
Proceedings of Machine Learning Research vol 195:1–56, 2023 36th Annual Conference on Learning Theory

Benign Overfitting in Linear Classifiers and Leaky ReLU Networks
from KKT Conditions for Margin Maximization

Spencer Frei* FREI@BERKELEY.EDU
UC Berkeley

Gal Vardi∗ GALVARDI@TTIC.EDU
TTI-Chicago and Hebrew University

Peter L. Bartlett PETER@BERKELEY.EDU
UC Berkeley and Google DeepMind

Nathan Srebro NATI@TTIC.EDU

TTI-Chicago

Editors: Gergely Neu and Lorenzo Rosasco

Abstract
Linear classifiers and leaky ReLU networks trained by gradient flow on the logistic loss have an im-
plicit bias towards solutions which satisfy the Karush–Kuhn–Tucker (KKT) conditions for margin
maximization. In this work we establish a number of settings where the satisfaction of these KKT
conditions implies benign overfitting in linear classifiers and in two-layer leaky ReLU networks:
the estimators interpolate noisy training data and simultaneously generalize well to test data. The
settings include variants of the noisy class-conditional Gaussians considered in previous work as
well as new distributional settings where benign overfitting has not been previously observed. The
key ingredient to our proof is the observation that when the training data is nearly-orthogonal,
both linear classifiers and leaky ReLU networks satisfying the KKT conditions for their respective
margin maximization problems behave like a weighted average of the training examples.
Keywords: Benign overfitting, Linear classifiers, Leaky ReLU networks, Implicit bias.

1. Introduction

The phenomenon of ‘benign overfitting’—referring to settings where a model achieves a perfect fit
to noisy training data and still generalizes well to unseen data—has attracted significant attention
in recent years. Following the initial experiments of Zhang et al. (2017), researchers have sought
to understand how this phenomenon can occur despite the long-standing intuition from statistical
learning theory that overfitting to noise should result in poor out-of-sample prediction performance.

In this work, we provide several new results on benign overfitting in classification tasks, for
both linear classifiers and two-layer leaky-ReLU neural networks. We consider gradient flow on
the empirical risk with exponentially-tailed loss functions, such as the logistic loss. Under certain
assumptions on the data distribution, we prove that gradient flow converges to solutions that ex-
hibit benign overfitting: the predictors interpolate noisy training data and simultaneously generalize
well to unseen test data. Our results extend existing work in two aspects: First, we prove benign
overfitting in two-layer leaky ReLU networks, while existing results do not cover such models.1

* Equal contribution
1. Frei et al. (2022) showed benign overfitting in two-layer nets with smooth leaky ReLU activations, as we discuss

later.
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Second, we characterize benign overfitting in new distributional settings (i.e., assumptions on the
data distributions).

The first distributional setting we consider is a noisy sub-Gaussian distribution (x, y) ∼ Psg

where labels are generated by a single component of x and are flipped to the opposite sign with
probability η. We show that if the variance from this component is sufficiently large relative to the
variance of the other components, and if the covariance matrix has a sufficiently high rank relative
to the number of samples, then linear classifiers and leaky ReLU networks trained by gradient flow
exhibit benign overfitting. In our second distributional setting, we consider a distribution Pclust

where inputs x are drawn uniformly from k nearly-orthogonal clusters, and labels are determined
by the cluster and are flipped to the opposite sign with probability η. We show that under some
assumptions on the scale and correlation of the clusters, gradient flow on linear classifiers and leaky
ReLU networks produces classifiers which exhibit benign overfitting. This is a setting not covered
by prior work on benign overfitting, and it essentially generalizes some previous results on benign
overfitting in linear classification (Chatterji and Long, 2021; Wang and Thrampoulidis, 2021) and
neural networks with smooth leaky activations (Frei et al., 2022).

Our proofs follow by analyzing the implicit bias of gradient flow. Lyu and Li (2020); Ji and Tel-
garsky (2020) showed that when training homogeneous neural networks with exponentially-tailed
loss functions, gradient flow is biased towards solutions that maximize the margin in parameter
space. Namely, if the empirical risk reaches a small enough value, then gradient flow converges
in direction to a solution that satisfies the Karush–Kuhn–Tucker (KKT) conditions for the margin-
maximization problem. We develop new proof techniques which show that in the aforementioned
distributional settings, benign overfitting occurs for any solution that satisfies these KKT conditions.
In a bit more detail, we show that every KKT point in our settings has a linear decision boundary,
even in the case of leaky ReLU networks. This linear decision boundary can be expressed by a
weighted sum of the training examples, where the weights of all examples are approximately bal-
anced. Using this balancedness property, we are able to prove that benign overfitting occurs.

Related work

Benign overfitting. The benign overfitting phenomenon has recently attracted intense attention
and was studied in various settings, such as linear regression (Hastie et al., 2020; Belkin et al.,
2020; Bartlett et al., 2020; Muthukumar et al., 2020; Negrea et al., 2020; Chinot and Lerasle, 2020;
Koehler et al., 2021; Wu and Xu, 2020; Tsigler and Bartlett, 2020; Zhou et al., 2022; Wang et al.,
2022; Chatterji et al., 2021; Bartlett and Long, 2021; Shamir, 2022), kernel regression (Liang and
Rakhlin, 2020; Mei and Montanari, 2019; Liang et al., 2020; Mallinar et al., 2022; Rakhlin and Zhai,
2019; Belkin et al., 2018), and classification (Chatterji and Long, 2021; Wang and Thrampoulidis,
2021; Cao et al., 2021; Muthukumar et al., 2021; Montanari et al., 2020; Shamir, 2022; Frei et al.,
2022; Cao et al., 2022; McRae et al., 2022; Liang and Recht, 2021; Thrampoulidis et al., 2020;
Wang et al., 2021; Donhauser et al., 2022). Below we discuss several works on benign overfitting
in classification which are most relevant to our results.

In contrast to linear regression, in linear classification the solution to which gradient flow is
known to converge, namely, the max-margin predictor, does not have a closed-form expression.
Hence, analyzing benign overfitting in linear classification is more challenging. Chatterji and Long
(2021); Wang and Thrampoulidis (2021) prove benign overfitting in linear classification for a high-
dimensional sub-Gaussian mixture model. Our results imply as a special case benign overfitting
in sub-Gaussian mixtures similar to their results. Cao et al. (2021) also study benign overfitting in
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a sub-Gaussian mixture model, but they do not consider label flipping noise. Muthukumar et al.
(2021) study the behavior of the overparameterized max-margin classifier in a discriminative classi-
fication model with label-flipping noise, by connecting the behavior of the max-margin classifier to
the ordinary least squares solution. They show that under certain conditions, all training data points
become support vectors of the maximum margin classifier (see also Hsu et al. (2021)). Montanari
et al. (2020) studies a setting where the inputs are Gaussian, and the labels are generated accord-
ing to a logistic link function. They derive an expression for the asymptotic prediction error of the
max-margin linear classifier, assuming the ratio of the dimension and the sample size converges to
some fixed positive limit. Shamir (2022) also studies linear classification and proves benign over-
fitting under a distributional setting which is different from the aforementioned works and from our
setting.

Benign overfitting in nonlinear neural networks is even less well-understood. Frei et al. (2022)
show benign overfitting in two-layer networks with smooth leaky ReLU activations for a high-
dimensional sub-Gaussian mixture model; at the end of Section 5 we compare our results with theirs.
Cao et al. (2022) study benign overfitting in training a two-layer convolutional neural network using
the logistic loss, but they do not consider label-flipping noise as we do.

Implicit bias. The literature on implicit bias in neural networks has rapidly expanded in recent
years (see Vardi (2022) for a survey). In what follows, we discuss results that apply either to linear
classification using gradient flow, or to nonlinear two-layer networks trained with gradient flow in
classification settings.

Soudry et al. (2018) showed that gradient descent on linearly-separable binary classification
problems with exponentially-tailed losses (e.g., the exponential loss and the logistic loss), converges
to the maximum ℓ2-margin direction. This analysis was extended to other loss functions, tighter con-
vergence rates, non-separable data, and variants of gradient-based optimization algorithms (Nacson
et al., 2019a; Ji and Telgarsky, 2018; Ji et al., 2020; Gunasekar et al., 2018; Shamir, 2020; Ji and
Telgarsky, 2021; Nacson et al., 2019b; Ji et al., 2021).

Lyu and Li (2020) and Ji and Telgarsky (2020) showed that homogeneous neural networks
(and specifically two-layer leaky ReLU networks, which are the focus of this paper) trained with
exponentially-tailed classification losses converge in direction to a KKT point of the maximum-
margin problem. We note that the aforementioned KKT point may not be a global optimum of
the maximum-margin problem (Vardi et al., 2021; Lyu et al., 2021). Recently, Kunin et al. (2022)
extended this result by showing bias towards margin maximization in a broader family of networks
called quasi-homogeneous. Lyu et al. (2021); Sarussi et al. (2021); Frei et al. (2023) studied implicit
bias in two-layer leaky ReLU networks with linearly-separable data, and proved that under some
additional assumptions, gradient flow converges to a linear classifier. Specifically, Frei et al. (2023)
analyzed the implicit bias in leaky ReLU networks trained with nearly-orthogonal data, and our
analysis of leaky ReLU networks builds on their result (see Section 3 for details). Moreover, implicit
bias with nearly-orthogonal data was studied for ReLU networks in Vardi et al. (2022), where the
authors prove bias towards networks that are not adversarially robust. Other works which consider
the implicit bias of classification using gradient flow in nonlinear two-layer networks include Chizat
and Bach (2020); Phuong and Lampert (2020); Safran et al. (2022); Timor et al. (2022).
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2. Preliminaries

Notation. We use ∥x∥ to denote the Euclidean norm of a vector x, while for matrices W we
use ∥W∥F to denote its Frobenius norm and ∥W∥2 its spectral norm. We use 1(z) to denote the
indicator function, so 1(z) = 1 if z ≥ 0 and 0 otherwise. We use sign(z) as the function that is
1 when z > 0 and −1 otherwise. For integer n ∈ N, we use [n] = {1, . . . , n}. The Gaussian
with mean a and variance σ2 is denoted N(a, σ2), while the multivariate Gaussian with mean µ and
covariance matrix Σ is denoted N(µ,Σ). We denote the minimum of two numbers a, b as a ∧ b,
and the maximum a ∨ b. For a vector x ∈ Rd, we use [x]i ∈ R to denote the i-th component of
the vector, and [x]i:j ∈ Rj−i+1 as the vector with components [x]i, [x]i+1, . . . , [x]j . We use the
standard big-Oh notation O(·),Ω(·) to hide universal constants, with Õ(·), Ω̃(·) hiding logarithmic
factors. We refer to quantities that are independent of the dimension d, number of samples n, the
failure probability δ or number of neurons m in the network as constants.

The setting. We consider classification tasks where the training data {(xi, yi)}ni=1 are drawn i.i.d.
from a distribution P over (x, y) ∈ Rd × {±1}. We study two distinct models in this work. In the
first, we consider maximum-margin linear classifiers x 7→ sign(⟨w, x⟩), which are solutions to the
following constrained optimization problem:

min
w∈Rd

∥w∥2 such that for all i ∈ [n], yi⟨w, xi⟩ ≥ 1. (1)

By Soudry et al. (2018), gradient descent on exponentially-tailed losses such as the logistic loss has
an implicit bias towards such solutions. We shall show that in a number of settings, any solution to
Problem (1) will exhibit benign overfitting.

As our second model, we consider two-layer neural networks with leaky ReLU activations,
where the first layer W ∈ Rm×d is trained but the second layer weights {aj}mj=1 fixed at random
initialization:

f(x;W ) :=
∑m

j=1 ajϕ(⟨wj , x⟩), ϕ(q) = max(γq, q), γ ∈ (0, 1). (2)

For simplicity we assume m is an even number and that for half of the neurons, aj = 1/
√
m, and

the other half of the the neurons satisfy aj = −1/
√
m. We consider a binary classification task with

training data S = {(xi, yi)}ni=1 ⊂ Rd ×{±1}. We define the margin-maximization problem for the
neural network f(x;W ) over training data S as

min
W∈Rm×d

∥W∥2F such that for all i ∈ [n], yif(xi;W ) ≥ 1. (3)

Recall the definition of the Karush–Kuhn–Tucker (KKT) conditions for non-smooth optimization
problems (cf. Lyu and Li (2020); Dutta et al. (2013)). Let h : Rp → R be a locally Lipschitz
function. The Clarke subdifferential (Clarke et al., 2008) at θ ∈ Rp is the convex set

∂◦h(θ) := conv
{
lim
s→∞

∇h(θs)
∣∣∣ lim
s→∞

θs = θ, h is differentiable at θs
}

.

If h is continuously differentiable at θ then ∂◦h(θ) = {∇h(θ)}. Given locally Lipschitz functions
h, g1, . . . , gn : Rp → R, we say that θ ∈ Rp is a feasible point of the problem

minh(θ) s.t. for all n ∈ [N ], gn(θ) ≤ 0,

if θ satisfies gn(θ) ≤ 0 for all n ∈ [N ]. We say that a feasible point θ is a KKT point if there exists
λ1, . . . , λN ≥ 0 such that
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1. 0 ∈ ∂◦h(θ) +
∑

n∈[N ] λn∂
◦gn(θ);

2. For all n ∈ [N ] we have λngn(θ) = 0.

We shall show that in a number of settings, any KKT point of Problem (3) will generalize well, even
when a constant fraction of the training labels are uniformly random labels. Since any feasible point
of Problem (3) interpolates the training data, this implies the network exhibits benign overfitting.

KKT points of Problem (3) appear naturally in the training of neural networks. For a loss
function ℓ : R → [0,∞) and for parameters W of the neural network f(x;W ), define the empirical
risk under ℓ as

L̂(W ) := 1
n

∑n
i=1 ℓ

(
yif(xi;W )

)
.

