gadget, recall from the technical overview that one might hope to build
N3(s1, . . . , sd; t) that behaves like [t = 0] [8j : sj ⌧ 1]. Slightly more generally, one can
show that it would suffice to build a one-hidden-layer network N3 with the following properties:

N3(s1, . . . , sd; t) =

8
<

:

0 if 9j : sj = 1
0 if t 2 Z \ {0}
1 if 8j : sj = 0 and t = 0

(2)

Unfortunately, most natural attempts to construct N3 with such ideal properties run into difficulties
and appear to require two hidden layers (see Appendix D for discussion).

The key idea that lets us make progress is to restrict attention to those possibilities for (s1, . . . , sd) =
(N2(z1), . . . , N2(zd)) that are the most likely. Specifically, if m = !d(1) is the size parameter
from Theorem 2.3, then by setting � in Lemmas 2.4 and 2.5 appropriately, we can ensure that with
overwhelming probability over z ⇠ N (0, Id), no more than m of the N2(zj) are simultaneously 1.
Accordingly, we focus on constructing N3 such that

N3(s1, . . . , sd; t) =

8
<

:

0 if between 1 and m of the si are 1
0 if t 2 Z \ {0}
1 otherwise

. (3)

Our construction for N3 has size d
⇥(m), and satisfies the first and second properties exactly. It also

“approximately” satisfies the third in the sense that it takes on a nonzero value with nonnegligible
probability over its inputs. As we will see, this turns out to be enough for the reduction to go through.
And even though the size of N3 is slightly superpolynomial in the dimension, because the SQ lower
bounds for Boolean functions that we build on are exponential, by a simple padding argument we
will still obtain a superpolynomial SQ lower bound for our lifted functions.
Lemma 2.6 (Main lemma). Let m = m(d) = !d(1) be a size parameter. There exists a one-hidden-
layer neural network N3 : Rd ⇥ R ! R such that

(a) N3(s1, . . . , sd; t) = 0 for any t 2 R if between 1 and m of the sj are 0
(b) N3(s1, . . . , sd; t) = 0 for any s1, . . . , sd 2 [0, 1]d if t 2 Z \ {0}
(c) N3 has size at most d2m
(d) N3(0, . . . , 0, s; 0) = s for any s 2 [0, 1

d
] (there are d� 1 zeroes in front of s).

Proof sketch of Theorem 2.3. For each f 2 C given by f = � � h, let fM 2 CM be given by

f
M(z) =

X

t⇤2T

�(t⇤)N3(N2(z1), . . . , N2(zd); h(N1(z))� t
⇤), (4)

where N1 and N2 are from Lemmas 2.4 and 2.5, with the � parameter set to d
�10m, and N3 is from

Lemma 2.6. This is an (L+1)-hidden layer network since h�N1 and N2 each have at most L hidden
layers, and N3 adds an additional layer. By Lemma 2.6(c), the size of this network is S = d

⇥(m).
Note that for z such that N2(z1), . . . , N2(zd) < 1, we have N1(z) = thresq(z), and the only t

⇤ for
which one of the summands in Eq. (4) is potentially nonzero is the one given by t

⇤ = h(thresq(z)).
So in this case f

M simplifies to

f
M(z) = f(thresq(z)) N3(N2(z1), . . . , N2(zd); 0). (5)

Further, for z such that between 1 and m of the N2(zj) are 1, we know that
 (N2(z1), . . . , N2(zd); t) = 0 identically (for all t 2 R), so in this case fM(z) = 0. And finally, for

7

z such that more than m of the N2(zj) are 1, we have no guarantees on the behavior of fM, but as we
now show, we have set parameters such that this case occurs only with negligible probability, and we
can pretend that 0 is still a valid label in this case. Indeed, by standard Gaussian anti-concentration,
for each coordinate zj we have Pzj [N2(zj) = 1] = Pzj [zj 2 [kRk] = � = d

�10m. The number of
coordinates j for which N2(zj) = 1 thus follows a binomial distribution B(d, d�10m), which has a
decreasing pdf with unique mode at b(d+ 1)d�10mc = 0. Thus the probability of having at least m
1s is at most

dX

i=m

✓
d

i

◆
(d�10m)i(1� d

�10m)d�i  (d�m+ 1)

✓
d

m

◆
d
�10m2

 dd
m
d
�10m2

 d
�9m2

(6)

for sufficiently large d. This is negligibly small not only in d but also in S = d
⇥(m).

