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Abstract: We propose a novel framework for modeling attack scenarios in cyber-physical control
systems: we represent a cyber-physical system as a constrained switching system, where a single
model embeds the dynamics of the physical process, the attack patterns, and the attack detection
schemes. We show that this is compatible with established results in hybrid automata, namely,
constrained switching linear systems. The proposed attack modeling approach admits a large
class of non-deterministic attack policies and enables the characterization of system safety as
an asymptotic property. By calculating the maximal safe set, the resulting new impact metrics
intuitively quantify the degradation of safety and the impact of cyber attacks on the safety
properties of the system under attack. We showcase our results via an illustrative example.
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1. INTRODUCTION

Cyber-physical systems (CPSs) represent a broad spec-
trum of safety-critical applications, ranging from power
generation and distribution networks to autonomous mo-
bility and industrial processes. Due to their extent and in-
trinsic link to society, the secure operation of such schemes
is vital. Vulnerability to cyber attacks typically depends
on the degree of integrating unsafe communication chan-
nels between computation, sensing, and actuation modules
that control the underlying physical process.

CPS security (Sandberg et al., 2022) studies control prob-
lems under adversarial actions aiming to steer a control
system into an unsafe region. Our modeling approach is
motivated to an extent by the literature of networked con-
trol systems (Hespanha et al., 2007), where communication
limitations and malfunctions (e.g., packet dropouts) can
be embedded into a hybrid control system model with
switching dynamics (Donkers et al., 2011; De Persis and
Tesi, 2015). Due to their inherent complexity, CPSs are
often modeled via hybrid systems. For example, hybrid
linear automata, finite state machines, and Petri nets are
important tools for modeling malicious and unpredictable
behaviors, and threat propagations in CPSs (Beg et al.,
2017; Meira-Góes et al., 2020).

Focusing on attack patterns that can be expressed via reg-
ular languages on directed labeled graphs (Cassandras and
Lafortune, 2010), we propose a constrained switching sys-
tems framework for analyzing safety properties of CPSs.

⋆ E.V. and N.A. gratefully acknowledge support from EPSRC
EP/T021942/1, and N.A. additionally from EU 2020-1-UK01-
KA203-079283 and the UKRI Belfast Maritime Consortium 107138.

Although invariance and safety of constrained switching
systems have received attention (De Santis et al., 2004),
(Athanasopoulos and Lazar, 2014), they have not yet been
studied in the context of CPS security. By modeling the
overall attack scheme as a constrained switching system,
our objective is to characterize the set of all initial states
that cannot be driven to an unsafe state under any allow-
able attack. We call this the safe set of the attacked CPS.
This is typically an infinite-reachability dynamic program-
ming problem (Raković et al., 2006): the maximal safe set
can be retrieved by computing recursively the fixed point
of the sequence of sets {Si}i∈{1,2,...} with Si+1 = Pre(Si)∩
S0, where S0 = X0 denotes the state constraint set, and
Pre(Si) is the preimage map (Bertsekas, 1972), e.g., that
is the set of states x for which, for all permissible attack
patterns, the successor state x+ ∈ Si.

There has been significant research on modeling temporal
aspects of attacks, with most of the works pertaining
to automata-based approaches without considering timing
behaviors or multiple simultaneous attack scenarios (Chen
et al., 2003). Few papers have introduced general lan-
guages for describing attack patterns (Reda et al., 2022).
One of the most comprehensive formal languages has been
proposed in (Liu et al., 2017) building on probabilistic
colored Petri nets combined with a game-theoretic mixed
strategy. Also, most works derive receding horizon impact
metrics of attacks or focus on a finite set of outcomes
(Miao and Zhu, 2014). Our approach is aligned with the
reachability-analysis-based works (Murguia et al., 2020;
Mo and Sinopoli, 2016), providing asymptotic results on
the closed-loop system safety. We treat stealthy attack
perturbations as state- and/or input-dependent exogenous
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signals (Raković et al., 2006). To our knowledge, there is
limited work dealing with state-dependent attacks directly
in CPSs. Our contributions are summarised as follows:

