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Abstract—A complex physics-based modeling procedure and
the uncertainty and confidentiality of internal parameters
of distributed energy resources (DERs) motivate system
identification tools. With the availability of high-fidelity
measurements and historical data, model-free identification of
DERs can facilitate the control design without tedious modeling
of these nonlinear systems. This paper develops a framework
for data-driven nonlinear modeling of DERs using sparse
identification of nonlinear dynamics (SINDy). In addition, to
avoid the complexities of nonlinear control designs, the identified
nonlinear dynamics will be lifted to a linear space utilizing
Koopman theory. Compared with existing physics-based designs
that heavily rely on knowing the detailed system dynamics or
data-driven designs that relay on large historical data and are
not interpretable, the proposed model-free DER identification
framework can accurately capture the dynamics of the DERs
with available measurements and lift them to a linear space
that provides guaranteed performance for tracking problems.
Time-domain simulations were carried out to validate the
effectiveness of the proposed approach.

Keywords— Distributed Energy Resources, Sparse Identification,
Koopman Theory, Data-driven System Identification.

I. INTRODUCTION

ODELING of distribution systems and microgrids is
typically conducted assuming a full knowledge of
analytical models of distributed energy resources (DERs), also
known as white-box models [1]. In spite of this, detailed
information about converter parameters is rarely available with
commercial off-the-shelf DERs. Furthermore, DER dynamics
are subject to change with aging and faults, which motivates
utilizing system identification techniques through leveraging
measurement data [2]. The application of system identification
tools to DERs stems from the need to create models for control
design, stability monitoring, and interconnection studies, such
as microgrids.
Several system identification tools have been studied for
DERs including black-box and gray-box modeling techniques.
To identify a system, black-box modeling assumes no
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prior knowledge of its topology or analytical equations [3],
[4]. Due to inherent nonlinear characteristics of DERs,
polytopic and Hammerstein black-box methods have been
widely utilized for DERs. Polytopic methods combine
multiple weighted neighboring linear models of a converter
to estimate a nonlinear behavioral model  [5]-[7]. In
the Hammerstein method, the combination of non-linear
static and linear dynamic models are leveraged to identify
non-linear dynamics [8], which is proved to fail against
large-signal disturbances [9]. Nevertheless, both Hammerstein
and polytopic methods rely heavily on linear methods to
estimate nonlinear dynamics, making them dependent upon
the DER’s operating point and thus unable to capture full
nonlinear dynamics. Non-linear black-box modeling methods
based on wavelet and dynamic neural networks was proposed
in [1], [10], respectively. However, neural networks-based
identification methods have several drawbacks, such as their
cost, the need for a large number of training data points, and
the lack of physical interpretation.

Grey-box identification methods rely on partial knowledge
of the system model and dynamics, which then serves
as a foundation to estimate the complete model of the
system [11]-[13]. This method, however, requires prior
knowledge of DER’s parametric dynamic equations as well
as a lengthy training period and high computational costs.

The availability of high-resolution historical records and
advances in machine learning approaches have revolutionized
data-driven systems modeling in recent years. A number of
approaches have been introduced for capturing the dynamics
of complex dynamical systems including: (i) dynamic mode
decomposition [14], [15], which heavily relies on a linear
dynamics assumption but can handle high-dimensional data,
(i) Koopman operator with control [16], [17] that connects
dynamic mode decomposition to nonlinear dynamics through
an infinite-dimensional Koopman linear operator, or (iii)
sparse identification of system dynamics (SINDy) that uses
a sparse regression technique to identify dominant dynamics
of candidate functions, and has shown promise in accurately
modeling the unknown dynamics of nonlinear systems [18],



[19]. A major advantage of SINDy is the sparsity technique,
which reduces the training time and reduces the reliance on
neural networks for control and identification. We have also
shown in our preliminary results that sparse identification can
capture dynamics of feedback control systems in nonlinear
dynamics for accurate distributed control designs [20]. While
the existing research shows the significant potential of
data-driven approaches such as SINDy and Koopman for
identifying nonlinear dynamics of dynamical systems, their
application for DER control have not been reported yet.

To address the existing knowledge gaps for identifying DER
dynamics in smart grids, this paper investigates the application
of sparse identification theory for identification of nonlinear
dynamics of DERs using measurements. The learned nonlinear
dynamics can then be used to transform the data-driven model
into a linear space utilizing Koopman theory. Such linear
approximation can significantly reduce the complexities of
nonlinear control designs for DERs. Contributions of the paper
are listed as:

o Identifying nonlinear dynamics of DERs
data-driven sparse regression technique

o Lifting the nonlinear dynamics of DERSs to a linear space
using Koopman theory

o Evaluating the effectiveness of a data-driven linear
approximation of DER models with physical models
through time-domain simulations

using

The rest of the paper is organized as follows: Section II
formulates the DER modeling problem. Sparse identification
of DER dynamics is included in Section III. Section IV
covers the identification of DER dynamics using Koopman
theory. Time-domain simulations are included in Section V
and Section VI concludes the paper.