We now describe the reduction. For each labeled example (x, y) that the discrete learner B receives,
where x ⇠ Unif(Zd

q
) and y = f(x) for an unknown f 2 C, B forms a labeled example (z, ey) for the

Gaussian learner A as follows. For each coordinate j 2 [d], zj is drawn from N (0, 1) conditioned
on zj 2 Ixj . Notice that this way thresq(z) = x, and the marginal distribution on z is exactly Nd.
The modified label is given by

ey = ey(y, z) =

8
<

:

0 if more than m of the N2(zj) are 1
0 if between 1 and m of the N2(zj) are 1
y N3(N2(z1), . . . , N2(zd); 0) otherwise

(7)

Note that in the bottom two cases, ey = f
M(z) exactly; in the top case ey is in general inconsistent with

f
M, but as we have seen, this case occurs with negl(S) probability. In particular, with overwhelming

probability, no poly(S)-time algorithm will ever see non-realizable samples.

So B can feed these new labeled examples (z, ey) to A. Suppose A outputs a hypothesis bf : Rd ! R
such that Ez⇠Nd [(bf(z) � f

M(z))2]  ". We need to show B can convert this hypothesis into
a nontrivial one for its discrete problem. We first define a “good region” G ✓ Rd where f

M
is guaranteed to be nonzero and nontrivially related to the original f by saying z 2 G iff
N2(z1), . . . , N2(zd�1) = 0, and N2(zd) 2 (1

2d ,
1
d
). Observe that when z 2 G, by Eq. (5) and

Lemma 2.6(d) we have

f
M(z) = f(thresq(z))N3(N2(z1), . . . , N2(zd�1), N2(zd); 0)

= f(x)N3(0, . . . , 0, N2(zd); 0)

= yN2(zd), (8)

where we use the fact that thresq(z) = x, so that f(thresq(z)) = f(x) = y.

One can show that G has non-negligible probability mass. The discrete learner B can now adapt bf
as follows. Given a fresh test point x ⇠ Unif(Zd

q
), the learner forms z = z(x) such that for each

coordinate j 2 [d], zj is drawn from N (0, 1) conditioned on zj 2 Ixk . If z 2 G, then B predicts
by =

bf(z)
N2(zd)

(recall that when z 2 z, N2(zd) >
1
2d), and otherwise it simply predicts ey = 1

2 . By
exploiting the fact that this is a good prediction at least on the region G, it is not hard to show that
B’s overall square loss is non-negligibly better than random.

3 Statistical Query Lower Bound

We prove a superpolynomial SQ lower bound (for general queries as opposed to only correlational or
Lipschitz queries) for weakly learning two-hidden-layer ReLU networks under the standard Gaus-
sian. We obtain this by lifting the problem of learning parities under Ud, which is well-known to
require exponentially many queries.
Theorem 3.1. Fix any ↵ 2 (0, 1). Any SQ learner capable of learning poly(d)-sized two-hidden-
layer ReLU networks under N (0, Idd) up to squared loss " (for some sufficiently small " =

1/ poly(d)) using bounded queries of tolerance ⌧ � 2�(log d)2�↵

must use at least ⌦(22
(log d)↵

⌧
2) =

d
!(1)

⌧
2 such queries.

8

This theorem is proven using the following key reduction, which adapts the compressed DV lift
(Theorem 2.3) to the SQ setting. The proof is deferred to Appendix E.
Theorem 3.2. Let q = poly(d) be a modulus, and let m = m(d) = !d(1) be a size parameter.
Let C be a class of compressible L-hidden-layer poly(d)-sized ReLU networks mapping Zd

q
to [0, 1],

and let CM be the lifted class of (L + 1)-hidden-layer d
⇥(m)-sized ReLU networks corresponding

to C, mapping Rd to R (as in Theorem 2.3). Suppose there is an SQ learner A capable of learning
CM over N (0, Idd) up to squared loss d

�⇥(m) using queries of tolerance ⌧ , where ⌧ � d
�⇥(m2).

Then there is an SQ learner B that, using the same number of queries of tolerance ⌧/2, produces a
weak predictor eB for C over Unif(Zd

q
) with advantage d

�⇥(m) over guessing the constant 1/2 (in
expectation over both the data and the internal randomness of eB).