We model the overall CPS under attack as a constrained
switching system with the switching signal forming a
regular language, generated by a nondeterministic directed
graph. Each node corresponds to a set of states that evolve
with time according to the modes assigned to its outgoing
edges. Each labeled edge describes either an attack-free
operation or a specific malicious action carried out over a
subset of unsafe channels. The proposed approach permits
the modeling of a large family of non-deterministic attacks,
the impact of which can be quantified and analyzed
asymptotically via the construction of maximal safe sets.
To compute the maximal safe set of the system subject to
all admissible attack sequences, we leverage reachability
analysis techniques related to the notion of multi-set
invariance (Athanasopoulos and Jungers, 2018). Based
on the constructed sets, we assess vulnerability by two
complementary security metrics, related to the Lebesgue
measure and the Minkowski distance, providing scalar
indices of system attack sensitivity.

The remainder of the paper is organized as follows. In
Section 2, we present the family of systems we study and
the type of attacks we are interested in. The main results,
namely, the constrained switching system formulation,
the safe set computations, and the introduction of scalar
safety metrics, are in Section 3. A numerical example and
concluding remarks are in Sections 4 and 5, respectively.

2. SYSTEM DESCRIPTION

In the following, we present the notation and the system
under attack. See Fig. 1 for an illustration.

2.1 Notation

The transpose of ξ is ξ⊤. The m × m identity matrix is
Im and the vector with elements equal to one is 1 ∈ Rn.
The jth row of matrix A and jth element of vector a are
denoted by (A)j and (a)j , respectively. The set of row
indices of A is JA. We write G(V, E), or G, a labeled
directed graph with a set of nodes V and a set of edges
E . We denote the p-norm of a vector x by ∥x∥p. B(α),
and B∞(α) denote the balls of radius α of an arbitrary
norm, and the infinity norm, respectively. The Minkowski
sum of two sets S1 and S2 is denoted by S1 ⊕ S2. The
interior and the convex hull of a set S are denoted as
int (S) and conv(S), respectively. A C-set S ⊂ Rn is a
convex compact polytopic set that contains the origin in
its interior (Blanchini and Miani, 2015). By convention,
for any C-set S, we write its half-space representation
by S = {x : Gsx ≤ gs} with the inequality applied
elementwise. The cardinality of a set V is denoted by |V|.

2.2 Dynamics, Controller, Estimator, Detector

We study discrete-time linear time-invariant (LTI) systems

P :

{
x(t+ 1) = Apx(t) +Bpu(t) + v(t),

y(t) = Cpx(t) + w(t),
(1)

where t ∈ N, x(t) ∈ X ⊂ Rnx , u(t) ∈ U ⊂ Rnu and
y(t) ∈ Y ⊂ Rny are the state, input and output vectors,

Actuators Process Sensors

v(t)
w(t)

+
ũ(t)

au(t)

u(t)
Controller Estimator

x̂(t)

+
y(t)

ay(t)

ỹ(t)

u(t)

Detector

Fig. 1. Networked control loop with unsafe communication
channels illustrated by dashed gray lines.

respectively, vectors v(t) ∈ V ⊂ Rnx and w(t) ∈ W ⊂ Rny

denote process and measurement uncertainties. We assume
that X , U , Y, V, and W are C-sets. For meaningful control
and estimation schemes, we assume the following.

Assumption 1. Pairs (Ap, Bp), (A
⊤
p , C

⊤
p ) are stabilizable.

We are interested in false data injection (FDI) attacks
poisoning sensors and input signals. Consistent with the
notation in Fig. 1, we model the attacked output as

ỹ(t) = y(t) + Γy
i ay(t), (2)

where ay(t) ∈ Rnỹ denotes additive sensor poisoning
attacks, and Γy

i ∈ Rny×nỹ , with nỹ ≤ ny denoting the
number of vulnerable sensors. The subscript i denotes the
ith attack strategy. 1 The jth row of Γy

i is 0 ∈ R1×nỹ if
the jth sensor is not corrupted under the ith attack action.
Otherwise, it is the j̃th vector ϵj̃ of the canonical basis of

Rnỹ×nỹ , with j̃ denoting the index of a vulnerable sensor
under attack by the ith attack action.

