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Abstract—A complex physics-based modeling procedure and
the uncertainty and confidentiality of internal parameters
of distributed energy resources (DERs) motivate system
identification tools. With the availability of high-fidelity
measurements and historical data, model-free identification of
DERs can facilitate the control design without tedious modeling
of these nonlinear systems. This paper develops a framework
for data-driven nonlinear modeling of DERs using sparse
identification of nonlinear dynamics (SINDy). In addition, to
avoid the complexities of nonlinear control designs, the identified
nonlinear dynamics will be lifted to a linear space utilizing
Koopman theory. Compared with existing physics-based designs
that heavily rely on knowing the detailed system dynamics or
data-driven designs that relay on large historical data and are
not interpretable, the proposed model-free DER identification
framework can accurately capture the dynamics of the DERs
with available measurements and lift them to a linear space
that provides guaranteed performance for tracking problems.
Time-domain simulations were carried out to validate the
effectiveness of the proposed approach.

Keywords— Distributed Energy Resources, Sparse Identification,
Koopman Theory, Data-driven System Identification.

I. INTRODUCTION

MODELING of distribution systems and microgrids is

typically conducted assuming a full knowledge of

analytical models of distributed energy resources (DERs), also

known as white-box models [1]. In spite of this, detailed

information about converter parameters is rarely available with

commercial off-the-shelf DERs. Furthermore, DER dynamics

are subject to change with aging and faults, which motivates

utilizing system identification techniques through leveraging

measurement data [2]. The application of system identification

tools to DERs stems from the need to create models for control

design, stability monitoring, and interconnection studies, such

as microgrids.

Several system identification tools have been studied for

DERs including black-box and gray-box modeling techniques.

To identify a system, black-box modeling assumes no
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prior knowledge of its topology or analytical equations [3],

[4]. Due to inherent nonlinear characteristics of DERs,

polytopic and Hammerstein black-box methods have been

widely utilized for DERs. Polytopic methods combine

multiple weighted neighboring linear models of a converter

to estimate a nonlinear behavioral model [5]–[7]. In

the Hammerstein method, the combination of non-linear

static and linear dynamic models are leveraged to identify

non-linear dynamics [8], which is proved to fail against

large-signal disturbances [9]. Nevertheless, both Hammerstein

and polytopic methods rely heavily on linear methods to

estimate nonlinear dynamics, making them dependent upon

the DER’s operating point and thus unable to capture full

nonlinear dynamics. Non-linear black-box modeling methods

based on wavelet and dynamic neural networks was proposed

in [1], [10], respectively. However, neural networks-based

identification methods have several drawbacks, such as their

cost, the need for a large number of training data points, and

the lack of physical interpretation.

Grey-box identification methods rely on partial knowledge

of the system model and dynamics, which then serves

as a foundation to estimate the complete model of the

system [11]–[13]. This method, however, requires prior

knowledge of DER’s parametric dynamic equations as well

as a lengthy training period and high computational costs.

The availability of high-resolution historical records and

advances in machine learning approaches have revolutionized

data-driven systems modeling in recent years. A number of

approaches have been introduced for capturing the dynamics

of complex dynamical systems including: (i) dynamic mode

decomposition [14], [15], which heavily relies on a linear

dynamics assumption but can handle high-dimensional data,

(ii) Koopman operator with control [16], [17] that connects

dynamic mode decomposition to nonlinear dynamics through

an infinite-dimensional Koopman linear operator, or (iii)

sparse identification of system dynamics (SINDy) that uses

a sparse regression technique to identify dominant dynamics

of candidate functions, and has shown promise in accurately

modeling the unknown dynamics of nonlinear systems [18],



[19]. A major advantage of SINDy is the sparsity technique,

which reduces the training time and reduces the reliance on

neural networks for control and identification. We have also

shown in our preliminary results that sparse identification can

capture dynamics of feedback control systems in nonlinear

dynamics for accurate distributed control designs [20]. While

the existing research shows the significant potential of

data-driven approaches such as SINDy and Koopman for

identifying nonlinear dynamics of dynamical systems, their

application for DER control have not been reported yet.