Gradient flow for the objective function L̂(W ) is the trajectory W (t) defined by an initial point
W (0), and is such that W (t) satisfies the differential equation d

dtW (t) ∈ −∂◦L̂(W (t)) with initial
point W (0). Since the network f(x; ·) is 1-homogeneous, recent work by Lyu and Li (2020) and Ji
and Telgarsky (2020) show that if ℓ is either the exponential loss ℓ(q) = exp(−q) or logistic loss
ℓ(q) = log(1 + exp(−q)), then provided there exists a time t0 for which L̂(W (0)) < log(2)/n,
gradient flow converges in direction to a KKT point of Problem (3), in the sense that for some KKT
point W ∗ of Problem (3) it holds that W (t)

∥W (t)∥ → W ∗

∥W ∗∥ . Thus, although there exist many neural
networks which could classify the training data correctly, if gradient flow reaches a point with small
enough loss then it will only produce networks which converge in direction to networks which
satisfy the KKT conditions of Problem (3). Note that this need not imply that W (t) converges in
direction to a global optimum of Problem (3) (Vardi et al., 2021; Lyu et al., 2021). This is in contrast
to the margin-maximization problem in linear classification given in Eq. (1), where the constraints
and objective function are linear, and hence the KKT conditions are necessary and sufficient for
global optimality.

3. Properties of KKT Points for Nearly Orthogonal Data

In this section we show that when the training data is nearly-orthogonal (in a sense to be formalized
momentarily), then the decision boundaries of both (i) KKT points of the linear max-margin prob-
lem (1) and (ii) KKT points of the nonlinear leaky ReLU network (3) take the form of a weighted-
average estimator w =

∑n
i=1 siyixi where {si}ni=1 are strictly positive and all of the same order,

namely, w is a nearly uniform average of the training data. We will use this property in the next
sections to show benign overfitting under certain distributional assumptions. We begin with our
definitions of p-orthogonality and τ -uniform classifiers.

Definition 1 Denote R2
min = mini ∥xi∥2, R2

max = maxi ∥xi∥2, and R2 = R2
max/R

2
min. We call the

training data p-orthogonal if R2
min ≥ pR2nmaxi̸=j |⟨xi, xj⟩|.

Clearly, if the training data is exactly orthogonal then it is p-orthogonal for every p > 0. In contrast
to exact orthogonality, p-orthogonality allows for the possibility that training data sampled i.i.d.
from a broad class of distributions is p-orthogonal, as we shall see later.

Definition 2 We say that w ∈ Rd is τ -uniform w.r.t. {(xi, yi)}ni=1 ⊂ Rd × {−1, 1} if w =∑n
i=1 siyixi, where the coefficients {si}ni=1 are strictly positive and maxi si

mini si
≤ τ .
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Our first lemma shows that if the training data is p-orthogonal for large p and the norms of
the training examples are all of the same order, then the linear max-margin classifier is given by a
τ -uniform vector.

Proposition 3 Suppose the training data are p-orthogonal for p ≥ 3. Denote R2 = maxi,j ∥xi∥2/∥xj∥2.
Let ŵ = argmin{∥w∥2 : yi⟨w, xi⟩ ≥ 1 ∀i} be the max-margin linear classifier. Then, ŵ is τ -
uniform w.r.t. {(xi, yi)}ni=1 for τ = R2

(
1 + 2

pR2−2

)
.

The proof for this proposition comes from an analysis of the KKT conditions for the max-margin
problem and is provided in Appendix A. Observe that as p → ∞ and as R2 → 1, we see that the
linear max-margin becomes proportional to

∑n
i=1 yixi, i.e. the classical sample average estimator.

Next, we show that when the training data are p-orthogonal for large enough p, then any KKT
point of the leaky ReLU network margin maximization problem (3) has the same decision boundary
as a τ -uniform linear classifier, despite the fact that two-layer leaky ReLU networks are in general
nonlinear. The proof relies on a recent work by Frei et al. (2023), and is given in Appendix B.

Proposition 4 Denote R2 = maxi,j ∥xi∥2/∥xj∥2. Let f denote the leaky ReLU network (2) and let
W denote a KKT point of Problem (3). Suppose the training data are p-orthogonal for p ≥ 3γ−3.
Then, there exists z ∈ Rd such that for any x ∈ Rd, sign (f(x;W )) = sign (⟨z, x⟩) , and z is
τ -uniform w.r.t. {(xi, yi)}ni=1 for τ = R2

γ2

(
1 + 2

γpR2−2

)
. Moreover, for any initialization W (0),

gradient flow on the logistic or exponential loss converges in direction to such a KKT point.

Proposition 4 identifies an explicit formula for the limiting behavior of a neural network classi-
fier trained by gradient flow in a non-convex setting. It is worth emphasizing that Proposition 4 does
not make any assumptions on the width of the network or the initialization, and thus the character-
ization holds for neural networks in the feature-learning regime. Finally, note that as p → ∞ and
R2 → 1, KKT points of Problem (3) have the same decision boundary as a τ -uniform classifier for
τ → γ−2. In particular, if additionally the leaky parameter γ → 1, the KKT points of leaky ReLU
network margin-maximization problems become proportional as the sample average

∑n
i=1 yixi, just

as the linear max-margin predictor does.
Putting Proposition 3 and 4 together, we see that by understanding the behavior of τ -uniform

classifiers x 7→ sign (⟨
∑n

i=1 siyixi, x⟩), we can capture the behavior of both linear max-margin
estimators as well as those of leaky ReLU networks trained by gradient flow with nearly-orthogonal
data. In the following sections, we describe two distributional settings where we show that this
estimator can exhibit benign overfitting: it achieves 0 training error on noisy datasets while simul-
taneously achieving test error near the noise rate.

4. Benign Overfitting for Sub-Gaussian Marginals

In this section we consider a distribution Psg over (x, y) such that x has independent sub-Gaussian
components, with a single high-variance component which determines the label y, while the re-
maining components of x have small variance. Let Px be a distribution over Rd. We assume
the covariates x ∼ Px are mean-zero with covariance matrix Σ = Ex∼Px [xx

⊤] satisfying Σ =
diag(λ1, . . . , λd) where λ1 ≥ · · · ≥ λd. We assume that z := Σ−1/2x ∼ Pz where Pz is a sub-
Gaussian random vector with independent components and sub-Gaussian norm at most σz (see Ver-
shynin (2018) for more details on sub-Gaussian distributions). Given x ∼ Px, labels are generated
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as follows. For some label noise parameter η ∈ (0, 1/2), we have y = sign([x]1) with probability
1−η and y = − sign([x]1) with probability η, where [x]1 denotes the first component of x. Finally,
we assume that for some absolute constant β > 0, we have P(|[z]1| ≤ t) ≤ βt for all t ≥ 0. In
the remainder, we will assume that σz, η, and β are absolute constants, and our results will hold
provided d and n are large enough relative to these and other universal constants.

The reader may be curious about the requirement that Pz∼Pz(|[z]1| ≤ t) ≤ βt. This is a techni-
cal assumption that ensures that the ‘signal’ in the model is large as it prevents the possibility that
the mass of [z]1 is highly concentrated near zero. Additionally, note that this assumption is satisfied
if the distribution of either z or [z]1 is (isotropic) log-concave by the anti-concentration property of
isotropic log-concave distributions (Lovász and Vempala, 2007, Theorem 5.1 and Theorem 5.14).2

This assumption also implies that E[|[z]1|] ≥ 1/(4β), since P(|z| ≥ 1/(2β)) ≥ 1/2 by taking
t = 1/(2β). We can in principle accommodate more general conditions, such as P(|[z]1| ≤ t) ≤ βtp

for some p > 0; this is a type of ‘soft margin’ condition which has been utilized in previous work
on learning noisy halfspaces (Frei et al., 2021a,b).

We assume access to n i.i.d. training examples {(xi, yi)}
i.i.d.∼ Psg. For a desired probabil-

ity of failure δ ∈ (0, 1/2), we make the following assumptions on the problem parameters for a
sufficiently large constant C > 1.

(SG1) The number of samples satisfies n ≥ C log(6/δ).

(SG2) The covariance matrix satisfies StableRank(Σ2:d) ≥ C log(6n/δ), where Σ2:d denotes the
matrix diag(λ2, . . . , λd).

(SG3) The covariance matrix satisfies tr(Σ)√
tr(Σ2)

≥ Cn log(6n2/δ).

We remind the reader that the stable rank of a matrix M ∈ Rm×d is StableRank(M) := ∥M∥2F /∥M∥22.
We note that the quantity tr(Σ)/

√
tr(Σ2) in (SG3) has appeared in previous work on benign over-

fitting: it is the square root of the “effective rank” R0(Σ) from Bartlett et al. (2020). Indeed, this
quantity is large if

√
StableRank(Σ1/2) is large, since

tr(Σ)√
tr(Σ2)

≥ tr(Σ)√
∥Σ∥2tr(Σ)

=

√
tr(Σ)

∥Σ1/2∥2
=

∥Σ1/2∥F
∥Σ1/2∥2

=
√
StableRank(Σ1/2).

Thus the Assumption (SG3) can be roughly understood as requiring that the matrix Σ1/2 has suf-
ficiently large rank. Additionally, we note that it is possible to have StableRank(Σ2:d) = Θ(1)
while tr(Σ)/

√
tr(Σ2) = Θ(

√
d) (take Σ = diag(

√
d,
√
d, 1, . . . , 1)), and it is also possible for

StableRank(Σ2:d) = Θ(
√
d) while tr(Σ)/

√
tr(Σ2) = Θ(1) (take Σ = diag(d, d1/4, 1, . . . , 1)).

Thus the Assumptions (SG2) and (SG3) are independent.
Our first lemma states that as the constant C in the preceding assumptions becomes larger, the

training data becomes more orthogonal.

Lemma 5 There exists an absolute constant C1 > 0 (depending only on σz) such that for every
large enough constant C > 0, for any δ ∈ (0, 1/2), under Assumptions (SG1) through (SG3) (defined

2. For z ∼ Pz where Pz is log-concave and isotropic, Lovász and Vempala (2007, Theorem 5.1) implies the one-
dimensional marginal [z]1 is isotropic and log-concave. Theorem 5.14 of the same reference shows that the density
function of the (one-dimensional) [z]1 is bounded from above by a constant, which implies P(|[z]1| ≤ t) ≤ βt for an
absolute constant β > 0.
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for these C and δ), with probability at least 1 − 2δ over Pn
sg, the training data is C/C1-orthogonal,

and maxi,j ∥xi∥2/∥xj∥2 ≤ (1 + C1/
√
C)4.

The proof of Lemma 5, as well as all proofs for this section, appears in Appendix C. Recall
from Propositions 3 and 4 that for p-orthogonal training data, as R2 = maxi,j ∥xi∥2/∥xj∥2 → 1 and
p → ∞, solutions the linear max-margin problem (1) become τ -uniform for τ → 1. Similarly,
KKT points of the leaky ReLU max margin problem behave like τ -uniform linear classifiers for
τ → γ−2 as p → ∞ and R → 1. In our main theorem for this section, we show that τ -uniform
linear classifiers exhibit benign overfitting. We remind the reader that we refer to quantities that
are independent of the dimension d, number of samples n, the failure probability δ or number of
neurons m in the network as constants.

Theorem 6 Let τ ≥ 1 be a constant, and suppose η ≤ 1
2τ − ∆ for some absolute constants

η,∆ > 0. There exist constants C,C ′ > 0 (depending only on η, σz, β, τ , and ∆) such that for any
δ ∈ (0, 1/7), under Assumptions (SG1) through (SG3) (defined for these C and δ), with probability
at least 1− 7δ over Pn

sg, if u ∈ Rd is τ -uniform w.r.t. {(xi, yi)}ni=1, then

for all k ∈ [n], yk = sign
(
⟨u, xk⟩

)
, while simultaneously,

η ≤ P(x,y)∼Psg

(
y ̸= sign(⟨u, x⟩)

)
≤ η + C ′

√
tr(Σ2

2:d)

λ2
1

(
1 +

√
0 ∨ 1

2
log

(
λ2
1

tr(Σ2
2:d)

))
.

In particular, if tr(Σ2
2:d)/λ

2
1 = o(1), then the linear classifier x 7→ sign(⟨u, x⟩) exhibits benign

overfitting.

Theorem 6 shows that any τ -uniform estimator will exhibit benign overfitting, with the level
of noise tolerated determined by the quantity τ . Moreover, by considering the 1-uniform estimator∑n

i=1 yixi, we see that there exists an estimator which can tolerate noise levels close to 1/2.
Using Lemma 5 and Proposition 3, we can use Theorem 6 to characterize the linear max-margin

predictor.

Corollary 7 Suppose 0 < η ≤ 0.49. There exist constants C,C ′ > 0 such that for any δ ∈ (0, 1/9),
under Assumptions (SG1) through (SG3) (defined for these C and δ), with probability at least 1−9δ
over Pn

sg, the max-margin linear classifier w = argmin{∥w∥2 : yi⟨w, xi⟩ ≥ 1 ∀i} satisfies

for all k ∈ [n], yk = sign
(
⟨w, xk⟩

)
, while simultaneously,

η ≤ P(x,y)∼Psg

(
y ̸= sign(⟨w, x⟩)

)
≤ η + C ′

√
tr(Σ2

2:d)

λ2
1

(
1 +

√
0 ∨ 1

2
log

(
λ2
1

tr(Σ2
2:d)

))
.

In particular, if tr(Σ2
2:d)/λ

2
1 = o(1) then w exhibits benign overfitting.

The proof of Corollary 7 is the result of a simple calculation (for completeness it is provided
in Appendix C): By Theorem 6, we can tolerate noise rates η close to 1

2 if τ is close to one. By
Lemma 5, as C gets larger the training data becomes more orthogonal and the ratio of the norms of
the examples becomes closer to one. By Proposition 3 this implies τ → 1 as C increases.

We can similarly use Lemma 5 and Proposition 4 to show that KKT points of the max-margin
problem for leaky ReLU networks from Problem (3) also exhibit benign overfitting.