We consider a dynamic output feedback control law u(t) =
−Kx̂(t), where K ∈ Rnu×nx , and x̂(t) is obtained by

x̂(t+ 1) = Apx̂(t) +Bpu(t) + L(ỹ(t)− Cpx̂(t)), (3)

with L ∈ Rnx×ny . We call r(t) = ỹ(t)− Cpx̂(t) ∈ Rny the
residual and e(t) = x(t)− x̂(t) the estimation error. From
(1)-(3), we may write{

e(t+ 1) = (Ap − LCp)e(t)− LΓy
i ay(t)− Lw(t)

r(t) = Cpe(t) + Γy
i ay(t) + w(t).

(4)

Remark 2. Under Assumption 1, a desirable robust per-
formance for the attack-free system (1) can be achieved
using robust control approaches, e.g., by constructing K
and L via LMI-based algorithms (Gahinet and Apkarian,
1994).

The received control signal is corrupted as ũ(t) = u(t) +
Γu
i au(t), where au(t) ∈ Rnũ denotes additive input poison-

ing attacks, and Γu
i ∈ Rnu×nũ , with nũ ≤ nu denoting the

number of unsafe channels over which actuation signals are
transmitted. The structure of Γu

i is associated with the ith
attack action and is defined similarly as Γy

i defined in (2).

An alarm is raised at t ≥ 0 if r(t) /∈ R with

R = {r ∈ Rny : Grr ≤ hr}, (5)

where Gr is a full row-rank matrix.
1 See Section 2.3.
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Remark 3. The polyhedral set R may be designed such
that the number of false alarms is minimized.

Remark 4. Our anomaly detector is stateless. Stateful de-
tectors with linear, or convex, dynamics can be accepted
in our framework, (Milošević et al., 2018).

By defining augmented vectors z(t) = [x(t)⊤ e(t)⊤]⊤,
a(t) = [au(t)

⊤, ay(t)
⊤]⊤, and η(t) = [v(t)⊤, w(t)⊤]⊤,

the closed-loop dynamics under the ith attack action are

Pi :

{
z(t+ 1) = Az(t) +Bia(t) + Eη(t),

r(t) = Cz(t) +Dia(t) + Fη(t),
(6)

where

A =

[
Ap −BpK BpK
0nx×nx Ap − LCp

]
, Bi =

[
BpΓ

u
i 0nx×nỹ

0nx×nũ
−LΓy

i

]
,

E =

[
Inx

0nx×ny

Inx
−L

]
, C =

[
0ny×nx

Cp

]
,

Di =
[
0ny×nũ

Γy
i

]
, F =

[
0ny×nx Iny

]
.

Switching between a set of attack actions is discussed next.

2.3 Attack patterns

We study attack actions made up of a set of logic rules
(e.g., dwell-time) that can be expressed via a regular
language (Cassandras and Lafortune, 2010, Chapter 2.4),
leading to an overall attack policy described by a directed
labeled graph. An edge indicates a set of attack operations
and is associated with a specific dynamic mode (see (6)).
Fig. 2 illustrates an example of how dwell-time restrictions
and admissible sequences are modeled for attack tactics
applied to two independent channels. An edge with a label
‘N’ denotes attack-free, nominal operation, whereas a label
‘A‘ implies FDI attack on a channel. In channel I, we
assume that FDI attacks cannot happen more than two
consecutive time steps, whereas, in channel II, an FDI
attack has to be followed by a nominal operation.

a

Channel I

b c

A

N

A

N

N

d

Channel II

e

N

N

A

Fig. 2. Graph examples representing attack patterns.

Recalling Fig. 1, CPSs can have several vulnerable points
and be subject to complex and varying attack actions. Fig.
3 shows the Kronecker product of the two graphs in Fig. 2
illustrating all possible combinations of two attacks acting
simultaneously in different channels of the same CPS.
Due to space limitations, see, e.g., (Saltik et al., 2015),
for details on computing Kronecker products of multiple
graphs.

