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Abstract

Graph neural networks (GNNs) have been shown to possess strong representation power,
which can be exploited for downstream prediction tasks on graph-structured data, such
as molecules and social networks. They typically learn representations by aggregating
information from the K-hop neighborhood of individual vertices or from the enumerated walks
in the graph. Prior studies have demonstrated the effectiveness of incorporating weighting
schemes into GNNs; however, this has been primarily limited to K-hop neighborhood GNNs
so far. In this paper, we aim to design an algorithm incorporating weighting schemes
into walk-aggregating GNNs and analyze their effect. We propose a novel GNN model,
called AWARE, that aggregates information about the walks in the graph using attention
schemes. This leads to an end-to-end supervised learning method for graph-level prediction
tasks in the standard setting where the input is the adjacency and vertex information of
a graph, and the output is a predicted label for the graph. We then perform theoretical,
empirical, and interpretability analyses of AWARE. Our theoretical analysis in a simplified
setting identifies successful conditions for provable guarantees, demonstrating how the graph
information is encoded in the representation, and how the weighting schemes in AWARE
affect the representation and learning performance. Our experiments demonstrate the strong
performance of AWARE in graph-level prediction tasks in the standard setting in the domains
of molecular property prediction and social networks. Lastly, our interpretation study
illustrates that AWARE can successfully capture the important substructures of the input
graph. The code is available on GitHub.

1 Introduction

The increasing prominence of machine learning applications for graph-structured data has lead to the
popularity of graph neural networks (GNNs) in several domains, such as social networks (Kipf & Welling,
2016), molecular property prediction (Duvenaud et al., 2015), and recommendation systems (Ying et al.,
2018). Several empirical and theoretical studies (e.g., (Duvenaud et al., 2015; Kipf & Welling, 2016; Xu
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et al., 2019; Dehmamy et al., 2019)) have shown that GNNs can achieve strong representation power by
constructing representations encoding rich information about the graph.

A popular approach of learning GNNs involves aggregating information from the K-hop neighborhood of
individual vertices in the graph (e.g., (Kipf & Welling, 2016; Gilmer et al., 2017; Xu et al., 2019)). An
alternative approach for learning graph representations is via walk aggregation (e.g., (Vishwanathan et al.,
2010; Shervashidze et al., 2011; Perozzi et al., 2014)) that enumerates and encodes information of the
walks in the graph. Existing studies have shown that walk-aggregating GNNs can achieve strong empirical
performance with concrete analysis of the encoded graph information (Liu et al., 2019a). The results show
that the approach can encode important information about the walks in the graph. This can potentially allow
emphasizing and aggregating important walks to improve the quality of the representation for downstream
prediction tasks.

Weighting important information has been a popular strategy in recent studies on representation learning. It is
important to note that the strong representation power of GNNs may not always translate to learning the best
representation amongst all possible ones for the downstream prediction tasks. While the strong representation
power allows encoding all kinds of information, a subset of the encoded information that is not relevant for
prediction may interfere or even overwhelm the information useful for prediction, leading to sub-optimal
performance. A particularly attractive approach to address this challenge is by incorporating weighting
schemes into GNNs, which is inspired by the strong empirical performance of attention mechanisms (Bahdanau
et al., 2014; Luong et al., 2015; Xu et al., 2015; Vaswani et al., 2017; Shankar et al., 2018; Deng et al., 2018)
for natural language processing (e.g., (Devlin et al., 2019)) and computer vision tasks (e.g., (Dosovitskiy
et al., 2020)). In the domain of graph representation learning, recent studies (Gilmer et al., 2017; Veličković
et al., 2017; Yun et al., 2019; Maziarka et al., 2020; Rong et al., 2020) have used the attention mechanism to
improve the empirical performance of GNNs by learning to select important information and removing the
irrelevant ones. These studies, however, have only explored using attention schemes for K-hop neighborhood
GNNs, and there has been no corresponding work exploring this idea for walk-aggregating GNNs.

In this paper, we propose to theoretically and empirically examine the effect of incorporating weighting schemes
into walk-aggregating GNNs. To this end, we propose a simple, interpretable, and end-to-end supervised GNN
model, called AWARE (Attentive Walk-Aggregating GRaph Neural NEtwork), for graph-level prediction in
the standard setting where the input is the adjacency and vertex information of a graph, and the output is
a predicted label for the graph. AWARE aggregates the walk information by weighting schemes at distinct
levels (vertex-, walk-, and graph-level). At the vertex (or graph) level, the model weights different directions
in the vertex (graph, respectively) embedding space to emphasize important feature in the embedding space.
At the walk level, it weights the embeddings for different walks in the graph according to the embeddings of
the vertices along the walk. By virtue of the incorporated weighting schemes at these different levels, AWARE
can emphasize the information important for prediction while diminishing the irrelevant ones—leading to
representations that can improve learning performance. We perform an extensive three-fold analysis of
AWARE as summarized below:

• Theoretical Analysis: We analyze AWARE in the simplified setting when the weights depend only on
the latent vertex representations, identifying conditions when the weighting schemes improve learning.
Prior weighted GNNs (e.g., (Veličković et al., 2017; Maziarka et al., 2020)) do not enjoy similar theoretical
guarantees, making this the first provable guarantee on the learning performance of weighted GNNs to the
best of our knowledge. Furthermore, current understanding of weighted GNNs typically focuses only on
the positive effect of weighting on their representation power. In contrast, we also explore the limitation
scenarios when the weighting does not translate to stronger learning power.

• Empirical Analysis: We empirically evaluate the performance of AWARE on graph-level prediction
tasks from two domains: molecular property prediction (61 tasks from 11 popular benchmarks) and social
networks (4 tasks). For both domains, AWARE overall outperforms both traditional graph representation
methods as well as recent GNNs (including the ones that use attention mechanisms) in the standard setting.

• Interpretability Analysis: We perform an interpretation study to support our design for AWARE as well
as the theoretical insights obtained about the weighting schemes. We provide a visual illustration that
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AWARE can extract the important sub-graphs for the prediction tasks. Furthermore, we show that the
weighting scheme in AWARE can align well with the downstream predictors.

2 Related Work

Graph neural networks (GNNs). GNNs have been the predominant method for capturing information
of graph data (Li et al., 2015; Duvenaud et al., 2015; Kipf & Welling, 2016; Kearnes et al., 2016; Gilmer
et al., 2017). A majority of GNN methods build graph representations by aggregating information from
the K-hop neighborhood of individual vertices (Duvenaud et al., 2015; Li et al., 2015; Battaglia et al.,
2016; Kearnes et al., 2016; Xu et al., 2019; Yang et al., 2019). This is achieved by maintaining a latent
representation for every vertex, and iteratively updating it to capture information from neighboring vertices
that are K-hops away. Another popular approach is enumerating the walks in the graph and using their
information (Vishwanathan et al., 2010; Shervashidze et al., 2011; Perozzi et al., 2014). Liu et al. (2019a) use
the motivation of aggregating information from the walks by proposing a GNN model that can achieve strong
empirical performance along with concrete theoretical analysis.

Theoretical studies have shown that GNNs have strong representation power (Xu et al., 2019; Dehmamy et al.,
2019; Liu et al., 2019a), and have inspired new disciplines for improving their representations further (Morris
et al., 2019; Azizian & marc lelarge, 2021). To this extent, while the standard setting of GNNs has only vertex
features and the adjacency information as inputs (see Section 3), many recent GNNs (Kearnes et al., 2016;
Gilmer et al., 2017; Coors et al., 2018; Yang et al., 2019; Klicpera et al., 2020; Wang et al., 2021) exploit
extra information, such as edge features and 3D information, in order to gain stronger performance. In this
work; however, we focus on analyzing the effect of applying attention schemes for representation learning,
and thus want to perform this analysis in the standard setting.

GNNs with attention. The empirical effectiveness of attention mechanisms has been demonstrated on
language (Martins & Astudillo, 2016; Devlin et al., 2019; Raffel et al., 2020) and vision tasks (Ramachandran
et al., 2019; Dosovitskiy et al., 2020; Zhao et al., 2020). This has also been extended to the K-hop GNN
research line where the main motivation is to dynamically learn a weighting scheme at various granularities,
e.g., vertex-, edge- and graph-level. Graph Attention Network (GAT) (Veličković et al., 2017) and Molecule
Attention Transformer (MAT) (Maziarka et al., 2020) utilize the attention idea in their message passing
functions. GTransformer (Rong et al., 2020) applies an attention mechanism at both vertex- and edge-levels
to better capture the structural information in molecules. ENN-S2S (Gilmer et al., 2017) adopts an attention
module (Vinyals et al., 2015) as a readout function. However, all such studies are based on K-hop GNNs, and
to the best of our knowledge, our work is the first to bring attention schemes into walk-aggregation GNNs.

3 Preliminaries

Graph data. We assume an input graph G=(V,A) consisting of vertex attributes V and an adjacency matrix
A. The vertices are indexed by [m]={1, . . . ,m}. Suppose each vertex has C discrete-valued attributes,1 and
the jth attribute takes values in a set of size kj . Let hji∈{0, 1}kj be the one-hot encoding of the jth attribute
for vertex i. The vertex i is represented as the concatenation of C attributes, i.e., hi=[h1

i ; . . . ;hCi ] ∈ {0, 1}K
where K=

∑C
j=1 kj . Then V is the set {hi}mi=1. We denote the adjacency matrix by A∈{0, 1}m×m, where

Ai,j=1 indicates that vertices i and j are connected. We denote the set containing the neighbors of vertex i
by N (i)={j∈[m] : Ai,j=1}.

Although many GNNs exploit extra input information like edge attributes and 3D information, our primary
focus is on the effect of weighting schemes. Hence, we perform our analysis in the standard setting that only
has the vertex attributes and the adjacency matrix of the graph as the input.

Description of Vertex Attributes. For molecular graphs, vertices and edges correspond to atoms and
bonds, respectively. Each vertex i ∈ [m] will then possess useful attribute information, such as the atom
symbol and whether the atom is acceptor or donor. Such vertex attributes are folded into a vertex attribute

1Note that the vertex attributes are discrete-valued in general. If there are numeric attributes, they can simply be padded to
the learned embedding for the other attributes.
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matrix R ∈ {0, 1}m×C where C is the number of attributes on each vertex i ∈ [m]. Here is a concrete
example:

Ri,· = [Ri,1,Ri,2, . . . ,Ri,7,Ri,8],
atom symbol Ri,1 ∈ {C,Cl, I,F, . . .},
atom degree Ri,2 ∈ {0, 1, 2, 3, 4, 5, 6},
. . .

is acceptor Ri,7 ∈ {0, 1},
is donor Ri,8 ∈ {0, 1}.

The matrix R can then be translated into the vertex attribute vector set V using one-hot vectors for the
attributes.

For social network graphs, vertices and edges correspond to entities (actors, online posts) and the connections
between them, respectively. For the social network graphs in our experiments, we follow existing work and
utilize the vertex degree as the vertex attribute (i.e., C = 1).

Vertex embedding. We define an r-dimensional embedding of vertex i by:

fi = Whi, (1)

where W=[W 1; . . . ;WC ]∈Rr×K and W j∈Rr×kj is the embedding matrix for each attribute j ∈ [C]. We
denote the embedding corresponding to V by F = [f1; . . . ; fm].

Walk aggregation. Unlike the typical approach of aggregating K-hop neighborhood information, walk
aggregation enumerates the walks in the graph, and uses their information (e.g., (Vishwanathan et al., 2010;
Perozzi et al., 2014)). Liu et al. (2019a) utilize the walk-aggregation strategy by proposing the N-gram
graph GNN, which can achieve strong empirical performance, allow for fine-grained theoretical analysis, and
potentially alleviate the over-squashing problem in K-hop GNNs. The N-gram graph views the graph as
a Bag-of-Walks. It learns the vertex embeddings F in Equation (1) in a self-supervised manner. It then
enumerates and embeds walks in the graph. The embedding of a particular walk p, denoted as fp, is the
element-wise product of the embeddings of all vertices along this walk. The embedding for the n-gram walk
set (walks of length n), denoted as f(n), is the sum of the embeddings of all walks of length n. Formally,
given the vertex embedding fi for vertex i,

fp =
⊙
i∈p

fi, f(n) =
∑

p:n-gram
fp, (2)

where
⊙

i∈p is the element-wise product over all the vertices in the walk p, and
∑
p:n-gram is the sum over all

the walks p in the n-gram walk set. It has been shown that the method is equivalent to a message-passing
GNN described as follows: set F(1) = F = [f1; . . . ; fm] and f(1) = F(1)1 =

∑
i∈[m] fi, and then for 2 ≤ n ≤ T :

F(n) = (F(n−1)A) ⊙ F(1), and f(n) = F(n)1, (3)

where ⊙ is the element-wise product and 1 denotes a vector of ones in Rm. The final graph embedding is
given by the concatenation of all f(n)’s, i.e., f[T ](G)=[f(1); . . . ; f(T )].

