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Abstract—Currently deployed election systems that scan and
process hand-marked ballots are not sophisticated enough to
handle marks insufficiently filled in (e.g., partially filled-in),
improper marks (e.g., using check marks or crosses instead
of filling in bubbles), or marks outside of bubbles, other than
setting a threshold to detect whether the pixels inside bubbles
are dark and dense enough to be counted as a vote. The current
works along this line are still largely limited by their degree of
automation and require substantial manpower for annotation and
adjudication. In this study, we propose a highly automated deep
learning (DL) mark segmentation model-based ballot tabulation
assistant able to accurately identify legitimate ballot marks. For
comparison purposes, a highly customized traditional computer
vision (T-CV) mark segmentation-based method has also been
developed to compare with the DL-based tabulator, with a
detailed discussion included. Our experiments conducted on two
real election datasets achieved the highest accuracy of 99.984%
on ballot tabulation. In order to further enhance our DL model’s
capability of detecting the marks that are underrepresented in
training datasets, e.g., insufficiently or improperly filled marks,
we propose a Siamese network architecture that enables our
DL model to exploit the contrasting features between a hand-
marked ballot image and its corresponding blank template image
to detect marks. Without the need for extra data collection, by
incorporating this novel network architecture, our DL model-
based tabulation method not only achieved a higher accuracy
score but also substantially reduced the overall false negative
rate.

Index Terms—Deep learning, Ballot tabulation, Computer
vision

I. INTRODUCTION AND RELATED WORK

Scanned images of hand-marked paper ballots have been
used to analyze, verify, and independently recount ballots
(tabulation), either manually or using traditional computer
vision (T-CV) methods coupled with common data mining
techniques such as clustering and/or traditional machine learn-
ing techniques [1, 2]. Many factors could affect the accuracy
of T-CV methods, including marginal marks (e.g., checks
and crosses), marks outside of the voting bubble/box, and
scanning errors (e.g., caused by stains and creases on paper
ballots), etc. Taking marginal marks as an example, most
existing optical scan systems will either miss or misinterpret
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them using a predefined pixel intensity threshold, because the
average pixel intensity of these marginal marks falls between
that of a fully marked and an empty marked voting target.
Marks outside of the voting target area will be largely missed
by optical scan systems that are not configured to look at
marks outside of the voting target areas (bubbles/boxes). The
proposed work is intended to be a highly-automated and more
accurate ballot tabulation assistive tool using computer vision
(CV) and artificial intelligence (AI) techniques, which is the
first integrated framework of its kind to assist the tabulation
of paper ballot at a high level of robustness and integration
never achieved before.

Several studies have endeavored to enhance both the au-
tomation and accuracy of ballot tabulation, primarily using CV
techniques: the operator-assisted tabulation system proposed
in [1] and [3] provides a user interface to expedite ballot au-
diting. However, this method requires an operator to manually
annotate the voting target area, locate names of candidates, and
set a threshold of pixel intensity in order to classify a voting
target as marked or unmarked. This manual configuration is
required for each distinct contest, requiring substantial manual
intervention. There are some other works aiming to improve
the automation of this process. For example, the work in [4]
focuses on automated mark segmentation, which is a necessary
step in automated tabulation. They evaluated the absolute
differencing technique both with and without adaptive thresh-
olded images, by comparing marked ballots to an unmarked
one. The technique with adaptive thresholding gave the best
detection rates for marks, but with an increase of false positive
rate. However, their experiments were very limited, based on 4
synthetic ballot images synthetically filled by some algorithm.
Xiu et al. [5] proposed a method to detect marks collectively
within a ballot instead of an isolated fashion, assuming con-
sistency in the same voter’s marking style. The classification
method was built based on a traditional data mining technique
Modified Quadratic Discriminant Functions [6], and the 300
features were generated using 2D Fast Fourier Transform. This
method is able to classify three different marks, including
check marks, “X” marks, and filled marks. Again the method
cannot automatically segment marks, and the hand-built test
dataset is relatively small with 730 marks. In [2], a model was
built to classify marks into 7 classes, i.e., empty marks, filled