3. MAIN RESULTS

3.1 Switching-system attack modeling

We consider a set of systems P = {P1, . . . , PN}, with
Pi denoting the dynamics of mode i given in (6) and
associated with an attack action. We describe an overall

attack pattern, i.e., the switch between dynamic modes, by
a directed labeled graph G(VG , EG). Let the set of outgoing
nodes of a node s ∈ VG be denoted by Out(s, G) := {d ∈
VG : (∃σ ∈ {1, . . . , N} : (s, d, σ) ∈ EG)}. We denote by nz,
na, and nh, the augmented state, attack, and disturbance
dimensions, respectively. We also consider the Cartesian
product of the disturbance and uncertainty sets H = V ×
W. The dynamics of the overall attacked system is

z(t+ 1) = Az(t) +Bσ(t)a(t) + Eh(t), (7)

ξ(t+ 1) ∈ Out(ξ(t), G(VG , EG)), (8)

(z(0), ξ(0)) ∈ Z × VG , (9)

subject to the constraints

(ξ(t), ξ(t+ 1), σ(t)) ∈ EG , (10)

z(t) ∈ Z, (11)

h(t) ∈ H (12)

a(t) ∈ Aσ(t)(z(t)), (13)

for all t ≥ 0, where [z⊤ ξ]⊤ ∈ Rnz × VG . We note that
σ = 1 corresponds to the nominal attack-free dynamics,
and the autonomous system z(t + 1) = Az(t) is stable by
the stability of Ap −BpK, Ap − LCp.

Remark 5. Matrices A and E, respectively, remain iden-
tical for all modes of (7). Attack actions altering these
matrices can also be considered in our framework.

Assumption 6. The constraint and disturbance sets Z, H,
are C-sets.

Assumption 7. The sets Out(i, G(VG , EG)), with i ∈ VG ,
are nonempty.

Assumption 8. The attacker is aware of all system matri-
ces, the control, estimation, and detection schemes, and
the state, input, output and disturbance constraint sets.

Assumption 6 is standard, see e.g., (Blanchini and Miani,
2015). Assumption 7 guarantees the completeness of so-
lutions. Assumption 8 is standard for the construction of
stealthy data poisoning attacks.

The constraint (13) enforces attack stealthiness: First, we
require that attacked inputs ũ(t) = u(t) + Γu

σ(t)au(t) ∈ U ,
where U = {u : Guu ≤ hu}. Let Au

σ(z) = {au :
(Gu)jΓ

u
σau ≤ (hu)j + (Gu)jK[Inx

− Inx
]z, j ∈ JGu

}.
We call an attack a stealthy input attack if au(t) ∈
Au

σ(t)(z(t)). The output poisoning attacks should respect

two types of constraints, namely, the output constraints,
i.e., ỹ(t) = y(t) + Γy

σ(t)ay(t) ∈ Y , with Y = {y : Gyy ≤

a

b

d e c

f

AA

NN
NA

AN

NN

NA

AN

NN

AANN

AN

NANN

AN

Fig. 3. All possible combinations of the attacks in Fig. 2.
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hy}, and the residual constraints, i.e., r(t) ∈ R, with
R as in (5). Let Ay

σ(z) = {ay : (Gy)jΓ
y
σay ≤ (hy)j −

maxw∈W(Gy)jw − (Gy)jCp[Inx
0nx

]z, j ∈ JGy
} and

Ar
σ(z) = {ay : (Gr)jΓ

y
σay ≤ (hr)j − maxw∈W(Gr)jw −

(Gr)jCσz, j ∈ JGr
}. We call an attack a stealthy output

attack if ay(t) ∈ Ay
σ(t)(z(t)) ∩ Ar

σ(t)(z(t)).

Definition 9. The attack signal a(t) =
[
au(t)

⊤ ay(t)
⊤]⊤

is called stealthy if a(t) ∈ Aσ(t)(z(t)), where Aσ(z) =
Au

σ(z)× (Ay
σ(z) ∩ Ar

σ(z)), σ = 1, . . . , N .

