A Data-Driven Framework for Sparse Impedance
Identification of Power Converters in DC Microgrids

Ali Hosseinipour, Javad Khazaei, and Rick S. Blum
Department of Electrical and Computer Engineering
Lehigh University
Bethlehem PA, USA
Email: alh621@lehigh.edu

Abstract—Small-signal impedances of source- and load-side
power converters are widely used in different stability analysis
criteria developed for microgrids. However, these impedances need
to be measured at each operating point of the converter by
applying perturbation and system identification techniques, which
is computationally expensive and time consuming. To address
this challenge, a data-driven impedance estimation framework
is proposed in this paper to obtain a sparse parameter-varying
(SPV) impedance model for power converters in DC microgrids.
To this end, an {, regularization problem is formulated and solved
by the sequential thresholded least-squares (STLS) algorithm to
learn coefficient functions of the parametric impedance model of
a converter under test (CUT), constructing the SPV impedance
model. The identified SPV impedance model is solely reliant on
the available feedback signals from the CUT control system to
estimate the real-time small-signal impedance. This obviates the
need for frequent perturbation of the system at different operating
points for the purpose of online stability monitoring. Simulation
case studies for a droop-controlled DC-DC converter demonstrate
the effectiveness of the SPV impedance model in highly accurate
impedance estimation over the frequency range of interest.

Index Terms—DC microgrid, small-signal impedance, sparse
identification, stability monitoring

I. INTRODUCTION

DC distributed power systems have found various use cases
in stationary and mobile applications such as shipboard power
systems, more electric aircrafts, community microgrids, and
data centers [1]. Due to the extensive use of power converters
and their strong interaction dynamics, stability monitoring is
of great importance to mainatin reliable operation of these
systems. Eigenvalue and impedance-based approaches are the
two major stability analysis methods employed in DC mi-
crogrids [2]. The impedance-based analysis is however more
suitable for online stability monitoring since the impedance
measurement can be performed in real time, whereas detailed
analytical models are required for eigenvalue analysis, which
are not often available [3]. Various stability analysis criteria
have been developed for DC microgrids using source- and load-
side impedance models [4].

Online impedance measurement and estimation methods are
mostly based on applying wide- or narrow-band perturbation
signals using either existing converters in the system or ex-
ternal sources [5]. Wideband online impedance measurement
for stability monitoring of DC shipboard power systems is
discussed in [6], [7]. In [8], the equivalent bus impedance
of a DC microgrid is estimated using wide-band perturbation
to measure the voltage loop gain of the source converter
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and the input impedance of the source converter. Continuous
stability monitoring by measuring the impedance using existing
converters and employing the nodal stability analysis method
is proposed in [9]. All these methods require performing
continuous perturbation and post-processing such as fast Fourier
transform (FFT) computation, interpolation, and estimation of
the output impedance [10]. To address this issue, an impedance
estimation method is proposed in [11], which is based on the
measurement of control loop gain using Middlebrook’s analog
injection technique. However, the small-signal perturbation of
the system at each operating point is still required. Moreover,
the impedance can only be estimated around its peak frequency.

All the above-mentioned online impedance measure-
ment/estimation methods require continuous perturbation of
the system at each operating point due to the small-signal
nature of the impedance model to be identified. However,
the operating point of a DC microgrid is subject to constant
variations as a result of the intermittency of the load power
and variable energy resources. Therefore, frequent perturbation
of the system at each operating point is a computationally
intensive task and not ideal for online stability monitoring pur-
poses where run-time efficiency is of great importance. Some
recent studies have tackled the operating point dependency of
the impedance models for inverter-based resources [12], [13].
These methods use artificial neural networks to estimate an
operating-point dependent impedance model of voltage-sourced
converters. However, the main drawback of these methods is the
requirement for large amount of data, partially due to the use of
frequency as one of the inputs to the artificial neural network.