marks, and five types of marginal marks consisting of check-
mark, cross, partially filled, overfilled, and lightly filled. 55
commonly used computer vision features and 9 hand-crafted
image features targeting marginal marks were used to train
a few off-the-shelf traditional machine learning models, and
the 9 customized features yielded the highest classification
accuracy of 94%. All the three above methods fall into the
category of T-CV and traditional machine learning/data mining
techniques, in which features are manually crafted and selected
rather than learned, and the models are fixed structures such
as Support Vector Machines, Decision Trees, and Simple
Logistic Regression. None of them attempted to build a highly
automated ballot tabulation tool. Similarly, Barretto et al. [7]
trained a Convolutional Neural Network to classify various
styles of marks extracted from a ballot image dataset and
achieved the state-of-the-art (SOTA) prediction performance.
However, this work requires manually annotating voting target
areas from ballot images, and their high accuracy largely
depends on the fact that all marks receiving a classification
confidence score lower than a pre-fixed threshold (95%) are
subject to manual inspection and thus will be counted as
correctly classified.

As reviewed above, so far, there is no AI-assisted highly au-
tomated and efficient solution to ballot tabulation for scanned
hand-marked paper ballots.

Compared to T-CV techniques, DL does not need human-
guided feature extraction or manual feature selection. Also,
it is not uncommon to use hundreds of features in T-CV;
the extraction of such features can be very time-consuming
and is not easily parallelizable. In contrast, DL fully auto-
mates the feature extraction by assigning credits/contributions
to hundreds of thousands of neurons through many layers
of neural networks. As a result, the deep image features
learned through DL are often more resistant to variations and
noise/artifacts (e.g., creases) and more generalizable to unseen
data. In addition, DL models are typically more flexible and
re-trainable for new domain/dataset [8], compared to highly
customized CV algorithms for specific domains. Currently, DL
is under-explored in the field of voting system improvement.

The main contributions of this paper are as follows:
• A T-CV-based and a DL-based mark segmentation models

are proposed, and both are highly automated and the
first in their respective kind, with a good generalizability
to various types of ballot without major modifications.
Compared to the proposed T-CV-based model, the DL-
based model does not require fine-level image regis-
tration, cutting down the computation drastically. We
developed the T-CV-based mark segmentation model for
the following purposes: 1) for accuracy and performance
comparison with the DL-based mark segmentation model;
2) for automatically obtaining a large training dataset
for training the DL-based model since it is very costly
to manually collect ground truth of mark segments. As
demonstrated in our experimental results, the DL-based
mark segmentation model is much more accurate than the
T-CV-based model.

• We further propose a Siamese network architecture,
which allows our DL-based model to utilize the contrast-
ing features between a hand-marked ballot image and its
corresponding blank template ballot image, effectively re-
ducing false negatives resulting from lightly/insufficiently
filled, and/or improperly filled marks underrepresented in
the training dataset. Importantly, this strategy mitigates
the need of collecting extra training data for such under-
represented marks.

• For image registration in ballot tabulation, we propose
the first fully automated coarse-to-fine-level image regis-
tration framework. Compared to the state-of-the-art ballot
registration methods, the proposed method does not re-
quire any assumptions on the ballot layout, and can be
easily generalized to different ballot layouts.

In summary, current election systems deploying basic ballot
scanners suffer from inaccurate tabulation problems. In this
work, we take advantage of the advances in AI and CV tech-
niques, as well as large ballot datasets, and aim to significantly
improve both the robustness and accuracy of hand-marked
ballot scanning.

II. PROBLEM DEFINITION

This study is restricted to scanned mail-in paper ballots and
focuses on the mark segmentation and tabulation of such. Any
signature or write-in content of voters on ballots are beyond
the scope of this study. No historical or biometric data of
voters are required by this study. There are three main tasks
addressed in this paper: Ballot Image Registration, Target Area
Localization, and Mark Detection and Segmentation.

Ballot Image Registration: Although the same camera
angle and distance to the paper ballots are assumed during
scanning, imperfect scans can happen, e.g., the paper ballot
was not completely flattened out or not placed in a position
perfectly aligned with the camera, which could substantially
affect the performance of the subsequent modules such as
voting target area localization and mark segmentation. Fig. 1
is the superimposition of a marked ballot image over its
corresponding blank template ballot image, showing a lot of
misalignments. These misalignments can have a significant
negative impact on the downstream tasks. Therefore, ballot
image registration needs to be performed.