To address the existing knowledge gaps for identifying DER

dynamics in smart grids, this paper investigates the application

of sparse identification theory for identification of nonlinear

dynamics of DERs using measurements. The learned nonlinear

dynamics can then be used to transform the data-driven model

into a linear space utilizing Koopman theory. Such linear

approximation can significantly reduce the complexities of

nonlinear control designs for DERs. Contributions of the paper

are listed as:

• Identifying nonlinear dynamics of DERs using

data-driven sparse regression technique

• Lifting the nonlinear dynamics of DERs to a linear space

using Koopman theory

• Evaluating the effectiveness of a data-driven linear

approximation of DER models with physical models

through time-domain simulations

The rest of the paper is organized as follows: Section II

formulates the DER modeling problem. Sparse identification

of DER dynamics is included in Section III. Section IV

covers the identification of DER dynamics using Koopman

theory. Time-domain simulations are included in Section V

and Section VI concludes the paper.
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Figure. 1 A DER connected to the grid.

II. PROBLEM FORMULATION

A DER is shown in Figure. 1 with its power electronics

interface (converter) and filtering component (RLC filter),

which is connected to the main electricity grid at the point

of common coupling (PCC). The power converter is mainly

composed of a voltage source DC/AC converter fed by the

energy resource (solar, wind, or battery) through a DC link .

Each DER unit can be controlled as an AC voltage source

through an adjustable voltage magnitude and angle at the

PCC, vse
jωst [21]. This is achieved through inner current

regulators as explained in [22]. Therefore, the variables vs
and ωs determine the forced response of the DER unit and

therefore, are considered as the input variables of the dynamic

model. Similarly, the rest of the grid can also be assumed to

behave as an AC voltage source modeled as a lumped AC

voltage source vge
jωgt with a series impedance [21]. In the

grid-connected mode, vg and ωg can be assumed to have fixed

values, but in the off-grid mode, these are dynamic variables.

It was shown that the lumped model presented in [21] can

accurately capture the transient interaction between the DER

and the rest of the grid, and therefore, it has been adopted in

our study.

A. Lumped Dynamic Model of DERs

The lumped model in Figure. 1 can be represented by the

following set of differential equations assuming a synchronous

reference frame is aligned with vs [21]:

Lg
dio
dt

= −rgio − jωsLgio − vge
jδ + vs (1)

dδ

dt
= ωg − ωs (2)

where rc, Lc, Cf are filter components of the converter, rg and

Lg are the grid impedance components, vs is the converter

voltage at the PCC, vg is the grid voltage, ic is the converter

current, and io is the output current. It is noted that the angle

δ is a state variable of the model, which cannot be directly

measured and needs to be estimated by a state observer [21].

By decomposing equation (1) into the real and imaginary parts

and writing the model in state-space form,

ẋ = f(x) + g(x)u, y = h(x) (3)

where

f(x) =

⎡
⎢⎢⎢⎣
− rg
Lg

x1 − vg
Lg

cosx3

− rg
Lg

x2 − vg
Lg

sinx3

ωg

⎤
⎥⎥⎥⎦ (4)

g(x) =

⎡
⎢⎢⎣

1

Lg
x2

0 −x1

0 −1

⎤
⎥⎥⎦ , h(x) =

[
x1

x2

]
(5)

In equations (3)-(5), x = [iod ioq δ]T is the state vector, y =
[iod ioq]

T is the output vector, and u = [vs ωs]
T is the input

vector of the DER unit, which includes the amplitude and

voltage angle at the PCC.