The H-representation of Aσ(z) is Aσ(z) = {a : Gaσa ≤
Haσ (z)}, with the inequality applied elementwise, where
Gaσ is a real matrix and Haσ (z) is a convex piecewise
affine function of z ∈ Z, e.g., (Schaich and Cannon, 2015).
The sets Aσ(z) is pointwise compact and polytopic for all
z ∈ Z.

3.2 Safe set computation

To define safety for system (7)-(13), we recall the notions
of multi-sets and invariance.

Definition 10. (Multi-sets). We call multi-set a collection
of sets {Si}i∈VG , with Si ⊂ Rnz , i ∈ VG .

Definition 11. (Invariance). The multi-set {Si}i∈VG is an

invariant multi-set with respect to (7)-(13) if z(0) ∈ Sξ(0)

implies z(t) ∈ Sξ(t) for all t ≥ 0, ξ(0) ∈ VG , and
σ(t) satisfying (10). If, additionally, Si ⊂ Z, i ∈ VG ,
then, {Si}i∈VG is called an admissible invariant multi-
set with respect to (7)-(13). The multi-set {Si

M}i∈VG
is the maximal admissible invariant multi-set if for any
admissible invariant multi-set {Si}i∈VG , it holds that Si ⊆
Si
M , i ∈ VG . The invariant multi-set {Si

m}i∈VG is the
minimal invariant multi-set if Si

m ⊆ Si , i ∈ VG , for any
invariant multi-set {Si}i∈VG .

Definition 12. (Safety). A set SP ⊂ Rnz is safe with
respect to system (7)-(13) and the set of nodes VG if
(z(0), ξ(0)) ∈ SP × VG , implies z(t) ∈ Z, t ≥ 0.

Consider the system (7)-(9) and a switching signal σ ∈
{1, . . . , N}. The one-step forward reachability map is
Φ(σ,S) = {y : (∃(z, a, h) ∈ S × Aσ(z) × H : y =
Az + Bσa + Eh)} and the one-step backward reachability
map is Ψ(σ, S) = {z : (Aσz ⊕BσAσ(z)⊕ EσH) ∈ S}.The
minimal-invariant multi-set is characterized next.

Proposition 13. Consider the forward reachability multi-
set sequence {F i

l }i∈VG , l ≥ 0, with

F i
0 = {0}, i ∈ VG , (14)

F i
l+1 = ∪(s, i, σ)∈EGΦ(σ, F

s
l ), i ∈ VG . (15)

The minimal invariant multi-set {Si
m}i∈VG with respect to

(7)-(13), if exists, is equal to Si
m = limj→∞ F i

j , i ∈ VG .

The proof follows similar steps with (Athanasopoulos
et al., 2017, Theorem 1). The difference concerns the
involvement of the state-dependent set Aσ(z) in the multi-
set sequence update (15), which is well defined as the
sets Aσ(Z) = ∪z∈ZAσ(z), σ = 1, . . . , N are compact
by compactness of the set Aσ(z) and the compactness
assumption of Z.

Assumption 14. We assume that the minimal-invariant
multi-set with respect to (7)-(13), denoted by {Si

m}i∈VG ,
exists, and that Si

m ⊂ Z, i ∈ VG .

We consider the backward reachability multi-set sequence
{Bi

l}i∈VG , where

Bi
0 = Z, i ∈ VG , (16)

Bi
l+1 = (Bi

0 ∩(i, d, σ)∈EG Ψ(σ, Bd
l )), i ∈ VG . (17)

The lth term of the multi-set sequence (16)-(17) contains
the initial conditions (z(0), ξ(0)) which satisfy the state
constraints for at least l consecutive instants. Intuitively,
each set Bi

l+1, l ≥ 0, i ∈ VG , contains the set of states

in the state constraint set Z that can be stirred to Bd
l

via the dynamics σ, where d is any outgoing node of i,
(Athanasopoulos and Jungers, 2018).