Proof of Theorem 3.1. Let m = m(d) = logc d for c = 1
↵
� 1, and let d0 = d

m = 2log
c+1

d, so
that d = 2log

1/(1+c)
d
0
. It is easy to see that the class C of parities on {0, 1}d can be implemented

by compressible one-hidden-layer poly(d)-sized ReLU networks. Indeed, for any S ✓ [d] recall
that �S(x) = (

P
j2S

xj is odd), which is a compressible one-hidden-layer network with the inner
depth-0 network being x 7!

P
j2S

xj and �(t) = [t is odd]. Thus the lifted class CM can be
implemented by two-hidden-layer d⇥(m)-sized ReLU networks over Rd. A padding argument lets
us embed these classes into dimension d

0. By using the predictor from Theorem 3.2 (with q = 2),
we obtain an SQ algorithm capable of distinguishing parities from random labels using queries of

tolerance ⌧/2, assuming ⌧ � d
�⇥(m2) = 2� log2c+1

d = 2� log
2c+1
c+1 d

0
. It is well-known [Kea98,

BFJ+94] that the lower bound for learning parities is ⌦(2d⌧2), which becomes ⌦(22
log1/(1+c) d0

⌧
2).

Substituting ↵ = 1
1+c

gives the result.

By way of an alternative construction that arguably remains hard even for non-SQ algorithms, in
Appendix F we provide a different proof of this SQ lower bound using the LWR functions in place
of the parities. We stress that this alternative proof remains unconditional and relies only on the
LWR function family, not on the LWR hardness assumption itself.

4 Cryptographic Hardness Based on LWR

In this section we show hardness of learning two-hidden-layer ReLU networks over Gaussian inputs
based on LWR. This is a direct application of the compressed DV lift (Theorem 2.3) to the LWR
problem, which is by definition a hard learning problem over Unif(Zd

q
).

Theorem 4.1. Let n be the security parameter, and fix moduli p, q � 1 such that p, q = poly(n)
and p/q = poly(n). Let d = n. Let c > 0, m = m(d) = logc d and d

0 = d
m. Suppose

there exists a poly(d0)-time algorithm capable of learning poly(d0)-sized depth-2 ReLU networks
under N (0, Idd0) up to squared loss 1/ poly(d0). Then there exists a poly(d0) = 2⇥(log1+c

n) time
algorithm for LWRn,p,q .

Proof. We claim that the class CLWR is implementable by compressible poly(d)-sized one-hidden-
layer ReLU networks over Zd

q
, or, after padding, over Zd

0

q
. Indeed, by definition we have fw(x) =

1
p
b(w ·x) mod qep, which is a compressible one-hidden-layer ReLU network with the inner depth-0

network (i.e., affine function) being w 7! w · x and �(t) = 1
p
bt mod qep. Let CM

LWR denote the
corresponding lifted class of poly(d0)-sized two-hidden-layer ReLU networks, padded to have do-
main Rd

0
. Applying Corollary C.6 to the assumed learner for CM

LWR, we obtain a poly(d0)-time weak
predictor predictor for CLWR, which readily yields a corresponding distinguisher for the LWRn,p,q

problem. Using the facts that d0 = d
m = 2log

1+c
d and d = n, we may translate poly(d0) into

2⇥(log1+c
n), yielding the result.

Remark 4.2. Note that the choice of m = m(d) = logc d in Theorem 4.1 is purely for simplicity.
By picking m(d) = !d(1) to be a suitably slow-glowing function of d, such as log⇤ d, we can obtain
a running time for the final LWR algorithm that is as mildly superpolynomial as we like.

9

In addition, we also obtain a hardness result for one-hidden-layer networks under Unif{0, 1}d, im-
proving on the hardness result of [DV21] (see Theorem 3.4 therein) for two-hidden-layer networks
under Unif{0, 1}d. For this application, we let d = n log q = eO(n), so that we may identify the do-
main Zn

q
with {0, 1}d via the binary representation. This also identifies Unif(Zn

q
) with Unif{0, 1}d.

Corollary 4.3. Let n, p, q be such that p, q = poly(n) and p/q = poly(n), and let d = n log q =
eO(n). Suppose there exists an efficient algorithm for learning poly(d)-sized one-hidden-layer ReLU
networks under Ud up to squared loss 1/4. Then there exists an efficient algorithm for LWRn,p,q .