8
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Corollary 8 Suppose that 0 < η ≤ 49γ2

100 . There exist constants C,C ′ > 0 such that for any
δ ∈ (0, 1/9), under Assumptions (SG1) through (SG3) (defined for these C and δ), with probability
at least 1− 9δ over Pn

sg, any KKT point W of Problem (3) satisfies

for all k ∈ [n], yk = sign
(
f(xk;W )

)
, while simultaneously,

η ≤ P(x,y)∼Psg

(
y ̸= sign

(
f(x;W )

))
≤ η + C ′

√
tr(Σ2

2:d)

λ2
1

(
1 +

√
0 ∨ 1

2
log

(
λ2
1

tr(Σ2
2:d)

))
.

In particular, if tr(Σ2
2:d)/λ

2
1 = o(1) then the neural network f(x;W ) exhibits benign overfitting.

Moreover, for any initialization W (0), gradient flow converges in direction to a network satisfying
the above.

The proof of Corollary 8 similarly requires a small calculation which we provide in Appendix C.
It is noteworthy that the only difference in the behavior of KKT points of the leaky ReLU max-
margin problem (3) and the linear max-margin (1) is the level of noise that is tolerated: in the leaky
ReLU case, smaller leaky parameters γ result in less noise tolerated, and as γ → 1, we recover
the behavior of the linear max-margin predictor from Corollary 7. Additionally, the generalization
bound in Corollary 8 does not depend on the number m of neurons in the network.

From the above results, we see that in order for benign overfitting to occur in either the linear
max-margin classifier or in two-layer leaky ReLU networks trained by gradient flow, the data needs
to simultaneously satisfy two constraints: (1) the covariance matrix is sufficiently high rank in the
sense of Assumptions (SG2) and (SG3), and (2) the variance in the first coordinate must be large
relative to the variance of the last d − 1 coordinates. There is a tension here as can be seen by
considering the covariance matrix Σ = (ξ, 1, . . . , 1) for ξ ≥ 1: as ξ → ∞, tr(Σ)/

√
tr(Σ2) → 1,

and hence as the signal-to-noise ratio λ2
1/tr(Σ

2
2:d) increases, it becomes more difficult to satisfy as-

sumption (SG3). However, it is indeed possible to satisfy both (1) and (2). Consider the distribution
Pgaus over (x, y) ∈ Rd × {±1} where x ∼ N(0,Σ) with covariance matrix Σ = diag(dρ, 1, . . . , 1)
for some ρ > 0, and where y = sign([x]1) with probability 1− η and y = − sign([x]1) with prob-
ability η for some constant η > 0. In the following corollary, we show that if ρ ∈ (1/2, 1), then (1)
and (2) are satisfied and so KKT points of the leaky ReLU max-margin problem (3) exhibit benign
overfitting (an analogous result for the linear max-margin classifier holds as well).

Corollary 9 Suppose 0 < η ≤ 49γ2

100 . Then for the distribution Pgaus, for any δ ∈ (0, 1/9), if
ρ ∈ (1/2, 1), d = Ω̃(n1/(1−ρ)), and n = Ω̃(1), then Assumptions (SG1) through (SG3) are satisfied.
Moreover, with probability at least 1 − 9δ over Pn

gaus, KKT points of Problem (3) exhibit benign
overfitting:

for all k ∈ [n], yk = sign
(
f(xk;W )

)
,

while simultaneously, η ≤ P(x,y)∼Pgaus

(
y ̸= sign

(
f(xk;W )

))
≤ η + Õ

(
d

1
2
(1−2ρ)

)
= η + od(1).

Furthermore, for any initialization W (0), gradient flow converges in direction to a network satisfy-
ing the above.

We note that a similar result on benign overfitting for the linear max-margin classifier for data
coming from Pgaus has been shown by Muthukumar et al. (2021) with a rather different proof
technique.

9
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5. Benign Overfitting for Clustered Data

In this section we consider a distribution where data comes from multiple clusters and data from
each cluster initially share the same label but then are flipped with some constant probability η. In
particular, we consider a distribution Pclust over (x, y) ∈ Rd × {±1} defined as follows. Let k ≥ 2
and Q := [k]. We are given cluster means µ(1), . . . , µ(k) with cluster labels ỹ(1), . . . , ỹ(k) ∈ {±1}.
Cluster indices are sampled q ∼ Unif(Q), after which x|q ∼ µ(q) + z where z ∼ P′

z is such that:
the components of z are mean-zero, independent, sub-Gaussian random variables with sub-Gaussian
norm at most one; and E[∥z∥2] = d.3 Finally, the (clean) label of x is ỹ = y(q), and the observed
label is y = ỹ with probability 1− η and y = −ỹ with probability 1− η.

For a given δ ∈ (0, 1/2), we make the following assumptions on the parameters, for a sufficiently
large constant C > 1:

(CL1) Number of samples n ≥ Ck2 log(k/δ).

(CL2) Dimension d ≥ Cmax{nmaxq ∥µ(q)∥2, n2 log(n/δ)}.

(CL3) The cluster means satisfy: minq ∥µ(q)∥ ≥ Ck
√

log(2nk/δ).

(CL4) The cluster means are nearly-orthogonal in the sense that: minq ∥µ(q)∥2 ≥ Ckmaxq ̸=r |⟨µ(q), µ(r)⟩|.

We shall show below that under these assumptions, the training data is linearly separable with high
probability.

Our first lemma shows that under the preceding assumptions, the training data become more
orthogonal and the ratio of the norms of the examples tends to one as C increases.

Lemma 10 There exists an absolute constant C2 > 0 such for every large enough constant C > 0,
for any δ ∈ (0, 1/7), under Assumptions (CL1) through (CL4) (defined for these C and δ), with
probability at least 1−7δ over Pclust, the training data is C/C2-orthogonal, and maxi,j ∥xi∥2/∥xj∥2 ≤
(1 + C2/

√
C)2.

The proof of the above lemma, as well as all proofs for this section, appears in Appendix D. As
before, Lemma 10 allows for us to utilize Propositions 3 and 4 to show that both KKT points of the
linear max-margin problem (1) and of the leaky ReLU network max-margin problem (2) take the
form

∑n
i=1 siyixi. The following theorem characterizes the performance of this predictor.

Theorem 11 Let τ ≥ 1 be a constant, and suppose η ≤ 1
1+τ − ∆ for some absolute constants

η,∆ > 0. There exist constants C,C ′ > 0 (depending only on η, τ , and ∆) such that for any
δ ∈ (0, 1/14), under Assumptions (CL1) through (CL4) (defined for these C and δ), with probability
at least 1− 14δ over Pn

clust, if u ∈ Rd is τ -uniform w.r.t. {(xi, yi)}ni=1, then

for all k ∈ [n], yk = sign
(
⟨u, xk⟩

)
,

while simultaneously, η ≤ P(x,y)∼Pclust

(
y ̸= sign(⟨u, x⟩)

)
≤ η + exp

(
−nminq ∥µ(q)∥4

C ′k2d

)
.

In particular, if nminq ∥µ(q)∥4 = ω(k2d), then the linear classifier x 7→ sign(⟨u, x⟩) exhibits
benign overfitting.

3. We can easily accommodate well-conditioned clusters, e.g. κd ≤ E ∥z∥2 ≤ d for some absolute constant κ > 0,
although the noise rate tolerated will then depend upon κ (smaller κ will require smaller η). We do not do so for
simplicity of exposition.

10
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In order for benign overfitting to occur, the above theorem requires that Assumptions (CL1)
through (CL4) are satisfied while simultaneously minq ∥µ(q)∥4 = ω(k2d/n). This can be satisfied
in a number of settings, such as:

(i) Orthogonal clusters with ∥µ(q)∥ = Θ(dβ) for each q ∈ Q, where β ∈ (1/4, 1/2), k =
O(1), n = Ω̃(1) and d = Ω̃(n1/(1−2β)). In this setting the test error is at most η +

exp
(
−Ω̃(nd4β−1)

)
.

(ii) Non-orthogonal clusters where maxq ̸=r |⟨µ(q), µ(r)⟩| = O(d
3
5 ) and ∥µ(q)∥ = Θ(d

1
3 ) for each

q, n = Θ(d
1
5 ), and k = Θ(d0.05). In this setting the test error is at most η+exp

(
−Ω(d0.43)

)
.

Although neither of the above settings are explicitly covered by Theorem 6, the setting (i) is
similar in flavor to that theorem, in that the labels are determined by a constant number of high-
variance directions. By contrast, the setting (ii) is quite different, as it allows for (clean) labels
to be determined by the output of a linear classifier over k = Θ(d0.05) components, namely
sign

(
⟨
∑k

q=1 y
(q)µ(q), x⟩

)
.

Just as in the case of Theorem 6, we have a number of corollaries of Theorem 11. The first is a
consequence of Proposition 3.

Corollary 12 Suppose 0 < η ≤ 0.49. There exist constants C,C ′ > 0 such that for any δ ∈
(0, 1/21), under Assumptions (CL1) through (CL4) (defined for these C and δ), with probability at
least 1 − 21δ over Pn

clust, the max-margin linear classifier w = argmin{∥w∥2 : yi⟨w, xi⟩ ≥ 1 ∀i}
satisfies

for all k ∈ [n], yk = sign
(
⟨w, xk⟩

)
,

while simultaneously, η ≤ P(x,y)∼Pclust

(
y ̸= sign(⟨w, x⟩)

)
≤ η + exp

(
−nminq ∥µ(q)∥4

C ′k2d

)
.

In particular, if nminq ∥µ(q)∥4 = ω(k2d) then w exhibits benign overfitting.

Similarly, we can show that KKT points of the max-margin problem for leaky ReLU networks
from Problem (3) also exhibit benign overfitting.

Corollary 13 Suppose that 0 < η ≤ 49γ2

100 . There exist constants C,C ′ > 0 such that for any
δ ∈ (0, 1/21), under Assumptions (CL1) through (CL4) (defined for these C and δ), with probability
at least 1− 21δ over Pn

clust, any KKT point W of Problem (3) satisfies

for all k ∈ [n], yk = sign
(
f(xk;W )

)
,

while simultaneously, η ≤ P(x,y)∼Pclust

(
y ̸= sign

(
f(x;W )

)
≤ η + exp

(
−nminq ∥µ(q)∥4

C ′k2d

)
.

In particular, if nminq ∥µ(q)∥4 = ω(k2d) then the neural network f(x;W ) exhibits benign overfit-
ting. Moreover, for any initialization W (0), gradient flow converges in direction to a network which
satisfies the above.

11
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We would like to note that Theorem 11 (and the subsequent corollaries) does not explicitly cover
the case that the data consists of two opposing clusters, i.e. when ỹ ∼ Unif({±1}) and x|ỹ ∼ ỹµ+z
for some random vector z and labels are flipped ỹ 7→ −ỹ with some probability η < 1/2. A number
of recent works showed that the linear max-margin classifer (Chatterji and Long, 2021; Wang and
Thrampoulidis, 2021) and two-layer neural networks with smooth leaky ReLU activations (Frei
et al., 2022) exhibit benign overfitting for this distributional setting. However, our analysis can
easily be extended to show benign overfitting of the linear max-margin and KKT points of the leaky
ReLU network max-margin problem (3) for this distribution by using a small modification of the
proof we use for Theorem 11. We also wish to emphasize that the results of Frei et al. (2022)
are specific to networks with smooth leaky ReLU activations, which are not homogeneous and for
which gradient flow does not have a known implicit bias towards satisfying the KKT conditions for
margin-maximization. In particular, their analysis is based on tracking the generalization error of
the neural network throughout the training trajectory, while ours relies upon the structure imposed
by the KKT conditions for margin-maximization in homogeneous networks. Another difference
between our work and theirs concerns the label noise model. We derive an explicit upper bound
on the noise level tolerated, while their results hold for noise levels below an unspecified constant.
Our analysis holds for labels flipped with constant probability, while theirs permits adversarial label
noise.

6. Proof intuition

In this section we provide some intuition for how benign overfitting of the max-margin linear clas-
sifier is possible. We consider a distribution Popp defined by a mean vector µ ∈ Rd and label noise
parameter η ∈ (0, 1/2), where examples (x, y) ∼ Popp are sampled as follows:

ỹ ∼ Unif({±1}), z ∼ N(0, Id), x|ỹ ∼ ỹµ+ z,

{
y = ỹ, w.p. 1− η,

y = −ỹ, w.p. η.
(4)

As we mentioned in the previous section, this distribution is not explicitly covered by Theorem 11
but the intuition and proof are essentially the same. Our starting point is Proposition 3, which shows
the max-margin linear classifier is τ -uniform over the training data when the training data are nearly
orthogonal. For simplicity let us consider the simplest estimator of this form, the 1-uniform vector
µ̂ =

∑n
i=1 yixi. Let us call the training examples (xi, yi) for which yi = ỹi the clean examples,

and denote the indices corresponding to such examples C ⊂ [n], with the examples with yi = −ỹi
the noisy examples, identified by N ⊂ [n] (so C ∪ N = [n]). For the distribution (4) and training
data {(xi, yi)}ni=1, the estimator µ̂ thus takes the form

µ̂ =
n∑

i=1

yixi =
∑
i∈C

(µ+ yizi) +
∑
i∈N

(−µ+ yizi) = (|C| − |N |)µ+
n∑

i=1

yizi ∝ µ+
1

|C| − |N |

n∑
i=1

yizi,

where zi
i.i.d.∼ N(0, Id). Now, provided n is sufficiently large and if the noise rate is smaller than say

1/4, then with high probability we have 9n/10 ≥ |C| − |N | ≥ n/10. In particular, the estimator µ̂
is proportional to a sum of two components: µ, which is the linear classifier which achieves optimal
accuracy for the distribution, and (|C| − |N |)−1

∑n
i=1 yizi which incorporates only the noise. This

latter component is useless for prediction on fresh test examples, but is quite useful for achieving

12
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small training error. Indeed, for training example (xk, yk) = (ỹkµ+ zk, yk),

⟨ykxk,
∑n

i=1 yizi⟩ = ⟨ykỹkµ+ ykzk, ykzk +
∑

i̸=k yizi⟩
= ∥zk∥2 + ykỹk⟨µ,

∑n
i=1 yizi⟩+ ⟨ykzk,

∑
i̸=k yizi⟩.