B. Data-Driven Model Identification

Assuming detailed information about DERs and their

converter parameters are not available, the objective is to

identify the lumped dynamic model of DERs in equations

(3)-(5) from available measurements of the states. We will

utilize sparse identification of nonlinear dynamics (SINDy)

to identify equations (3)-(5) from measurements. Next, since

the identified model will be nonlinear (referring to equations

(3)-(5)), we will utilize Koopman spectral theory to transform

the identified nonlinear dynamics to an infinite-dimension

linear system. The linear model can then be utilized for

designing optimal control laws that guarantee the performance
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Figure. 2 Identified DER dynamics using SINDy.

of the DERs in various grid conditions. An overview of

the proposed approach for data-driven Koopman model

identification of DERs is depicted in Figure. 2. As it can

be seen, by utilizing a full state feedback from the DERs,

a sequentially thresholded least-square optimization problem

is solved to obtain the nonlinear dynamics of DERs from the

data using sparse regression technique. The identified model

will then be transformed to an infinite-dimension linear system

using Koopman operator (K), which can then be used for

optimal control design purposes.

III. MODEL-FREE IDENTIFICATION OF DERS

To identify nonlinear/linear systems’ governing equations,

we construct families of candidate functions that describe

how state variables change over time. Since most dynamical

systems have few nonlinear terms in the dynamics, sparsity

promoting techniques can identify the candidate functions

with the greatest impact on forming the system dynamics.

Originally proposed in [18], this method is known as sparse

identification of nonlinear dynamics (SINDy). In SINDy, the

system dynamics are derived through symbolic regression and

sparse representations. A sparse identification relies on the fact

that many dynamical systems with the form ẋ = f(x, u) have

a relatively few terms on the right hand side. We assume that

the actual dynamics of a DER is represented by ẋ = f(x) +
g(x)u, where x(t) ∈ R

n is the state vector, u(t) ∈ R
q is the

input or control vector, and f(x(t),u(t)) : Rn × R
q → R

n.

A. Data Collection

By collecting m samples of measurements from the states

and inputs, each DER can then be identified by a library of

candidate functions, Θ ∈ R
m×p. To identify the governing

equations of the system in (1), a time-history of the state

vector x(t), input u(t), and ẋ(t) is required. In most practical

systems, only x(t) and u(t) are available and ẋ(t) needs to

be estimated from x(t). If the measurement data is sampled

at m intervals t1, t2, . . . , tm and measurements are arranged

into a matrix X,

X =

⎡
⎢⎢⎢⎣
xT (t1)
xT (t2)

...

xT (tm)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
x1(t1) x2(t1) . . . xn(t1)
x1(t2) x2(t2) . . . xn(t2)

...
...

. . .
...

x1(tm) x2(tm) . . . xn(tm)

⎤
⎥⎥⎥⎦ (6)

and inputs for tm samples are written into a matrix U,

U =

⎡
⎢⎢⎢⎣
uT (t1)
uT (t2)

...

uT (tm)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
u1(t1) u2(t1) . . . un(t1)
u1(t2) u2(t2) . . . un(t2)

...
...

. . .
...

u1(tm) u2(tm) . . . un(tm)

⎤
⎥⎥⎥⎦ (7)

the measurements for derivatives can be approximated

numerically from X.

B. Estimating the Derivatives, Ẋ

Ordinary and partial differential equations are numerically

solved using difference approximation. Considering a smooth

function in the neighborhood of point x, the derivatives can

be approximated using Taylor series expansion at specified

mesh points. As the central difference approximation is more

accurate for smooth functions, it is used in this paper. As a

result, Ẋ can be approximated by [23]:

Ẋ ≈ X(i+ 1)−X(i− 1)

2h
(8)

where X(i+1) is the measured data at sample i+1 and h is

the sampling time of the data collection platform.

C. Sparse Identification of System Dynamics

If the measured data X ∈ R
m×n is used to obtain the

measured derivatives of the states, the vector of measured

derivatives is a linear combination of columns from the

candidate function (e.g., polynomials, or sinusoids) library.



Θ(X,U) =

⎡
⎢⎢⎣ 1 X U P2(X,U) P3(X,U) . . . sin(X,U) cos(X,U) sin(2(X,U)) . . .