To address the existing knowledge gaps, this paper pro-
poses a data-driven impedance estimation framework for power
converters in DC microgrids. The proposed method tackles
the operating point dependency of the small-signal impedance
model by deriving a sparse parameter-varying (SPV) parametric
impedance model using measured impedance data. The SPV
impedance model leverages the locally available voltage and
current signals to estimate the small-signal impedance in real
time. The SPV impedance model obviates the need for frequent
perturbation of the system to measure the impedance, improving
the run-time efficiency of impedance identification and alleviat-
ing computational needs of online stability monitoring systems.
The main contributions of the paper can thus be summarized
as:

o Development of a machine-learning-based framework
to estimate the parametric impedance model of power
converters, enabling accurate and rapid impedance esti-
mation without the need for performing constant pertur-



bation in DC microgrids.

o Proposing the notion of an SPV impedance model to
obtain an operating-point dependent impedance model
for power converters in DC microgrids by using a
regularization technique that decreases the complexity of
an estimated impedance model while achieving a good
estimation performance.

The rest of the paper is organized as follows. Section II
provides information about the study system and the analytical
impedance model of the CUT. In Section III, the data-driven
impedance estimation framework is proposed and the SPV
impedance model is derived. Several case studies are presented
in Section IV to validate the SPV impedance model. Section V
concludes the paper.

II. SYSTEM DESCRIPTION AND ANALYTICAL IMPEDANCE
MODEL

A bidirectional DC-DC converter representing a battery
power conversion unit is assumed as the CUT according to
Fig. 1. The CUT is connected to a typical multi-bus DC mi-
crogrid with meshed topology, which provides more reliability
compared to radial microgrids [1]. The CUT is equipped with
cascaded voltage and current controllers, i.e., G, (s) and G;(s).
The voltage reference of the CUT, v’ (t), is regulated according
to the droop control law by

U (1) = Vrep — Zyio(t) (1)

in order to enable power sharing within a microgrid, where v,.. ¢
is the nominal output voltage, Z, is the droop gain, and i, (¢)
is the output current of the CUT.

Leveraging first principles and applying the averaging tech-
nique over the switching frequency, the state-space averaged
model of the CUT is obtained as
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where ip(t), Uo(t), Tin(t), io(t), and d(t) are the average
inductor current, output voltage, input voltage, output current,
and duty cycle, respectively.

For the purpose of control design and small-signal stability
analysis, (2) and (3) are linearized assuming a constant input
voltage for CUT. This then results in the linear time-invariant
representation of Fig. 2. From this figure, the closed-loop output
impedance of the CUT can be derived as
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where the parameters with the tilde sign represent small-signal
parameters. The open-loop transfer functions describing the
power stage of the CUT can be derived as
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where V,, I, D, and V; represent steady-state values of the
output voltage, inductor current, duty cycle of switch Sy, and
the input voltage, respectively.

III. DATA-DRIVEN IMPEDANCE ESTIMATION FRAMEWORK

As demonstrated in (4)-(8), the output impedance of the CUT
is dependent on its operating point. Therefore, for the purpose
of online stability monitoring, it is required to measure the
impedance as operating point of the CUT varies. The goal of
the proposed data-driven impedance estimation framework in
Fig. 3 is to obtain a SPV impedance model so that the closed-
loop impedance of the CUT can be estimated in real time using
only the steady-state measurements of the inductor current and
output voltage. This framework is elaborated in the following.

A. Impedance Data Collection

First, frequency scanning is utilized to collect impedance data
at multiple operating points of the CUT. To do so, the system
is first initialized at a specific operating point. Then the CUT
is excited by a pseudo-random binary sequence (PRBS)-driven
current source (i;,,;) at its output terminals as shown in Fig. 1.
The magnitude of the PRBS signal is chosen as 0.05|1,| in order
to not perturb the system significantly, but collect rich enough
data for identification purposes. Next, the impedance frequency-
response data is obtained by performing fast fourier transform
(FFT) as Zyrq(s) = Ff[[_”lo(le] In order to derive the parametric
representation of the measured impedance, a proper transfer
function of four poles and three zeros is fitted to the impedance
frequency response data using the MATLAB® function t fest,
resulting in Z,,..s for a specific operating point of the CUT.

b353 + b282 + b18 + bo
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The procedure for impedance data collection is repeated for

m operating points to collect enough data for the estimation
problem discussed in the next section.