Compared to K-hop aggregation strategies, this formulation explicitly allows analyzing representations at
different granularities of the graph: vertices, walks, and the entire graph. This provides motivation for
capitalizing on the N-gram walk-aggregation strategy for incorporating and analyzing the effect of weighting
schemes on walk-aggregation GNNs. The principled design facilitates theoretical analysis of conditions under
which the weighting schemes can be beneficial. Thus, in this paper, we analyze the effect of incorporating
attention weighting schemes on the N-gram walk-aggregation GNN.

4 AWARE: Attentive Walk-Aggregating Graph Neural Network

We propose AWARE, an end-to-end fully supervised GNN for learning graph embeddings by aggregating
information from walks with learned weighting schemes. Intuitively, not all walks in a graph are equally
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important for downstream prediction tasks. AWARE incorporates an attention mechanism to assign different
contributions to individual walks as well as assigns feature weightings at the vertex and graph embedding
levels. These weights are learned in a supervised fashion for prediction. This enables AWARE to mitigate
the shortcomings of its unweighted counterpart (Liu et al., 2019a), which computes graph embeddings in an
unsupervised manner only using the graph topology.

Algorithm 1 AWARE (W,Wv,Ww,Wg)
Require: Graph G=(V,A), max walk length T

1: Compute vertex embeddings F by Eqn (1)
2: F(1) = σ(WvF )
3: for each n ∈ [2, T ] do
4: Compute Sn using Eqn (7)
5: F(n)=

(
F(n−1)(A ⊙ Sn)

)
⊙ F(1)

6: end for
7: Set f(n) := σ(WgF(n))1 for 1 ≤ n ≤ T
8: Set f[T ](G) := [f(1); . . . ; f(T )]

Ensure: The graph embedding f[T ](G)

At a high level, AWARE first computes vertex embed-
dings F , and initializes a latent vertex representa-
tion F(1) by incorporating a feature weighting at the
vertex level. It then iteratively updates the latent
representation F(n) using attention at the walk level,
and then performs a weighted summarization at the
graph level to obtain embeddings f(n) for walk sets
of length n. The f(n)’s are concatenated to produce
the graph embedding f[T ](G) for the downstream
task. We now provide more details.

Weighted vertex embedding. Intuitively, some
directions in the vertex embedding space are likely
to be more important for the downstream prediction
task than others. In the extreme case, the prediction task may depend only on a subset of the vertex attributes
(corresponding to some directions in the embedding space), while the rest may be inconsequential and hence
should be ignored when constructing the graph embedding. AWARE weights different vertex features using
Wv ∈ Rr′×r by computing the initial latent vertex representation F(1) as:

F(1) = σ(WvF ), where F is computed using Equation (1) (4)

where σ is an activation function, and r′ is the dimension of the weighted vertex embedding.

Walk attention. AWARE computes embeddings corresponding to walks of length n in an iterative manner,
and updates the latent vertex representations in each iteration using such walk embeddings. When aggregating
the embedding of a walk, each vertex in the walk is bound to have a different contribution towards the
downstream prediction task. For instance, in molecular property prediction, the existence of chemical bonds
between certain types of atoms in the molecule may have more impact on the property to be predicted than
others. To achieve this, in iteration n, AWARE updates the latent representations for vertex i from [F(n−1)]i
to [F(n)]i by taking an element-wise product of [F(n−1)]i with a weighted sum of the latent representation
vectors of its neighbors j ∈ N (i). Such a weighted update of the latent representations implicitly assigns a
different importance to each neighbor j for vertex i. Assuming that the importance of vertex j for vertex i
depends on their latent representations, we consider a score function corresponding to the update from vertex
j to i as:

Sji := S(fj , fi). (5)

While our theoretical analysis is for weighting schemes defined in Equation (5), in practice one can have more
flexibility, e.g., one can allow the weights to depend on the neighbors and the iterations. To allow different
weights [S(n)]ji for different iterations n by using the latent representations for vertices from the previous
iteration (n−1). In particular, we use the self-attention mechanism:

[Z(n)]j→i = [F(n−1)]j⊤
Ww[F(n−1)]i (6)

where [F(n−1)]i is the latent vector of vertex i at iteration n−1, and Ww∈Rr′×r′ is a parameter matrix to be
learned. We then define the attention weighting matrix used at iteration n as:

[Sn]ji = e[Z(n)]j→i∑
k∈N (i) e

[Z(n)]k→i
(7)
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Using this attention matrix Sn, we perform the iterative update to the latent vertex representations via a
weighted sum of the latent representation vectors of their neighbors:

F(n) =
(
F(n−1)(A ⊙ Sn)

)
⊙ F(1) (8)

This update is simple and efficient, and automatically aggregates important information from the vertex
neighbors for the downstream prediction task. In particular, it does not have the typical projection operation
for aggregating information from neighbors. Instead, it computes the weighted sum and then the element-wise
product to aggregate the information.

Weighted summarization. Since the downstream task may selectively prefer certain directions in the final
graph embedding space, AWARE learns a weighting Wg ∈ Rr′×r′ to compute a weighted sum of latent vertex
representations for obtaining walk set embeddings of length n as follows:

f(n) = σ(WgF(n))1 (9)

where 1 denotes a vector of ones in Rm. Walk set embeddings up to length T are then concatenated to
produce the graph embedding f[T ](G) = [f(1), . . . , f(T )].

End-to-end supervised training. We summarize the different weighting schemes and steps of AWARE as a
pseudo-code in Algorithm 1. The graph embeddings produced by AWARE can be fed into any properly-chosen
predictor hθ parametrized by θ, so as to be trained end-to-end on labeled data. For a given loss function L,
and a labeled data set S = {(Gi, yi)}Mi=1 where Gi’s are graphs and yi’s are their labels, AWARE can learn
the parameters (W,Wv,Ww,Wg) and the predictor θ by optimizing the loss

ℓAWARE =
∑
i∈[M ]

L
(
yi, hθ

(
f[T ](Gi)

))
(10)

The N-Gram walk aggregation strategy termed as the N-Gram Graph (Liu et al., 2019a) operates in two
steps: first to learn a graph embedding using the graph topology without any supervision, and then to use a
predictor on the embedding for the downstream task. In contrast, AWARE is end-to-end fully supervised,
and simultaneously learns the vertex/graph embeddings for the downstream task along with the weighting
schemes to highlight the important information in the graph and suppress the irrelevant and/or harmful ones.
Secondly, the weighting schemes of AWARE allow for the use of simple predictors over the graph embeddings
(e.g., logistic regression or shallow fully-connected networks) for performing end-to-end supervised learning.
In contrast, N-Gram Graph requires strong predictors such as XGBoost (with thousands of trees) to exploit
the encoded information in the graph embedding.

5 Theoretical Analysis

For the design of our walk-aggregation GNN with weighting schemes, we are interested in the following two
fundamental questions: (1) what representation can it obtain and (2) under what conditions can the weighting
scheme improve the prediction performance? In this section, we provide theoretical analysis of the walk
weighting scheme.2 We consider the simplified case when the weights depend only on the latent embeddings
of the vertices along the walk:
Assumption 1. The weights are Sij defined in Equation (5).

First, in Section 5.1 and 5.2, we answer the above two questions under the following simplifying assumption:
Assumption 2. Wv = Wg = I, the number of attributes is C = 1, and the activation is linear σ(z) = z.

2For the other weighting schemes Wv and Wg, we know Wv weights the vertex embeddings fi, and Wg weights the final
embeddings F(n), emphasizing important directions in the corresponding space. If Wv has singular vector decomposition
Wv = UΣV ⊤, then it will relatively emphasize the singular vector directions with large singular values. Similar for Wg.
See Section 7 for some visualization.
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In this simplified case, the only weighting is Sij computed by Ww, which allows our analysis to focus on its
effect. We further assume that the number of attributes on the vertices is C = 1 to simplify the notations. We
will show that the weighting scheme can highlight important information, and reduce irrelevant information
for the prediction, and thus improve learning. To this end, we first analyze what information can be encoded
in our graph representation, and how they are weighted (Theorem 1). We then examine when and why the
weighting can help learning a predictor with better performance (Theorem 3).

Next, in Section 5.3, we provide analysis for the general setting where Wv and Wg may not be the identity
matrix, C ≥ 1, and σ is the leaky rectified linear unit (ReLU). The analysis leads to guarantees (Theorem 4
and Theorem 5) that are similar to those in the simplified setting.

5.1 The Effect of Weighting on Representation

We will show that the representation/embedding f(n) is a linear mapping of a high dimension vector c(n) into
the low dimension embedding space, where the vector c(n) records the statistics about the walks in the graph.

First, we formally define the walk statistics c(n) (a variant of the count statistics defined in (Liu et al., 2019a)).
Recall that we assume the number of attributes is C = 1. K is the number of possible attribute values, and
the columns of the vertex embedding parameter matrix W ∈ Rr×K are embeddings for different attribute
values u. Let W (u) denote the column for value u, i.e., W (u) = Wh(u) where h(u) is the one-hot vector of u.
Definition 1 (Walk Statistics). A walk type of length n is a sequence of n attribute values v = (v1, v2, · · · , vn)
where each vi is an attribute value. The walk statistics vector c(n)(G) ∈ RKn is the histogram of all walk
types of length n in the graph G, i.e., each entry is indexed by a walk type v and the entry value is the number
of walks with sequence of attribute values v in the graph. Furthermore, let c[T ](G) be the concatenation of
c(1)(G), . . . , c(T )(G). When G is clear from the context, we write c(n) and c[T ] for short.

Note that the walk statistics c(n) may not completely distinguish any two different graphs, i.e., there can
exist two different graphs with the same walk statistics c(n) for any given n. Figure 1 shows such an example
where the given two graphs are isomorphically different despite having the same walk statistics c(1), c(2), and
c(3). On the other hand, such indistinguishable cases are highly unlikely in practice. We also acknowledge
other well-known statistics for distinguishability that have been used for analyzing GNNs, in particular, the
Weisfeiler-Lehman isomorphism test (e.g., Xu et al. (2019)). Nevertheless, it is crucial noting here that the
goal of our theoretical analysis is very different. Namely, while the Weisfeiler-Lehman test has been used as
an important tool to analyze the representation power of GNNs, the goal of our analysis is the prediction
performance. As pointed out in the introduction, strong representation power may not always translate to
good prediction performance. In fact, a very strong representation power emphasizing too much on graph
distinguishability is harmful rather than beneficial for the prediction. For example, a good representation
for prediction should emphasize the effective features related to class labels and remove irrelevant features
and/or noise. If two graphs only differ in some features irrelevant to the class label, then it is preferable to
get the same representation for them, rather than insisting on graph distinguishability. Weighting schemes
can potentially down-weight or remove the irrelevant information and improve the prediction performance.

Next, we introduce the following notation for the linear mapping projecting c(n) to the representation f(n).
Definition 2 (ℓ-way Column Product). Let A be a d×N matrix, and let ℓ be a natural integer. The ℓ-way
column product of A is a d×N ℓ matrix denoted as A[ℓ], whose column indexed by a sequence (i1, i2, · · · , iℓ)
is the element-wise product of the i1, i2, . . . , iℓ-th columns of A, i.e., (i1, i2, . . . , iℓ)-th column in A[ℓ] is
Ai1 ⊙Ai2 ⊙ · · · ⊙ Aiℓ where Aj for j ∈ [N ] is the j-th column in A, and ⊙ is the element-wise product.

In particular, W [n] is an r by Kn matrix, whose columns are indexed by walk types v = (v1, v2, · · · , vn) and
equal W (v1) ⊙W (v2) ⊙ · · · ⊙W (vn).
Definition 3 (Walk Weights). The weight of a walk type v = (v1, . . . , vn) is

λ(v) :=
n−1∏
i=1

S(W (vi),W (vi+1)) (11)

where S(·, ·) is the weight function in Equation (5).
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Figure 1: Two different graphs with the same walk-statistics c(1), c(2), and c(3). Vertices with the same letters
have entirely identical attribute values. All edges are undirected and identical.

The following theorem then shows that f(n) can be viewed as a compressed version (linear mapping) of the
walk statistics, weighted by the attention weights S.
Theorem 1. Assume Assumption 1 and 2. The embedding f(n) is a linear mapping of the walk statistics c(n):

f(n) = M(n)Λ(n)c(n) (12)

where M(n) = W [n] is a matrix depending only on W , and Λ(n) is a Kn-dimensional diagonal matrix whose
columns are indexed by walk types v and have diagonal entries λ(v). Therefore,

f[T ] = MΛc[T ] (13)

where M is a block-diagonal matrix with diagonal blocks M(1),M(2), . . . ,M(T ), and Λ is block-diagonal with
blocks Λ(1),Λ(2), . . . ,Λ(T ).