Converter

Figure. I A DER connected to the grid.

II. PROBLEM FORMULATION

A DER is shown in Figure. 1 with its power electronics
interface (converter) and filtering component (RLC filter),
which is connected to the main electricity grid at the point
of common coupling (PCC). The power converter is mainly
composed of a voltage source DC/AC converter fed by the
energy resource (solar, wind, or battery) through a DC link .
Each DER unit can be controlled as an AC voltage source
through an adjustable voltage magnitude and angle at the
PCC, wvee?¥st [21]. This is achieved through inner current
regulators as explained in [22]. Therefore, the variables v,
and wg determine the forced response of the DER unit and
therefore, are considered as the input variables of the dynamic

model. Similarly, the rest of the grid can also be assumed to
behave as an AC voltage source modeled as a lumped AC
voltage source vgej“’gt with a series impedance [21]. In the
grid-connected mode, v, and w, can be assumed to have fixed
values, but in the off-grid mode, these are dynamic variables.
It was shown that the lumped model presented in [21] can
accurately capture the transient interaction between the DER
and the rest of the grid, and therefore, it has been adopted in
our study.

A. Lumped Dynamic Model of DERs

The lumped model in Figure. 1 can be represented by the
following set of differential equations assuming a synchronous
reference frame is aligned with v, [21]:

di,

T = —Tglo — jwsLgto — vgej6 + vy (1)
do
E = Wg — Ws (2

where 7., L., C are filter components of the converter, , and
L, are the grid impedance components, v, is the converter
voltage at the PCC, v, is the grid voltage, i, is the converter
current, and i, is the output current. It is noted that the angle
0 is a state variable of the model, which cannot be directly
measured and needs to be estimated by a state observer [21].
By decomposing equation (1) into the real and imaginary parts
and writing the model in state-space form,

x =f(x) +g(x)u, y=h(x) 3)
where
-—Timl B COS T3
oo = | b, 1 @
X)= | —=—z9 — —sinzs
Ly Ly
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L x
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In equations (3)-(5), X = [ioq ioq 0] is the state vector, y =
[iod ioq]T is the output vector, and u = [vs w,]T is the input
vector of the DER unit, which includes the amplitude and
voltage angle at the PCC.

B. Data-Driven Model Identification

Assuming detailed information about DERs and their
converter parameters are not available, the objective is to
identify the lumped dynamic model of DERs in equations
(3)-(5) from available measurements of the states. We will
utilize sparse identification of nonlinear dynamics (SINDy)
to identify equations (3)-(5) from measurements. Next, since
the identified model will be nonlinear (referring to equations
(3)-(5)), we will utilize Koopman spectral theory to transform
the identified nonlinear dynamics to an infinite-dimension
linear system. The linear model can then be utilized for
designing optimal control laws that guarantee the performance
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Figure. 2 Identified DER dynamics using SINDy.

of the DERs in various grid conditions. An overview of
the proposed approach for data-driven Koopman model
identification of DERs is depicted in Figure. 2. As it can
be seen, by utilizing a full state feedback from the DERs,
a sequentially thresholded least-square optimization problem
is solved to obtain the nonlinear dynamics of DERs from the
data using sparse regression technique. The identified model
will then be transformed to an infinite-dimension linear system
using Koopman operator (K), which can then be used for
optimal control design purposes.

II1. MODEL-FREE IDENTIFICATION OF DERS

To identify nonlinear/linear systems’ governing equations,
we construct families of candidate functions that describe
how state variables change over time. Since most dynamical
systems have few nonlinear terms in the dynamics, sparsity
promoting techniques can identify the candidate functions
with the greatest impact on forming the system dynamics.
Originally proposed in [18], this method is known as sparse
identification of nonlinear dynamics (SINDy). In SINDy, the
system dynamics are derived through symbolic regression and
sparse representations. A sparse identification relies on the fact
that many dynamical systems with the form & = f(x,u) have
a relatively few terms on the right hand side. We assume that
the actual dynamics of a DER is represented by X = f(x) +
g(x)u, where x(t) € R™ is the state vector, u(t) € R? is the
input or control vector, and f(x(t),u(t)) : R™ x R? — R™.