Fig. 1: Misalignment between a ballot image and its corre-
sponding blank ballot template image



Target Area Localization: In Fig. 2, the red bounding
boxes are our proposed voting target area, which has a different
definition than that of the voting target area commonly used
in the SOTA methods. All SOTA methods, require operators
to manually annotate/extract the voting target area for each
candidate on the ballot template. The labeled target areas are
shown as orange boxes in Fig. 2(a). This manual process can
be time-consuming and imprecise. Moreover, in filled ballots,
there can be marks outside of the labeled target areas that
are bound to be missed due to this old definition of target
area. Many states have a definition of “intent of the voter”,
which is to say, how a machine might interpret a mark is not
the final word. If human inspectors can intuit the mind of the
voter enough to identify their intent, then that is the proper and
correct interpretation of the ballot, such as the out-of-box cross
marks in Fig. 2(c) that do indicate votes for the two candidates
but remain undetectable by existing methods. By expanding
our field of view beyond the marks inside bubbles, we can
potentially better capture intent of the voters who do not follow
the instructions. In this paper, we propose a new definition of
voting target areas, shown as red boxes in Fig. 2(b), detected as
voting “cells” in a structured ballot layout that include not only
the marking areas, but also the candidate names/options, and
the surrounding background area as well. By adopting this new
definition, the proposed ballot tabulation method can be more
robust in handling marks outside of bubbles/boxes (Fig. 2(c)).
Furthermore, we proposed a highly automated voting target
area localization method which requires minimum manual aid.

(a) (b) (c)

Fig. 2: Voting target areas in (a) and (b) are based on the old
and new definitions, respectively. In (c), the marks are still in
the newly defined voting target areas.

Mark Detection and Segmentation: The SOTA method
proposed in [1] requires operators to manually set a threshold
of pixel intensity in order to classify a manually labeled voting
target as marked or unmarked. In this paper, we treat this task
as an object semantic segmentation problem where each pixel
of the voting target area will be assigned a label as either
a mark or a non-mark pixel. We propose two independent
automated models: a T-CV model and a DL mark segmentation
model, to obtain the mark segments (including marginal and
out-of-box ones) from the proposed voting target areas. An
example of the expected result of this process is shown in
Fig. 3.

Fig. 3: An example of an obtained mark and its segment

III. METHODOLOGY

A. Ballot Image Registration

Ideally, the scanned paper ballots of one election are sup-
posed to be well aligned. In practice, however, most scanned
paper ballots are not well aligned, e.g., the severe misalign-
ment in Fig. 1.

Based on observations on real-world datasets, there are often
rotations and shifts among ballot scans. The misalignment
can have a significant negative impact on the performance
of the subsequent mark segmentation module, especially in
the T-CV mark segmentation model. One of the SOTA ballot
registration methods ([9]) manually selected and annotated the
4 black boxes on the 4 corners of the ballot as references.
The authors then use an affine transformation to align the
scanned paper ballots. However, this method assumes that the
ballot must contain at least 4 black boxes, one in each corner,
which limits the generalization of this method. Furthermore,
the authors have not tested these methods on any other real-
world dataset. Wang et al. [1] proposed an alignment method
based on linear Hough Transform, in which they assume
that a ballot must contain two or more sufficiently long
vertical or horizontal lines. Furthermore, this method adopts a
local alignment method, which requires operators to manually
annotate several important areas (the areas containing election
contests) in the ballot image and crop them out as sub-
images. Then, the authors align sub-images in the downstream
tasks. In the computer vision society, the most popular image
registration method is feature-based alignment, in which a set
of image feature points such as SIFT (Scale Invariant Feature
Transform [10]) are extracted, and one image is warped into
the template image by the calculated transformation matrix so
that the feature points in both images line up to the maximum
extent. However, using this method alone is insufficient for
our ballot image registration task as there are too many noisy
features. To address the misalignment issue, we propose a
two-step fully automated ballot image registration method
based on CV techniques. In the proposed method, no human
intervention, such as manually choosing reference areas or
annotating the ballots, is required.

