
A Data-Driven Framework for Sparse Impedance
Identification of Power Converters in DC Microgrids

Ali Hosseinipour, Javad Khazaei, and Rick S. Blum
Department of Electrical and Computer Engineering

Lehigh University
Bethlehem PA, USA

Email: alh621@lehigh.edu

Abstract—Small-signal impedances of source- and load-side
power converters are widely used in different stability analysis
criteria developed for microgrids. However, these impedances need
to be measured at each operating point of the converter by
applying perturbation and system identification techniques, which
is computationally expensive and time consuming. To address
this challenge, a data-driven impedance estimation framework
is proposed in this paper to obtain a sparse parameter-varying
(SPV) impedance model for power converters in DC microgrids.
To this end, an �0 regularization problem is formulated and solved
by the sequential thresholded least-squares (STLS) algorithm to
learn coefficient functions of the parametric impedance model of
a converter under test (CUT), constructing the SPV impedance
model. The identified SPV impedance model is solely reliant on
the available feedback signals from the CUT control system to
estimate the real-time small-signal impedance. This obviates the
need for frequent perturbation of the system at different operating
points for the purpose of online stability monitoring. Simulation
case studies for a droop-controlled DC-DC converter demonstrate
the effectiveness of the SPV impedance model in highly accurate
impedance estimation over the frequency range of interest.

Index Terms—DC microgrid, small-signal impedance, sparse
identification, stability monitoring

I. INTRODUCTION

DC distributed power systems have found various use cases

in stationary and mobile applications such as shipboard power

systems, more electric aircrafts, community microgrids, and

data centers [1]. Due to the extensive use of power converters

and their strong interaction dynamics, stability monitoring is

of great importance to mainatin reliable operation of these

systems. Eigenvalue and impedance-based approaches are the

two major stability analysis methods employed in DC mi-

crogrids [2]. The impedance-based analysis is however more

suitable for online stability monitoring since the impedance

measurement can be performed in real time, whereas detailed

analytical models are required for eigenvalue analysis, which

are not often available [3]. Various stability analysis criteria

have been developed for DC microgrids using source- and load-

side impedance models [4].

Online impedance measurement and estimation methods are

mostly based on applying wide- or narrow-band perturbation

signals using either existing converters in the system or ex-

ternal sources [5]. Wideband online impedance measurement

for stability monitoring of DC shipboard power systems is

discussed in [6], [7]. In [8], the equivalent bus impedance

of a DC microgrid is estimated using wide-band perturbation

to measure the voltage loop gain of the source converter
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and the input impedance of the source converter. Continuous

stability monitoring by measuring the impedance using existing

converters and employing the nodal stability analysis method

is proposed in [9]. All these methods require performing

continuous perturbation and post-processing such as fast Fourier

transform (FFT) computation, interpolation, and estimation of

the output impedance [10]. To address this issue, an impedance

estimation method is proposed in [11], which is based on the

measurement of control loop gain using Middlebrook’s analog

injection technique. However, the small-signal perturbation of

the system at each operating point is still required. Moreover,

the impedance can only be estimated around its peak frequency.

All the above-mentioned online impedance measure-

ment/estimation methods require continuous perturbation of

the system at each operating point due to the small-signal

nature of the impedance model to be identified. However,

the operating point of a DC microgrid is subject to constant

variations as a result of the intermittency of the load power

and variable energy resources. Therefore, frequent perturbation

of the system at each operating point is a computationally

intensive task and not ideal for online stability monitoring pur-

poses where run-time efficiency is of great importance. Some

recent studies have tackled the operating point dependency of

the impedance models for inverter-based resources [12], [13].

These methods use artificial neural networks to estimate an

operating-point dependent impedance model of voltage-sourced

converters. However, the main drawback of these methods is the

requirement for large amount of data, partially due to the use of

frequency as one of the inputs to the artificial neural network.

To address the existing knowledge gaps, this paper pro-

poses a data-driven impedance estimation framework for power

converters in DC microgrids. The proposed method tackles

the operating point dependency of the small-signal impedance

model by deriving a sparse parameter-varying (SPV) parametric

impedance model using measured impedance data. The SPV

impedance model leverages the locally available voltage and

current signals to estimate the small-signal impedance in real

time. The SPV impedance model obviates the need for frequent

perturbation of the system to measure the impedance, improving

the run-time efficiency of impedance identification and alleviat-

ing computational needs of online stability monitoring systems.

The main contributions of the paper can thus be summarized

as:

• Development of a machine-learning-based framework

to estimate the parametric impedance model of power

converters, enabling accurate and rapid impedance esti-

mation without the need for performing constant pertur-



bation in DC microgrids.