5 Hardness of Learning using Label Queries

Here we show hardness of learning constant-depth ReLU networks over Gaussians from label
queries by lifting pseudorandom function (PRF) families. For preliminaries on PRFs and their con-
nection to hardness of learning, see Appendix A.4. Since PRFs are not necessarily compressibile,
we will simply use the original DV lift (Theorem B.1).
Theorem 5.1. Assume there exists a family of PRFs mapping {0, 1}d to {0, 1} implemented by
poly(d)-sized L-hidden-layer ReLU networks. Then there does not exist an efficient learner that,
given query access to an unknown poly(d)-sized (L+ 2)-hidden-layer ReLU network f : Rd ! R,
is able to output a hypothesis h : Rd ! R such that Ez⇠N (0,Idd)[(h(z)� f(z))2]  1/16.

Proof. Let fs : {0, 1}d ! {0, 1} be an unknown L-hidden-layer ReLU network obtained from the
PRF family by picking the key s at random. Consider the lifted (L+2)-hidden-layer ReLU network
f

DV
s

: Rd ! R from Eq. (10), given by f
DV
s

(z) = ReLU(fs(N1(z)) � N
0
2(z)), where N1 and N2

are from Lemmas 2.4 and 2.5, and N
0
2(z) =

P
j
N2(zj). Suppose there were an efficient learner

A capable of learning functions of the form f
DV
s

using queries. By the DV lift (Theorem B.1), A
yields an efficient predictor B achieving small constant error w.r.t. the unknown fs, contradicting
Lemma A.3. We only need to verify that A’s query access to f

DV
s

can be simulated by B. Indeed,
suppose A makes a query to f

DV
s

at a point z 2 Rd. Then B can make a query to fs at the point
sign(z) and return ReLU(fs(sign(z))�N

0
2(z)) = f

DV
s

(z), as this was the key property satisfied by
f

DV
s

. This completes the reduction and proves the theorem.

Acknowledgments and Disclosure of Funding

We would like to thank our anonymous reviewers for pointing out an issue in the first version of our
proof. Part of this work was completed while the authors were visiting the Simons Institute for the
Theory of Computing. SC is supported in part by NSF Award 2103300. AG and ARK are supported
by NSF awards AF-1909204, AF-1717896, and the NSF AI Institute for Foundations of Machine
Learning (IFML). RM is supported by NSF CAREER Award CCF-1553605.

References
[AAK21] Naman Agarwal, Pranjal Awasthi, and Satyen Kale. A deep conditioning treatment of

neural networks. In Algorithmic Learning Theory, pages 249–305. PMLR, 2021. 1.1

[ADHV19] Alexandr Andoni, Rishabh Dudeja, Daniel Hsu, and Kiran Vodrahalli. Attribute-
efficient learning of monomials over highly-correlated variables. In Algorithmic
Learning Theory, pages 127–161. PMLR, 2019. 1, 1.1

[AK95] Dana Angluin and Michael Kharitonov. When won’t membership queries help? Jour-
nal of Computer and System Sciences, 50(2):336–355, 1995. 1.1

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with
rounding, revisited. In Annual Cryptology Conference, pages 57–74. Springer, 2013.
1, A.3

[APVZ14] Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning sparse
polynomial functions. In Proceedings of the twenty-fifth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 500–510. SIAM, 2014. 1, 1.1

10

[ATV21] Pranjal Awasthi, Alex Tang, and Aravindan Vijayaraghavan. Efficient algorithms for
learning depth-2 neural networks with general relu activations. Advances in Neural
Information Processing Systems, 34, 2021. 1, 1, 1

[BFJ+94] Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and
Steven Rudich. Weakly learning dnf and characterizing statistical query learning us-
ing fourier analysis. In Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, pages 253–262, 1994. 3

[BG17] Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet
with gaussian inputs. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 605–614, 2017. 1, 1

[BGM+16] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On
the hardness of learning with rounding over small modulus. In Theory of Cryptogra-
phy Conference, pages 209–224. Springer, 2016. 1, A.3, A.2, A.3

[BGML+18] Sauvik Bhattacharya, Oscar Garcia-Morchon, Thijs Laarhoven, Ronald Rietman,
Markku-Juhani O Saarinen, Ludo Tolhuizen, and Zhenfei Zhang. Round5: Compact
and fast post-quantum public-key encryption. IACR Cryptol. ePrint Arch., 2018:725,
2018. 1, A.3