Remark 15. Let Bd
l = {z : (Gd

l )jz ≤ (gdl )j , j ∈ JGd
l
}.

Then, the backward reachability map Ψ(σ, Bd
l )) is com-

puted by enforcing the constraint (Gd
l )j(Az+Bσa+Eh) ≤

(gdl )j , ∀a ∈ Aσ(z), ∀h ∈ H, for all j ∈ JGd
l
, or,

(Gd
l )jAz ≤ (gdl )j − max

a∈Aσ(z)
(Gd

l )jBσa− (Gd
l )jEh∗

j , (18)

for all j ∈ JGd
l
, where h∗

j = argmaxh∈H(Gd
l )jEh. To

compute the set induced by (18), we need to solve
maxa∈Aσ(z)(G

d
l )jBσa which is a multi-parametric linear

program (mpLP) with optimizers being affine functions of
z. Solutions can be obtained, e.g., using off-the-shelf multi-
parametric programming software. Typically, the set of
parameters (here, the constraint set Z) is divided into crit-
ical regions. Throughout a critical region, the optimality
conditions derived from the KKT conditions are invariant
(Borrelli et al., 2003). For each critical region, the solution
of the problem in (18) is an affine function of z, forming
the inequality constraints and the set corresponding to the
backward reachable set in that critical region. Eventually,
the set Bi

l+1, with (i, d, σ) ∈ EG , can be formed as
the union of such sets. The multi-parametric solution is
consistent with (Schaich and Cannon, 2015), with the set-
ting therein expressing the state-dependent sets in vertex
representation.

Proposition 16. Consider the backward reachability multi-
set sequence (16)-(17) and let Assumption 14 hold. Then,
the maximal admissible invariant multi-set {Si

M}i∈VG is
Si
M = limj→∞ Bi

j , i ∈ VG .

The proof follows similar steps with (Athanasopoulos
et al., 2017, Theorem 3). The difference lies in the in-
volvement of the state-dependent set Aσ(z) in the back-
ward reachability map and consequently in the multi-set
sequence (16)-(17), which is well defined as the sets Aσ(Z),
σ = 1, . . . , N , are compact.

From Definition 12 and Proposition 16, the maximal safe
set of (7)-(13) is derived in the following corollary as in
(Athanasopoulos et al., 2017).

Corollary 17. Let the maximal invariant multi-set with
respect to (7)-(13) be {Si

M}i∈VG . The maximal safe set
SP of (7)-(13) with node set VG is SP = ∩i∈VGSi

M .

Remark 18. Assumption 14 can be lifted. In this case, if
the inclusion Si

m ⊂ Z, i ∈ VG does not hold, the multi-set
sequence (16)-(17) converges to the empty set and, thus,
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Fig. 4. Physical and cyber parts of a two-tank system.

the maximal safe set is empty indicating an attack with
maximum impact.

3.3 Impact metrics

The maximal safe set SP in Corollary 17 provides a
security measure of the system under attack. To construct
scalar security indices, we propose two complementary
impact metrics. First, we define the following.

Definition 19. The outer Lebesgue measure of S ⊂ Rn

is vol(S) = inf
{∑∞

j=1 vol(Rj) : S ⊂ ∪∞
j=1Rj

}
, where the

infimum is taken over all countable collections of rectangles
Rj = [aj1, bj1] × [aj2, bj2] × . . . × [ajn, bjn] ∈ Rn, with

ajl ≤ bjl ∈ R, whose union contains S.
Definition 20. Let S1 ⊂ Rn, S2 ⊂ Rn be two C-sets.
The Minkowski distance between S1 and S2 is defined as
µ(S1, S2) = max{λ : λS1 ⊆ S2}.

Denote the system (7)-(13) by P, and let Z, H, and A be
the constraint, disturbance, and attack sets, respectively.
Let SP be the maximal safe set of (7)-(13) and S0 be
the maximal safe set of the attack-free system. Then,

I1(P,Z,H,A) = vol(S0)−vol(SP)
vol(S0) , and I2(P,Z,H,A) = 1−

µ(S0,SP) are two safety metrics of (7)-(13).