Proof. It is sufficient to prove the first statement with M(n) = W [n], as the second one directly follows. To
this end, we will first prove the following lemma.

Lemma 1. Let Pi,n be the set of walks starting from vertex i and of length n. Then the latent vector on
vertex i is:

[F(n)]i =
∑

p∈Pi,n

λ(vp)

⊙
k∈p

[F(1)]k

 (14)

where λ(vp) is the weight for the sequence of attribute values on p, and
⊙

k∈p[F(1)]k is the element-wise
product of all the [F(1)]k’s on p.

Proof. We prove the lemma by induction. For n = 1, it is trivially true.

Suppose the statement is true for n− 1. Then recall that [F(n)]i is constructed by weighted-summing up all
the latent vectors [F(n−1)]j from the neighbors j of i, and then element-wise product with [F(1)]i = fi. That
is,

[F(n)]i =

∑
j∈Ni

Sji[F(n−1)]j

⊙ [F(1)]i. (15)
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So letting Ni denote the set of neighbors of i, we have by induction

[F(n)]i =

∑
j∈Ni

Sji[F(n−1)]j

⊙ [F(1)]i (16)

=
∑
j∈Ni

Sji

 ∑
p∈Pj,n−1

λ(vp)

⊙
k∈p

[F(1)]k

⊙ [F(1)]i (17)

=
∑
j∈Ni

∑
p∈Pj,n−1

Sjiλ(vp)

[F(1)]i ⊙

⊙
k∈p

[F(1)]k

 . (18)

By concatenating i to the walks p ∈ Pj,n−1 for all neighbors j ∈ Ni, we obtain the set of walks starting from
i and of length n, i.e., Pi,n. Furthermore, for a path obtained by concatenating i and p ∈ Pj,n−1, the weight
is exactly Sji · λ(vp). Therefore,

[F(n)]i =
∑
j∈Ni

∑
p∈Pj,n−1

Sji · λ(vp)

[F(1)]i ⊙

⊙
k∈p

[F(1)]k

 (19)

=
∑

p∈Pi,n

λ(vp)

⊙
k∈p

[F(1)]k

 . (20)

By induction, we complete the proof.

We now use Lemma 1 to prove the theorem statement. Recall that hk is the one-hot vector for the attribute
on vertex k. Let ep ∈ {0, 1}Kn be the one-hot vector for the walk type of a walk p.

f(n) = F(n)1 (21)

=
m∑
i=1

[F(n)]i (22)

=
m∑
i=1

∑
p∈Pi,n

λ(vp)

⊙
k∈p

[F(1)]k

 (23)

=
∑

p:walks of length n

λ(vp)

⊙
k∈p

[F(1)]k

 (24)

=
∑

p:walks of length n

λ(vp)

⊙
k∈p

(Whk)

 (25)

=
∑

p:walks of length n

λ(vp)W [n]ep (26)

= W [n]
∑

p:walks of length n

λ(vp)ep (27)

= W [n]Λ(n)c(n). (28)

The third line follows from Lemma 1. The forth line follows from that the union of Pi,n for all i is the set of
all walks of length n. The sixth line follows from the definition of W [n] and ep. The last line follows from the
definitions of Λ(n) and c(n).

Remark. Theorem 1 shows that the embedding f(n) can encode a compressed version of the weighted
walk statistics Λ(n)c(n). Note that similar to Λ(n), c(n) is in high dimension Kn. Its entries are indexed
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by all possible sequences of the attribute values v = (v1, . . . , vn), and the entry value is just the count of
the corresponding sequence in the graph. Λ(n)c(n) is thus an entry-wise weighted version of the counts, i.e.,
weighting the walks with walk type v = (v1, . . . , vn) by the corresponding weight λ(v).

In words, c(n) is first weighted by our weighting scheme where the count of each walk type v is weighted by
the corresponding walk weight λ(v), and then compressed from the high dimension RKn to the low dimension
Rr. Ideally, we would like to have relatively larger weights on walk types important for the prediction task
and smaller for those not important. This provides the basis for the focus of our analysis: the effect of
weighting for the learning performance.

The N-gram graph method is a special case of our method, by setting the message weights S(·, ·) to be always
1 (and thus Λ(n) being an identity matrix). Then we have f(n) = W [n]c(n). Our method thus enjoys greater
representation power, since it can be viewed as a generalization that allows to weight the features. What
is more important, and is also the focus of our study, is that this weighting can potentially help learn a
predictor with better prediction performance. This is analyzed in the next subsection.

Remark. The weighted walk statistics Λ(n)c(n) is compressed from a high dimension to a low dimension
by multiplying with W [n]. For the unweighted case, the analysis in (Liu et al., 2019a) shows that there
exists a large family of W (e.g., the entries of W are independent Rademacher variables) such that W [n] has
the Restricted Isometry Property (RIP) and thus c(n) can be recovered from f(n) by compressive sensing
techniques (see the review in Appendix A.1), i.e., f(n) encodes c(n).

A similar result holds for our weighted case. In particular, it is well known in the compressive sensing
literature that when W [n] has RIP, and Λ(n)c(n) is sparse, then Λ(n)c(n) can be recovered from f(n), i.e., f(n)
preserves the information of Λ(n)c(n). However, it is unclear if there exists W such that W [n] can have RIP.
We show that a wide family of W satisfy this and thus Λ(n)c(n) can be recovered from f(n).
Theorem 2. Assume Assumption 1 and 2. If r = Ω((ns3

n logK)/ϵ2) where sn is the sparsity of c(n), then
there is a prior distribution over W such that with probability 1 − exp(−Ω(r1/3)), W [n] satisfies (sn, ϵ)-RIP.
Therefore, if r = Ω(ns3

n logK) and Λ(n)c(n) is the sparsest vector satisfying f(n) = W [n]Λ(n)c(n), then with
probability 1 − exp(−Ω(r1/3)), Λ(n)c(n) can be recovered from f(n).

Proof. The first statement follows from Theorem 8 in Appendix A.2, and the second follows from Theorem 6
in Appendix A.1.

The distribution of W satisfying the above can be that with (properly scaled) i.i.d. Rademacher entries or
Gaussian entries. Since this is not the focus of our paper, below we simply assume that W [n] (and thus M)
has RIP and focus on analyzing the effect of the weighting on the learning over the representations.

5.2 The Effect of Weighting on Learning

Since we have shown that the embedding f(n) can be viewed as a linear mapping of the weighted walk
statistics to low dimensional representations, we are now ready to analyze if the weighting can potentially
improve the learning.

We now illustrate the intuition for the benefit of appropriate weighting. First, consider the case where we
learn over the weighted features Λc[T ] (instead of learning over f[T ](G) = MΛc[T ] which has an additional
M). Suppose that the label is given by a linear function on c[T ] with parameter β∗, i.e., y = ⟨β∗, c[T ]⟩. If
Λ is invertible, the parameter Λ−1β∗ on Λc[T ] has the same loss as β∗ on c[T ]. So we only need to learn
Λ−1β∗. The sample size needed to learn Λ−1β∗ on Λc[T ] will depend on the factor ∥Λ−1β∗∥2∥Λc[T ]∥2, which
is potentially smaller than ∥β∗∥2∥c[T ]∥2 for the unweighted case. This means fewer data samples are needed
(equivalently, smaller loss for a fixed amount of samples).

Now, consider the case of learning over f[T ](G) = MΛc[T ] that has an extra M. We note that c[T ] can be
sparse compared to its high dimension (since likely only a very small fraction of all possible walk types will
appear in a graph). Well-established results from compressive sensing show that when M has the Restricted
Isometry Property (RIP), learning over MΛc[T ] is comparable to learning over Λc[T ]. Indeed, Theorem 2

10
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shows when W is random and the embedding dimension r is large enough, there are families of distributions
of W such that M has RIP for Λc[T ]. Thus, we assume M has RIP and focus on the analysis of how Ww

affects the weighting and the learning. In practice, our method is more general and the parameters are
learned over the data. Still, the analysis in the special case under the assumptions can provide useful insights
for understanding our method, in particular, how the weighting can affect the learning of a predictor over the
embeddings.

However, the above intuition is only for learning over a fixed weighting Λ induced by a fixed Ww. Our key
challenge is to incorporate the learning of Ww in the analysis, which we now address. Formally, we consider
learning Ww from a hypothesis class W , and let Λ(Ww) and f[T ](G;Ww) denote the weights and representation
given by Ww. For prediction, we consider binary classification with the logistic loss ℓ(g, y) = log(1+exp(−gy))
where g is the prediction and y is the true label. Let ℓD(θ,Ww) be the risk of a linear classifier with a
parameter θ on f[T ](G;Ww) over the data distribution D, and let ℓS(θ,Ww) denote the risk over the training
dataset S. Suppose we have a dataset S = {(Gi, yi)}Mi=1 of M i.i.d. sampled from D, and θ̂ and Ŵw are the
parameters learned via ℓ2-regularization with regularization coefficient Bθ:

θ̂, Ŵw = arg min
Ww∈W,∥θ∥2≤Bθ

ℓS(θ,Ww) := 1
M

M∑
i=1

ℓ
(

⟨θ, f[T ](Gi;Ww)⟩, yi
)
. (29)

To derive error bounds, suppose W is equipped with a norm ∥ · ∥ and let N (W, ϵ) be the ϵ-covering number of
W w.r.t. the norm ∥ · ∥ (other complexity measures on W , such as VC-dimension, can also be used). Suppose
f[T ](G;Ww) is Lf -Lipschitz w.r.t. the norm ∥ · ∥ on W and the ℓ2 norm on the representation. Furthermore,
let β∗ denote the best linear classifier on c[T ], and let ℓ∗

D denote its risk.
Theorem 3. Assume Assumption 1 and 2. Assume c[T ] is s-sparse, M satisfies (2s, ϵ0)-RIP, Λ(Ww) is
invertible and f[T ](G;Ww) is Lf -Lipschitz over W. For any δ, ϵ ∈ (0, 1), there are regularization coefficient
values Bθ such that with probability ≥ 1 − δ:

ℓD(θ̂, Ŵw) ≤ ℓ∗
D + 2ϵ+O

(√
rT + Cϵ(W)

M

)
+ min
Ww∈W

B(Ww) ×O

(√
ϵ0 + Cϵ(W)

M

)
(30)

where

Cϵ(W) := log N
(

W,
ϵ

8BθLf

)
+ log 1

δ
, B(Ww) := max

G∼D
∥Λ(Ww)c[T ](G)∥2∥Λ(Ww)−1β∗∥2. (31)

Proof. Since θ̂ = θ̂(Ŵw) where θ̂(Ŵw) is defined in Lemma 2, by Lemma 2.(1), we have

ℓD(θ̂, Ŵw) ≤ ℓS(θ̂, Ŵw) +O

(√
1
M

(
rT + log N

(
W,

ϵ

8BθLf

)
+ log 1

δ

))
+ ϵ. (32)

Furthermore, since θ̂, Ŵw are the optimal solution for the regularized regression, then for any Ww ∈ W ,

ℓS(θ̂, Ŵw) ≤ ℓS(θ̂(Ww),Ww). (33)

Then by Lemma 2.(2), we have

ℓS(θ̂(Ww),Ww) ≤ ℓ∗
D +O

(
B(Ww)

√
ϵ0 + 1

M

(
log 1

δ
+ log N

(
W,

ϵ

8BθLf

)))
+ ϵ. (34)

Combining the above inequalities proves the theorem.
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Lemma 2. Suppose f[T ](G;Ww) is Lf -Lipschitz w.r.t. the norm ∥ · ∥ on W and the ℓ2 norm on the
representation. Let

θ̂(Ww) = arg min
∥θ∥2≤Bθ

1
M

M∑
i=1

ℓ
(

⟨θ, f[T ](Gi;Ww)⟩, yi
)

(35)

be the optimal solution for a fixed Ww.
(1) For any ϵ, δ ∈ (0, 1), with probability at least 1 − δ, for any Ww ∈ W,

|ℓD(θ̂(Ww),Ww) − ℓS(θ̂(Ww),Ww)| ≤ O

(√
1
M

(
rT + log N

(
W,

ϵ

8BθLf

)
+ log 1

δ

))
+ ϵ. (36)

(2) Assume that M satisfies the (2s, ϵ0)-RIP, and c[T ] is s-sparse. Also assume that Λ−1(Ww) is invertible
over W. Then for any ϵ, δ ∈ (0, 1), there exists an appropriate choice of regularization coefficient Bθ, such
that with probability at least 1 − δ, for any Ww ∈ W,