Since zk ∼ N(0, Id) and
∑n

i=1 yizi ∼ N(0, nId), standard concentration bounds show that ∥zk∥2 ≳
d while |⟨µ,

∑n
i=1 yizi⟩| ≲

√
n∥µ∥, and |⟨ykzk,

∑
i̸=k yizi⟩| ≲

√
nd (ignoring log factors for

simplicity). Thus, provided d ≫
√
nd and d ≫

√
n∥µ∥, the estimator ξ := (|C|−|N |)−1

∑n
i=1 yizi

satisfies
⟨ξ, ykxk⟩ ≳ d/n. (5)

On the other hand, the effect of ξ on an independent test example (x, y) is,

|⟨yx, ξ⟩| =
∣∣∣ 1
|C|−|N |⟨yỹ(z + µ),

∑n
i=1 yizi⟩

∣∣∣ ≲ 1

n

(√
n∥µ∥+

√
dn
)
=

∥µ∥+
√
d√

n
. (6)

Putting (5) and (6) together, we see that ξ has a significantly larger effect on the training data than
on the test data performance as long as d ≫

√
n∥µ∥+

√
dn. Assuming ∥µ∥ <

√
d this holds when

d ≫ n2. In particular, the possibility of a component which enables benign overfitting becomes
easier in high dimensions, at least when the signal ∥µ∥ is not too large.

The above sketch shows that the overfitting component ξ is useful for interpolating the (noisy)
training data when ∥µ∥ <

√
d and d ≫ n2. However, the estimator µ̂ ∝ µ + ξ also contains the

component µ which is biased towards getting noisy training data incorrect. Thus, in order to show
µ+ ξ exhibits benign overfitting, we need to show (i) the signal strength from µ is not so strong as
to prevent overfitting the noisy training data, but (ii) the signal strength from µ is large enough to
enable good generalization from test data. For part (i), standard concentration bounds imply that

|⟨µ, ykxk⟩| = |ykỹk∥µ∥2 + ⟨ykzk, µ⟩| ≲ ∥µ∥2 + ∥µ∥. (7)

In light of (5), the estimator µ+ξ will still interpolate the training data provided d/n ≫ max(∥µ∥, ∥µ∥2).
For part (ii), for a given clean test example (x, ỹ),

⟨ỹx, µ⟩ = ⟨µ+ ỹz, µ⟩ ≳ ∥µ∥2 − C∥µ∥. (8)

Thus, provided ∥µ∥ ≫ C and ∥µ∥2 ≫ n−1/2(∥µ∥ +
√
d), we can be ensured that µ + ξ will also

classify clean test examples correctly by putting together (8) and (6).
To summarize, we have identified settings under which we can guarantee that benign overfitting

occurs for the estimator µ̂ ∝ µ + ξ for the distribution Popp. First, the training data must be
sufficiently high-dimensional to ensure that the overfitting component ξ has a significant effect on
the training data but little effect on future test data. Second, the underlying signal of µ̂ (whose
strength is measured by ∥µ∥) must not be so strong as to prevent overfitting to the noisy labels, yet
must also be strong enough to ensure that future test data can be accurately predicted.

7. Discussion

We have characterized a number of new settings under which linear classifiers and two-layer neural
networks can exhibit benign overfitting. We showed how the implicit bias of gradient flow imposes

13



FREI VARDI BARTLETT SREBRO

0.5

0.6

0.7

0.8

0.9

1.0

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06
step

ac
cu

ra
cy

val_acc
train_acc

d = 800, n = 100

0.5

0.6

0.7

0.8

0.9

1.0

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06
step

ac
cu

ra
cy

val_acc
train_acc

d = 800, n = 8000

Figure 1: When training a two-layer leaky ReLU network with m = 512 neurons for data coming
from the binary mixture distribution (4), there is qualitatively different generalization be-
havior in the d ≫ n vs. n ≫ d regimes. In this experiment, 15% of the labels are flipped
to the opposing cluster’s label, and ∥µ∥ = d0.26. In the high-dimensional regime (left),
the network achieves 100% training accuracy and the optimal 85% validation accuracy,
while in the low-dimensional regime (right) the validation accuracy is sub-optimal when
it achieves 100% training accuracy.

significant structure on linear classifiers and neural networks trained by this method, and how this
structure can be leveraged to understand the generalization of interpolating models in the presence
of noisy labels.

Our analysis holds in the regime where the input dimension is significantly larger than the
number of samples. This assumption is present in previous works on benign overfitting in neural
networks (Frei et al., 2022; Cao et al., 2022; Xu and Gu, 2023; Kou et al., 2023; Kornowski et al.,
2023). However, it is currently unknown whether benign overfitting is possible in neural network
classification tasks when the dimension is fixed. In Figure 1, we examine the behavior of two-
layer leaky ReLU networks trained by gradient descent for data coming from the binary mixture
distribution (4) when 15% of the labels are flipped. (Further details on the experiment can be found
in Appendix E.) We see that in this setting, the generalization of interpolating neural networks differs
in the d ≫ n vs. the n ≫ d regime: in the high-dimensional setting, overfitting is benign as would
be expected by Corollary 13, while in the low-dimensional setting, the validation accuracy is sub-
optimal when the network interpolates the noisy training data. This suggests that new techniques
would be needed to characterize generalization of interpolating networks in the low-dimensional
setting.

There are a number of additional directions for future research. For instance, the larger class
of homogeneous neural networks trained by the logistic loss also have an implicit bias towards
satisfying the KKT conditions for margin-maximization. Can this implicit bias be leveraged to
show benign overfitting in neural networks with ReLU activations of depth L ≥ 2? Additionally,
although two-layer leaky ReLU networks are in general nonlinear, our proof holds in settings where
their decision boundaries are linear. It would be interesting to understand benign overfitting in
neural networks when the learned decision boundary is nonlinear.
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Appendix A. Proof of Proposition 3

Since ŵ satisfies the KKT conditions of the max-margin problem, we have ŵ =
∑n

i=1 λiyixi where
for all i ∈ [n] we have λi ≥ 0, and λi = 0 if yiŵ

⊤xi ̸= 1. We denote Rmin = mini ∥xi∥,
Rmax = maxi ∥xi∥, and R = Rmax/Rmin.

In the following lemma, we obtain an upper bound for the λi’s:

Lemma 14 Suppose the training data is p-orthogonal. Then for all i ∈ [n] we have λi ≤
1

R2
min

(
1− 1

pR2

) .

Proof Let j ∈ argmaxi∈[n] λi. We have

yjŵ
⊤xj =

n∑
i=1

λiyjyix
⊤
i xj = λj ∥xj∥2+

∑
i̸=j

λiyjyix
⊤
i xj ≥ λjR

2
min−n

(
max
i∈[n]

λi

)(
max
i̸=j

|⟨xi, xj⟩|
)

.

(9)
By the p-orthogonality assumption, we also have

nmax
i̸=j

|⟨xi, xj⟩| ≤
R2

min
pR2

. (10)

Suppose that

λj = max
i∈[n]

λi >
1

R2
min

(
1− 1

pR2

) . (11)

Combining (9), (10) and (11), we get

yjŵ
⊤xj ≥ λjR

2
min − λj ·

R2
min

pR2
= λjR

2
min

(
1− 1

pR2

)
> 1 .

By the KKT conditions, if yjŵ⊤xj > 1 then we must have λj = 0, and thus we reach a contradic-
tion.

Next, we obtain a lower bound on the λi’s:

Lemma 15 Suppose the training data is p-orthogonal. Then for all i ∈ [n] we have λi ≥
1

R2
max

(
1− 1

pR2−1

)
.

Proof Let j ∈ [n]. By the definition of ŵ we have

1 ≤ yjŵ
⊤xj

=

n∑
i=1

λiyjyix
⊤
i xj

= λj ∥xj∥2 +
∑
i̸=j

λiyjyix
⊤
i xj

≤ λjR
2
max + n

(
max
i∈[n]

λi

)(
max
i̸=j

|⟨xi, xj⟩|
)

. (12)
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By the p-orthogonality assumption, we have

nmax
i̸=j

|⟨xi, xj⟩| ≤
R2

min
pR2

, (13)

and by Lemma 14 we have

max
i∈[n]

λi ≤
1

R2
min

(
1− 1

pR2

) . (14)

Combining (12), (13) and (14), we get

1 ≤ λjR
2
max +

1

R2
min

(
1− 1

pR2

) ·
R2

min
pR2

= λjR
2
max +

1

pR2 − 1
.

Hence,

λj ≥
(
1− 1

pR2 − 1

)
1

R2
max

.

Combining Lemmas 14 and 15, we conclude that ŵ =
∑n

i=1 λiyixi where

maxi λi

mini λi
≤ 1

R2
min

(
1− 1

pR2

) ·R2
max

(
1− 1

pR2 − 1

)−1

=
pR2

R2
min(pR

2 − 1)
·R2

max ·
pR2 − 1

pR2 − 2

=
R2

max

R2
min

· pR2

pR2 − 2

= R2

(
1 +

2

pR2 − 2

)
.

Appendix B. Proof of Proposition 4

We start with some notations. For convenience, we will use different notations for positive neurons
(i.e., where aj = 1/

√
m) and negative neurons (i.e., where aj = −1/

√
m). Namely,

f(x;W ) =
m∑
j=1

ajϕ(w
⊤
j x) =

m/2∑
j=1

1√
m
ϕ(v⊤j x)−

m/2∑
j=1

1√
m
ϕ(u⊤j x) .

We denote ζ = maxi̸=j |⟨xi, xj⟩|. Thus, our near-orthogonality assumption can be written as nζ ≤
R2

min
pR2 . Since W satisfies the KKT conditions of Problem (3), then there are λ1, . . . , λn (known as
KKT multipliers) such that for every j ∈ [m/2] we have

vj =
∑
i∈[n]

λi∇vj (yif(xi;W )) =
1√
m

∑
i∈[n]

λiyiϕ
′
i,vjxi , (15)
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where ϕ′
i,vj

is a subgradient of ϕ at v⊤j xi, i.e., if v⊤j xi > 0 then ϕ′
i,vj

= 1, if v⊤j xi < 0 then
ϕ′
i,vj

= γ and otherwise ϕ′
i,vj

is some value in [γ, 1]. Also, we have λi ≥ 0 for all i, and λi = 0 if
yif(xi;W ) ̸= 1. Likewise, for all j ∈ [m/2] we have

uj =
∑
i∈[n]

λi∇uj (yif(xi;W )) =
1√
m

∑
i∈[n]

λi(−yi)ϕ
′
i,uj

xi , (16)

where ϕ′
i,uj

is defined similarly to ϕ′
i,vj

.
Our proof builds on the following lemma, which follows from Frei et al. (2023) (note that within

their notation, in our setting we have m1 = m2 = m/2):

Lemma 16 (Frei et al. (2023), Theorem 3.2 & Corollary 3.5) Denote R2
min = mini ∥xi∥2 and

R2
max = maxi ∥xi∥2. Let f denote the leaky ReLU network (2) and let W denote a KKT point of

Problem (3). Let λ1, . . . , λn ≥ 0 denote the corresponding KKT multipliers. Suppose the training
data are p-orthogonal for p ≥ 3γ−3. Then, we have λi ∈

(
1

2R2
max

, 3
2γ2R2

min

)
for all i ∈ [n], and for

any x ∈ Rd we have sign (f(x;W )) = sign (⟨z, x⟩), where z =
√
m
2 v −

√
m
2 u for

v =
1√
m

∑
i:yi=1

λixi −
γ√
m

∑
i:yi=−1

λixi ,

and

u =
1√
m

∑
i:yi=−1

λixi −
γ√
m

∑
i:yi=1

λixi .

Moreover, for any initialization W (0), gradient flow on the logistic or exponential loss con-
verges in direction to such a KKT point.

Note that the above lemma implies that sign (f(x;W )) = sign (⟨z, x⟩) for

z =

√
m

2

 1√
m

∑
i:yi=1

λixi −
γ√
m

∑
i:yi=−1

λixi

−
√
m

2

 1√
m

∑
i:yi=−1

λixi −
γ√
m

∑
i:yi=1

λixi


=

1 + γ

2

∑
i:yi=1

λixi −
1 + γ

2

∑
i:yi=−1

λixi

=
1 + γ

2

n∑
i=1

yiλixi . (17)

The lemma also implies that λi ∈
(

1
2R2

max
, 3
2γ2R2

min

)
for all i. However, these bounds are not accurate

enough for us. In the following lemmas we obtain bounds which give the explicit dependence on
p for p-orthogonal data. The proofs of the lemmas follow similar arguments to the proof from Frei
et al. (2023), with some required modifications.

Lemma 17 Denote R2
min = mini ∥xi∥2, R2

max = maxi ∥xi∥2, and R2 = R2
max/R

2
min. Let f denote

the leaky ReLU network (2) and let W denote a KKT point of Problem (3). Suppose the training
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data are p-orthogonal for p ≥ 3γ−3. Using the notation from Eq. (15) and (16), for all i ∈ [n] we
have

∑
j∈[m/2]

λiϕ
′
i,vj +

∑
j∈[m/2]

λiϕ
′
i,uj

≤ m

R2
min

(
γ − 1

pR2

) ,

and

λi ≤
1

R2
minγ

(
γ − 1

pR2

) .

Proof Let ξ = maxq∈[n]

(∑
j∈[m/2] λqϕ

′
q,vj +

∑
j∈[m/2] λqϕ

′
q,uj

)
and suppose that ξ > m

R2
min

(
γ− 1

pR2

) .

Let r = argmaxq∈[n]

(∑
j∈[m/2] λqϕ

′
q,vj +

∑
j∈[m/2] λqϕ

′
q,uj

)
. Since by our assumption p ≥

3γ−3 ≥ 3
γ and R ≥ 1, then ξ > 0 and therefore λr > 0. Hence, by the KKT conditions we

must have yrf(xr;W ) = 1.