• Proposing the notion of an SPV impedance model to

obtain an operating-point dependent impedance model

for power converters in DC microgrids by using a

regularization technique that decreases the complexity of

an estimated impedance model while achieving a good

estimation performance.

The rest of the paper is organized as follows. Section II

provides information about the study system and the analytical

impedance model of the CUT. In Section III, the data-driven

impedance estimation framework is proposed and the SPV

impedance model is derived. Several case studies are presented

in Section IV to validate the SPV impedance model. Section V

concludes the paper.

II. SYSTEM DESCRIPTION AND ANALYTICAL IMPEDANCE

MODEL

A bidirectional DC-DC converter representing a battery

power conversion unit is assumed as the CUT according to

Fig. 1. The CUT is connected to a typical multi-bus DC mi-

crogrid with meshed topology, which provides more reliability

compared to radial microgrids [1]. The CUT is equipped with

cascaded voltage and current controllers, i.e., Gv(s) and Gi(s).
The voltage reference of the CUT, v∗o(t), is regulated according

to the droop control law by

v∗o(t) = vref − Zvio(t) (1)

in order to enable power sharing within a microgrid, where vref
is the nominal output voltage, Zv is the droop gain, and io(t)
is the output current of the CUT.

Leveraging first principles and applying the averaging tech-

nique over the switching frequency, the state-space averaged

model of the CUT is obtained as

dīL(t)

dt
=

1

L
[v̄in(t)− rīL(t)− v̄o(t) + d̄(t)v̄o(t)] (2)

dv̄o(t)

dt
=

1

C
[̄iL(t)− d̄(t)̄iL(t)− īo(t)] (3)

where īL(t), v̄o(t), v̄in(t), īo(t), and d̄(t) are the average

inductor current, output voltage, input voltage, output current,

and duty cycle, respectively.

For the purpose of control design and small-signal stability

analysis, (2) and (3) are linearized assuming a constant input

voltage for CUT. This then results in the linear time-invariant

representation of Fig. 2. From this figure, the closed-loop output

impedance of the CUT can be derived as

Zocl(s) =
−ṽo

ĩo

∣∣∣∣
ṽref ,ṽi=0

=

Zout(1 +GiGid)−AioGiGvd + ZvGvGiGvd

1 +GiGid +GvGiGvd
(4)

where the parameters with the tilde sign represent small-signal

parameters. The open-loop transfer functions describing the

power stage of the CUT can be derived as

Zout(s) =
Ls+ r

LCs2 + rCs+ (1−D)2
(5)

Gvd(s) =
−LILs− rLIL + Vi

LCs2 + rCs+ (1−D)2
(6)

Gid(s) =
CVos+ IL(1−D)

LCs2 + rCs+ (1−D)2
(7)

Aio(s) =
−(1−D)

LCs2 + rCs+ (1−D)2
(8)

where Vo, IL, D, and Vi represent steady-state values of the

output voltage, inductor current, duty cycle of switch S1, and

the input voltage, respectively.

III. DATA-DRIVEN IMPEDANCE ESTIMATION FRAMEWORK

As demonstrated in (4)-(8), the output impedance of the CUT

is dependent on its operating point. Therefore, for the purpose

of online stability monitoring, it is required to measure the

impedance as operating point of the CUT varies. The goal of

the proposed data-driven impedance estimation framework in

Fig. 3 is to obtain a SPV impedance model so that the closed-

loop impedance of the CUT can be estimated in real time using

only the steady-state measurements of the inductor current and

output voltage. This framework is elaborated in the following.

A. Impedance Data Collection

First, frequency scanning is utilized to collect impedance data

at multiple operating points of the CUT. To do so, the system

is first initialized at a specific operating point. Then the CUT

is excited by a pseudo-random binary sequence (PRBS)-driven

current source (iinj) at its output terminals as shown in Fig. 1.

The magnitude of the PRBS signal is chosen as 0.05|Io| in order

to not perturb the system significantly, but collect rich enough

data for identification purposes. Next, the impedance frequency-

response data is obtained by performing fast fourier transform

(FFT) as Zfrd(s) =
F [vo(t)]
F [−io(t)]

. In order to derive the parametric

representation of the measured impedance, a proper transfer

function of four poles and three zeros is fitted to the impedance

frequency response data using the MATLAB® function tfest,

resulting in Zmeas for a specific operating point of the CUT.

Zmeas(s) =
b3s

3 + b2s
2 + b1s+ b0

s4 + a3s3 + a2s2 + a1s+ a0
(9)

The procedure for impedance data collection is repeated for

m operating points to collect enough data for the estimation

problem discussed in the next section.