The general idea of our method is to align two ballots
(a blank template ballot image and a marked ballot image)
progressively from a coarse level to a finer level. For the
coarse level alignment, we adopt the state-of-the-art feature-
based image registration method ORB [11]. ORB is rotation
invariant and resistant to noise, which is perfectly suitable for
coarse level alignment. After applying ORB, the misalignment
caused by rotation and shift can be largely fixed. However, the
misalignment caused by other nonrigid transformations still
remain. Therefore, an optical-flow-based fine-level alignment
method is adopted [12–14]. In this step, instead of warping the
coarsely aligned marked ballot to the template image, we warp
in the other direction (from template to the marked ballot),
to avoid excessive distortion to the ballot image due to one
more round of transformation. The mean norm of the estimated
optical flow vector for each ballot is also used to find the



ballots that have a significantly different layout (e.g., due to
scanner errors) than the template. If any such outlier is found,
the corresponding ballot will be subject to further adjudication.
It is worth noting that this expensive fine-level registration is
necessary in traditional CV-based mark detection since slight
misalignment could lead to significant noise, but not needed
in the DL for which the low-cost coarse-level registration is
all that is needed.

B. Target Area Localization

The definition of a voting target area is provided in Sec-
tion II, and an example is shown in Fig. 2. In an optical scan
voting system, voters choose by filling a bubble (Fig. 4(a)) or
by connecting an arrow (Fig. 4(b)) on the printed ballot next
to their chosen candidate. Such bubbles and arrows are voting
objects of interest that we want to detect and match, in order
to locate voting target areas.

(a) Bubble (b) Arrow

Fig. 4: Voting objects of interest

Ballot templates can have different layouts and sizes for
different elections, so can the voting objects of interest. To
generalize our algorithm, we resized blank template ballot
images to certain size scale (e.g., using the blank template
of one election as the size scale reference) while preserving
the aspect ratio so that the size and shape of voting object
of interest in all blank template ballot images fall into a
similar scale, facilitating the subsequent pattern matching. In
this project, we use a template matching algorithm to locate
all the voting objects from a blank ballot template image.

In particular, we use an OpenCV function
cv2.matchTemplate() for this purpose, which simply slides
the voting object of interest over the blank template ballot
image (as in 2D convolution) and compares the voting object
of interest with each patch of blank template ballot image
within the sliding window. Fig. 5(a) shows some examples of
detected bubbles (confined within red bounding boxes).

This process stores all the location coordinates where it finds
a match with the voting object of interest in the blank template
ballot image. The sliding window may find multiple matches
for one voting object of interest, and the coordinates for each
best local match will be saved and then stored in a hash table
as a (key, value) pair.

According to our observations on several large ballot image
datasets, all ballot templates contain vertical dividing lines
to separate the ballot into multiple columns. Detecting those
vertical dividing lines can help determine the left & right
boundaries of voting target areas. Although our method does
not depend on vertical dividing lines, we provide a solution to
detecting such as follows, followed by a more general solution
to detecting (physical/virtual) column boundaries. To detect
such lines we used probabilistic Hough transformation[15].
Hough transform is a popular technique to detect shapes such
as lines if the shape can be represented in a mathematical
form. It can detect a line even if it is slightly broken or

distorted. To further reduce noise and irrelevant lines detected,
we only consider detected vertical lines around voting object
of interest. These lines will be used later to determine the
left and right boundaries of each target voting area. Fig. 5(b)
shows the detected vertical lines.

In order to locate the top and bottom boundaries of each
voting target area, we need to first locate the dividing point
between every two vertically adjacent voting objects (e.g.,
bubbles) in the same column (as confined by the column
boundaries detected from the previous step). Given the co-
ordinates of a detected voting object, its nearest voting object
in the same column can be identified, and the vertical distance
of those two can be calculated, as well as the middle point in
between the two objects along the vertical direction. Next, the
vertical distance between the two voting objects can be used
as an estimate of the height of each voting target area, based
on which the top and bottom boundaries can also be located,
with reference to the middle point. Fig. 5(c) shows the located
target voting areas, with their bounding boxes colored in red.

In case that vertical lines are not physically present, we
can still detect those virtual dividing lines by first clustering
detected voting objects based on their x-coordinates so that
each group corresponds to a column, then, locating the virtual
column dividing lines by using an approach similar to the one
used to locate horizontal dividing lines.

After all the target areas are located from the template, they
can be presented to the staff during the ballot configuration
phase where the staff enters the candidate’s name/option for
each voting target area, once and for all (for each election).
Then, each marked ballot is sent to a mark detection module
- whenever a mark is detected within a target area, the
corresponding candidate gets one more vote.