We consider two cases:

Case 1: Assume that yr = −1. Using (15) and (16), we have

√
mf(xr;W ) =

∑
j∈[m/2]

ϕ(v⊤j xr)−
∑

j∈[m/2]

ϕ(u⊤j xr)

=
∑

j∈[m/2]

ϕ

 1√
m

∑
q∈[n]

λqyqϕ
′
q,vjx

⊤
q xr

−
∑

j∈[m/2]

ϕ

 1√
m

∑
q∈[n]

λq(−yq)ϕ
′
q,uj

x⊤q xr


=

∑
j∈[m/2]

ϕ

 1√
m
λryrϕ

′
r,vjx

⊤
r xr +

1√
m

∑
q∈[n]\{r}

λqyqϕ
′
q,vjx

⊤
q xr


−

∑
j∈[m/2]

ϕ

 1√
m
λr(−yr)ϕ

′
r,uj

x⊤r xr +
1√
m

∑
q∈[n]\{r}

λq(−yq)ϕ
′
q,uj

x⊤q xr


≤

∑
j∈[m/2]

ϕ

− 1√
m
λrϕ

′
r,vjR

2
min +

1√
m

∑
q∈[n]\{r}

λqyqϕ
′
q,vjx

⊤
q xr


−

∑
j∈[m/2]

ϕ

 1√
m
λrϕ

′
r,uj

R2
min +

1√
m

∑
q∈[n]\{r}

λq(−yq)ϕ
′
q,uj

x⊤q xr

 .
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Since the derivative of ϕ is lower bounded by γ, we know ϕ(z1) − ϕ(z2) ≥ γ(z1 − z2) for all
z1, z2 ∈ R. Using this and the definition of ξ, the above is at most

∑
j∈[m/2]

ϕ
 1√

m

∑
q∈[n]\{r}

λqyqϕ
′
q,vjx

⊤
q xr

− 1√
m
γλrϕ

′
r,vjR

2
min


−

∑
j∈[m/2]

ϕ
 1√

m

∑
q∈[n]\{r}

λq(−yq)ϕ
′
q,uj

x⊤q xr

+
1√
m
γλrϕ

′
r,uj

R2
min


≤ − 1√

m
γξR2

min +
∑

j∈[m/2]

∣∣∣∣∣∣ 1√
m

∑
q∈[n]\{r}

λqyqϕ
′
q,vjx

⊤
q xr

∣∣∣∣∣∣+
∑

j∈[m/2]

∣∣∣∣∣∣ 1√
m

∑
q∈[n]\{r}

λq(−yq)ϕ
′
q,uj

x⊤q xr

∣∣∣∣∣∣
≤ − 1√

m
γξR2

min +
1√
m

∑
j∈[m/2]

∑
q∈[n]\{r}

∣∣∣λqyqϕ
′
q,vjx

⊤
q xr

∣∣∣+ 1√
m

∑
j∈[m/2]

∑
q∈[n]\{r}

∣∣∣λq(−yq)ϕ
′
q,uj

x⊤q xr

∣∣∣ .
Using |x⊤q xr| ≤ ζ for q ̸= r, the above is at most

− 1√
m
γξR2

min +
1√
m

∑
j∈[m/2]

∑
q∈[n]\{r}

λqϕ
′
q,vjζ +

1√
m

∑
j∈[m/2]

∑
q∈[n]\{r}

λqϕ
′
q,uj

ζ

= − 1√
m
γξR2

min +
ζ√
m

∑
q∈[n]\{r}

 ∑
j∈[m/2]

λqϕ
′
q,vj +

∑
j∈[m/2]

λqϕ
′
q,uj


≤ − 1√

m
γξR2

min +
ζ√
m

· n ·max
q∈[n]

 ∑
j∈[m/2]

λqϕ
′
q,vj +

∑
j∈[m/2]

λqϕ
′
q,uj


= − 1√

m
γξR2

min +
ζ√
m
nξ

= − ξ√
m
(γR2

min − nζ) .

By our p-orthogonality assumption, the above expression is at most

− ξ√
m

(
γR2

min −
R2

min
pR2

)
= −

ξR2
min√
m

(
γ − 1

pR2

)
< − m

R2
min

(
γ − 1

pR2

) ·
R2

min√
m

(
γ − 1

pR2

)
= −

√
m ,

where in the inequality we used the assumption on ξ, the assumption p ≥ 3γ−3 ≥ 3
γ , and R ≥ 1.

Thus, we obtain f(xr;W ) < −1 in contradiction to yrf(xr;W ) = 1.
Case 2: Assume that yr = 1. A similar calculation to the one given in case 1 (which we do

not repeat for conciseness) implies that f(xr;W ) > 1, in contradiction to yrf(xr;W ) = 1. It
concludes the proof of ξ ≤ m

R2
min

(
γ− 1

pR2

) .

Finally, since ξ ≤ m

R2
min

(
γ− 1

pR2

) and the derivative of ϕ is lower bounded by γ, then for all

i ∈ [n] we have
m

R2
min

(
γ − 1

pR2

) ≥
∑

j∈[m/2]

λiϕ
′
i,vj +

∑
j∈[m/2]

λiϕ
′
i,uj

≥ mλiγ ,
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and hence λi ≤ 1

R2
minγ

(
γ− 1

pR2

) .

Lemma 18 Denote R2
min = mini ∥xi∥2, R2

max = maxi ∥xi∥2, and R2 = R2
max/R

2
min. Let f denote

the leaky ReLU network (2) and let W denote a KKT point of Problem (3). Suppose the training
data are p-orthogonal for p ≥ 3γ−3. Using the notation from Eq. (15) and (16), for all i ∈ [n] we
have ∑

j∈[m/2]

λiϕ
′
i,vj +

∑
j∈[m/2]

λiϕ
′
i,uj

≥ m(γpR2 − 2)

R2
max(γpR

2 − 1)
,

and

λi ≥
γpR2 − 2

R2
max(γpR

2 − 1)
=

1

R2
max

(
1− 1

γpR2 − 1

)
.

Proof Suppose that there is i ∈ [n] such that
∑

j∈[m/2] λiϕ
′
i,vj

+
∑

j∈[m/2] λiϕ
′
i,uj

< m(γpR2−2)
R2

max(γpR
2−1)

.
Using (15) and (16), we have

√
m ≤

∣∣√mf(xi;W )
∣∣ =

∣∣∣∣∣∣
∑

j∈[m/2]

ϕ(v⊤j xi)−
∑

j∈[m/2]

ϕ(u⊤j xi)

∣∣∣∣∣∣ ≤
∑

j∈[m/2]

∣∣∣v⊤j xi∣∣∣+ ∑
j∈[m/2]

∣∣∣u⊤j xi∣∣∣
=

∑
j∈[m/2]

∣∣∣∣∣∣ 1√
m

∑
q∈[n]

λqyqϕ
′
q,vjx

⊤
q xi

∣∣∣∣∣∣+
∑

j∈[m/2]

∣∣∣∣∣∣ 1√
m

∑
q∈[n]

λq(−yq)ϕ
′
q,uj

x⊤q xi

∣∣∣∣∣∣
≤ 1√

m

∑
j∈[m/2]

∣∣∣λiyiϕ
′
i,vjx

⊤
i xi

∣∣∣+ ∑
q∈[n]\{i}

∣∣∣λqyqϕ
′
q,vjx

⊤
q xi

∣∣∣


+
1√
m

∑
j∈[m/2]

∣∣∣λi(−yi)ϕ
′
i,uj

x⊤i xi

∣∣∣+ ∑
q∈[n]\{i}

∣∣∣λq(−yq)ϕ
′
q,uj

x⊤q xi

∣∣∣
 .

Using |x⊤q xi| ≤ ζ for q ̸= i and x⊤i xi ≤ R2
max, the above is at most

1√
m

∑
j∈[m/2]

λiϕ
′
i,vjR

2
max +

∑
q∈[n]\{i}

λqϕ
′
q,vjζ

+
1√
m

∑
j∈[m/2]

λiϕ
′
i,uj

R2
max +

∑
q∈[n]\{i}

λqϕ
′
q,uj

ζ


=

1√
m

 ∑
j∈[m/2]

λiϕ
′
i,vjR

2
max +

∑
j∈[m/2]

λiϕ
′
i,uj

R2
max

+

1√
m

∑
q∈[n]\{i}

 ∑
j∈[m/2]

λqϕ
′
q,vjζ +

∑
j∈[m/2]

λqϕ
′
q,uj

ζ


=

R2
max√
m

 ∑
j∈[m/2]

λiϕ
′
i,vj +

∑
j∈[m/2]

λiϕ
′
i,uj

+
ζ√
m

∑
q∈[n]\{i}

 ∑
j∈[m/2]

λqϕ
′
q,vj +

∑
j∈[m/2]

λqϕ
′
q,uj


<

R2
max√
m

· m(γpR2 − 2)

R2
max(γpR

2 − 1)
+

ζ√
m

· n ·max
q∈[n]

 ∑
j∈[m/2]

λqϕ
′
q,vj +

∑
j∈[m/2]

λqϕ
′
q,uj

 ,
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where in the last inequality we used our assumption on i. Combining the above with our p-
orthogonality assumption nζ ≤ R2

min
pR2 , we get

max
q∈[n]

 ∑
j∈[m/2]

λqϕ
′
q,vj +

∑
j∈[m/2]

λqϕ
′
q,uj

 > m

(
1− γpR2 − 2

γpR2 − 1

)
· 1

nζ

≥ m

(
1− γpR2 − 2

γpR2 − 1

)
· pR

2

R2
min

= m

(
1

γpR2 − 1

)
· pR

2

R2
min

=
m

R2
min

(
1

γ − 1
pR2

)
,

in contradiction to Lemma 17. It concludes the proof of
∑

j∈[m/2] λiϕ
′
i,vj

+
∑

j∈[m/2] λiϕ
′
i,uj

≥
m(γpR2−2)

R2
max(γpR

2−1)
.

Finally, since
∑

j∈[m/2] λiϕ
′
i,vj

+
∑

j∈[m/2] λiϕ
′
i,uj

≥ m(γpR2−2)
R2

max(γpR
2−1)

and the derivative of ϕ is
upper bounded by 1, then for all i ∈ [n] we have

m(γpR2 − 2)

R2
max(γpR

2 − 1)
≤

∑
j∈[m/2]

λiϕ
′
i,vj +

∑
j∈[m/2]

λiϕ
′
i,uj

≤ mλi ,

and hence

λi ≥
γpR2 − 2

R2
max(γpR

2 − 1)
=

1

R2
max

(
1− 1

γpR2 − 1

)
.

Combining Eq. (17) with Lemmas 17 and 18, and letting si =
(1+γ)λi

2 for all i ∈ [n], we get
that sign (f(x;W )) = sign (⟨z, x⟩) for z =

∑n
i=1 siyixi, where for all i ∈ [n] we have

si ∈

(1 + γ)

2
· 1

R2
max

(
1− 1

γpR2 − 1

)
,
(1 + γ)

2
· 1

R2
minγ

2
(
1− 1

γpR2

)
 .

Therefore, z is τ -uniform with

τ =
(1 + γ)

2
· 1

R2
minγ

2
(
1− 1

γpR2

) · 2

(1 + γ)
·R2

max

(
1− 1

γpR2 − 1

)−1

=
γpR2

R2
minγ

2(γpR2 − 1)
·R2

max
γpR2 − 1

γpR2 − 2

=
R2

max

R2
minγ

2
· γpR2

γpR2 − 2

=
R2

γ2

(
1 +

2

γpR2 − 2

)
.
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Appendix C. Proofs for Sub-Gaussian Marginals

In this section we prove Lemma 5 and Theorem 6 as well as Corollary 7, Corollary 8, and Corol-
lary 9. A rough outline of our proof strategy is as follows.

1. First, we show in Lemma 19 that in order for a linear classifier x 7→ sign(⟨w, x⟩) to achieve
a test error near the noise rate, it suffices for ∥[Σ1/2w]2:d∥/

√
λ1[w]1 to be small.

2. Next, we show in Lemma 20 a number of properties of the training data {(xi, yi)}ni=1 that
hold with high probability under Assumptions (SG1) through (SG3). Lemma 5 will hold as a
deterministic consequence of this lemma, so that the training data are p-orthogonal for large p
(recall Definition 1) and the norms of all of the examples are close to each other. This allows
for us to apply Proposition 3 and Proposition 4, which show that the KKT points of both
the linear max-margin problem (1) and the leaky ReLU max-margin (3) are τ -uniform w.r.t.
{(xi, yi)}ni=1.

3. By the first step, to prove Theorem 6, it suffices to show that a τ -uniform w ∈ Rd is such that:

(i) the norm ∥[Σ1/2w]2:d∥ is small, and

(ii) the first component [w]1 is large and positive.

Recall that a τ -uniform w takes the form
∑n

i=1 siyixi where maxi,j si/sj ≤ τ . For (i),
Lemma 20 provides bounds on ∥[Σ1/2xi]2:d∥ for training examples xi, which is the basic
building block to this part. For (ii), note that for clean examples i ∈ C ⊂ [n] (where yi = ỹi),
[siyixi]1 = si|[xi]1|, while for noisy examples i ∈ N ⊂ [n] (where yi = −ỹi), [siyixi]1 =
−si|[xi]1|. Thus, it suffices to characterize the following,[

n∑
i=1

siyixi

]
1

=
∑
i∈C

si|[xi]1| −
∑
i∈N

si|[xi]1|

=
n∑

i=1

si|[xi]1| − 2
∑
i∈N

si|[xi]1|

≥ min
i

si

n∑
i=1

|[xi]1| − 2max
i

si
∑
i∈N

|[xi]1|.

Lemma 23 directly bounds each of the terms above. The proof of Theorem 6 is then a direct
calculation based on (i) and (ii) above.

4. Corollaries 7 and 8 follow by a direct calculation based on Lemma 5 and Theorem 6. Corol-
lary 9 follows by a direct calculation that verifies Pgaus satisfies the required properties.