[BIP+18] Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J Wu. Exploring
crypto dark matter. In Theory of Cryptography Conference, pages 699–729. Springer,
2018. A.4

[BJW19] Ainesh Bakshi, Rajesh Jayaram, and David P Woodruff. Learning two layer rectified
neural networks in polynomial time. In Conference on Learning Theory, pages 195–
268. PMLR, 2019. 1, 1

[Bog21] Andrej Bogdanov. Personal communication, 2021. F

[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseudo-
random functions. In Annual Cryptology Conference, pages 353–370. Springer, 2014.
A.4

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 719–737. Springer, 2012. 1, A.3, A.4

[BR89] Avrim Blum and Ronald L Rivest. Training a 3-node neural network is np-complete.
In Advances in neural information processing systems, pages 494–501, 1989. 1.1

[BR17] Andrej Bogdanov and Alon Rosen. Pseudorandom functions: Three decades later. In
Tutorials on the Foundations of Cryptography, pages 79–158. Springer, 2017. A.4, F

[BRST21] Joan Bruna, Oded Regev, Min Jae Song, and Yi Tang. Continuous lwe. In Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 694–
707, 2021. 1

[CGV15] Aloni Cohen, Shafi Goldwasser, and Vinod Vaikuntanathan. Aggregate pseudoran-
dom functions and connections to learning. In Theory of Cryptography Conference,
pages 61–89. Springer, 2015. 1.1

[CKLS18] Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song. Lizard: Cut off
the tail! a practical post-quantum public-key encryption from lwe and lwr. In In-
ternational Conference on Security and Cryptography for Networks, pages 160–177.
Springer, 2018. 1, A.3

[CKM20] Sitan Chen, Adam R Klivans, and Raghu Meka. Learning deep relu networks is fixed-
parameter tractable. arXiv preprint arXiv:2009.13512, 2020. 1, 1, 1

[CKM21] Sitan Chen, Adam Klivans, and Raghu Meka. Efficiently learning one hidden layer
relu networks from queries. In Advances in Neural Information Processing Systems,
2021. 1

11

[DG21] Amit Daniely and Elad Granot. An exact poly-time membership-queries algorithm
for extraction a three-layer relu network. arXiv preprint arXiv:2105.09673, 2021. 1

[DGK+20] Ilias Diakonikolas, Surbhi Goel, Sushrut Karmalkar, Adam R Klivans, and Mahdi
Soltanolkotabi. Approximation schemes for relu regression. In Conference on Learn-
ing Theory, 2020. 1, 1

[DGKP20] Abhimanyu Das, Sreenivas Gollapudi, Ravi Kumar, and Rina Panigrahy. On the learn-
ability of random deep networks. In Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 398–410. SIAM, 2020. 1.1

[DK20] Ilias Diakonikolas and Daniel M. Kane. Small covers for near-zero sets of polyno-
mials and learning latent variable models. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 184–195, 2020. 1, 1, 1

[DK21] Ilias Diakonikolas and Daniel M. Kane. Non-gaussian component analysis via lattice
basis reduction, 2021. 1

[DKKZ20] Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, and Nikos Zarifis. Algorithms
and sq lower bounds for pac learning one-hidden-layer relu networks. In Conference
on Learning Theory, pages 1514–1539. PMLR, 2020. (document), 1, ??, 1.1, 1.1

[DKRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Ver-
cauteren. Saber: Module-lwr based key exchange, cpa-secure encryption and cca-
secure kem. In International Conference on Cryptology in Africa, pages 282–305.
Springer, 2018. 1, A.3

[DKZ20] Ilias Diakonikolas, Daniel M Kane, and Nikos Zarifis. Near-optimal sq lower
bounds for agnostically learning halfspaces and relus under gaussian marginals. arXiv
preprint arXiv:2006.16200, 2020. (document), 1.1

[DLSS14] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case complex-
ity to improper learning complexity. In Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, pages 441–448, 2014. 1

[DSS16] Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations on learning
dnf’s. In Conference on Learning Theory, pages 815–830. PMLR, 2016. 1

[DV20] Amit Daniely and Gal Vardi. Hardness of learning neural networks with natural
weights. Advances in Neural Information Processing Systems, 33, 2020. 1, 1.1

[DV21] Amit Daniely and Gal Vardi. From local pseudorandom generators to hardness of
learning. In Conference on Learning Theory, pages 1358–1394. PMLR, 2021. (doc-
ument), 1, 1, ??, 1, 1.1, 1.2, 1.2, 2, 2, 4, B.1, D