Fig. 5: (a) Detected voting objects of interest (bubbles), (b)
detected vertical dividing lines, (c) located target voting areas

C. Mark Detection and Segmentation

The state-of-the-art mark detection methods are mainly
based on pixel intensity thresholding. Wang et al. [1] manually
selected and annotated the voting target area, and hand-picked
a threshold of pixel intensity to classify the voting target
as marked or unmarked. This process largely depends on
the operator’s personal experience and expertise. Furthermore,
since scanners cannot guarantee the same lighting condition
for all the paper ballots during scanning, the fixed threshold
is not robust in practice. To detect marks from ballots, we



propose two independent models: traditional computer vision-
based model and deep learning-based model.

1) Traditional CV-based Mark Segmentation: To obtain the
marks from target ballots, we propose a T-CV-based mark
segmentation model consisting of morphological transforma-
tion, denoising filter, adaptive binarization, and connected
component labeling. The general idea of the method is to
find the differences between the template ballot image and
the target ballot image.

Template Template Marked Ballot Detected Mark 

Erosion Subtraction Denoise  

Adaptive
Binarization 

Fig. 6: Mark segmentation using traditional computer vision
techniques

The proposed T-CV-based mark segmentation model
(Fig. 6) relies on a pair of images, i.e., a blank template ballot
and a marked ballot, which are well-aligned by the proposed
image registration method. Well aligned template and target
ballot images are first converted into grayscale images. We
then apply element-wise subtraction on them, in which the
marked ballot is subtracted from the blank template ballot.
Since the marks on the marked ballot should be darker than
the corresponding area on the blank template ballot, only the
positive values in the difference matrix can potentially indicate
the marked areas. Based on our observation, a slight mis-
alignment between two images can make the difference matrix
noisy. To improve the robustness, we apply a morphological
operation on the template image before the subtraction, in
which an erosion operator is adopted to expand dark outlines
of bubbles (Fig. 6). The expanded area on the template ballot
can effectively counter off the majority of positive values in
the difference matrix caused by slight misalignment. Since
only the areas with positive values are needed, we discard the
negative values and clip them to 0. Next, as the difference
matrix can be noisy, we adopt a median filter to denoise
it. Then, we apply a common adaptive image binarization
method, Otsu’s Binarization [16], on the difference matrix,
and segment the binarized difference matrix by using the
Connected Components Labeling [17]. After all the above
operations, the method is expected to detect the marks from
ballots and their corresponding segments. The entire process
is fully automated without any human intervention. It does not
require the operator to manually define a fixed threshold or to
annotate target voting areas to detect and segment marks.

2) Deep Learning-based Mark Segmentation: The SOTA
model, Mask-RCNN (Regional Convolutional Neural Net-
work) [18], utilizes a relatively simple method to achieve
success in the task of object detection and instance segmen-
tation. The proposed DL-based mark segmentation model is
based on Mask R-CNN [18]. There are two classes in the
proposed DL-based model, including the “background” and

Fig. 7: The proposed Siamese architecture-based DL mark
detection models

“mark” classes. A pixel classified as “background” indicates
that the pixel is classified as unmarked, otherwise marked.
However, a DL model usually requires a large amount of
data since it trains by using original input data (vs engineered
features) directly. There is no available public dataset with
ground truth for the mark detection and segmentation task,
and manually extracting the boundary of each mark from each
ballot image can be intimidatingly costly. We created a training
dataset the ground truth of which is obtained by using the
proposed T-CV-based mark segmentation, eliminating the need
for costly human annotation. The training dataset obtained this
way is not expected to have perfect ground truth, however, we
hypothesize that the deep learning model can still pick up the
discriminative features for marks, even with some labeling
errors in the training set.