C.1. Preliminary concentration inequalities

We first show that the test error of any linear classifier w ∈ Rd satisfying [w]1 > 0 is close to the
noise rate whenever ∥[Σ1/2w]2:d∥/

√
λ1[w]1 is small.
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Lemma 19 There exists an absolute constant c1 ≥ 2 such that provided w ∈ Rd is such that
[w]1 > 0, then the following holds. If [Σ1/2w]2:d = 0 then P(x,y)∼Psg

(
y ̸= sign(⟨w, x⟩)

)
≤ η.

Otherwise,

P(x,y)∼Psg

(
y ̸= sign(⟨w, x⟩)

)
≤ η +

c1∥[Σ1/2w]2:d∥√
λ1[w]1

·

(
1 +

√
0 ∨ log

( √
λ1[w]1

∥[Σ1/2w]2:d∥

))
.

Proof By definition of Psg, we have,

P(x,y)∼Psg

(
y ̸= sign(⟨w, x⟩)

)
= P(x,y)∼Psg

(y⟨w, x⟩ < 0)

= P(x,y)∼Psg
(y⟨w, x⟩ < 0, y = − sign([x]1))

+ P(x,y)∼Psg
(y⟨w, x⟩ < 0, y = sign([x]1))

≤ η + P(x,y)∼Psg
(y⟨w, x⟩ < 0, y = sign([x]1)). (18)

Denoting [u]2:d ∈ Rd−1 as the last d− 1 components of the vector u ∈ Rd, we have,

P(x,y)∼Psg
(y⟨w, x⟩ < 0, y = sign([x]1)) = P(x,y)∼Psg

(|[x]1|[w]1 < − sign([x]1)⟨[w]2:d, [x]2:d⟩)
(i)
= P(

√
λ1[w]1|[z]1| < − sign([z]1)⟨[w]2:d, [Σ1/2z]2:d⟩)

(ii)
= P

(
|[z]1| < −sign([z]1)⟨[Σ1/2w]2:d, [z]2:d⟩√

λ1[w]1

)
.

(19)

Equality (i) uses that x = Σ1/2z. Equality (ii) uses the assumption that [w]1 > 0. From here, we
see that if [Σ1/2w]2:d = 0 then we have P(x,y)∼Psg

(y⟨w, x⟩ < 0, y = sign([x]1)) = P(|[z]1| <
0) = 0, which by (18) shows that P(x,y)∼Psg

(
y ̸= sign(⟨w, x⟩)

)
≤ η. Thus in the remainder of the

proof we shall assume [Σ1/2w]2:d ̸= 0.
Let us define the term

ρ :=
sign([z]1)⟨[Σ1/2w]2:d, [z]2:d⟩√

λ1[w]1
.

This term is small in absolute value when
√
λ1[w]1 ≫ ∥[Σ1/2w]2:d∥. In particular, since z is a sub-

Gaussian random vector with sub-Gaussian norm at most σz , by Hoeffding’s inequality we have
that for some c > 0 and any t ≥ 0,

P(|ρ| ≥ t) = P

(
|⟨[z]2:d, [Σ1/2w]2:d⟩|√

λ1[w]1
≥ t

)
≤ 2 exp

(
− cλ1[w]

2
1t

2

σ2
z∥[Σ1/2w]2:d∥2

)
. (20)

Continuing from (19), we get for any t ≥ 0,

P(x,y)∼Psg
(y⟨w, x⟩ < 0, y = sign([x]1)) = P(|[z]1| < −ρ)

= P(|[z]1| < −ρ, |ρ| ≥ t) + P(|[z]1| < −ρ, |ρ| < t)

≤ P(|ρ| ≥ t) + P(|[z]1| < t)

(i)

≤ 2 exp

(
− cλ1[w]

2
1t

2

σ2
z∥[Σ1/2w]2:d∥2

)
+ βt.
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In inequality (i) we have used (20) as well as the assumption that P(|[z]1| ≤ t) ≤ βt for any t ≥ 0.
In particular, if we let

ξ :=
∥[Σ1/2w]2:d∥√

λ1[w]1
, t := c−1/2σzξ

√
0 ∨ log(1/ξ),

then we have,

P(x,y)∼Psg
(y⟨w, x⟩ < 0, y = sign([x]1)) ≤ 2 exp

(
− ct2

σ2
zξ

2

)
+ βt

= 2(1 ∧ ξ) + ξβc−1/2σz
√

0 ∨ log(1/ξ))

≤ ξ ·max(2, βc−1/2σz)(1 +
√

0 ∨ log(1/ξ)).

The proof follows by letting c1 = max(2, βc−1/2σz).

The following lemma characterizes a number of useful properties about the training data.

Lemma 20 There exists an absolute constant C0 > 1 such that for every large enough C > 1 (with
C,C0 depending only on σz) and for any δ ∈ (0, 1/2), under Assumptions (SG1) through (SG3)
(defined for these C and δ), the following holds with probability at least 1− 2δ over Pn

sg:

1. The norms of the samples satisfy,∣∣∣∣∣ ∥xi∥√
tr(Σ)

− 1

∣∣∣∣∣ ≤ C0

√
∥Σ∥2 log(6n/δ)

tr(Σ)
, for all i ∈ [n],

and ∣∣∣∣∣∣∥[Σ
1/2xi]2:d∥√
tr(Σ2

2:d)
− 1

∣∣∣∣∣∣ ≤ C0

√
∥Σ2

2:d∥2 log(6n/δ)
tr(Σ2

2:d)
.

2. The correlations of distinct samples satisfy,

|⟨xi, xj⟩| ≤ C0

√
tr(Σ2) log(6n2/δ), for all i ̸= j.

3. The samples satisfy,

min
i

∥xi∥2 ≥
tr(Σ)

C0

√
tr(Σ2) log(6n2/δ)

· maxi ∥xi∥2

mini ∥xi∥2
·max

i̸=j
|⟨xi, xj⟩|.

Proof
We prove the lemma in parts.
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Part 1: norms of samples. We first show concentration of the norms. Let x ∈ {x1, . . . , xn}. Re-
call that x = Σ1/2z where the components of z are independent, mean-zero, and z has sub-Gaussian
norm at most σz , with E[zz⊤] = Id. We can thus apply Hanson-Wright inequality (Vershynin, 2018,
Theorem 6.3.2), so that there is an absolute constant c > 0 such that we have for any t ≥ 0,

P
(∣∣∣∥x∥ −√tr(Σ)

∣∣∣ > t
)
≤ 2 exp

(
− ct2

σ4
z∥Σ∥2

)
,

where we have used that ∥Σ1/2∥2F =
∑d

i=1 λi = tr(Σ). Choosing t = c−1/2σ2
z

√
∥Σ∥2 log(6n/δ)

and using a union bound over x ∈ {x1, . . . , xn}, we see that,

P
(
∃i ∈ [n] :

∣∣∣∥xi∥ −√tr(Σ)
∣∣∣ > c−1/2σ2

z

√
∥Σ∥2 log(6n/δ)

)
< δ/3. (21)

We now show a bound on ∥Σ1/2xi∥2 = z⊤i Σ
2zi. Again fix x ∈ {x1, . . . , xn}. We can employ a

nearly identical argument to above: since ∥Σ∥2F = tr(Σ2), by Hanson-Wright inequality, for any
t ≥ 0,

P
(∣∣∣∥Σ1/2x∥ −

√
tr(Σ2)

∣∣∣ > t
)
≤ 2 exp

(
− ct2

σ4
z∥Σ2∥2

)
, (22)

Choosing t = c−1/2σ2
z

√
∥Σ2∥2 log(6n/δ) and noting that tr(Σ2) ≥ ∥Σ2∥2 implies√

tr(Σ2) + c−1/2σ2
z

√
∥Σ2∥2 log(6n/δ) ≤ (1 + c−1/2σ2

z)
√
tr(Σ2) log(6n/δ),

by a union bound we get

P
(
∃i ∈ [n] : ∥Σ1/2xi∥ > (1 + c−1/2σ2

z)
√

tr(Σ2) log(6n/δ)
)
≤ δ/3. (23)

Using a completely identical argument used to derive (21), we also have

P
(
∃i ∈ [n] :

∣∣∣∣∥[Σ1/2xi]2:d∥ −
√
tr(Σ2

2:d)

∣∣∣∣ > c−1/2σ2
z

√
∥Σ2

2:d∥ log(6n/δ)
)

≤ δ/3. (24)

Part 2: correlations of samples. We now bound the correlation between distinct samples. Let us
fix j ∈ [n] and consider i ∈ [n] \ {j}. Then there is a sub-Gaussian random vector zi with sub-
Gaussian norm at most σz such that ⟨xi, xj⟩ = z⊤i Σ

1/2xj . In particular, ⟨xi, xj⟩ = z⊤i ξ · ∥Σ1/2xj∥
where ξ is a unit-norm vector. Since zi is a sub-Gaussian random vector, this means that for some
c > 0 and any t > 0,

P
(
|⟨xi, xj⟩| > t

∣∣∣∥Σ1/2xj∥ ≤ (1 + c−1/2σ2
z)
√

tr(Σ2) log(6n/δ)
)

≤ 2 exp

(
−c · t2

σ2
z(1 + c−1/2σ2

z)
2tr(Σ2) log(6n/δ)

)
. (25)

Letting c′ = c/[σ2
z(1 + c−1/2σ2

z)
2], we can thus bound,

P (∃i ̸= j : |⟨xi, xj⟩| > t)

≤ P
(
∃i ̸= j : |⟨xi, xj⟩| > t

∣∣∣∥Σ1/2xj∥ ≤ (1 + c−1/2σ2
z)
√

tr(Σ2) log(6n/δ)
)

+ P
(
∃j : ∥Σ1/2xj∥ > (1 + c−1/2σ2

z)
√
tr(Σ2) log(6n/δ)

)
(i)

≤ 2n2 exp

(
− c′t2

tr(Σ2) log(6n/δ)

)
+

δ

3
, (26)
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where (i) uses (23). Choosing t = (c′)−1/2
√

tr(Σ2) log(6n2/δ) and using (25), we get

P
(
∃i ̸= j : |⟨xi, xj⟩| > (c′)−1/2

√
tr(Σ2) log(6n2/δ)

)
≤ 2δ

3
. (27)

Combining the above display with (21) and (24) and using a union bound, we get that with proba-
bility at least 1− 2δ,

∣∣∣∣ ∥xi∥√
tr(Σ)

− 1

∣∣∣∣ ≤ c−1σ2
z

√
∥Σ∥2 log(6n/δ)

tr(Σ) , for all i ∈ [n],∣∣∣∣∥[Σ1/2xi]2:d∥√
tr(Σ2

2:d)
− 1

∣∣∣∣ ≤ c−1σ2
z

√
∥Σ2

2:d∥2 log(6n/δ)
tr(Σ2

2:d)
, for all i ∈ [n],

|⟨xi, xj⟩| ≤ (c′)−1/2
√
tr(Σ2) log(6n2/δ), for all i ̸= j.

(28)

This completes the first two parts of the lemma.

Part 3: near-orthogonality of samples. We now show an upper bound on R = maxi,j ∥xi∥/∥xj∥.
Note that with probability at least 1− 2δ, (28) holds, and we shall show that this implies that for an
absolute constant C0 > 0 we have,

mini ∥xi∥2

R2maxi̸=j |⟨xi, xj⟩|
≥ tr(Σ)

C0σz
√

tr(Σ2) log(6n2/δ)
.

By Assumption (SG3) we have

ξ :=
∥Σ∥2 log(6n/δ)

tr(Σ)
≤ ∥Σ∥F log(6n/δ)

tr(Σ)
=

√
tr(Σ2) log(6n/δ)

tr(Σ)
≤ 1

C
. (29)

Thus by (28), we see that the quantity R = maxi,j ∥xi∥/∥xj∥ satisfies

R = max
i,j

∥xi∥
∥xj∥

≤ 1 + c−1σ2
z

√
ξ

1− c−1σ2
z

√
ξ

(i)

≤ 1 + c−1σ2
z/
√
C

1− c−1σ2
z/
√
C

(ii)

≤
(
1 +

2c−1σ2
z√

C

)2

. (30)

Inequality (i) follows by (29), while (ii) uses the inequality 1/(1 − x) ≤ 1 + 2x on [0, 1/2] and
holds for C > 1 large enough. In particular, by taking C larger we can guarantee R is closer to one.

Next, we have by part 1 and part 2 of this lemma,

mini ∥xi∥2

maxi̸=j |⟨xi, xj⟩|
≥

tr(Σ)
(
1− c−1σ2

z

√
ξ
)

(c′)−1/2
√

tr(Σ2) log(6n2/δ)
≥

tr(Σ)
(
1− c−1σ2

z/
√
C
)

(c′)−1/2
√
tr(Σ2) log(6n2/δ)

.
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For C > 100c−2σ4
z , by (30) we have 1− c−1σ2

z/
√
C ≥ 0.9 and R−2 ≥ 0.68. We therefore see that

for C large enough,

mini ∥xi∥2

R2maxi̸=j |⟨xi, xj⟩|
≥ tr(Σ)

2(c′)−1/2
√
tr(Σ2) log(6n2/δ)

.

C.2. Proof of Lemma 5

We next prove Lemma 5: as C grows in Assumptions (SG1) through (SG3), the training data
become p-orthogonal for large p and maxi,j ∥xi∥2/∥xj∥2 → 1.

Lemma 21 There exists an absolute constant C1 > 0 (depending only on σz) such that for every
large enough constant C > 0, for any δ ∈ (0, 1/2), under Assumptions (SG1) through (SG3) (defined
for these C and δ), with probability at least 1 − 2δ over Pn

sg, the training data is C/C1-orthogonal,
and maxi,j ∥xi∥2/∥xj∥2 ≤ (1 + C1/

√
C)4.

Proof First, note that all of the results in Lemma 20 hold with probability at least 1− 2δ. We shall
show that the training data being C/C1-orthogonal and that maxi,j ∥xi∥2/∥xj∥2 are a deterministic
consequence of this high-probability event. By Lemma 20,

min
i

∥xi∥2 ≥
tr(Σ)

C0

√
tr(Σ2) log(6n2/δ)

· maxi ∥xi∥2

mini ∥xi∥2
·max

i̸=j
|⟨xi, xj⟩|.