ℓD(θ̂(Ww),Ww) ≤ ℓ∗
D +O

(
B(Ww)

√
ϵ0 + 1

M

(
log 1

δ
+ log N

(
W,

ϵ

8BθLf

)))
+ ϵ. (37)

Proof. (1) We apply a net argument on W . Let X be an ϵ/8BθLf -net of W , so |X | ≤ N (W, ϵ/8BθLf ). Then
for the given M , any Ww ∈ X and any θ satisfies:

|ℓD(θ,Ww) − ℓS(θ,Ww)| ≤ O

(√
1
M

(
rT + log N

(
W,

ϵ

8BθLf

)
+ log 1

δ

))
. (38)

Then for any W ′
w ∈ W, there exists a Ww ∈ X such that ∥Ww − W ′

w∥ ≤ ϵ/8BθLf . Then letting θ denote
θ̂(W ′

w), we have

|ℓD(θ,W ′
w) − ℓS(θ,W ′

w)| ≤ |ℓD(θ,W ′
w) − ℓD(θ,Ww)| (39)

+ |ℓD(θ,Ww) − ℓS(θ,Ww)| (40)
+ |ℓS(θ,Ww) − ℓS(θ,W ′

w)|. (41)

For any G with label y, we have

|ℓ(⟨θ, f[T ](G;Ww)⟩, y) − ℓ(⟨θ, f[T ](G;W ′
w)⟩, y)| (42)

≤ |⟨θ, f[T ](G;Ww)⟩ − ⟨θ, f[T ](G;W ′
w)⟩| (43)

= |⟨θ, f[T ](G;Ww) − f[T ](G;W ′
w)⟩| (44)

= ∥θ∥2∥f[T ](G;Ww) − f[T ](G;W ′
w)∥2 (45)

≤ BθLf∥Ww −W ′
w∥ (46)

≤ ϵ

8 . (47)

Then

|ℓD(θ,W ′
w) − ℓS(θ,W ′

w)| ≤ ϵ

8 +O

(√
1
M

(
rT + log N

(
W,

ϵ

8BθLf

)
+ log 1

δ

))
+ ϵ

8 . (48)

This proves the first statement.

(2) Let X be the set of Λc[T ] for G from the data distribution. Since c[T ] is s-sparse, Λc[T ] is also s-sparse.
Then Λc[T ](G) − Λc[T ](G′) is 2s-sparse for any G and G′, so M satisfies (∆X , ϵ)-RIP. Then we can apply the
theorem for learning over compressive sensing data. In particular, for a fixed Ww, we apply Theorem 4.2
in (Arora et al., 2018). (The theorem is included as Theorem 7 in Section A.1 for completeness. Note that
choosing an appropriate λ in that theorem is equivalent to choosing an appropriate Bθ by standard Lagrange
multiplier theory.) The statement follows from that the logistic loss function is 1-Lipschitz and convex, and
that the optimal solution over Λ(Ww)c[T ] is Λ−1(Ww)θ∗ with the same loss as θ∗ over c[T ]. Combining with
a net argument similar as above proves the statement.
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Remark. Theorem 3 shows that the learned model has risk comparable to that of the best linear classifier
on the walk statistics, given sufficient data. To see the benefit of weighting schemes, let us now compare to
the unweighted case. In the unweighted case, Λ is the identity matrix, log N

(
W, ϵ

8BθLf

)
reduces to 0, and

B(Ww) reduces to

B0 := max
G∼D

∥c[T ](G)∥2∥β∗∥2. (49)

Therefore, our method needs extra samples to learn Ww, leading to the extra error terms related to
log N

(
W, ϵ

8BθLf

)
. On the other hand, the benefit of weighting is replacing the factor B0 above with

minWw B(Ww). If there is W ∗
w with B(W ∗

w) ≪ B0, the error is significantly reduced. Therefore, there is a
trade-off between the reduction of error for learning classifiers on an appropriate weighted representation and
the additional samples needed for learning an appropriate weighting.

The benefit of weighting can be significant in practice. minWw B(Ww) can be much smaller than B0, especially
when some features (i.e., walk types) in c[T ] are important while others are not, which is true for many
real-world applications.

For a concrete example, suppose c[T ](G) is s-sparse with each non-zero entry being some constant c. Suppose
only a few of the features are useful for the prediction. In particular, β∗ is ρ-sparse with each non-zero
entry being some constant b, and ρ ≪ s. Suppose there is a weighting W ∗

w that leads to weight Υ on the
entries corresponding to the ρ important features (i.e., the non-zero entries in β∗), and weight υ for the other
features where |υ| ≪ |Υ|. Then it can be shown that

B0 =
√
sc2
√
ρb2 = bc

√
ρs, (50)

min
Ww

B(Ww) ≤
√
ρ(Υc)2 + (s− ρ)(cυ)2

√
ρ(b/Υ)2 (51)

and thus
min
Ww

B(Ww)

B0
≤
√
ρ

s
+
(

1 − ρ

s

)( υ
Υ

)2
. (52)

Since ρ ≪ s and |υ| ≪ |Υ|, min
Ww

B(Ww) is much smaller than B0, so the weighting can significantly reduce
the error. This demonstrates that with proper weighting highlighting important features and suppressing
irrelevant features for prediction, the error can be much smaller than the error for without weighting.

5.3 Analysis for the General Setting

Here we analyze the more general case where Wv and Wg may not be the identity matrix I and the number
of attributes C ≥ 1. We assume that the activation function σ is the leaky rectified linear unit:

σ(z) = max{αz, z} for some α ∈ [0, 1]. (53)

This includes the following special cases: (1) the linear activation analyzed above corresponds to α = 1; (2)
the commonly used rectified linear unit (ReLU) corresponds to α = 0. We also note that while our analysis is
for the leaky rectified linear unit, it can easily be generalized to any piece-wise linear function.

We will need to generalize the notations. Recall that C is the number of attributes, kj is the number of
possible values for the j-th attribute. Let KC :=

∏C
j=1 kj denote the number of possible attribute value vector.

Also, hji ∈ {0, 1}kj is the one hot vector for the j-th attribute on vertex i. hi denotes the one hot vector for
vertex i, which is the concatenation [h1

i , . . . , h
C
i ] ∈ {0, 1}K . The ℓ-th column of the embedding parameter

matrix W j ∈ Rr×kj is an embedding vector for the ℓ-th value of the j-th attribute, and the parameter matrix
W ∈ Rr×K is the concatenation W = [W 1,W 1, . . . ,WC ] with K =

∑C−1
j=0 kj . Finally, given an attribute

vector u = [u1, u2, . . . , uC ] where uj is the value for the j-th attribute, let Let W (u) denote the embedding
for u, i.e., W (u) = Wh(u) where h(u) = [h(u1), h(u2), . . . , h(uC)] and h(uj) is the one-hot vector of uj .

We define the walk statistics ci(n) for each vertex i and the walk statistics c(n) for the whole graph as follows.

13
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Definition 4 (Walk Statistics for the General Case). A walk type of length n is a sequence of n attribute
vectors v = (v1, v2, · · · , vn) where each vi is an attribute vector of C attributes. The walk statistics vector
ci(n)(G) ∈ RKn

C for vertex i ∈ [m] is the histogram of all walk types of length n beginning from i in the graph
G, i.e., each entry is indexed by a walk type v and the entry value is the number of walks beginning from
vertex i with sequence of attribute value vectors v in the graph. Furthermore, let ci[T ](G) be the concatenation
of ci(1)(G), . . . , ci(T )(G), and let c(n)(G) =

∑
i∈[m] c

i
(n)(G) and c[T ](G) =

∑
i∈[m] c

i
[T ](G). When G is clear

from the context, we write ci(n), c
i
[T ], c(n), c[T ] for short.

So the definition is similar to that for the simplified case, except that now the walk statistics for each vertex
is also defined, and a walk type considers all C attributes. When C = 1, the c(n) and c[T ] here reduces to
those defined in the simplified setting. Similarly, the definition of the walk weight is the same as that in the
simplified setting, except that it is defined over the generalized walk types.

The Effect of Weighting on Representation. We will first consider the representation power, showing
that F̃ i(n) := [WgF(n)]i is a linear mapping of ci(n). This is based on the observation that for the leaky ReLU
unit, we have σ(z) = Γ(z)z where Γ(z) = αI[z < 0] + I[z ≥ 0]. This inspires the following notation.
Definition 5. Given a vector u ∈ Rr′ , define a diagonal matrix Γ(u) ∈ Rr′×r′ with diagonal entries

[Γ(u)]ii = αI[ui < 0] + I[ui ≥ 0]. (54)

Let (WvW ){n} be a matrix with Kn
C column corresponding to all possible length-n walk types, with the column

indexed by a walk type v = (v1, . . . , vn) being g1 ⊙ g2 ⊙ · · · ⊙ gn with gi = Γ(WvW (vi)) ·WvW (vi).

The following theorem then shows that F̃ i(n) can be a compressed version of the walk statistic for vertex i,
weighted by the weighting parameter matrix Wv,Wg and also by the attention scores S.
Theorem 4. Assume Assumption 1. The embedding F̃ i(n) := [WgF(n)]i is a linear mapping of the walk
statistics ci(n) for any i ∈ [m]:

F̃ i(n) = Wg(WvW ){n}Λ(n)c
i
(n). (55)

where Λ(n) is a Kn
C-dimensional diagonal matrix, whose columns are indexed by walk types v and have diagonal

entries λ(v). Therefore,

f[T ] =
m∑
i=1

σ(MΛci[T ]) (56)

where M is a block-diagonal matrix with diagonal blocks Wg(WvW )(1),Wg(WvW ){2}, . . . ,Wg(WvW ){T}, and
Λ is block-diagonal with blocks Λ(1),Λ(2), . . . ,Λ(T ).

Proof. The proof is similar to that of Theorem 1.

First, we note that Lemma 1 still applies to the general case, so can be used to prove the theorem statement.
Recall that hk is the one-hot vector for the attributes on vertex k. Let ep ∈ {0, 1}Kn

C be the one-hot vector
for the walk type of a walk p. By the definition of F̃ i(n) and by Lemma 1,

F̃ i(n) = [WgF(n)]i (57)
= Wg[F(n)]i (58)

= Wg

∑
p∈Pi,n

λ(vp)

⊙
k∈p

[F(1)]k

 . (59)
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Then by the definition of F(1),

F̃ i(n) = Wg

∑
p∈Pi,n

λ(vp)

⊙
k∈p

σ(WvWhk)

 (60)

= Wg

∑
p∈Pi,n

λ(vp)

⊙
k∈p

(Γ(WvWhk) ·WvWhk)

 (61)

= Wg

∑
p∈Pi,n

λ(vp)(WvW ){n}ep (62)

= Wg(WvW ){n}
∑

p∈Pi,n

λ(vp)ep (63)

= Wg(WvW ){n}Λ(n)c
i
(n). (64)

The second line follows from the property of σ and the definition of Γ. The third line follows from the
definitions of (WvW ){n} and ep. The last line follows from the definition of Λ(n) and ci(n).

The theorem shows that in the general case, before applying the last activation, the embedding F̃ i(n) is a
linear mapping of the walk statistics ci(n), with a more complicated mapping Wg(WvW ){n}Λ(n). On the
other hand, the final graph embedding f[T ] is no longer a linear mapping of the walk statistics in general,
but is a sum of the nonlinear transformation of the linear embedding F̃ i(n)’s. Only when σ is the identity
function, f[T ] =

∑m
i=1 σ(MΛci[T ]) =

∑m
i=1 MΛci[T ] = MΛ

∑m
i=1 c

i
[T ] = MΛc[T ] becomes a linear mapping,

and recovers the result in the simplified setting. Finally, similarly as before, with properly set Wg,Wv,W ,
the linear mapping M can satisfy RIP. We will assume this in the following analysis.

The Effect of Weighting on Learning. Now we are ready to analyze the learning performance. Suppose
we learn a classifier h on top of f[T ] together with the parameters W,Wv,Ww,Wg in the model.