In order to improve the model’s ability to detecting the
marks that are usually underrepresented in training dataset,
such as those marginal or improperly filled marks, we extend
our DL-based mark segmentation model with a Siamese
network architecture, which enables the model to handle a
pair of input images: a hand-marked ballot image and its
blank template ballot image. As illustrated in Fig. 7, we
propose two variations of the Siamese network architecture:
SiameseL1 model, where an element-wise L1 distance is com-
puted between the feature maps extracted from the two input
images, and Siamese⊕ model, where these feature maps are
concatenated channel-wise. The SiameseL1 model, by using
the element-wise L1 distance upon the feature maps, aims to
guide the model to focus on the discrepancies between the two
input images. On the other hand, the Siamese⊕ model uses
channel-wise concatenation to fuse the feature maps. Instead
of explicitly instructing the model to focus on discrepancies,
the Siamese⊕ model is designed to autonomously discover and
leverage the relationship and interplay of the two feature maps
during its training process. The fused features are then sent
to feature pyramid network (FPN) and other Mask-RCNN’s
downstream networks, e.g., region proposal network (RPN),
bounding box regression (BBOX) and classification (CLS)
heads as well as segmentation (MASK) head. An evaluation
of our proposed Siamese network architecture is provided in
Section V-B.

IV. DATASET AND EXPERIMENTS

The experiments are conducted on two real-world ballot
datasets: Stanislaus County and Merced County of Califor-



nia state. Each county has a blank template ballot image,
with raw ballot scans unaligned. In the Stanislaus County
dataset, there are 3,151 scanned ballot images with the res-
olution 1700x2800, containing 2,211 ballot images in training
dataset, 470 ballot images in validation dataset, and 470
ballot images in test dataset. The Merced County dataset
contains 7,120 scanned ballot images with a resolution of
1272x2100, divided into 180 for training (fine tuning), 20
for validation, and 6,920 for testing. In the real scenario,
the layout of ballots used in different elections can be very
different. According to our observations, the model trained
using the Stanislaus dataset demonstrated decent generality
when applied to Merced County data, although not as good.
A common technique used in the DL field is fine-tuning,
which is used to tune a pre-trained DL model using training
dataset from the current dataset previously unseen by the pre-
trained model. The hypothesis is that, only a relatively small
dataset is needed for fine-tuning if the new dataset shares a
similar nature with the original dataset, and retraining can be
done much faster than that for the initial pre-trained model.
Therefore, the training and validation datasets are relatively
small. The tabulation ground truth is annotated by one expert
and reviewed by three others. The total number of target areas
of the testing set is 92,780. According to our experiments,
this fine-tuning, while not costly, can significantly improve
the segmentation accuracy. The information of all the datasets
is shown in Table I.

TABLE I: Summary of datasets (# of marks)

Dataset Train Validation Test
Stanislaus 13,266 2,820 2,820

Merced 2,340 260 89,960
Overall 15,606 3,080 92,780

The experiment of T-CV mark segmentation model-based
tabulation is relatively straightforward. Since the proposed T-
CV-based model does not involve any training, this tabulation
method will be applied to the testing dataset directly. To be
specific, all the ballot images in test dataset will be sent to
the proposed ballot image registration process firstly. After
the fine level alignment process, the well-aligned test samples
will be sent to the T-CV-based mark segmentation model. For
each test ballot, this method will generate a mark segmentation
map. In order to accelerate the processing, we adopted parallel
computing techniques in the T-CV-based model. Since all the
computations are based on NumPy arrays, we utilize Joblib
[19] to parallelize the pipeline. The experiment was run on 14
CPUs (2.4GHz Intel Xeon E5-2680).

For the proposed DL mark segmentation model-based tab-
ulation, as neither Stanislaus nor Merced dataset provides
the mark segmentation and tabulation ground truth, we apply
our proposed T-CV-based mark segmentation model on the
training and validation datasets to gain a reasonable approxi-
mation of the actual ground truth for segmentation. Since this
study does not consider the write-in content (e.g., write-in
candidates) on ballots, but the T-CV-based model is able to
pick up write-in content together with marks, we need a way
to remove the detected write-in content from the T-CV-based

model’s output so that it will not misguide the training of
the DL-based mark segmentation model. This can be done
by asking the user to provide a special tag (“write-in”) for
each write-in target area on the ballot template detected by the
proposed voting target localization algorithm (Section III-B).
Then anything detected from a “write-in” area will be removed
from the training dataset. By using the above strategy, we do
not need to hire experts to annotate hundreds of thousands of
ballots in the training and validation datasets. In real scenarios,
it is not realistic to train a DL-based mark segmentation model
from scratch for each contest or different type of ballot. A
more practical way would be to pre-train a DL-based mark
segmentation model on the existing dataset. Then, for different
contests or different types of ballots, we only need a few
samples of new data to fine-tune the pre-trained model, in
the hope that the fine-tuned model can fit the new data much
better. Therefore, in this experiment, we first train a DL-based
mark segmentation model on the Stanislaus County ballots. In
this step, the model is trained on a single NVIDIA Tesla P100
16GB GPU with 100 epochs with an initial learning rate of
0.00001. Then, the pre-trained model is fine-tuned by using
the 200 Merced County ballots.