By Assumption (SG3), this means

min
i

∥xi∥2 ≥
C

C0
· maxi ∥xi∥2

mini ∥xi∥2
· nmax

i̸=j
|⟨xi, xj⟩|.

In particular, the training data is C/C0-orthogonal (see Definition 1).
For the ratio R = maxi,j ∥xi∥/∥xj∥, if we let ξ := ∥Σ∥2 log(6n/δ)

tr(Σ) then by part 1 of Lemma 20
we have √

tr(Σ)(1− C0

√
ξ) ≤ ∥xi∥ ≤

√
tr(Σ)(1 + C0

√
ξ).

By Assumption (SG3) we know ξ ≤ 1/C (see (29)). Therefore for C > 1 large enough, using
1/(1− x) ≤ 1 + 2x for x ∈ [0, 1/2],

R = max
i,j

∥xi∥
∥xj∥

≤ 1 + C0
√
ξ

1− C0
√
ξ
≤ 1 + C0/

√
C

1− C0/
√
C

≤
(
1 +

2C0√
C

)2

.

This completes the claimed upper bound for R.
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C.3. Proof of Theorem 6

We now begin to prove that if w is τ -uniform, i.e. there are strictly positive si, i = 1, . . . , n such
that w =

∑n
i=1 siyixi and maxi,j si/sj ≤ τ , then the first component of w is large and positive.

By Lemma 19, this is one step towards showing the test error of this linear predictor is close to the
noise rate.

To begin, note that since yi = sign([xi]1) for i ∈ C and yi = − sign([xi]1) for i ∈ N , we have,[
n∑

i=1

siyixi

]
1

=
∑
i∈C

si|[xi]1| −
∑
i∈N

si|[xi]1| =
n∑

i=1

si|[xi]1| − 2
∑
i∈N

si|[xi]1|.

Thus, in order to show that this quantity is large and positive, we would like to show the first term
is large and positive while the second term is not too negative. We do so in the following lemma.

Lemma 22 There exists a universal constant C ′
1 > 1 (depending only on η and σz) such that for

any δ ∈ (0, 1/3), if n ≥ C ′
1 log(2/δ) then with probability at least 1 − 3δ over the training data

{(xi, yi)}ni=1 ∼ Pn
sg, the following holds:

n∑
i=1

|[xi]1| ≥ n
√
λ1 E[|[z]1|]

(
1− C ′

1β

√
log(2/δ)

n

)
, and

∑
i∈N

|[xi]1| ≤ n
√
λ1 E[|[z]1|]

(
η + C ′

1β

√
log(2/δ)

n

)
.

Proof By definition, there are i.i.d. zi ∼ Pz such that xi = Σ1/2zi. In particular, [xi]1 =
√
λ1[zi]1,

so thus it suffices to bound the sum
∑n

i=1 |[zi]1| = λ
−1/2
1

∑n
i=1 |[xi]1| from below and the sum∑

i∈N |[zi]1| from above.
Let us denote α := E |[zi]1|. Note that since P(|[z]1| ≤ t) ≤ βt, by taking t = 1/(2β) we see

that
α = E |[zi]1| ≥

1

4β
. (31)

The quantity |[zi]1| − α with sub-Gaussian norm at most c1σz for some absolute constant c1 >
0 (Vershynin, 2018, Lemma 2.6.8), and is i.i.d. over indices i ∈ [n]. Therefore, by Hoeffding’s
inequality, this means that for some absolute constant c > 0 and any t ≥ 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

(|[zi]1| − α)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−cnt2

σ2
z

)
.

Choosing t = c−1/2σz
√

log(2/δ)/n and using (31) we get that with probability at least 1− δ,∣∣∣∣∣ 1n
n∑

i=1

(|[zi]1| − α)

∣∣∣∣∣ ≤ c−1/2σz

√
log(2/δ)

n
=⇒

n∑
i=1

|[zi]1| ≥ nα

(
1− 4c−1/2σzβ

√
log(2/δ)

n

)
.

(32)
Using the same argument (and assuming without loss of generality that |N | > 0, since otherwise
we can just ignore this term entirely), we get with probability at least 1− δ,∣∣∣∣∣ 1

|N |
∑
i∈N

(|[zi]1| − α)

∣∣∣∣∣ ≤ c−1/2σz

√
log(2/δ)

|N |
. (33)
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From here we see it is necessary to control the number of noisy points. The number of noisy points
|N | is the sum of n independent, identically distributed random variables with mean η. Thus, by
Hoeffding’s inequality, for any u ≥ 0,

P (||N | − nη| ≥ u) ≤ 2 exp

(
−2u2

n

)
.

In particular, selecting u =
√

n log(2/δ)/2, we see that with probability at least 1− δ,∣∣∣∣ |N |
n

− η

∣∣∣∣ ≤
√

log(2/δ)

n
.

Rearranging we see that

ηn−
√

n log(2/δ) ≤ |N | ≤ ηn+
√
n log(2/δ).

Since η is an absolute constant, using the lemma’s assumption that n ≥ C ′
1 log(2/δ) we get for C ′

1

large enough relative to η−2,

ηn−
√

n log(2/δ) = ηn

(
1−

√
η−2 log(2/δ)

n

)
≥ 1

2
ηn,

and therefore

1

2
ηn ≤ |N | ≤ ηn+

√
n log(2/δ) (34)

Substituting the two previous displays into (33) we get

∑
i∈N

|[zi]1| ≤ |N |α

(
1 + c−1/2σzα

−1

√
log(2/δ)

|N |

)

≤ nα

(
η +

√
log(2/δ)

n

)
·

(
1 + 4c−1/2σzβ

√
2η−1 log(2/δ)

n

)

≤ nα

(
η + 12c−1/2σzβ

√
2η−1 log(2/δ)

n

)
.

The second inequality uses (31). The last inequality uses the lemma’s assumption that n ≥ C ′
1 log(2/δ)

for a large enough C ′
1 and that η−1 is an absolute constant. Taking a union bound over the three

events and taking C ′
1 large enough completes the proof since σz and η are absolute constants.

We now show that a τ -uniform classifier u has a large and positive first component while
∥[Σ1/2u]2:d∥ is small with high probability. By Lemma 27, this suffices for showing generaliza-
tion error near the noise rate.

Lemma 23 Let τ ≥ 1 be a constant, and suppose η ≤ 1
2τ −∆ for some absolute constants η,∆ >

0. There exists an absolute constant C > 1 (depending only on η, σz, β, τ , and ∆) such that for any
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δ ∈ (0, 1/5), under Assumptions (SG1) through (SG3) (defined for these C and δ), with probability

at least 1− 5δ over Pn
sg, if u =

∑n
i=1 siyixi ∈ Rd is τ -uniform w.r.t {(xi, yi)}ni=1

i.i.d.∼ Psg then

[u]1 ≥
τ∆nα

√
λ1

8β

(
min
i

si

)
, and ∥[Σ1/2u]2:d∥ ≤ 3

2
n

(
max

i
si

)√
tr(Σ2

2:d).

In particular, if [Σ1/2u]2:d ̸= 0 then

[u]1
∥[Σ1/2u]2:d∥

≥ ∆

12β
·

√
λ1

tr(Σ2
2:d)

.

Proof First, by a union bound, for C sufficiently large the results of both Lemma 22 and Lemma 20
hold with probability at least 1 − 5δ. In the remainder of the proof we will work on this high-
probability event and we shall show the lemma holds as a deterministic consequence of this.

By definition, yi = sign([xi]1) for i ∈ C and yi = − sign([xi]1) for i ∈ N . Since u is τ -
uniform, there exist strictly positive numbers si such that u =

∑n
i=1 siyixi with maxi,j

si
sj

≤ τ .
Thus we can write,

[u]1 =

[
n∑

i=1

siyixi

]
1

=
∑
i∈C

si|[xi]1| −
∑
i∈N

si|[xi]1|

=

n∑
i=1

si|[xi]1| − 2
∑
i∈N

si|[xi]1|

≥ min
i

si

n∑
i=1

|[xi]1| − 2max
i

si
∑
i∈N

|[xi]1|. (35)

Let us denote α := E |[z]1|. Recall by (31) that the assumption of anti-concentration on [z]1 implies
α ≥ 1/(4β). Now using Lemma 22, we have,

[u]1 ≥ nα
√
λ1

(
min
i

si

)(
1− C ′

1β

√
log(2/δ)

n

)

− nα
√

λ1

(
max

i
si

)(
2η + 2C ′

1β

√
log(2/δ)

n

)

≥ nα
√

λ1

(
min
i

si

)[
1− C ′

1β

√
log(2/δ)

n
− τ

(
2η + 2C ′

1β

√
log(2/δ)

n

)]
(i)

≥ nα
√

λ1

(
min
i

si

)[
1− C ′

1β

√
log(2/δ)

n
− τ

(
1

τ
− 2∆ + 2C ′

1β

√
log(2/δ)

n

)]
.

The inequality (i) uses the lemma’s assumption that η ≤ 1/(2τ) −∆. Rearranging the above, we
see

[u]1 ≥ nα
√

λ1

(
min
i

si

)[
2τ∆− C ′

1β

√
log(2/δ)

n
− 2τC ′

1β

√
log(2/δ)

n

]

≥ 1

2
τ∆nα

√
λ1

(
min
i

si

)
> 0. (36)
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The final inequality uses that τ,∆, β are absolute constants and by taking C large enough so that
n ≥ C log(2/δ) implies the inequality.

Next, we want to bound ∥[Σ1/2u]2:d∥. We will use the first part of Lemma 20 to do so. We have,∥∥∥[Σ1/2u
]
2:d

∥∥∥ =
∥∥[∑n

i=1 siyiΣ
1/2xi

]
2:d

∥∥
≤ n

(
max

i
si

)
max

i

∥∥∥[Σ1/2xi

]
2:d

∥∥∥
≤ n

(
max

i
si

)√
tr(Σ2

2:d)

(
1 + C0

√
∥Σ2

2:d∥2 log(6n/δ)
tr(Σ2

2:d)

)

= n

(
max

i
si

)√
tr(Σ2

2:d)

(
1 + C0

√
log(6n/δ)

StableRank(Σ2:d)

)

≤ 3

2
n

(
max

i
si

)√
tr(Σ2

2:d). (37)

The final inequality uses Assumption (SG2) so that StableRank(Σ2:d) > C log(6n/δ) and follows
by taking C large enough. Putting (36) and the above together, if [Σ1/2u]2:d ̸= 0 we get

[u]1
∥[Σ1/2u]2:d∥

≥ 1

3
τ∆α · mini si

maxi si
·

√
λ1

tr(Σ2
2:d)

≥ ∆α

3
·

√
λ1

tr(Σ2
2:d)

.

Since by (31) we have α ≥ 1/(4β), this completes the proof.

We are now in a position to prove Theorem 6. For the reader’s convenience, we re-state it below.

Theorem 6 Let τ ≥ 1 be a constant, and suppose η ≤ 1
2τ − ∆ for some absolute constants

η,∆ > 0. There exist constants C,C ′ > 0 (depending only on η, σz, β, τ , and ∆) such that for any
δ ∈ (0, 1/7), under Assumptions (SG1) through (SG3) (defined for these C and δ), with probability
at least 1− 7δ over Pn

sg, if u ∈ Rd is τ -uniform w.r.t. {(xi, yi)}ni=1, then

for all k ∈ [n], yk = sign
(
⟨u, xk⟩

)
, while simultaneously,

η ≤ P(x,y)∼Psg

(
y ̸= sign(⟨u, x⟩)

)
≤ η + C ′

√
tr(Σ2

2:d)

λ2
1

(
1 +

√
0 ∨ 1

2
log

(
λ2
1

tr(Σ2
2:d)

))
.

In particular, if tr(Σ2
2:d)/λ

2
1 = o(1), then the linear classifier x 7→ sign(⟨u, x⟩) exhibits benign

overfitting.

Proof By a union bound, with probability at least 1 − 7δ, the results of both Lemma 23 and
Lemma 20 hold, and we showed previously that Lemma 5 is a deterministic consequence of Lemma 20
and the Assumptions (SG1) through (SG3). In the remainder of the proof we will work on this
event and show that the theorem holds as a consequence of these lemmas and Assumptions (SG1)
through (SG3).
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Since u is τ -uniform, there exist strictly positive constants si such that u =
∑n

i=1 siyixi. We
first show that u interpolates the training data: for any k ∈ [n] we have

⟨u, ykxk⟩ = sk∥xk∥2 +
∑
i̸=k

⟨siyixi, ykxk⟩

≥ sk∥xk∥2 − nmax
i

si ·max
i̸=j

|⟨xi, xj⟩|

= sk∥xk∥2
(
1−

nmaxi si ·maxi̸=j |⟨xi, xj⟩|
sk∥xk∥2

)
≥ sk∥xk∥2

(
1−

nτ maxi̸=j |⟨xi, xj⟩|
∥xk∥2

)
(i)

≥ sk∥xk∥2
(
1− C1τ

C

)
(ii)

≥ 1

2
sk∥xk∥2. (38)

The inequality (i) uses that the training data is C/C1-orthogonal by Lemma 5, while (ii) follows
by taking C ≥ 2C1τ . This last quantity is strictly positive by Lemma 20. Thus, u interpolates the
training data.

We now show the generalization error is close to the noise rate. By Lemma 19, if [Σ1/2u]2:d = 0
then since [u]1 > 0 by Lemma 23, we have P(x,y)∼Psg

(
y ̸= sign(⟨u, x⟩)

)
≤ η and the proof is

complete.
Thus consider the case that [Σ1/2u]2:d ̸= 0. Let c := ∆/(12β), where c < 1 is an absolute con-

stant (assuming w.l.o.g. β ≥ 1) as ∆, β are absolute constants by assumption. Then by Lemma 23
we have,

[u]1

∥[Σ1/2u]2:d∥
≥ ∆

12β

√
λ1

tr(Σ2
2:d)

= c

√
λ1

tr(Σ2
2:d)

. (39)

Applying Lemma 19 there exists c1 ≥ 2 such that

P(x,y)∼Psg

(
y ̸= sign(⟨u, x⟩)

)
≤ η +

c1∥[Σ1/2u]2:d∥√
λ1[u]1

(
1 +

√
0 ∨ log

( √
λ1[u]1

∥[Σ1/2u]2:d∥

))
. (40)

We now consider two cases.