Zmeas (S) =

(€))

B. SPV Impedance Model

From the analytical impedance model of the CUT derived in
(4), it is clear that the small-signal impedance is a function of
the operating point defined by the (I, V,) pair. It should be
noted that D can also be represented as a function of V, and
I1,. Therefore, the SPV impedance model of the CUT can be
represented by

Zspv(s) =

f3(IL, Vo)s® + fo(In, Vo)s® 4+ fiIn, Vo)s + fo(IL, Vo)
st 4+ gs(IL, Vo)s® + g2(IL, Vo)s? + gf1(Ir, Vo)s + go(IL, Vo)
(10)

Each of the coefficient functions, f(.) and g(.) in (10), can be
approximated by a linear combination of monomials of V,, and
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Fig. 2: Small-signal model of the CUT.

I1,.. These monomials are identified from a library of candidate
functions, ®, resulting in sparse coefficient functions. A general
guideline to construct the library is to start with low-degree
monomials first and introduce more complex functions into the
library until a good performance is achieved for the estimation
problem. To this end, first the collected impedance data are
arranged as X = O(V,,Ip,)E, where X and © are given in
(11) and (12) with n=8 and p=14.
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The problem of approximating the coefficient matrix Z is then
formulated as an ¢, regularization problem of the form

&, = argmin || Xy, — O(Vo, IL)én|2 + Mnl|€nllo

&n

13)

where &, is the h-th column of E represented by &, =
[fl & o §p]T. X, represents the h-th column of X. The /5
norm part denoted by ||.||2 solves for the least-squares problem.
The ¢ norm, ||.||o, decides the number of nonzero elements in
&p, promoting sparsity in the coefficient matrix. A, is defined
as the regularization factor.

The bi-objective minimization of (13) is solved by the
sequential thresholded least squares (STLS) [14], [15]. STLS
is an iterative algorithm described by

st={iehl:[g=2}, k=0 “4)
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where k is the iteration number. For an integer p € N, [p] :=
{1,2,...,p}. ©(V,,Ip)T is the pseudo-inverse of @ (V,,Iy,),
defined as

O(Vo,I) = [O(Vo, 1) TO(Vo,I)| 1O(V,o,I) T (17)

The support set of &, is also defined by supp(&r) := {j €
[p] : & # 0}. The psuedocode for the STLS is given in
Algorithm 1. The algorithm first preforms the least-squares
regression to obtain the non-sparse éh. The nonsparse fh will
include some very small terms, which are then hard thresholded
and zeroed out by increasing A;,. This procedure is repeated for
p times, which guarantees the algorithm convergence [15]. The
choice of A, is crucial in the convergence of the algorithm.
While increasing A, results in sparser &y, it can lead to an
underfit model. On the other hand, small values of )\, increase
the complexity of the model by increasing the number of
nonzero coefficients while achieving a smaller error. Therefore,
An, should be tuned such that a good balance between sparsity
and the least-squares error is achieved.

Algorithm 1: STLS Algorithm for Impedance Identifi-
cation

Data: Xh, @(VO,IL), )\h

Result: =

p <+ 14;

n < 8;

for h=1:ndo
&) =07 'Xy;

fork=1:pdo
Ismall — |£h| < >\h;
EE (Ismall) —0;
for all variables do
Ibig Raniad Ismall(:7 ”)s
&n(Lyig,ii) = O(:, Inig) T X (:, i)
end
end

end

IV. CASE STUDIES

The DC microgrid of Fig. 1 is implemented in Simulink®
using the Simscape™ library. The parameters of the CUT are
given in Table I. The DC bus nominal voltage is 380 V, which
is a standard level in many DC applications [1]. The L and
C values are designed so that current and voltage ripples are
minimized. G,(s) and G;(s) are also designed to ensure zero
tracking error well as high stability margins using the Bode
plot method. Details on circuit and controller parameters design
can be found in [16]. The droop gain, Z,, is chosen such that
the voltage variation of the DC bus is within the 5% of the
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Fig. 3: Data-driven impedance estimation framework to obtain SPV impedance model
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TABLE I: Simulation parameters of the CUT.