Regarding evaluation metrics, we consider a voting target
area as one sample. To classify the voting target area is
straightforward: if there is a detected mark in a voting target
area, this target area is classified as “marked” or “vote”,
otherwise “unmarked” or “non-vote”. A False Positive target
area (FP) means the ground-truth label of the area is “non-
vote”, but the predicted label is “vote”. A False Negative target
area (FN) means that the area should be classified as “vote”,
but the prediction is “non-vote”. In this experiment, we use
Accuracy (ACC) as the metric, with the following definition:

ACC = 1− FP + FN

the total number of target areas
(1)

V. RESULTS AND DISCUSSION

In the ballot tabulation experiment, the accuracies of our
highly automated DL and T-CV model-based tabulation meth-
ods are 99.984 % and 99.921%, respectively (Table II). Only
1 ballot was manually adjudicated, which involves a scanning
error (the same candidate is scanned twice, and ballot layout is
changed) detected by our ballot image registration algorithm
(Section III-A). We count this ballot as a correct prediction
since it was successfully picked up and sent for adjudication.

TABLE II: The result of ballot tabulation experiment

Test Dataset T-CV Model DL Model
Name # of Marks FP FN ACC FP FN ACC

Stanislaus 2,820 5 0 99.823% 0 3 99.894%
Merced 89,960 68 0 99.924% 2 10 99.987%
Overall 92,780 73 0 99.921% 2 13 99.984%

A. Notable Cases of T-CV and DL

The proposed T-CV-based tabulation method detects marks
by examining the difference between a marked ballot image
and its corresponding blank template ballot image. Therefore,
noise/stains/stray marks on ballots, shown in Fig. 8, could



lead to increased false positives. In Fig. 8(a), a gold-colored
printing stain overlapping the bubble target of the candidate
“CHARLES BOLIN”, is detected as a valid mark based on the
difference between the marked ballot and the corresponding
blank template. In Fig. 8(b), there are three line-like small
segments in the voting target area of “SYNTHIA L. JON”. In
this case, the voter probably wanted to erase marks but did
not erase them completely. Therefore, they are detected by
the differences between the ballot and the template. Similar
to (b), Fig. 8(c) shows another noise case, in which there
is a hand-drawn scratch line detected by the T-CV-based
model. However, our proposed DL mark segmentation model-
based tabulation method detects and segments marks based
on the knowledge it learned from the training dataset. It does
not need to calculate the differences between two inputs nor
rely much on alignment. As illustrated in Fig. 8, neither the
printing/scanning errors nor noise/stains/stray marks can fool
our DL mark segmentation model.

(a)

(b)

Ballot T-CV-based DL-based

FP

FP

(c)
FP

Fig. 8: Ballots with noise/stains/stray marks and the corre-
sponding segmentation masks

To further evaluate the tabulator’s robustness, we test both
T-CV and DL model-based tabulation methods on several
extreme cases, e.g., folded paper ballots and wrinkled paper
ballots. In real scenarios, mail-in paper ballots could be folded
in an envelope or wrinkled, as shown in Figs. 9 and 10. Despite
slight distortions in lines and text due to folding, both T-
CV and DL model-based methods work perfectly. However,
the wrinkled ballots posed a challenge for the T-CV-based
mark segmentation model, leading to numerous false positives.
This is because the T-CV-based model highly depends on the
quality of the alignment between two input images, and this
type of severe misalignment is hard to be eliminated (Fig. 10).
In contrast, the DL-based mark segmentation model delivered
accurate predictions despite these challenges. It’s evident that
the proposed DL-based model is more robust to cases with
severe misalignment, or noise/stains/stray marks, compared to
the T-CV-based model.