Since SP ⊆ S0, it follows that vol(SP) ≤ vol(S0) and
µ(S0, SP) ∈ [0, 1], thus, 0 ≤ Ii ≤ 1, i = 1, 2. A metric
near zero indicates an attack with little impact whereas a
metric almost equal to one translates an impactful attack
inducing a small safe set. Metric I1 provides an index of
the size of a safe set the shape of which is not critical to
the metric calculation. Metric I2, however, is sensitive to
the shape of the safe set (e.g., its skewness). These are
exemplified in the following section.

4. NUMERICAL EXAMPLE

We consider a two-tank system as shown in Fig. 4, with
state x = [x1 x2]

⊤ denoting liquid levels, input u the
flow rate of the pump, and control objective maintaining
the liquid levels at an operating point. The dynamics
are x(t + 1) = Ax(t) + Bu(t) + v(t), where A =

[
0.9 0.1
0.1 0.8

]
,

B = [0.1 0]T , and ∥v(t)∥∞ ≤ 0.01. The plant has a sensor
measuring the liquid level of a tank, an observer estimating
the system state, and a detector monitoring attacks; an
alarm is raised if the residual exceeds a value, in this case
|r(t)| > 0.01. The output is y(t) = Cx(t) + w(t), where

C ∈ R1×2, (C)i = 1 if the sensor is placed in Tank-i,
i = 1, 2, or (C)i = 0 otherwise, and ∥w(t)∥∞ ≤ 0.01. We
consider 1) stealthy attacks on the sensor’s readings y(t),
2) stealthy attacks on the actuation signal u(t), and 3)
stealthy attacks both on the sensor’s readings y(t) and the
actuation signal u(t). The controller and observer gains
K, L, are designed such that the eigenvalues of A − BK
and A− LC are (0.7, 0.8) and (0.86, 0.001), respectively.
The operating point is x∗ = [2 1]⊤ with u∗ = 1. The state
constraints are 1 ≤ x1(t) ≤ 3, 0 ≤ x2(t) ≤ 2, and the input
constraint is 0 ≤ u(t) ≤ 2. The attack signals ay(t), au(t),
are consistent with the stealthiness Definition 9, and are
additionally bounded with lower and upper limits shown in
Table 1. Attack patterns are listed in Table 1, where Nmax

is the maximum dwell time, i.e., the maximum length of
consecutive attacks, and Nmin is the minimum number of
consecutive time steps that the system is attack-free.

Table 1. Attack actions

Vulnerable point Attack bounds Pattern

Sensor −0.05 ≤ ay ≤ 0.05 Nmax = Nmin + 1

Actuator −0.01 ≤ ay ≤ 0.01 Nmax = Nmin − 1

Fig. 5. Projections of safe sets onto R2 for e = x− x̂ = 0.

In Fig. 5, we compute the safe set of the system when the
sensor placed in Tank-2 is under attack. The safe set of
attack-free dynamics is illustrated in yellow, whereas safe
state regions of the system under attack for the associated
dwell-time specifications are in gray. Clearly, the safe re-
gion shrinks as Nmax grows indicating safety degradation.
In Fig. 6, we compute the safety metrics I1, I2, introduced
in Section 3.3, for all attack scenarios considered. We show
that attacks poisoning the actuation signal have a major
effect on system safety in this particular example. From
Fig. 6, we also conclude that a sensor placed at Tank-
2 results in a less vulnerable plant preventing a safe set
from collapsing to the empty set as Nmax grows.

5. CONCLUSION

We have proposed a new approach to modeling attack
scenarios in cyber-physical systems. We define a cyber-
physical system under attack as a constrained switching
system embedding the dynamics of the plant, the attack
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Fig. 6. Impact metrics: I1 (solid lines), I2 (dashed lines).

patterns, and the attack detection scheme. By calculating
the maximal safe set of the underlying constrained switch-
ing system, we characterize system safety as an asymptotic
property. Two complementary scalar security metrics are
also introduced.
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