Formally, let Wall := (W,Wv,Ww,Wg). We consider learning Wall from a hypothesis class W, and learning
the classifier h from a classifier hypothesis class H = {hθ} with a parameter θ. Let Λ(Wall) and f[T ](G;Wall)
denote the weights and representation given by Wall. For prediction, we consider binary classification with
the logistic loss ℓ(g, y) = log(1 + exp(−gy)) where g is the prediction and y is the true label. Let ℓD(θ,Ww)
be the risk of a classifier with a parameter θ on f[T ](G;Wall) over the data distribution D, and let ℓS(θ,Wall)
denote the risk over the training dataset S. Recall that ℓ∗

D denote the risk of the best linear classifier on c[T ].
Suppose we have a dataset S = {(Gi, yi)}Mi=1 of M i.i.d. sampled from D, and θ̂, Ŵall are the parameters
learned via ℓ2-regularization:

θ̂, Ŵall = arg min
Wall∈W,hθ∈H

ℓS(θ,Wall) := 1
M

M∑
i=1

ℓ
(
hθ
(
f[T ](Gi;Wall)

)
, yi

)
. (65)

A technical challenge is that f[T ] is no longer a linear mapping, so we cannot directly apply the guarantees
about regression on RIP linear mappings. To address this challenge, we compare the power of our nonlinear
learning to the linear learning. Formally, let f lin

[T ](G;Wall) be the linear mapping induced by Wall:

f lin
[T ](G;Wall) := MΛc[T ](G) (66)

and let θ̂lin and Ŵ lin
all be the parameters learned via ℓ2-regularization with regularization coefficient Bθ:

θ̂lin, Ŵ lin
all = arg min

Wall∈W,∥θ∥2≤Bθ

ℓlin
S (θ,Wall) := 1

M

M∑
i=1

ℓ
(

⟨θ, f lin
[T ](Gi;Wall)⟩, yi

)
. (67)
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We introduce the following notation to measure the power of the classifier from H on f[T ] compared to that
of a linear classifier on the linear mapping f lin

[T ]:

δS(W,H, Bθ) := min
Wall∈W,hθ∈H

ℓS(θ,Wall) − min
Wall∈W,∥θ∥2≤Bθ

ℓlin
S (θ,Wall). (68)

Theorem 5. Assume Assumption 1. Assume c[T ] is s-sparse, M satisfies (2s, ϵ0)-RIP, Λ(Wall) is invertible
and f[T ](G;Wall) is Lf -Lipschitz over W. For any δ, ϵ ∈ (0, 1), there are regularization coefficient values Bθ
such that with probability ≥ 1 − δ:

ℓD(θ̂, Ŵall) ≤ ℓ∗
D + 2ϵ+O

(√
rT + Cϵ(W)

M

)
+ min
Ww∈W

B(Wall) ×O

(√
ϵ0 + Cϵ(W)

M

)
+ δS(W,H, Bθ) (69)

where

Cϵ(W) := log N
(

W,
ϵ

8BθLf

)
+ log 1

δ
, (70)

B(Wall) := max
G∼D

∥Λ(Wall)c[T ](G)∥2∥Λ(Wall)−1β∗∥2. (71)

Proof. The proof is similar to that in the simplified setting. First, following the same proof for Lemma 2.(1)
with Ww replaced by Wall, we have

ℓD(θ̂, Ŵall) ≤ ℓS(θ̂, Ŵall) +O

(√
1
M

(
rT + log N

(
W,

ϵ

8BθLf

)
+ log 1

δ

))
+ ϵ. (72)

Furthermore, since θ̂, Ŵall are the optimal solution for the regression on f[T ] and θ̂lin, Ŵ lin
all are that for the

regression on f lin
[T ], we have

ℓS(θ̂, Ŵall) = ℓlin
S (θ̂lin, Ŵ lin

all ) + δS(W,H, Bθ), (73)

and for any Wall ∈ W ,

ℓlin
S (θ̂lin, Ŵ lin

all ) ≤ ℓlin
S (θ̂lin(Wall),Wall). (74)

Finally, following the same proof for Lemma 2.(2) with Ww replaced by Wall, we have

ℓlin
S (θ̂lin(Wall),Wall) ≤ ℓ∗

D +O

(
B(Wall)

√
ϵ0 + 1

M

(
log 1

δ
+ log N

(
W,

ϵ

8BθLf

)))
+ ϵ. (75)

Combining the above inequalities proves the theorem.

The theorem shows a similar conclusion as that in the simplified setting. In particular, when σ is the identity
function and H is the class of linear classifiers with norms bounded by Bθ, we have δ(W,H, Bθ) = 0, and
thus the bound here reduces to the bound in the simplified setting. In the general case, when we choose a
powerful enough classifier class H and the nonlinear embedding f[T ] preserves enough information, then there
exists θ̂, Ŵall that achieves better predictions than the linear counterparts θ̂lin, Ŵ lin

all . This leads to a small
(or even negative) δ(W,H, Bθ), and thus the theorem for the general case gives a similar or better bound
than that in the simplified case.

6 Experiments

6.1 Experimental Setup

Datasets. We perform experiments on graph-level prediction tasks from two domains: molecular property
prediction (61 tasks from 11 benchmarks) and social networks (4 benchmarks).3 Specifically, we consider 37
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Table 1: Details on the benchmark datasets used in our experiments

Dataset # of Tasks Type Domain
IMDB-BINARY (Yanardag & Vishwanathan, 2015) 1 Classification Social Network
IMDB-MULTI (Yanardag & Vishwanathan, 2015) 1 Classification Social Network
REDDIT-BINARY (Yanardag & Vishwanathan, 2015) 1 Classification Social Network
COLLAB (Yanardag & Vishwanathan, 2015) 1 Classification Social Network
Mutagenicity (Kazius et al., 2005) 1 Classification Chemistry
Tox21 (Tox21 Data Challenge, 2014) 12 Classification Chemistry
ClinTox (Artemov et al., 2016; Gayvert et al., 2016) 2 Classification Chemistry
HIV (AIDS Antiviral Screen Data, 2017) 1 Classification Chemistry
MUV (Rohrer & Baumann, 2009) 17 Classification Chemistry
Delaney (Delaney, 2004) 1 Regression Chemistry
Malaria (Gamo et al., 2010) 1 Regression Chemistry
CEP (Hachmann et al., 2011) 1 Regression Chemistry
QM7 (Blum & Reymond, 2009) 1 Regression Chemistry
QM8 (Ramakrishnan et al., 2015) 12 Regression Chemistry
QM9 (Ruddigkeit et al., 2012) 12 Regression Chemistry

classification (33 molecular + 4 social networks) and 28 regression (on molecular) tasks in total. Table 1
provides details about the datasets used in our experiments.

Baseline methods. We consider WL kernels (Shervashidze et al., 2011), Morgan fingerprints (Morgan,
1965), and N-Gram Graph (Liu et al., 2019a) as baselines for graph representation learning. For the predictor
on top of the representations, we use SVM for WL kernels, and Random Forest and XGBoost (Chen &
Guestrin, 2016) for Morgan fingerprints and N-Gram Graph. We also consider several recent end-to-end
trainable GNNs that are commonly used, including GCNN (Duvenaud et al., 2015), GAT (Veličković et al.,
2017), GIN (Xu et al., 2019), Attentive FP (Xiong et al., 2019), and PNA (Corso et al., 2020). Note that we
do not consider recent GNN models that use extra edge/3D information or self-supervised pre-training as
baselines in order to avoid unfair comparison to AWARE—since our analysis throughout this paper focuses on
the standard setting (see Section 3). Attentive FP and PNA were run without using extra edge information
as this is not their main contribution.

Evaluation. We perform single-task learning for each task in each dataset. Each dataset is randomly split
into training, validation, and test sets with a ratio of 8:1:1, respectively. We report the average performance
across 5 runs (datasets are split independently for each run). We select optimal hyperparameters using grid
search. We present the full hyperparameter details as well as an ablation study on their effects below. For
the molecular property prediction tasks, we use evaluation metrics from the benchmark paper (Wu et al.,
2018), except for the MUV dataset for which we use ROC-AUC following recent studies (Hu et al., 2019;
Rong et al., 2020). For the social network tasks, we follow the evaluation metrics from (Xu et al., 2019).

Hyperparameter Tuning. For AWARE, we carefully perform a hyperparameter sweeping on the different
candidate values listed in Table 2.

Table 2: Hyperparameter sweeping for AWARE

Hyperparameters Candidate values
Learning rate 1e-3, 1e-4

# of linear layers in the predictor: L 1, 2, 3
Maximum walk length: T 3, 6, 9, 12

Vertex embedding dimension: r 100, 300, 500
Random dimension: r′ 100, 300, 500

Optimizer Adam

3Our code can be accessed at https://github.com/mehmetfdemirel/aware
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Table 3: Overall performance on all 15 datasets (65 tasks). We report (# tasks with top-1 performance, #
tasks with top-3 performance). Models with no top-3 performance on a dataset are left blank. Models that
are too slow, not well tuned, or not run due to model/dataset incompatibility are marked with “–”. For full
results with error bounds, see Tables 4, 5, and 6.

Dataset # Tasks Metric Morgan FP WL Kernel GCNN GAT GIN Attentive FP PNA N-Gram Graph AWARE
IMDB-BINARY 1 ACC – (0, 1) (0, 1) (1, 1)
IMDB-MULTI 1 ACC – (0, 1) (0, 1) (1, 1)
REDDIT-BINARY 1 ACC – (0, 1) (0, 1) (1, 1)
COLLAB 1 ACC – (0, 1) (0, 1) (1, 1)
Mutagenicity 1 ACC – (1, 1) (0, 1) (0, 1)
Tox21 12 ROC (0, 4) (0, 2) (0, 5) (1, 3) (4, 11) (7, 11)
ClinTox 2 ROC (1, 1) (0, 1) (0, 1) (0, 1) (1, 2)
HIV 1 ROC (1, 1) (0, 1) (0, 1)
MUV 17 ROC (2, 7) (3, 4) (0, 8) (0, 1) (0, 3) (1, 2) (1, 6) (1, 4) (9, 16)
Delaney 1 RMSE (0, 1) (0, 1) (1, 1)
Malaria 1 RMSE (1, 1) (0, 1) (0, 1)
CEP 1 RMSE (1, 1) (0, 1) (0, 1)
QM7 1 MAE (0, 1) (0, 1) (1, 1)
QM8 12 MAE (5, 6) (1, 7) (0, 1) (0, 11) (6, 11)
QM9 12 MAE – (3, 12) (4, 7) (1, 11) (4, 6)
Total 65 (4, 13) (3, 6) (9, 27) (1, 2) (6, 22) (1, 13) (2, 18) (6, 41) (33, 53)

For all the molecular baseline methods other than GAT, Attentive FP, and PNA, the hyperparameter
search strategy outlined in (Liu et al., 2019a) has been adopted. For GAT, we use their reported optimal
hyperparameters (Veličković et al., 2017; Yang et al., 2019). For Attentive FP and PNA, we performed a
hyperparameter tuning that included their reported optimal hyperparameters. For social network experiments,
we perform hyperparameter tuning on PNA and Attentive FP, and use the optimal hyperparameters reported
for the other baseline methods. In addition, for some of the social network datasets, we remove graphs with
vertices more than a certain threshold (REDDIT-BINARY: 200, COLLAB: 100), because they have many
vertices with a lot of neighbors and do not fit into memory for methods using one-hot feature encoding.

Training Details. We train AWARE on 9 classification and 6 regression datasets, each of which consisting of
multiple tasks, resulting in a total of 37 classification and 28 regression tasks. Each dataset is split into 5
different sets of training, validation, and test sets (i.e., 5 different random seeds) with a respective ratio of
8:1:1. We train the model for 500 epochs and use early stopping on the validation set with a patience of 50
epochs. No learning rate scheduler is used.

GPU Specifications. In general, an NVIDIA GeForce GTX 1080 (8GB) GPU model was used in the
training process to obtain the main experimental results. For some of the bigger datasets, we used an NVIDIA
A100 (40 GB) GPU model.

6.2 Results

Prediction Performance. For a quick overview, we present the relative performance of AWARE compared
to the baseline methods in Table 3. We observe that AWARE achieves the best performance in 33 out of
the 65 tasks, while being ranked in the top-3 performing methods for 53 tasks. In particular, AWARE (even
with a simple fully-connected predictor) significantly outperforms N-Gram Graph (which uses a powerful
RF or XGB predictor) in 44 tasks, and achieves comparable performance in all other tasks. This indicates
that AWARE can successfully learn a weighting scheme to selectively focus on the graph information that is
important for the downstream prediction task.

We also present complete results for all tasks with error bounds in Tables 4, 5, and 6. These allow for more
fine-grained inspection. For example, we observe in Tables 5 and 6 that both N-Gram Graph and AWARE
give overall stronger performance compared to other baselines across the Tox21 tasks in Table 5 and QM8
tasks in Table 6. This suggests that the tasks from these two datasets rely heavily on walk information, which
can be well-exploited by approaches using walk-level aggregation. AWARE, being able to highlight important
walk types, can further improve the performance of N-Gram Graph—as observed in Tables 5 and 6.