column lines and texts slightly distorted by folding

Ballot T-CV-based DL-based

Fig. 9: Folded ballots and segmentation masks

Ballot DL-basedT-CV-based

Fig. 10: A wrinkled ballot and its segmentation mask

B. DL with Siamese Network Architecture

The previous section shows that the DL-based mark seg-
mentation model can be more robust and generalizable in cases
of severe misalignment and noise/stains/stray marks. However,
it does not mean that the DL-based model is without any
limitations. In Fig. 11, we can see that the shape of the marks
is quite different from that of a typical mark in the Stanislaus
and Merced datasets. Fig. 11(b) visualizes the marks’ segments
correctly picked up by T-CV-based model. Our DL-based
model was unable to detect any of these improper marks. This
is because only one ballot in our dataset contains this type
of marks, heavily underrepresented in the training dataset. In
general, we can improve our DL-based model’s performance
on these kinds of marks by adding more similar ballots into
the training dataset. However, data collection for such ballots
would require additional human effort.

Fig. 11: Improper marks are correctly picked up by the T-CV-
based model and the Siamese-based DL model. The DL-based
model without Siamese architectures fails to detect this type
of marks.

We propose a novel approach, introduced in Section III-C2,
that integrates our DL-based mark segmentation model with
Siamese network architectures to enhance the ability of detect-
ing underrepresented mark types in the training dataset. This
is accomplished by taking advantage of contrasting features
between a marked ballot image and its blank template image.
The two variants: SiameseL1 and Siamese⊕, are tested on the
same dataset and with the same training procedure as our DL-
based model. As shown in Table III, by implementing our
Siamese network architectures, not only has the tabulation
accuracy improved (by 0.003% for SiameseL1 and 0.002%
for Siamese⊕), but also the false negative rate of our DL-
based model has significantly decreased (by 38.462% for
SiameseL1 and 53.846% for Siamese⊕). According to the
results, Siamese⊕ displays superior performance with the
Stanislaus dataset, while SiameseL1 performs better on the
Merced dataset. This is due to Siamese⊕ is particularly
effective when the training data is sufficient, as it learns



how to fuse features instead of manual engineering. On the
other hand, SiameseL1 is better equipped to handle situations
where the training data is insufficient, as it is guided to focus
specifically on discrepancies. As demonstrated in Fig. 11,
when enhanced with the proposed Siamese architecture, our
DL-based mark segmentation model is successful in detecting
the marks, which are underrepresented in the training dataset.
Without the use of the Siamese network architecture, the DL
mark segmentation model fails to detect these marks.

TABLE III: The result of Siamese-based DL

Test Dataset SiameseL1 Siamese⊕
Name # of Marks FP FN ACC FP FN ACC

Stanislaus 2,820 1 2 99.894% 2 0 99.929%
Merced 89,960 3 6 99.990% 5 6 99.988%
Overall 92,780 4 8 99.987% 7 6 99.986%

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposes the first highly automated ballot tabu-
lation methods, including a traditional computer vision and a
deep learning-based methods. In the T-CV mark segmentation
model-based method, we further propose the first highly
automated ballot image registration algorithm and voting target
localization algorithm. We also propose a Siamese network
architecture to improve the DL-based mark segmentation
model’s capacity of handling the marks underrepresented in
training dataset.

In the future, we see at least three ways to further improve
the DL-based mark detection and segmentation method: First,
we intend to design transformer-based network architectures
to replace the current convolutional neural network-based
(CNNs) backbone. Unlike CNNs, which process data with
local receptive fields, transformers with attention mechanism
allow unrestricted interactions between each patch and every
other patch in the image. This could be particularly beneficial
for mark detection and segmentation tasks where the model
needs to consider global context and interdependencies among
different regions of the ballot image. Secondly, we plan to ex-
plore other model architectures such as U-Net or YOLO (You
Only Look Once). U-Net, with its encoder-decoder structure,
has been shown to perform well in tasks that require precise
segmentation. On the other hand, YOLO, an architecture de-
signed for real-time object detection, could potentially improve
the efficiency of our mark detection and segmentation tasks.
Another direction of future work is designing a diffusion-based
image registration model to address the misalignment issue
that arises between a hand-marked ballot and its corresponding
blank template. Diffusion models, a kind of generative model,
are effective in modeling the distribution of data and generate
new data instances. They could potentially be used to generate
well-aligned blank template ballots corresponding to specific
hand-marked ones. This approach might significantly improve
the speed and efficacy of our image registration process.
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