Par t Value
Vin 250 V
Vref 380 V
L 2.7 mH
C 18.953 pF
r 0.1 Q
Zy 345
Gu(s) 0.0339+25.4/s
Gi(s) 0.0723+527/s
Switching frequerncy 20 kHz
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Fig. 4: Measured and analytical impedance model of the CUT

(Vo=376.2V, I1=1.6 A)

nominal voltage [17]. Following the proposed framework, the
impedance data are collected by perturbing the CUT at 90
different operating points (;m = 90). In order to validate the
data collection procedure, the measured impedance is compared
with its analytical counterpart in Fig. 4 for a specific operating
point. It can be seen that these two impedance models closely
match, providing certainty about the validity of the collected
data.

A. Regularization factor tuning

The collected data is split such that 65 of them are randomly
selected for training and the remaining 25 data points are
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Fig. 5: Derivation of sparse coefficient functions by tuning A

assigned to the testing set. Fig. 5 shows the process of training
and testing to obtain the SPV impedance model. In order
to estimate the sparse coefficient functions in (10), A, is
gradually increased from zero (the least-squares solution) until
the sparsity is realized for each coefficient function. It can
be seen that at the sparse point, all the estimated coefficient
functions have fewer active functions from the library ® than
they have when \;=0. Since after the sparse points the cross-
validation error (CVE) substantially increases, these points can
be considered as the balance between the least-squares error
and complexity of the coefficient functions that construct the
SPV impedance model. The CVE calculation is performed on
the testing set by

”Xtest - etest(V07 IL)£h|l2
HXtestH2

The results of the estimation are given in Table II.

CVE = (18)

B. SPV Impedance Model Validation

The SPV impedance constructed using the estimated coef-
ficient functions in Table II is compared with the measured
impedance model in Fig. 6 at a specific operating point of the
CUT that is selected from the testing set. Fig. 6 shows that



TABLE II: Coefficient functions of the SPV impedance model.

Coefficient functions V2 V2L, 2V, V3 V31, I3V,
go(IL, Vo) 4.68x10%  3.40x107Z7  -7.72x10T? 0 -8.95x107 3.10x 107
g1(Iz, Vo) 227x10°  4.81x10°  -1.08x10'°  598x106  -1.26x107  4.59x106
g2(Ir, Vo) 660.60 4.83x106 -1.09x107 0 -1.27x10% 4.40x103
g3(I, Vo) -339.65 637.68 -1.43x103 0.89 -1.67 0.61
folIL, Va) 1.60x10°9  2.07x10'3  -4.72x10'3 0 -547x1010  1.90x1010
filln, Vo) 3.04x107  2.22x10*t  -5.05x101% 0 -5.85x108  2.02x108
fo(Ir, Vo) -1.69x107  3.82x107  -8.63x107  4.47x10% -1x10° 3.64x10%
(I, Vo) 0.38 0 0 0 0 0
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Fig. 6: Validation of the SPV impedance model
measured counterpart (V,=391.28 V, I;,=-3.27 A)
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Fig. 7: Error between the SPV impedance model and its
measured counterpart (V,=391.28 V, [;,=-3.27 A)

the SPV impedance model closely conforms to its measured
counterpart over the entire frequency range. To further verify the
accuracy of the SPV impedance model, the error between the
SPV impedance model and its measured counterpart is depicted
in Fig. 7. The estimation error is at its highest around the peak
frequency, which is still negligible at 1.4 dB for the magnitude
and 0.9 deg for the phase.

V. CONCLUSION

Due to being linear in nature, small-signal impedances of
power converters are required to be measured at each oper-
ating point of the system in order to perform online stability
monitoring in DC microgrids. This paper proposes a data-driven
impedance estimation framework that obtains a SPV impedance
model for a droop-controlled DC-DC converter within a micro-
grid. The measured impedance data is utilized to obtain the SPV
impedance model by formulating a ¢, regularization algorithm
solved by a thresholded algorithm. The estimation performance
is shown to be highly accurate over the entire frequency range
with only negligible error around the peak frequency. The SPV
impedance model solely relies on local voltage and current
measurements that are available as feedback signals of the
CUT. Therefore, the need for constant perturbation at various
operating points is prevented, resulting in a faster impedance

estimation procedure that is ideal for online stability monitoring
in DC microgrids.
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