A. Data Collection

By collecting m samples of measurements from the states
and inputs, each DER can then be identified by a library of
candidate functions, © € R™*P. To identify the governing
equations of the system in (1), a time-history of the state
vector x(t), input u(t), and x(t) is required. In most practical
systems, only x(¢) and u(¢) are available and %x(¢) needs to
be estimated from x(¢). If the measurement data is sampled

at m intervals ¢, to,
into a matrix X,

-XT(tl)_ _Il(tl xg(tl) CEn(tl)_
x" (ta) z1(t2)  w2(t2) T (t2)
X= = : : : (6)
_xT(tm)_ _l'l(tm) xo(tm) mn(tm)_
and inputs for ¢, samples are written into a matrix U,
(u”(t)] [uilt)  wa(ty) U (t1) ]
uT (tg) Ul (tg) u9 (tg) Unp, (tz)
U= : = . . : )
_uT(tm)_ _ul(tm) us (tm) un(tm)_

the measurements for derivatives can be approximated
numerically from X.

B. Estimating the Derivatives, X

Ordinary and partial differential equations are numerically
solved using difference approximation. Considering a smooth
function in the neighborhood of point x, the derivatives can
be approximated using Taylor series expansion at specified
mesh points. As the central difference approximation is more
accurate for smooth functions, it is used in this paper. As a
result, X can be approximated by [23]:

X(i+1)—X(i— 1)
2h

where X (i 4 1) is the measured data at sample ¢ + 1 and h is
the sampling time of the data collection platform.

o
X ~
~

®)

C. Sparse Identification of System Dynamics

If the measured data X € R™*™ is used to obtain the
measured derivatives of the states, the vector of measured
derivatives is a linear combination of columns from the
candidate function (e.g., polynomials, or sinusoids) library.



The linear combination of columns is expressed by entries
of the matrix Z € RP*™ such that [18]:

X = (X, U)=. )

Having calculated X, the library of candidate functions will
be constructed as linear and nonlinear functions of the columns
of X and U. A typical choice of candidate functions include
polynomials and trigonometric functions for nonlinear systems
as represented in equation (10). In equation (10), P;(X, U)
denotes a nonlinear combination of :-order polynomials of X
and U. For example, P2(X, U) includes polynomials up to
second order. In the final step of the identification process, a
sparse regression algorithm is employed to solve for the sparse
vectors of coefficients in = that decide what terms are active
in the X dynamics:

€& = argng;in X5 — OX, U)épll2 + N&rllo (D)
h

where &, is the h-th column of £ represented by &, =
[51 &y o §p}T and X, represents the h-th column of X.
The objective function in (11) comprises two norm functions.
The L2 norm denoted by [|.|[2, solves for the least-squares
problem. The LO norm, ||.||o, decides the number of nonzero
elements in &, promoting sparsity in the coefficients matrix
and ) is the sparsity-promoting hyperparameter.

The minimization problem of (11) is solved by the
sequentially thresholded least squares (STLS) proposed in [24]
defined by [25]:

st={iebl:|g| =2}, k=0 (12)
& —erx.UyX, a3)
ghtt = argmin X5, — (X, U)&pl|2, (14)

£nERP:supp(€;,)C Sk

where k is the iteration number, (X, U)" is the
pseudo-inverse of O(X,U), defined as O(X,U)T =
O(X,U)TO(X,U)]"1e(X,U)T, and the support set of &,
is defined by supp(&r) = {j € [p] : {; # 0}. The coefficients
of I' can be found using the sparse regression formulation
presented in Algorithm 1. If the intent is to identify the signal
U for feedback control, i.e., U = G(s)X, where G(s) is the
transfer function of the controller, the matrix of inputs can be
identified using U = O(X)T'y, where ©(X) is the matrix of
candidate functions with the terms corresponding to U have
been removed from ©(X, U) and T'y, can be found using the
sparse regression algorithm similar to =.

sin(X,U) cos(X,U) sin(2(X,U))

(10)

Algorithm 1 Sparse Regression Algorithm
Input: Measurements X, U
Input: Estimated derivativesX

1: procedure STLS

2 I'= @\X (least-square solution)
3 for k =1 :10 do (number of iterations)
4 Set A (sparcification knob)

5 |E| < A — indgmall

6: E(indsmall) —0
7
8
9

for k = 1:n do (n dimension of state X)
indbig 7é Z.ndsmall(:a k) .
: E(indyig, k) = O(:,indpig) \ X (:, k)
10: end for
11: end for

Output: sparse matrix =

IV. KOOPMAN-BASED IDENTIFICATION OF DER
DyNAMICS

The Koopman operator is a linear operator that provides
an analytic and numerical tool to lift nonlinear dynamical
systems to an infinite-dimension linear system. Considering
a nonlinear dynamical system with external input represented
by x = f(x,u), where x € M and u € N with
M and N being smooth manifolds [26]. In most practical
engineering problems, including power systems, the state and
input manifolds are considered as x € R™ and u € R?. A
set of scalar-valued observable functions g(x,u) that depend
on the state and input will be defined as ¢ : M @ N —
R. Each observable function will be an element of an
infinite-dimensional Hilbert space H. The Koopman operator
K : H — H acts on the Hilbert space of observable functions
as [26]:

Kg(x,u) £ Kg(f(x,u),u) (15)

The linear characteristics of Koopman operator allows
performing eigendecomposition of K in a standard form:

Koj(x,u) = \;¢;(x,u)

which means the Koopman operator is spanned by
eigenfunctiopns that are defined by the states and inputs. By
rewriting the observable functions g; in terms of the right
eigenfunctions ¢;,

(16)

21 (X7 u) I
ga2(x, 1)

g(x,u) = ’ : = Z ¢j(x,u)v; (17)
g, (xw)|



where n, is the number of measurements and v; are
the Koopman modes. Considering the dynamics of DERs
in equations (3)-(5) and measurement functions defined as
g(x,u) = y = [ 2o w3 cosxs sinxs]T, the exact
Koopman-based model of DERs can be manually calculated
without the need for estimating the Koopman-modes. The final

model is expressed as:

d Ty Vg 1

c 19, "9 - 1
dtyl L, Y1 L, Lyy + LQU1 + yauz (18)
d 1y Vg

V2= —fng - fgy5 — Y1u2 (19)
d

Y8 = Wg — U2 (20)
d

Y= ~Wals + Ysus 2n
d

%y5 = WglY4 — Y4U2 (22)

Knowing that the parameters of the above model are not
known, sparse identification will be first utilized to obtain
the model in equations (3)-(5) before obtaining the above
Koopman model.

V. CASE STUDIES

To validate the effectiveness of the proposed data-enabled
model-free Koopman-based DER models, several case studies
are carried out. First, sparse identification of DER dynamics
is performed by perturbing the inputs of the DER model
and capturing measurements. The identified data-driven DER
model is then utilized to obtain the Koopman-based DER
model. Comparisons with physical models have also been
carried out to validate the effectiveness of the proposed
identification framework.

xy (original)
= 2,(SINDy)

e 11 (0TI M0
0] |= = =z(SINDy) - -

0 0.2 0.4 0.6 o 0.2 0.4 0.6
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Figure. 3 Identified DER dynamics using SINDY.

A. SINDY-based Identification of DERs

First, data of a DER was collected for 0.8 seconds
with  S50usec  sampling time (16000 samples) via
MATLAB simulations using the parameters provided
in [21]. For O(X,U), the candidate terms include
polynomials up to degree 2 and sinusoidal functions,
ie., ui,xi,xixj7x%,xi COSTj,T; SINTj, Ui COS T4, U; SINT;.
The sparse identification was then carried out to identify the
sparse matrix of coefficients, =. The identified = for the
studied DER model were used to develop a data-driven DER
model in MATLAB. A comparison between the physical
model and the identified model is shown in Figure. 3, where
X = [iod Toq 8]7 is the state vector and u = [v,; ws w,]” is the
input vector of the DER unit. As it can be seen, the identified
data-driven model accurately represents the dynamics of the
physical model.

B. SINDY-Koopman Identification

In the second case study, the obtained Koopman model
of the DER units was compared with the physical model
in several scenarios. A step change from 220V to 100V
was applied to the grid voltage v, at 0.25 seconds in
all scenarios, that resembles an undervoltage fault. Three
scenarios have been considered: i) SINDy: the original
model (physical DER model in equations (3)-(5)) was first
compared with the identified data-driven model using SINDy,
ii) Koopman: the Koopman model was obtained from the
original model (physical model in equations (3)-(5) ), and
iii) SINDy-Koopman: the Koopman model was obtained from
the data-driven model using SINDy. Results are shown in
Figure. 4. The results show the effectiveness of the proposed
data-driven model identification approach (SINDy-Koopman)
for accurately identifying the nonlinear dynamics of DERs in
smart grid and lifting their nonlinear dynamics to a finite linear
space utilizing Koopman theory. Such linear representation can
significantly simplify the control design.

VI. CONCLUSION

In this paper, a model-free Koopman-based identification
of DER dynamics was studied. Using sparse identification
of nonlinear dynamics with control along with available
measurements, dynamics of the DER were predicted with a
library of candidate functions. The learned dynamics were then
used to lift the nonlinear dynamics to a finite linear space using
Koopman theory. The proposed research demonstrates the
effectiveness of the sparse identification and Koopman theory
for data-driven model identification of nonlinear systems. Such
formulation can significantly reduce the existing complexities
of control design in modern power systems. Future research
will focus on designing optimal control frameworks for DER
dispatch in smart grids using Koopman theory.
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