B. SPV Impedance Model

From the analytical impedance model of the CUT derived in

(4), it is clear that the small-signal impedance is a function of

the operating point defined by the (IL, Vo) pair. It should be

noted that D can also be represented as a function of Vo and

IL. Therefore, the SPV impedance model of the CUT can be

represented by

ZSPV (s) =

f3(IL, Vo)s
3 + f2(IL, Vo)s

2 + f1(IL, Vo)s+ f0(IL, Vo)

s4 + g3(IL, Vo)s3 + g2(IL, Vo)s2 + gf1(IL, Vo)s+ g0(IL, Vo)
(10)

Each of the coefficient functions, f(.) and g(.) in (10), can be

approximated by a linear combination of monomials of Vo and
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Fig. 1: Circuit and control diagram of the CUT
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Fig. 2: Small-signal model of the CUT.

IL. These monomials are identified from a library of candidate

functions, Θ, resulting in sparse coefficient functions. A general

guideline to construct the library is to start with low-degree

monomials first and introduce more complex functions into the

library until a good performance is achieved for the estimation

problem. To this end, first the collected impedance data are

arranged as X = Θ(Vo, IL)Ξ, where X and Θ are given in

(11) and (12) with n=8 and p=14.

X =

⎡
⎣

| | | | | | | |
b0 b1 b2 b3 a0 a1 a2 a3
| | | | | | | |

⎤
⎦
m×n

(11)

The problem of approximating the coefficient matrix Ξ is then

formulated as an �0 regularization problem of the form

ξh = argmin
ξ̂h

||Xh −Θ(Vo, IL)ξ̂h||2 + λh||ξ̂h||0 (13)

where ξh is the h-th column of Ξ represented by ξh =[
ξ1 ξ2 . . . ξp

]T
. Xh represents the h-th column of X. The �2

norm part denoted by ||.||2 solves for the least-squares problem.

The �0 norm, ||.||0, decides the number of nonzero elements in

ξh, promoting sparsity in the coefficient matrix. λh is defined

as the regularization factor.

The bi-objective minimization of (13) is solved by the

sequential thresholded least squares (STLS) [14], [15]. STLS

is an iterative algorithm described by

Sk =
{
j ∈ [p] :

∣∣ξkj
∣∣ ≥ λ

}
, k ≥ 0 (14)

ξ̂0h =Θ(Vo, IL)
†Xh (15)

ξk+1 = argmin
ξ̂h∈Rp:supp(ξh)⊆Sk

‖Xh −Θ(Vo, IL)ξ̂h‖2, k ≥ 0

(16)

where k is the iteration number. For an integer p ∈ N, [p] :=
{1, 2, ..., p}. Θ(Vo, IL)

† is the pseudo-inverse of Θ(Vo, IL),

defined as

Θ(Vo, IL)
† := [Θ(Vo, IL)

TΘ(Vo, IL)]
−1Θ(Vo, IL)

T (17)

The support set of ξh is also defined by supp(ξh) := {j ∈
[p] : ξj �= 0}. The psuedocode for the STLS is given in

Algorithm 1. The algorithm first preforms the least-squares

regression to obtain the non-sparse ξ̂h. The nonsparse ξ̂h will

include some very small terms, which are then hard thresholded

and zeroed out by increasing λh. This procedure is repeated for

p times, which guarantees the algorithm convergence [15]. The

choice of λh is crucial in the convergence of the algorithm.

While increasing λh results in sparser ξh, it can lead to an

underfit model. On the other hand, small values of λh increase

the complexity of the model by increasing the number of

nonzero coefficients while achieving a smaller error. Therefore,

λh should be tuned such that a good balance between sparsity

and the least-squares error is achieved.

Algorithm 1: STLS Algorithm for Impedance Identifi-

cation

Data: Xh, Θ(Vo, IL), λh

Result: Ξ
p ← 14;

n ← 8;

for h = 1 : n do
ξ̂0h = Θ−1Xh;

for k = 1 : p do
Ismall ← |ξ̂h| < λh;

ξkh(Ismall) ← 0;

for all variables do
Ibig ←∼ Ismall(:, ii);
ξh(Ibig, ii) = Θ(:, Ibig)

†Xh(:, ii)
end

end
end

IV. CASE STUDIES

The DC microgrid of Fig. 1 is implemented in Simulink®

using the SimscapeTM library. The parameters of the CUT are

given in Table I. The DC bus nominal voltage is 380 V, which

is a standard level in many DC applications [1]. The L and

C values are designed so that current and voltage ripples are

minimized. Gv(s) and Gi(s) are also designed to ensure zero

tracking error well as high stability margins using the Bode

plot method. Details on circuit and controller parameters design

can be found in [16]. The droop gain, Zv , is chosen such that

the voltage variation of the DC bus is within the 5% of the
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Fig. 3: Data-driven impedance estimation framework to obtain SPV impedance model

Θ(Vo, IL) =

⎡
⎣
| | | | | | | | | | | | | |
1 Vo IL VoIL V2

o I2L V2
oIL I2LVo V3

o I3L V3
oIL V3

oI
2
L I3LVo I3LV

2
o

| | | | | | | | | | | | | |

⎤
⎦
m×p

(12)

TABLE I: Simulation parameters of the CUT.