The Effect of Hyperparameters. We also analyze the effect of different hyperparameters on the prediction
performance. Figure 2 demonstrates the effect of the maximum walk length T and the latent dimension r′,
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Table 4: In this table, we present the performance of 8 models on 4 classification tasks in the domain of social
networks (Morgan FP is excluded as it works only on molecular graphs). Experiments are run on 5 different
random seeds, and the average of the 5 reported for each task along with their standard deviation in the
subscript. The top-3 models in each task are highlighted in gray and the best one is highlighted in blue .
Higher is better.

Task # of Classes Metric WL Kernel GCNN GAT GIN Attentive FP PNA N-Gram Graph AWARE
IMDB-BINARY 2 ACC 0.680±0.022 0.698±0.026 0.568±0.047 0.696±0.037 0.716±0.022 0.710±0.011 0.522±0.036 0.740±0.020
IMDB-MULTI 3 ACC 0.403±0.027 0.459±0.033 0.366±0.025 0.473±0.031 0.481±0.021 0.489±0.031 0.341±0.019 0.499±0.026

REDDIT-BINARY 2 ACC 0.892±0.017 0.931±0.013 0.900±0.036 0.933±0.009 0.864±0.029 0.938±0.010 0.764±0.026 0.949±0.014
COLLAB 3 ACC 0.567±0.011 0.660±0.009 0.616±0.029 0.669±0.014 0.653±0.012 0.675±0.024 0.376±0.119 0.739±0.017

Table 5: In this table, we present the performance of 9 models on 33 classification tasks from the domain of
molecular property prediction. Experiments are run on 5 different random seeds, and the average of the 5
run results is reported for each task along with their standard deviation in the subscript. The top-3 models
in each task are highlighted in gray and the best one is highlighted in blue (breaking ties by checking
more digits in the average result). We mark incompatible task/model pairs with a “–”. Higher is better.

Dataset/Task Metric Morgan FP WL Kernel GCNN GAT GIN Attentive FP PNA N-Gram Graph AWARE
Mutagenicity ACC – 0.684±0.083 0.758±0.011 0.601±0.017 0.747±0.019 0.657±0.029 0.753±0.013 0.506±0.011 0.757±0.040

Tox21 tasks ↓
NR-AR ROC 0.763±0.043 0.701±0.068 0.762±0.035 0.754±0.058 0.759±0.048 0.783±0.035 0.786±0.039 0.776±0.049 0.786±0.041

NR-AR-LBD ROC 0.858±0.048 0.861±0.053 0.844±0.046 0.800±0.056 0.830±0.046 0.839±0.065 0.838±0.045 0.873±0.039 0.865±0.054
NR-AhR ROC 0.890±0.010 0.876±0.017 0.886±0.017 0.823±0.020 0.872±0.016 0.878±0.011 0.901±0.013 0.897±0.008 0.889±0.006

NR-Aromatase ROC 0.821±0.024 0.818±0.027 0.828±0.024 0.744±0.039 0.760±0.053 0.844±0.019 0.837±0.018 0.852±0.013 0.861±0.019
NR-ER ROC 0.726±0.036 0.704±0.031 0.737±0.018 0.706±0.042 0.683±0.021 0.747±0.014 0.738±0.030 0.754±0.020 0.765±0.028

NR-ER-LBD ROC 0.838±0.043 0.799±0.033 0.813±0.048 0.764±0.023 0.772±0.032 0.808±0.037 0.815±0.039 0.834±0.030 0.853±0.059
NR-PPAR-gamma ROC 0.840±0.063 0.845±0.060 0.816±0.036 0.758±0.035 0.780±0.062 0.848±0.053 0.841±0.067 0.857±0.053 0.862±0.040

SR-ARE ROC 0.820±0.016 0.801±0.029 0.809±0.014 0.735±0.020 0.794±0.020 0.809±0.028 0.821±0.019 0.851±0.014 0.828±0.011
SR-ATAD5 ROC 0.850±0.017 0.814±0.020 0.827±0.052 0.754±0.052 0.803±0.050 0.807±0.047 0.821±0.055 0.853±0.025 0.841±0.025

SR-HSE ROC 0.797±0.019 0.803±0.037 0.774±0.037 0.686±0.038 0.740±0.062 0.787±0.037 0.778±0.027 0.808±0.025 0.820±0.026
SR-MMP ROC 0.890±0.007 0.875±0.017 0.877±0.017 0.834±0.014 0.872±0.025 0.895±0.018 0.873±0.019 0.905±0.015 0.905±0.014
SR-p53 ROC 0.844±0.012 0.842±0.044 0.818±0.015 0.733±0.036 0.817±0.026 0.804±0.026 0.843±0.024 0.860±0.019 0.852±0.030

ClinTox tasks ↓
CT_TOX ROC 0.813±0.036 0.830±0.057 0.860±0.027 0.828±0.075 0.859±0.063 0.873±0.053 0.895±0.043 0.849±0.024 0.905±0.038

FDA_APPROVED ROC 0.795±0.084 0.862±0.029 0.866±0.028 0.899±0.033 0.883±0.025 0.870±0.070 0.879±0.022 0.852±0.044 0.895±0.050

HIV ROC 0.856±0.012 0.811±0.015 0.813±0.014 0.783±0.015 0.829±0.014 0.796±0.016 0.822±0.013 0.843±0.017 0.825±0.014

MUV tasks ↓
MUV-466 ROC 0.765±0.142 0.708±0.130 0.736±0.061 0.749±0.109 0.705±0.134 0.574±0.161 0.713±0.085 0.724±0.100 0.830±0.078
MUV-548 ROC 0.953±0.036 0.917±0.061 0.960±0.022 0.764±0.117 0.793±0.113 0.865±0.056 0.966±0.016 0.925±0.061 0.976±0.016
MUV-600 ROC 0.536±0.098 0.536±0.106 0.570±0.091 0.437±0.095 0.575±0.153 0.508±0.128 0.680±0.111 0.675±0.108 0.687±0.062
MUV-644 ROC 0.893±0.068 0.944±0.028 0.885±0.024 0.762±0.161 0.749±0.094 0.776±0.133 0.913±0.069 0.799±0.085 0.909±0.029
MUV-652 ROC 0.725±0.131 0.653±0.139 0.694±0.177 0.493±0.124 0.645±0.071 0.593±0.111 0.659±0.124 0.688±0.117 0.819±0.084
MUV-689 ROC 0.676±0.277 0.735±0.217 0.671±0.257 0.553±0.247 0.775±0.088 0.452±0.220 0.666±0.172 0.669±0.203 0.833±0.077
MUV-692 ROC 0.693±0.199 0.447±0.193 0.581±0.235 0.626±0.170 0.629±0.118 0.581±0.174 0.618±0.209 0.606±0.147 0.639±0.194
MUV-712 ROC 0.927±0.058 0.889±0.072 0.936±0.038 0.760±0.162 0.773±0.195 0.946±0.040 0.881±0.119 0.812±0.103 0.931±0.059
MUV-713 ROC 0.554±0.206 0.787±0.093 0.731±0.109 0.586±0.109 0.567±0.183 0.526±0.094 0.648±0.093 0.715±0.089 0.781±0.151
MUV-733 ROC 0.709±0.101 0.707±0.108 0.751±0.129 0.637±0.053 0.558±0.198 0.664±0.136 0.632±0.168 0.696±0.084 0.819±0.127
MUV-737 ROC 0.791±0.092 0.773±0.071 0.796±0.082 0.675±0.087 0.723±0.093 0.794±0.063 0.810±0.111 0.879±0.049 0.917±0.058
MUV-810 ROC 0.794±0.111 0.875±0.052 0.714±0.124 0.588±0.166 0.682±0.188 0.604±0.084 0.782±0.133 0.680±0.094 0.820±0.103
MUV-832 ROC 0.986±0.014 0.964±0.034 0.926±0.042 0.923±0.036 0.918±0.129 0.714±0.121 0.960±0.037 0.969±0.030 0.973±0.027
MUV-846 ROC 0.877±0.128 0.884±0.066 0.911±0.067 0.863±0.151 0.764±0.112 0.857±0.094 0.940±0.024 0.781±0.100 0.964±0.027
MUV-852 ROC 0.890±0.096 0.867±0.109 0.882±0.099 0.743±0.133 0.735±0.194 0.863±0.047 0.850±0.086 0.834±0.141 0.917±0.090
MUV-858 ROC 0.701±0.080 0.677±0.186 0.705±0.106 0.650±0.205 0.746±0.134 0.553±0.147 0.760±0.110 0.630±0.148 0.657±0.186
MUV-859 ROC 0.530±0.082 0.533±0.094 0.613±0.173 0.499±0.076 0.607±0.126 0.681±0.095 0.604±0.037 0.724±0.145 0.653±0.186

and Figure 3 shows the impact of the number of layers L in the final predictor and the vertex embedding
dimension r. In general, the performance is quite stable across different hyperparameter values. This indicates
that our algorithm is friendly towards hyperparameter tuning.

6.3 Ablation Studies

In this section, we perform three different ablation studies to further explore our method. First, we perform
a study to examine the impact of each weighting component Wv,Ww and Wg in AWARE. We individually
remove one component from the model and compare its performance to the full model. We also compare
our full model to the version with linear σ, i.e., σ(z) = z. Table 7 shows that the weighting components
mostly lead to better performance even though there are cases in which they may not. We see that all three
weighting components contribute to improved performance for most tasks. Notably, there exist tasks for
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Table 6: In this table, we present the performance of 9 models on 28 regression tasks from the domain of
molecular property prediction. Experiments are run on 5 different random seeds, and the average of the 5
run results are reported for each task along with their standard deviation in the subscript. The top-3 models
in each task are highlighted in gray and the best one is highlighted in blue (breaking ties by checking
more digits in the average result). Models that are too slow are left blank. Lower is better.

Dataset/Task Metric Morgan FP WL Kernel GCNN GAT GIN Attentive FP PNA N-Gram Graph AWARE
Delaney RMSE 1.081±0.073 1.160±0.050 0.762±0.151 0.954±0.151 0.840±0.070 0.615±0.026 0.922±0.122 0.744±0.068 0.585±0.042

Malaria RMSE 0.995±0.028 1.090±0.037 1.141±0.057 1.136±0.035 1.129±0.032 1.080±0.028 1.048±0.022 1.030±0.039 1.056±0.036

CEP RMSE 1.274±0.047 1.783±0.083 1.457±0.112 1.344±0.112 1.064±0.057 1.108±0.046 1.153±0.052 1.409±0.029 1.233±0.040

QM7 MAE 118.883±2.421 173.582±4.293 76.000±2.743 213.014±10.618 82.681±3.979 74.710±9.079 108.913±25.555 49.661±4.246 39.697±3.400

QM8 tasks ↓
E1-CC2 MAE 0.009±0.000 0.033±0.001 0.007±0.001 0.012±0.002 0.008±0.001 0.012±0.001 0.008±0.001 0.007±0.000 0.007±0.000
E2-CC2 MAE 0.011±0.000 0.024±0.001 0.007±0.000 0.012±0.001 0.008±0.000 0.013±0.001 0.010±0.000 0.008±0.000 0.008±0.000
f1-CC2 MAE 0.016±0.001 0.071±0.001 0.016±0.002 0.020±0.003 0.014±0.001 0.020±0.002 0.015±0.001 0.015±0.000 0.013±0.000
f2-CC2 MAE 0.035±0.001 0.080±0.001 0.033±0.001 0.038±0.001 0.031±0.001 0.039±0.001 0.032±0.001 0.030±0.001 0.030±0.002

E1-PBE0 MAE 0.009±0.000 0.034±0.001 0.006±0.001 0.015±0.004 0.007±0.001 0.012±0.000 0.008±0.001 0.007±0.000 0.007±0.000
E2-PBE0 MAE 0.011±0.000 0.029±0.001 0.007±0.000 0.012±0.002 0.008±0.000 0.012±0.001 0.009±0.001 0.007±0.000 0.008±0.000
f1-PBE0 MAE 0.014±0.000 0.067±0.001 0.012±0.000 0.016±0.001 0.011±0.001 0.017±0.001 0.013±0.001 0.012±0.000 0.011±0.001
f2-PBE0 MAE 0.028±0.001 0.078±0.000 0.025±0.001 0.030±0.001 0.024±0.001 0.031±0.001 0.025±0.000 0.024±0.000 0.022±0.001
E1-CAM MAE 0.009±0.000 0.033±0.001 0.006±0.001 0.012±0.003 0.007±0.001 0.012±0.001 0.007±0.000 0.006±0.000 0.006±0.000
E2-CAM MAE 0.010±0.000 0.026±0.001 0.006±0.000 0.011±0.001 0.007±0.001 0.013±0.001 0.009±0.000 0.007±0.000 0.007±0.000
f1-CAM MAE 0.015±0.001 0.072±0.001 0.013±0.000 0.018±0.001 0.012±0.001 0.017±0.001 0.013±0.001 0.013±0.001 0.012±0.001
f2-CAM MAE 0.030±0.001 0.080±0.001 0.027±0.001 0.034±0.003 0.027±0.001 0.035±0.003 0.027±0.001 0.026±0.001 0.024±0.001