⎤
⎥⎥⎦ (10)

The linear combination of columns is expressed by entries

of the matrix Ξ ∈ R
p×n such that [18]:

Ẋ = Θ(X,U)Ξ. (9)

Having calculated Ẋ, the library of candidate functions will

be constructed as linear and nonlinear functions of the columns

of X and U. A typical choice of candidate functions include

polynomials and trigonometric functions for nonlinear systems

as represented in equation (10). In equation (10), Pi(X,U)
denotes a nonlinear combination of i-order polynomials of X
and U. For example, P2(X,U) includes polynomials up to

second order. In the final step of the identification process, a

sparse regression algorithm is employed to solve for the sparse

vectors of coefficients in Ξ that decide what terms are active

in the Ẋ dynamics:

ξh = argmin
ξ̂h

||Ẋh −Θ(X,U)ξ̂h||2 + λ||ξ̂h||0 (11)

where ξh is the h-th column of ξ represented by ξh =[
ξ1 ξ2 . . . ξp

]T
and Ẋh represents the h-th column of Ẋ.

The objective function in (11) comprises two norm functions.

The L2 norm denoted by ||.||2, solves for the least-squares

problem. The L0 norm, ||.||0, decides the number of nonzero

elements in ξh, promoting sparsity in the coefficients matrix

and λ is the sparsity-promoting hyperparameter.

The minimization problem of (11) is solved by the

sequentially thresholded least squares (STLS) proposed in [24]

defined by [25]:

Sk =
{
j ∈ [p] :

∣∣ξkj ∣∣ ≥ λ
}
, k ≥ 0 (12)

ξ̂0h =Θ(X,U)†Ẋh (13)

ξk+1 = argmin
ξ̂h∈Rp:supp(ξh)⊆Sk

‖Ẋh −Θ(X,U)ξ̂h‖2, (14)

where k is the iteration number, Θ(X,U)† is the

pseudo-inverse of Θ(X,U), defined as Θ(X,U)† :=
[Θ(X,U)TΘ(X,U)]−1Θ(X,U)T , and the support set of ξh
is defined by supp(ξh) := {j ∈ [p] : ξj �= 0}. The coefficients

of Γ can be found using the sparse regression formulation

presented in Algorithm 1. If the intent is to identify the signal

U for feedback control, i.e., U = G(s)X, where G(s) is the

transfer function of the controller, the matrix of inputs can be

identified using U = Θ(X)Γu, where Θ(X) is the matrix of

candidate functions with the terms corresponding to U have

been removed from Θ(X,U) and Γu can be found using the

sparse regression algorithm similar to Ξ.

Algorithm 1 Sparse Regression Algorithm

Input: Measurements X,U
Input: Estimated derivativesẊ

1: procedure STLS

2: Γ = Θ\Ẋ (least-square solution)

3: for k = 1 : 10 do (number of iterations)

4: Set λ (sparcification knob)

5: |Ξ| < λ −→ indsmall

6: Ξ(indsmall) −→ 0
7: for k = 1 : n do (n dimension of state X)

8: indbig �= indsmall(:, k)
9: Ξ(indbig, k) = Θ(:, indbig)\Ẋ(:, k)

10: end for
11: end for

Output: sparse matrix Ξ

IV. KOOPMAN-BASED IDENTIFICATION OF DER

DYNAMICS

The Koopman operator is a linear operator that provides

an analytic and numerical tool to lift nonlinear dynamical

systems to an infinite-dimension linear system. Considering

a nonlinear dynamical system with external input represented

by ẋ = f(x,u), where x ∈ M and u ∈ N with

M and N being smooth manifolds [26]. In most practical

engineering problems, including power systems, the state and

input manifolds are considered as x ∈ R
n and u ∈ R

q . A

set of scalar-valued observable functions g(x,u) that depend

on the state and input will be defined as g : M ⊗ N →
R. Each observable function will be an element of an

infinite-dimensional Hilbert space H. The Koopman operator

K : H → H acts on the Hilbert space of observable functions

as [26]:

Kg(x,u) � Kg(f(x,u),u) (15)

The linear characteristics of Koopman operator allows

performing eigendecomposition of K in a standard form:

Kφj(x,u) = λiφj(x,u) (16)

which means the Koopman operator is spanned by

eigenfunctiopns that are defined by the states and inputs. By

rewriting the observable functions gi in terms of the right

eigenfunctions φj ,

g(x,u) =

⎡
⎢⎢⎢⎣
g1(x,u)
g2(x,u)