[Ear19] Mike Earnest. Proving an identity involving the alternating sum of products of bi-
nomial coefficients. Mathematics Stack Exchange, 2019. URL: https://math.
stackexchange.com/q/3108805 (version: 2019-02-11). C.2

[Fel09] Vitaly Feldman. On the power of membership queries in agnostic learning. The
Journal of Machine Learning Research, 10:163–182, 2009. 1.1

[GGJ+20] Surbhi Goel, Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar, and Adam Klivans.
Superpolynomial lower bounds for learning one-layer neural networks using gradi-
ent descent. In International Conference on Machine Learning, pages 3587–3596.
PMLR, 2020. (document), 1, ??, 1.1, 1.1

[GGK20] Surbhi Goel, Aravind Gollakota, and Adam Klivans. Statistical-query lower bounds
via functional gradients. Advances in Neural Information Processing Systems, 33,
2020. (document), 1.1

[GKK19] Surbhi Goel, Sushrut Karmalkar, and Adam Klivans. Time/accuracy tradeoffs for
learning a relu with respect to gaussian marginals. In Proceedings of the 33rd Inter-
national Conference on Neural Information Processing Systems, pages 8584–8593,
2019. 1.1

12

https://math.stackexchange.com/q/3108805
https://math.stackexchange.com/q/3108805

[GKKT17] Surbhi Goel, Varun Kanade, Adam Klivans, and Justin Thaler. Reliably learning
the relu in polynomial time. In Conference on Learning Theory, pages 1004–1042.
PMLR, 2017. 1.1

[GKM18] Surbhi Goel, Adam R. Klivans, and Raghu Meka. Learning one convolutional layer
with overlapping patches. In ICML, volume 80, pages 1778–1786. PMLR, 2018. 1, 1

[GLM18] Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks
with landscape design. In 6th International Conference on Learning Representations,
ICLR 2018, 2018. 1, 1, 1

[HMP+93] András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán.
Threshold circuits of bounded depth. Journal of Computer and System Sciences,
46(2):129–154, 1993. A.4

[JCB+20] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Pa-
pernot. High accuracy and high fidelity extraction of neural networks. In Srdjan
Capkun and Franziska Roesner, editors, 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, pages 1345–1362. USENIX Association, 2020. 1

[JSA15] Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of non-
convexity: Guaranteed training of neural networks using tensor methods. arXiv
preprint arXiv:1506.08473, 2015. 1, 1, 1

[JWZ20] Rajesh Jayaram, David P. Woodruff, and Qiuyi Zhang. Span recovery for deep neural
networks with applications to input obfuscation. In ICLR. OpenReview.net, 2020. 1

[JZ16] Zhengzhong Jin and Yunlei Zhao. Optimal key consensus in presence of noise. arXiv
preprint arXiv:1611.06150, 2016. 1, A.3

[Kea98] Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of
the ACM (JACM), 45(6):983–1006, 1998. 3, A.2

[Kha95] Michael Kharitonov. Cryptographic lower bounds for learnability of boolean func-
tions on the uniform distribution. Journal of Computer and System Sciences,
50(3):600–610, 1995. 1.1

[KK14] Adam Klivans and Pravesh Kothari. Embedding hard learning problems into gaus-
sian space. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2014). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2014. (document), 1.1, B

[KL01] Matthias Krause and Stefan Lucks. Pseudorandom functions in in tc0 and crypto-
graphic limitations to proving lower bounds. computational complexity, 10(4):297–
313, 2001. A.4

[KS09] Adam R Klivans and Alexander A Sherstov. Cryptographic hardness for learning
intersections of halfspaces. Journal of Computer and System Sciences, 75(1):2–12,
2009. 1, 1.1

[LLL82] Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials
with rational coefficients. Mathematische annalen, 261:515–534, 1982. 1

[LMZ20] Yuanzhi Li, Tengyu Ma, and Hongyang R. Zhang. Learning over-parametrized two-
layer neural networks beyond ntk. In Conference on Learning Theory 2020, volume
125, pages 2613–2682. PMLR, 2020. 1, 1

[LSSS14] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency
of training neural networks. Advances in Neural Information Processing Systems,
27:855–863, 2014. 1.1

[LY17] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with
relu activation. In Advances in Neural Information Processing Systems 30, pages
597–607, 2017. 1, 1