QM9 tasks ↓
mu MAE 0.625±0.003 – 0.506±0.019 0.654±0.011 0.476±0.008 0.562±0.020 0.575±0.012 0.536±0.002 0.535±0.007

alpha MAE 3.348±0.018 – 0.533±0.083 1.033±0.144 0.688±0.081 1.076±0.157 3.322±0.661 0.595±0.004 0.774±0.035
homo MAE 0.007±0.000 – 0.004±0.000 0.008±0.001 0.004±0.000 0.009±0.000 0.007±0.001 0.005±0.000 0.006±0.000
lumo MAE 0.009±0.000 – 0.004±0.000 0.009±0.002 0.004±0.000 0.009±0.000 0.008±0.001 0.005±0.001 0.005±0.000
gap MAE 0.010±0.000 – 0.006±0.000 0.011±0.001 0.005±0.000 0.012±0.000 0.010±0.001 0.007±0.000 0.007±0.000
r2 MAE 97.768±0.405 – 30.788±2.295 100.926±8.128 36.583±1.937 82.265±8.864 97.403±18.507 56.776±0.283 83.000±8.780

zpve MAE 0.008±0.000 – 0.001±0.000 0.004±0.002 0.001±0.000 0.002±0.000 0.008±0.001 0.000±0.000 0.001±0.000
cv MAE 1.422±0.010 – 0.229±0.014 0.541±0.220 0.248±0.013 0.521±0.062 1.318±0.256 0.334±0.004 0.586±0.042
u0 MAE 14.657±0.153 – 0.906±0.337 1.698±1.589 2.283±0.567 2.715±1.299 22.330±3.091 0.427±0.032 0.090±0.017

u298 MAE 14.647±0.148 – 1.126±0.494 5.110±5.487 2.032±0.453 2.683±1.263 21.365±2.566 0.428±0.032 0.086±0.009
h298 MAE 14.650±0.146 – 0.785±0.292 2.066±1.159 2.308±0.580 2.930±1.093 20.880±5.738 0.429±0.032 0.098±0.007
g298 MAE 14.651±0.149 – 0.646±0.169 2.576±1.555 2.269±0.596 4.014±1.422 19.794±3.679 0.427±0.028 0.086±0.010

Table 7: Ablation study I: Change in performance on removing/modifying components of AWARE. “+" / “-"
indicate relatively better/worse performance respectively.

Dataset Task No Wv No Ww No Wg No Wv, Ww or Wg Linear σ

IMDB-BINARY IMDB-BINARY −5.03% +1.12% −1.96% −7.54% −10.06%

Tox21 NR-AR +1.32% −0.76% +0.67% +0.37% −1.12%
ClinTox CT_TOX −9.00% −2.09% +0.70% −3.07% −10.35%
ClinTox FDA_APPROVED −7.83% −2.39% +1.38% −4.16% −10.40%

MUV MUV-466 −20.08% −16.70% −7.44% +1.80% −18.73%

Delaney Delaney −28.45% −0.18% −4.69% −57.80% −76.17%
Malaria Malaria −0.83% +2.10% −1.15% −2.32% −5.86%

QM7 QM7 −11.59% +3.74% −18.45% −71.39% −85.21%

Table 8: Ablation study II: Change in AWARE’s performance when the vertex embedding matrix W is
randomly initialized and non-trainable, with linear σ. Underline indicates better performance.

Dataset Task Metric Trainable W Fixed Random W

IMDB-BINARY IMDB-BINARY ACC 0.716 0.660

Tox21 NR-AR ROC-AUC 0.776 0.774
ClinTox CT_TOX ROC-AUC 0.889 0.764
ClinTox FDA_APPROVED ROC-AUC 0.869 0.774

Delaney Delaney RMSE 0.612 1.162
Malaria Malaria RMSE 1.062 1.126

QM7 QM7 MAE 41.280 96.675

which specific weights lead to a drop in performance. Aligning with Theorems 1 and 3 in Section 5, this
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Figure 2: Effect of T and r′ on the prediction performance on the 12 tasks in the Tox21 dataset. For each
pair of T and r′ hyperparameter values, the model was run on 5 different seeds of data and the average of
the 5 runs is reported. Higher is better.
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Figure 3: Effect of the number of linear layers L in the fully connected neural network for graph-level
prediction and the vertex embedding dimension r on the prediction performance on the 2 tasks in the
ClinTox dataset. For each pair of L and r hyperparameter values, the model was run on 5 different seeds of
data and the average of the 5 runs is reported. Higher is better.
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Table 9: Ablation study III: Change in AWARE’s performance when the final predictor is changed from a
multiple layer NN to a linear predictor. Underline indicates better performance.

Dataset Task Metric Multiple layers Linear predictor
IMDB-BINARY IMDB-BINARY ACC 0.716 0.678

Tox21 NR-AR ROC-AUC 0.776 0.759
ClinTox CT_TOX ROC-AUC 0.889 0.880
ClinTox FDA_APPROVED ROC-AUC 0.869 0.870

Delaney Delaney RMSE 0.612 0.640
Malaria Malaria RMSE 1.062 1.070

QM7 QM7 MAE 41.280 415.155

indicates that weighting schemes are successful in learning important artifacts for the downstream task only
under specific conditions. Furthermore, we can also observe the advantage of using a non-linear activation
function σ over a linear one.

Second, we analyze the change in performance when a non-trainable vertex embedding matrix W and a linear
σ are used. Table 8 demonstrates using a trainable random vertex embedding matrix W and a non-linear σ
gives overall better performance. It also shows that even with random W and a linear σ, our method can still
get decent performance—providing justification for the simplification assumptions in our theoretical analysis.

Third, we examine the advantage of using a fully-connected neural network with multiple linear layers as a
predictor over using a simple linear predictor. Table 9 suggests that using multiple layers in the final predictor
leads to better performance in general.

7 Interpretation and Visualization

AWARE uses an attention mechanism at the walk level (Ww) to aggregate crucial information from the
neighbors of each vertex (Section 4). While we have demonstrated the empirical effectiveness of this in
Section 6, we now focus on validating our analysis that AWARE can highlight important substructures of the
input graph for the prediction task.

For this analysis, we use the Mutagenicity dataset (Kazius et al., 2005), which comes with the ground-truth
information that molecules that contain specific chemical groups (-NO2, -NH2) are much more likely to be
assigned a ‘mutagen’ label (Debnath et al., 1991). This dataset has been introduced for the purpose of
increasing accuracy and reliability in mutagenicity predictions for molecular compounds. Mutagenicity of a
molecular compound, among many other attributes, is known to impede its ability to become a usable drug.
A mutagen is a physical or chemical factor that has the potential to alter the DNA of an organism, which in
turn increases the possibility of mutations. The dataset contains 4337 molecular structures with 2401 labeled
as “mutagen”. Molecular structures in this dataset contain around 30 atoms on average.

To find substructures that AWARE uses for its prediction, we compute the importance score for each bond
(edge) of the molecule by using the attention scores computed via Equation (7) (Specifically for an edge i−j,
we use [S(T )]ij + [S(T )]ji). Accordingly, we visualize two randomly chosen ‘mutagenic’ molecules in Figure 4
and the important substructures as attributed by different interpretation techniques. Figures 4b and 4c
depict the interpretation of the GIN model (Xu et al., 2019) using Grad and GNNExplainer techniques (Ying
et al., 2019). The former computes gradients with respect to the adjacency matrix and vertex features, while
the latter extracts substructures with the closest property prediction to the complete graph. In the first
molecule, although both of these techniques are able to highlight the two NH2 groups as important for the
final prediction, they fail to highlight the NO2 group. In the second molecule, while Grad fails to identify the
NO2 atom group, GNNExplainer marks majority of the bonds (edges) in the molecule as important, which
should not be the case.

In contrast, AWARE can successfully highlight both the NH2 and NO2 groups as important in the first
molecule as well as the NO2 group in the second one, as can be seen in Figure 4d. This provides further
evidence that AWARE is able to identify substructures in the graph that are significant (or insignificant) for
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Figure 4: Visualization of two random mutagen molecules from Mutagenicity and their important
substructures for accurate prediction captured by different interpretation techniques. Different node colors
indicate different atom types. (a) depicts the original molecules with important mutagenic atom groups
circled in red, such as NO2 and NH2. (b), (c), and (d) demonstrate important substructures detected by
different methods. (e) is a heatmap for the edge importance scores computed by AWARE.
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Figure 5: Interpretation of graph-level attention Wg for the NR-AR classification task.

a given downstream prediction task (In the examples given in Figure 4, we set a threshold (≥1.0) on the
importance scores computed by AWARE to highlight important substructures in the molecules).

Interpretation for Wg. AWARE uses Wg to selectively weight the embeddings at the graph level for the
prediction task (Section 4). Towards interpreting Wg, we want to analyze how well it aligns with the predictor
for the downstream task. Specifically, we train AWARE for the binary classification NR-AR task (Tox21
dataset) using a linear predictor with parameter w (without a non-linear activation function). We randomly
sample 200 data points, and compute their graph embeddings f[T ](G) from AWARE. We denote the top three
left singular vectors of Wg by {u1, u2, u3}. For a particular ui, we define vi = [ui, ui, . . . (T times)] to bring
ui to the same-dimensional space as f[T ](G). Finally, we plot {v1, v2, v3}, w, and the embeddings f[T ](G) for
all 200 samples in Figure 5 using PCA with n = 2 components.

We observe that Wg’s largest singular vector direction aligns very well with the parameter w of the downstream
predictor that the model has learned. This suggests that this weight can successfully emphasize the directions
in the graph embedding space that are important for the prediction.
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8 Conclusion

In this work, we present and analyze a novel attentive walk-aggregating GNN, AWARE, providing the first
provable guarantees on the learning performance of weighted GNNs by identifying the specific conditions
under which weighting can improve the learning performance in the standard setting. Our experiments
on 65 graph-level prediction tasks from the domains of molecular property prediction and social networks
demonstrate that AWARE overall outperforms traditional and recent baselines in the standard setting where
only adjacency and vertex attribute information are used. Our interpretability study lends support to our
algorithm design and theoretical insights by providing concrete evidence that the attention mechanism works
in favor of emphasizing the important walks in the graph while diminishing the others. Lastly, our ablation
studies show the importance of the different components and design choices of our model. Supported with
the strong representation power by AWARE, we believe that it can be further explored for a wide range
of tasks, including but not limited to multi-task learning (e.g., Liu et al. (2019b; 2022b)), self-supervised
pretraining (e.g., Liu et al. (2022a;c)), few-shot learning (e.g., Altae-Tran et al. (2017)), etc.

We would also like to briefly touch on the ethical impacts and weaknesses of our method here. Though
AWARE can be used for graph-structured data from distinct data domains, we will be highlighting the ethical
implications of our method for the important domain of molecular property prediction. Having strong
empirical performance for the molecular property prediction domain, AWARE can potentially be used for
efficient drug development process. Physical experiments for this task can be expensive and slow, which can
be alleviated by using AWARE for an initial virtual screening (selecting high-confident candidates from a large
pool before physical screening). A strong empirically performing model like AWARE can help speed up the
process, and provide tremendous cost savings for this important task. However, deploying an automatic ML
prediction model for such a highly critical task must be done extremely carefully. As evidenced by Section 6,
AWARE does not achieve the best performance for all molecular property prediction tasks. Thus, AWARE
may fail to identify promising chemicals for drug development, and/or make erroneous selections. While the
former may increase the time and cost of the process, the latter might lead to failures in developing the drug.
Nevertheless, with sufficient physical experimentation performed by human experts, such unwanted events
can be minimized while still enjoying the benefits of using AWARE.
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Appendix
Attentive Walk-Aggregating Graph Neural Networks

A Toolbox for Theoretical Analysis

A.1 Toolbox from Compressive Sensing

For completeness, here we include the review from (Liu et al., 2019a) about related concepts in the field of
compressed sensing that are important for our analysis. Please refer to (Foucart & Rauhut, 2017) for more
details.

The primary goal of compressed sensing is to recover a high-dimensional k-sparse signal x ∈ RN from a few
linear measurements. Here, being k-sparse means that x has at most k non-zero entries, i.e., |x|0 ≤ k. In the
noiseless case, we have a design matrix A ∈ Rd×N and the measurement vector is z = Ax. The optimization
formulation is then

minimizex′∥x′∥0 subject to Ax′ = z (76)

where ∥x′∥0 is ℓ0 norm of x′, i.e., the number of non-zero entries in x′. The assumption that x is the sparsest
vector satisfying Ax = z is equivalent to that x is the optimal solution for (76).