...

gnz
(x,u)

⎤
⎥⎥⎥⎦ =

∞∑
j=1

φj(x,u)vj (17)



where nz is the number of measurements and vj are

the Koopman modes. Considering the dynamics of DERs

in equations (3)-(5) and measurement functions defined as

g(x,u) = y = [x1 x2 x3 cosx3 sinx3]
T , the exact

Koopman-based model of DERs can be manually calculated

without the need for estimating the Koopman-modes. The final

model is expressed as:

d

dt
y1 = − rg

Lg
y1 − vg

Lg
y4 +

1

Lg
u1 + y2u2 (18)

d

dt
y2 = − rg

Lg
y2 − vg

Lg
y5 − y1u2 (19)

d

dt
y3 = ωg − u2 (20)

d

dt
y4 = −ωgy5 + y5u2 (21)

d

dt
y5 = ωgy4 − y4u2 (22)

Knowing that the parameters of the above model are not

known, sparse identification will be first utilized to obtain

the model in equations (3)-(5) before obtaining the above

Koopman model.

V. CASE STUDIES

To validate the effectiveness of the proposed data-enabled

model-free Koopman-based DER models, several case studies

are carried out. First, sparse identification of DER dynamics

is performed by perturbing the inputs of the DER model

and capturing measurements. The identified data-driven DER

model is then utilized to obtain the Koopman-based DER

model. Comparisons with physical models have also been

carried out to validate the effectiveness of the proposed

identification framework.
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Figure. 3 Identified DER dynamics using SINDY.

A. SINDY-based Identification of DERs

First, data of a DER was collected for 0.8 seconds

with 50μsec sampling time (16000 samples) via

MATLAB simulations using the parameters provided

in [21]. For Θ(X,U), the candidate terms include

polynomials up to degree 2 and sinusoidal functions,

i.e., ui, xi, xixj , x
2
i , xi cosxj , xi sinxj , ui cosxj , ui sinxj .

The sparse identification was then carried out to identify the

sparse matrix of coefficients, Ξ. The identified Ξ for the

studied DER model were used to develop a data-driven DER

model in MATLAB. A comparison between the physical

model and the identified model is shown in Figure. 3, where

x = [iod ioq δ]T is the state vector and u = [vs ωs ωg]
T is the

input vector of the DER unit. As it can be seen, the identified

data-driven model accurately represents the dynamics of the

physical model.

B. SINDY-Koopman Identification

In the second case study, the obtained Koopman model

of the DER units was compared with the physical model

in several scenarios. A step change from 220V to 100V

was applied to the grid voltage vg at 0.25 seconds in

all scenarios, that resembles an undervoltage fault. Three

scenarios have been considered: i) SINDy: the original

model (physical DER model in equations (3)-(5)) was first

compared with the identified data-driven model using SINDy,

ii) Koopman: the Koopman model was obtained from the

original model (physical model in equations (3)-(5) ), and

iii) SINDy-Koopman: the Koopman model was obtained from

the data-driven model using SINDy. Results are shown in

Figure. 4. The results show the effectiveness of the proposed

data-driven model identification approach (SINDy-Koopman)

for accurately identifying the nonlinear dynamics of DERs in

smart grid and lifting their nonlinear dynamics to a finite linear

space utilizing Koopman theory. Such linear representation can

significantly simplify the control design.

VI. CONCLUSION

In this paper, a model-free Koopman-based identification

of DER dynamics was studied. Using sparse identification

of nonlinear dynamics with control along with available

measurements, dynamics of the DER were predicted with a

library of candidate functions. The learned dynamics were then

used to lift the nonlinear dynamics to a finite linear space using

Koopman theory. The proposed research demonstrates the

effectiveness of the sparse identification and Koopman theory

for data-driven model identification of nonlinear systems. Such

formulation can significantly reduce the existing complexities

of control design in modern power systems. Future research

will focus on designing optimal control frameworks for DER

dispatch in smart grids using Koopman theory.
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