13

[MSDH19] Smitha Milli, Ludwig Schmidt, Anca D. Dragan, and Moritz Hardt. Model recon-
struction from model explanations. In FAT, pages 1–9. ACM, 2019. 1

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In Proceedings 38th Annual Symposium on Foundations of Com-
puter Science, pages 458–467. IEEE, 1997. A.4

[Pei16] Chris Peikert. A decade of lattice cryptography. Found. Trends Theor. Comput. Sci.,
10(4):283–424, mar 2016. A.3

[PMG+17] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay
Celik, and Ananthram Swami. Practical black-box attacks against machine learning.
In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi, and Xun Yi, editors, Pro-
ceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017, pages
506–519. ACM, 2017. 1

[PSP17] PSPACEhard. Alternating sum of binomial coefficients identity. Mathematics Stack
Exchange, 2017. URL: https://math.stackexchange.com/q/2183223 (ver-
sion: 2017-03-12). C.2

[Raz92] Alexander A Razborov. On small depth threshold circuits. In Scandinavian Workshop
on Algorithm Theory, pages 42–52. Springer, 1992. A.4

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6):1–40, 2009. 1

[Reg10] Oded Regev. The learning with errors problem. Invited survey in CCC, 7(30):11,
2010. A.3

[Rey20] Lev Reyzin. Statistical queries and statistical algorithms: Foundations and applica-
tions. arXiv preprint arXiv:2004.00557, 2020. A.2

[RK20] David Rolnick and Konrad P. Kording. Reverse-engineering deep relu networks. In
ICML, volume 119 of Proceedings of Machine Learning Research, pages 8178–8187.
PMLR, 2020. 1

[RR97] Alexander A Razborov and Steven Rudich. Natural proofs. Journal of Computer and
System Sciences, 55(1):24–35, 1997. A.4

[Sha18] Ohad Shamir. Distribution-specific hardness of learning neural networks. The Journal
of Machine Learning Research, 19(1):1135–1163, 2018. 1.1

[SVWX17] Le Song, Santosh Vempala, John Wilmes, and Bo Xie. On the complexity of learn-
ing neural networks. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pages 5520–5528, 2017. 1.1

[SZB21] Min Jae Song, Ilias Zadik, and Joan Bruna. On the cryptographic hardness of learning
single periodic neurons. arXiv preprint arXiv:2106.10744, 2021. 1, 1, 1.1

[Tia17] Yuandong Tian. An analytical formula of population gradient for two-layered relu
network and its applications in convergence and critical point analysis. In Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, volume 70,
pages 3404–3413. PMLR, 2017. 1, 1

[TJ+16] Florian Tramèr, Fan Zhang 0022, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Stealing machine learning models via prediction apis. CoRR, abs/1609.02943,
2016. 1

[Val84] Leslie G Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984. 1, 1.1, A.4

[VRPS21] Gal Vardi, Daniel Reichman, Toniann Pitassi, and Ohad Shamir. Size and depth
separation in approximating natural functions with neural networks. arXiv preprint
arXiv:2102.00314, 2021. A.4

14

https://math.stackexchange.com/q/2183223

[VSS+22] Kiran Vodrahalli, Rakesh Shivanna, Mahesh Sathiamoorthy, Sagar Jain, and Ed Chi.
Algorithms for efficiently learning low-rank neural networks, 2022. 1

[Vu06] VH Vu. On the infeasibility of training neural networks with small mean-squared
error. IEEE Transactions on Information Theory, 44(7):2892–2900, 2006. 1.1

[VW19] Santosh Vempala and John Wilmes. Gradient descent for one-hidden-layer neural
networks: Polynomial convergence and sq lower bounds. In COLT, volume 99, 2019.
(document), 1, 1.1

[ZSJ+17] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recov-
ery guarantees for one-hidden-layer neural networks. In International conference on
machine learning, pages 4140–4149. PMLR, 2017. 1, 1, 1

[ZSWB22] Ilias Zadik, Min Jae Song, Alexander S. Wein, and Joan Bruna. Lattice-based methods
surpass sum-of-squares in clustering, 2022. 1

[ZYWG19] Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-
layer relu networks via gradient descent. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 1524–1534. PMLR, 2019. 1, 1

15

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See open question in Section 1.1.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] All proofs are present

in either the main body or the forthcoming supplement.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

16