Unfortunately, the ℓ0-minimization in (76) is NP-hard. The typical approach in compressed sensing is to
consider its convex surrogate using ℓ1-minimization:

minimizex′∥x′∥1 subject to Ax′ = z (77)

where ∥x′∥1 =
∑
i |x′

i| is the ℓ1 norm of x′. The fundamental question is when the optimal solution of (76) is
equivalent to that of (77), i.e., when exact recovery is guaranteed.

A.1.1 The Restricted Isometry Property

One common condition for recovery is the Restricted Isometry Property (RIP):
Definition 6. A ∈ Rd×N is (X , ϵ)-RIP for some subset X ⊆ RN if for any x ∈ X ,

(1 − ϵ)∥x∥2 ≤ ∥Ax∥2 ≤ (1 + ϵ)∥x∥2. (78)

We will abuse notation and say (k, ϵ)-RIP if X is the set of all k-sparse x ∈ RN .

Introduced by (Candes & Tao, 2005), RIP has been used to show to guarantee exact recovery.
Theorem 6 (Restatement of Theorem 1.1 in (Candes, 2008)). Suppose A is (2k, ϵ)-RIP for an ϵ <

√
2 − 1.

Let x̂ denote the solution to (77), and let xk denote the vector x with all but the k-largest entries set to zero.
Then

∥x̂− x∥1 ≤ C0∥xk − x∥1 (79)

and

∥x̂− x∥2 ≤ C0k
−1/2∥xk − x∥1. (80)

In particular, if x is k-sparse, the recovery is exact.

Furthermore, it has been shown that A is (k, ϵ)-RIP with overwhelming probability when d = Ω(k log N
k )

and
√
dAij ∼ N (0, 1)(∀i, j) or

√
dAij ∼ U{−1, 1}(∀i, j). There are also many others types of A with RIP;

see (Foucart & Rauhut, 2017).
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A.1.2 Compressed Learning

Given that Ax preserves the information of sparse x when A is RIP, it is then natural to study the performance
of a linear classifier learned on Ax compared to that of the best linear classifier on x. Our analysis will use a
theorem from (Arora et al., 2018) that generalizes that of (Calderbank et al., 2009).

Let X ⊆ RN denote

X = {x : x ∈ RN , ∥x∥0 ≤ k, ∥x∥2 ≤ B}. (81)

Let {(xi, yi)}Mi=1 be a set of M samples i.i.d. from some distribution over X × {−1, 1}. Let ℓ denote a
λℓ-Lipschitz convex loss function. Let ℓD(θ) denote the risk of a linear classifier with weight θ ∈ RN , i.e.,
ℓD(θ) = E[ℓ(⟨θ, x⟩, y)], and let θ∗ denote a minimizer of ℓD(θ). Let ℓAD(θ) denote the risk of a linear classifier
with weight θ ∈ Rd over Ax, i.e., ℓAD(θA) = E[ℓ(⟨θA, Ax⟩, y)], and let θ̂A denote the weight learned with
ℓ2-regularization over {(Axi, yi)}i:

θ̂A = arg min
θ

1
M

M∑
i=1

ℓ(⟨θ,Axi⟩, yi) + λ∥θ∥2 (82)

where λ is the regularization coefficient.
Theorem 7 (Restatement of Theorem 4.2 in (Arora et al., 2018)). Suppose A is (∆X , ϵ)-RIP. Then with
probability at least 1 − δ,

ℓAD(θ̂A) ≤ ℓD(θ∗) +O

(
λℓB∥θ∗∥

√
ϵ+ 1

M
log 1

δ

)
(83)

for appropriate choice of λ. Here, ∆X = {x− x′ : x, x′ ∈ X } for any X ⊆ RN .

A.2 Tools for the Proof of Theorem 2

For the proof, we concern about whether the ℓ-way column product of W has RIP. Existing results in the
literature do not directly apply in our case. But following the ideas in Theorem 4.3 in (Kasiviswanathan &
Rudelson, 2019), we are able to prove the following theorem for our purpose.
Theorem 8. Let X be an n× d matrix, and let R be a d×N random matrix with independent entries Rij
such that E[Rij ] = 0,E[R2

ij ] = 1, and |Rij | ≤ τ almost surely. Let t ≥ 2 be a constant. Let ϵ ∈ (0, 1), and let
k be an integer satisfying sr(X) ≥ Cτ4tk3

ϵ2 log Nℓ

k for some universal constant C > 0. Then with probability at
least 1 − exp(−cϵ2sr(X)/(k2τ4t)) for some universal constant c > 0, the matrix XR[t]/∥X∥F is (k, ϵ)-RIP.

Here, sr(X) = ∥X∥2
F /∥X∥2 is the stable rank of X. In our case, we will apply the theorem with X being

Id×d/
√
d where Id×d ∈ Rd×d is the identity matrix.

Proof of Theorem 8. The proof follows the idea in Theorem 4.3 in (Kasiviswanathan & Rudelson, 2019).
However, their analysis is for a different type of matrices (ℓ-way Column Hadamard Product). We thus
include a proof for our case for completeness.

Let u ∈ Rdt be a vector with sparsity k, and its entries indexed by sequences (i1, i2, . . . , it) ∈ [d]⊗t. Let
ℓ ∈ [p], and define

yℓ :=
∑

(i1,i2,...,it)∈[d]⊗t

u(i1,i2,...,it)

t∏
j=1

Rℓij . (84)

Note that the random variables yℓ(ℓ ∈ [p]) are independent. We will now estimate the ψ2-norm of yℓ and then
use the Hanson-Wright inequality (and its corollaries) with a net argument to establish the concentration for
the norm of XR[ℓ]u = Xy where y = (y1, . . . , yp).
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Let supp(u) be the support of u. By the triangle inequality,

∥yℓ∥ψ2
=

∥∥∥∥∥∥
∑

(i1,i2,...,it)∈[d]⊗t

u(i1,i2,...,it)

t∏
j=1

Rℓij

∥∥∥∥∥∥
ψ2

(85)

=
∑

(i1,i2,...,it)∈supp(u)

∥∥∥∥∥∥u(i1,i2,...,it)

t∏
j=1

Rℓij

∥∥∥∥∥∥
ψ2

(86)

= O
(
τ t∥u∥1

)
(87)

= O
(
τ t

√
k∥u∥

)
. (88)

Next, we choose an (1/2C2)-net N in the set of all k-sparse vectors in Cd
t−1 such that

|N | ≤
(
dt

k

)
(6C2)k ≤ exp

(
k log

(
C0d

t

k

))
. (89)

Note that for any k-sparse vector u ∈ Cd
t−1, y = R[t]u = (y1, . . . , yp) is a random vector with independent

coordinates such that for any ℓ ∈ [p],

E[yℓ] = 0,E[y2
ℓ ] = ∥u∥2

2, and ∥yℓ∥ψ2 ≤ Cτ t
√
k∥u∥2. (90)

Then by Corollary 1, for any fixed u ∈ Cd
t−1 with |supp(u)| ≤ k (and y = R[t]u),

Pr [|∥Xy∥2 − ∥X∥F | > ϵ∥X∥F ] ≤ 2 exp
(

− Cϵ2

maxℓ ∥yℓ∥4
ψ2

sr(X)
)

≤ 2 exp
(

− C1ϵ
2

τ4tk2 sr(X)
)
. (91)

Together with the union bound over u ∈ N and using the assumption on sr(X), we have

Pr
[
∃u ∈ N , |∥XR[t]u∥2 − ∥X∥F | > ϵ∥X∥F

]
≤ exp

(
k log

(
C0d

t

k

))
· 2 exp

(
− C1ϵ

2

τ4tk2 sr(X)
)
. (92)

Finally, we extend the above argument from the net to all k-sparse vectors. From Corollary 2, we have

Pr
[
∃I ⊆ [d]⊗t, |I| = k, ∥XR[t]

I ∥2 > C1ϵ∥X∥F
]

≤ exp
(

− c1ϵ
2

τ4tk2 sr(X)
)
. (93)

First assume that the events in equation 92 and equation 93 happen. Any k-sparse vector u can be written
as u = a+ b, where a ∈ N , and b satisfies |supp(b)| ≤ k and ∥b∥2 ≤ 1/(2C1). Let Ib = supp(b) ⊆ [d]⊗t and
let b̃ be b restricted to Ib. Let R[t]

Ib
be the submatrix of R[t] with columns indexed by Ib. Then

∥XR[t]u∥2 = ∥XR[t]a+XR[t]b∥2 (94)
≤ ∥XR[t]a∥2 + ∥XR[t]b∥2 (95)

= ∥XR[t]a∥2 + ∥XR[t]
Ib
b̃∥2 (96)

≤ ∥XR[t]a∥2 + ∥XR[t]
Ib

∥2∥b̃∥2 (97)

≤ (1 + ϵ)∥X∥F + 1
2C2

∥XR[t]
Ib

∥2 (98)

≤ (1 + ϵ1)∥X∥F (99)

where the bound on ∥XR[t]a∥2 is from equation 92 and the spectrum norm bound for ∥XR[t]
Ib

∥2 is from
equation 93. Similarly,

∥XR[t]u∥2 ≥ (1 − ϵ2)∥X∥F . (100)

Adjusting the constants and removing the conditioning completes the proof.
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For proving the above Theorem 8, the Hanson-Wright Inequality and its corollaries are useful. We thus
include them here for completeness.
Theorem 9 (Hanson-Wright Inequality (Rudelson et al., 2013)). Let x = (x1, . . . , xn) ∈ Rn be a random
vector with independent components xi which satisfy E[xi] = 0 and ∥xi∥ψ2 ≤ K. Let M be an n× n matrix.
Then for every t ≥ 0,

Pr
[∣∣x⊤Mx− E[x⊤Mx]

∣∣ > t
]

≤ 2 exp
(

−cmin
{

t2

K4∥M∥2
F

,
t

K2∥M∥2

})
. (101)

Corollary 1 (Subgaussian Concentration (Rudelson et al., 2013)). Let M be a fixed n × d matrix. Let
x = (x1, . . . , xn) ∈ Rn be a random vector with independent components xi which satisfies E[xi] = 0,E[x2

i ] = 1
and ∥xi∥ψ2 ≤ K. Then for every t ≥ 0,

Pr[|∥Mx∥2 − ∥M∥F | > t] ≤ 2 exp
(

−ct2

K4∥M∥2
2

)
. (102)

Corollary 2 (Spectrum Norm of the Product (Rudelson et al., 2013)). Let B be a fixed n× p matrix, and let
G = (Gij) be a p× d matrix with independent entries that satisfy: E[Gij ] = 0,E[G2

ij ] = 1, and ∥Gij∥ψ2 ≤ K.
Then for any a, b > 0,

Pr[∥BG∥2 > CK2(a∥B∥F + b
√
d∥B∥2)] ≤ 2 exp

(
−a2sr(B) − b2d

)
. (103)

B Dataset Licenses.

The Delaney (Delaney, 2004), CEP (Hachmann et al., 2011), QM7 (Blum & Reymond, 2009), QM9 (Ruddigkeit
et al., 2012), MUV (Rohrer & Baumann, 2009), and Mutagenicity (Kazius et al., 2005) datasets are all
licensed under the Copyright © of the American Chemical Society (ACS) which allows free usage of the
data and materials appearing in public domain articles without any permission. The QM8 (Ramakrishnan
et al., 2015) dataset is under Creative Commons Attribution (CC BY) license of the American Institute of
Physics (AIP) Publishing LLC requiring no permission from the authors and publisher for using publicly
released data from the paper. The ClinTox (Gayvert et al., 2016) dataset is under the Copyright © of Elsevier
Ltd. which permits usage of public domain works and open access content without author permissions. The
Malaria (Gamo et al., 2010) dataset is licensed under Copyright © of Macmillan Publishers Limited that
allows usage for personal and noncommercial use. The Tox21 (Tox21 Data Challenge, 2014) dataset was
released by NIH National Center for Advancing Translational Sciences for free public usage as a part of
a‘crowdsourced’ data analysis challenge. The HIV (AIDS Antiviral Screen Data, 2017) dataset was released
by NIH National Cancer Institute (NCI) for public usage without any confidentiality agreement which
allows access to chemical structural data on compounds. The IMDB-BINARY, IMDB-MULTI, REDDIT-
BINARY, COLLAB (Yanardag & Vishwanathan, 2015) datasets are licensed under ACM Copyright © 2015
under Creative Commons License that allows free usage for non-commercial academic purposes.
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