Parameter Value
vin 250 V
vref 380 V
L 2.7 mH
C 18.953 μF
r 0.1 Ω
Zv 3.45

Gv(s) 0.0339+25.4/s
Gi(s) 0.0723+527/s

Switching frequerncy 20 kHz

Fig. 4: Measured and analytical impedance model of the CUT

(Vo=376.2 V, IL=1.6 A)

nominal voltage [17]. Following the proposed framework, the

impedance data are collected by perturbing the CUT at 90

different operating points (m = 90). In order to validate the

data collection procedure, the measured impedance is compared

with its analytical counterpart in Fig. 4 for a specific operating

point. It can be seen that these two impedance models closely

match, providing certainty about the validity of the collected

data.

A. Regularization factor tuning

The collected data is split such that 65 of them are randomly

selected for training and the remaining 25 data points are
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Fig. 5: Derivation of sparse coefficient functions by tuning λh

assigned to the testing set. Fig. 5 shows the process of training

and testing to obtain the SPV impedance model. In order

to estimate the sparse coefficient functions in (10), λh is

gradually increased from zero (the least-squares solution) until

the sparsity is realized for each coefficient function. It can

be seen that at the sparse point, all the estimated coefficient

functions have fewer active functions from the library Θ than

they have when λh=0. Since after the sparse points the cross-

validation error (CVE) substantially increases, these points can

be considered as the balance between the least-squares error

and complexity of the coefficient functions that construct the

SPV impedance model. The CVE calculation is performed on

the testing set by

CV E =
‖Xtest −Θtest(Vo, IL)ξh‖2

‖Xtest‖2 (18)

The results of the estimation are given in Table II.

B. SPV Impedance Model Validation

The SPV impedance constructed using the estimated coef-

ficient functions in Table II is compared with the measured

impedance model in Fig. 6 at a specific operating point of the

CUT that is selected from the testing set. Fig. 6 shows that



TABLE II: Coefficient functions of the SPV impedance model.

Coefficient functions V 2
o V 2

o IL I2LVo V 3
o V 3

o IL I3LVo

g0(IL, Vo) 4.68×108 3.40×1012 -7.72×1012 0 -8.95×109 3.10×109

g1(IL, Vo) -2.27×109 4.81×109 -1.08×1010 5.98×106 -1.26×107 4.59×106

g2(IL, Vo) 660.60 4.83×106 -1.09×107 0 -1.27×104 4.40×103

g3(IL, Vo) -339.65 637.68 -1.43×103 0.89 -1.67 0.61
f0(IL, Vo) 1.60×109 2.07×1013 -4.72×1013 0 -5.47×1010 1.90×1010

f1(IL, Vo) 3.04×107 2.22×1011 -5.05×1011 0 -5.85×108 2.02×108

f2(IL, Vo) -1.69×107 3.82×107 -8.63×107 4.47×104 -1×105 3.64×104

f3(IL, Vo) 0.38 0 0 0 0 0
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Fig. 6: Validation of the SPV impedance model against its

measured counterpart (Vo=391.28 V, IL=-3.27 A)

Fig. 7: Error between the SPV impedance model and its

measured counterpart (Vo=391.28 V, IL=-3.27 A)

the SPV impedance model closely conforms to its measured

counterpart over the entire frequency range. To further verify the

accuracy of the SPV impedance model, the error between the

SPV impedance model and its measured counterpart is depicted

in Fig. 7. The estimation error is at its highest around the peak

frequency, which is still negligible at 1.4 dB for the magnitude

and 0.9 deg for the phase.

V. CONCLUSION

Due to being linear in nature, small-signal impedances of

power converters are required to be measured at each oper-

ating point of the system in order to perform online stability

monitoring in DC microgrids. This paper proposes a data-driven

impedance estimation framework that obtains a SPV impedance

model for a droop-controlled DC-DC converter within a micro-

grid. The measured impedance data is utilized to obtain the SPV

impedance model by formulating a �0 regularization algorithm

solved by a thresholded algorithm. The estimation performance

is shown to be highly accurate over the entire frequency range

with only negligible error around the peak frequency. The SPV

impedance model solely relies on local voltage and current

measurements that are available as feedback signals of the

CUT. Therefore, the need for constant perturbation at various

operating points is prevented, resulting in a faster impedance

estimation procedure that is ideal for online stability monitoring

in DC microgrids.
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