Case 1: c−1
√

tr(Σ2
2:d)/λ

2
1 ≤ 1/2 . Since the function ξ 7→ ξ(1 +

√
log(1/ξ)) is monotone

increasing on the interval (0, 1/2], for any ξ, ξ′ ∈ [0, 1/2] satisfying ξ ≤ ξ′ we have ξ(1 +√
log(1/ξ)) ≤ ξ′(1 +

√
log(1/ξ′)). By (39) and the case assumption, we have

∥[Σ1/2u]2:d∥√
λ1[u]1

≤

√
c−2tr(Σ2

2:d)

λ2
1

≤ 1

2
. (41)
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Thus continuing from (40),

P(x,y)∼Psg

(
y ̸= sign(⟨u, x⟩)

)
≤ η +

c1∥[Σ1/2u]2:d∥√
λ1[u]1

(
1 +

√
log

(
0 ∨

√
λ1[u]1

∥[Σ1/2u]2:d∥

))
(i)
= η +

c1∥[Σ1/2u]2:d∥√
λ1[u]1

(
1 +

√
log

( √
λ1[u]1

∥[Σ1/2u]2:d∥

))
(ii)

≤ η + c1

√
c−2tr(Σ2

2:d)

λ2
1

1 +

√√√√log

(√
λ2
1

c−2tr(Σ2
2:d)

)
(iii)

≤ η + c1c
−1

√
tr(Σ2

2:d)

λ2
1

(
1 +

√
0 ∨ 1

2
log

(
λ2
1

tr(Σ2
2:d)

))
.

Equality (i) uses that log(x) ≥ 0 for x ≥ 1. Inequality (ii) uses (41). The final inequality (iii) uses
that c < 1 and a ≤ a ∨ b for any a, b ∈ R.

Case 2: c−1
√
tr(Σ2

2:d)/λ
2
1 > 1/2. In this case it is trivially true that

P(x,y)∼Psg

(
y ̸= sign(⟨u, x⟩)

)
≤ η + c1c

−1

√
tr(Σ2

2:d)

λ2
1

(
1 +

√
0 ∨ 1

2
log

(
λ2
1

tr(Σ2
2:d)

))
,

since c1 ≥ 2 and c−1
√

tr(Σ2
2:d)/λ

2
1 > 1/2 the right-hand-side is at least 1. From this we see that

the theorem follows by taking C ′ = c1c
−1.

C.4. Proof of Corollary 7, Corollary 8, and Corollary 9

This section contains proofs of Corollary 7, Corollary 8, and Corollary 9.

Corollary 24 Suppose 0 < η ≤ 0.49. There exist constants C,C ′ > 0 such that for any δ ∈
(0, 1/9), under Assumptions (SG1) through (SG3) (defined for these C and δ), with probability at
least 1 − 9δ over Pn

sg, the max-margin linear classifier w = argmin{∥w∥2 : yi⟨w, xi⟩ ≥ 1 ∀i}
satisfies

for all k ∈ [n], yk = sign
(
⟨w, xk⟩

)
, while simultaneously,

η ≤ P(x,y)∼Psg

(
y ̸= sign(⟨w, x⟩)

)
≤ η + C ′

√
tr(Σ2

2:d)

λ2
1

(
1 +

√
0 ∨ 1

2
log

(
λ2
1

tr(Σ2
2:d)

))
.

In particular, if tr(Σ2
2:d)/λ

2
1 = o(1) then w exhibits benign overfitting.

Proof By a union bound, both Theorem 6 and Lemma 5 hold with probability at least 1−9δ and any
τ -uniform linear classifier exhibits benign overfitting in the sense described in the theorem, with the
noise tolerance determined by τ . Thus, we need only verify that working on this high-probability
event and using the assumptions, the linear max-margin solution is τ -uniform and that τ is small.
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By Lemma 5, the training data is C/C1-orthogonal and we have the following upper bound for
R2,

R2 =
maxi ∥xi∥2

mini ∥xi∥2
≤
(
1 +

C1√
C

)4

≤ 100

99
. (42)

The last inequality follows by taking C to be a large enough absolute constant. Therefore Proposi-
tion 3 ensures that the linear max-margin w is τ -uniform with τ = R2

(
1 + 2

pR2−2

)
. In particular,

τ ≤ R2

(
1 +

2

CR2/C1 − 2

)
≤ 201

198
.

The final inequality uses that R2 ≤ 100/99 and by taking C > 1 large enough. Thus the max-
margin linear classifier is τ -uniform with τ ≤ 201

198 . Since 1
2τ ≥ 198

402 ≥ 0.492, if η ≤ 0.49 =
0.492− 0.002 we can apply Theorem 6.

Corollary 25 Suppose that 0 < η ≤ 49γ2

100 . There exist constants C,C ′ > 0 such that for any
δ ∈ (0, 1/9), under Assumptions (SG1) through (SG3) (defined for these C and δ), with probability
at least 1− 9δ over Pn

sg, any KKT point W of Problem (3) satisfies

for all k ∈ [n], yk = sign
(
f(xk;W )

)
, while simultaneously,

η ≤ P(x,y)∼Psg

(
y ̸= sign

(
f(x;W )

))
≤ η + C ′

√
tr(Σ2

2:d)

λ2
1

(
1 +

√
0 ∨ 1

2
log

(
λ2
1

tr(Σ2
2:d)

))
.

In particular, if tr(Σ2
2:d)/λ

2
1 = o(1) then the neural network f(x;W ) exhibits benign overfitting.

Moreover, for any initialization W (0), gradient flow converges in direction to a network satisfying
the above.

Proof Just as in the proof of the preceding corollary, by a union bound, with probability at least 1−
9δ both Theorem 6 and Lemma 5 hold and any τ -uniform linear classifier exhibits benign overfitting
with probability, with the noise tolerance determined by τ . By Lemma 5, the training data is C/C1-
orthogonal, and thus for C > 3C1γ

−3, we may apply Proposition 4 so that sign(f(x;W )) =

sign(⟨z, x⟩) where z is τ -uniform w.r.t. {(xi, yi)}ni=1 for τ = R2γ−2
(
1 + 2

γCR2/C1−2

)
. Lemma 5

also implies that R2 ≤ (1 + C1/
√
C)4 ≤ 100

99 for C large enough. Hence, for C large enough,
τ ≤ 201

198γ
−2. Since 1

2τ ≥ 198γ2

402 > 0.492γ2, if η ≤ 0.49γ2 = 0.492γ2 − 0.002γ2 we may apply
Theorem 6 since γ is an absolute constant.

Corollary 26 Suppose 0 < η ≤ 49γ2

100 . Then for the distribution Pgaus, for any δ ∈ (0, 1/9), if
ρ ∈ (1/2, 1), d = Ω̃(n1/(1−ρ)), and n = Ω̃(1), then Assumptions (SG1) through (SG3) are satisfied.
Moreover, with probability at least 1 − 9δ over Pn

gaus, KKT points of Problem (3) exhibit benign
overfitting:

for all k ∈ [n], yk = sign
(
f(xk;W )

)
,

while simultaneously, η ≤ P(x,y)∼Pgaus

(
y ̸= sign

(
f(xk;W )

))
≤ η + Õ

(
d

1
2
(1−2ρ)

)
= η + od(1).
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Furthermore, for any initialization W (0), gradient flow converges in direction to a network satisfy-
ing the above.

Proof First, it is clear that Pgaus is an instance of Psg, since Σ−1/2x is an isotropic Gaussian which
clearly satisfies the anti-concentration property P(|[z]1| ≤ t) ≤ βt for β = 1/

√
2π. We thus

need only verify that assumptions (SG1) through (SG3) are satisfied and that tr(Σ2
2:d)/λ

2
1 is small.

Clearly, StableRank(Σ2:d) = d− 1 and

tr(Σ)√
tr(Σ2)

=
dρ + d− 1√
d2ρ + d− 1

.

By assumption, ρ ∈ (1/2, 1), so dρ + d− 1 = Θ(d), while d2ρ + d− 1 = Θ(d2ρ). Therefore,

tr(Σ)√
tr(Σ2)

= Θ(d1−ρ).

Thus, we see that if n = Ω̃(1) and d = Ω̃(n1/(1−ρ)), then assumptions (SG1) through (SG3) are
satisfied and hence Theorem 6 and Corollary 8 apply under the stated assumptions on the noise rate
η. On the other hand,

tr(Σ2
2:d)

λ2
1

=
d− 1

d2ρ
= Θ(d1−2ρ).

Since ρ > 1/2, we see that tr(Σ2
2:d)/λ

2
1 = od(1), and thus the test error of KKT points of Prob-

lem (3) are at most

η + C ′

√
tr(Σ2

2:d)

λ2
1

(
1 +

√
0 ∨ 1

2
log

(
λ2
1

tr(Σ2
2:d)

))
= η + Õ(d

1
2
(1−2ρ)) = η + od(1).

Appendix D. Proofs for clustered data

In this section we provide the proofs for Section 5. Our proof strategy mirrors that we used for the
proof of Theorem 6 in Appendix C, and can be summarized as follows:

1. We first show that in order for a linear classifier x 7→ sign(⟨w, x⟩) to achieve small test error,
it suffices to have ⟨w, y(q)µ(q)⟩ be large and positive for each q ∈ Q.

2. Propositions 3 and 4 show that the max-margin solutions for linear classifiers and leaky ReLU
networks correspond to τ -uniform classifiers when the training data is p-orthogonal. To use
this result, we thus need to characterize the norms and pairwise correlations of the examples.
Additionally, note that if w ∈ Rd is τ -uniform w.r.t. {(xi, yi)}ni=1, then w =

∑n
i=1 siyixi

for some si > 0. Thus by the first step above, we see it will be helpful to characterize
⟨yixi, y(q)µ(q)⟩ for samples i ∈ [n] and clusters q ∈ Q. Lemma 28 provides some initial
bounds that help us with these goals, and Lemma 29 collects all of the important properties of
the training data that we will use. In particular, Lemma 10 will follow from Lemma 29, and
the test error bound in Theorem 11 for τ -uniform classifiers will crucially rely on this lemma
as well.
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3. We then prove Theorem 11 by utilizing the above properties.

4. The proofs of Corollaries 12 and 13 then follow by a direct calculation.

D.1. Preliminary concentration inequalities

Our first lemma provides a generalization bound for any linear classifier over Pclust.

Lemma 27 There exists an absolute constant c > 0 such that if w ∈ Rd is such that ⟨w, y(q)µ(q)⟩ ≥
0 for each q ∈ [k], then

P(x,y)∼Pclust

(
y ̸= sign(⟨w, x⟩)

)
≤ η +

1

k

k∑
q=1

exp

(
−c

⟨w, µ(q)⟩2

∥w∥2

)
.

Proof We use an identical proof to that of Lemma 19. By definition of Pclust, we have y = ỹ (the
‘clean’ label) with probability 1− η while y = −ỹ with probability η. Thus we can calculate,

P(x,y)∼Pclust

(
y ̸= sign(⟨w, x⟩)

)
= P(x,y)∼Pclust

(y⟨w, x⟩ < 0)

= P(x,y)∼Pclust
(y⟨w, x⟩ < 0, y = −ỹ)

+ P(x,y)∼Pclust
(y⟨w, x⟩ < 0, y = ỹ)

≤ η + P(x,y)∼Pclust
(y⟨w, x⟩ < 0, y = ỹ). (43)

We can bound the second term above as follows,

P(x,y)∼Pclust
(y⟨w, x⟩ < 0, y = ỹ) =

1

k

k∑
q=1

Pz∼P′
z
(⟨w, y(q)µ(q) + y(q)z⟩ < 0)

=
1

k

k∑
q=1

Pz∼P′
z
(⟨w, y(q)z⟩ < −y(q)⟨w, µ(q)⟩)

≤ 1

k

k∑
q=1

exp

(
−c

⟨w, µ(q)⟩2

∥w∥2

)
.

In the last inequality we have used that y(q)⟨w, µ(q)⟩ ≥ 0, as well as the fact that y(q)z is sub-
Gaussian (with sub-Gaussian norm at most the absolute constant σz) and Hoeffding’s inequality.
Substituting the above into (43) completes the proof.

Due to Proposition 3 and 4, we are interested in the behavior of classifiers defined in terms of
w ∈ Rd that are τ -uniform w.r.t. the training data. Such classifiers take the form

∑n
i=1 siyixi,

where si > 0. By Lemma 27, to show x 7→ sign(⟨w, x⟩) has small generalization error, it therefore
helpful to characterize ⟨yixi, µ(q)⟩ for different clusters q. We begin to do so with the following
lemma.

Lemma 28 Let P′
z be a distribution such that the components of z ∼ P′

z are mean-zero, indepen-
dent, sub-Gaussian random variables with sub-Gaussian norm at most one; and for some absolute
constant κ > 0, κd ≤ E[∥z∥2] ≤ d. Let δ ∈ (0, 1). Suppose that {zi}ni=1

i.i.d.∼ P′
z , and let v1, . . . , vk

be any collection of vectors in Rd. There are absolute constants C,C1 > 1 such that provided
d ≥ C log(n/δ), the following hold with probability at least 1− 4δ.
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(i) For all i,

κd

(
1− C1

√
κ−2 log(2n/δ)

d

)
≤ ∥zi∥2 ≤ d

(
1 + C1

√
log(2n/δ)

d

)
.

(ii) For all i ̸= j, |⟨zi, zj⟩| ≤ C1

√
d log(2n/δ).

(iii) For all i = 1, . . . , k and j = 1, . . . , n, |⟨vi, zj⟩| ≤ C1∥vi∥
√
log(2nk/δ).

Proof We prove the lemma in parts. We use an identical argument to Chatterji and Long (2021,
Lemma 16).

For the first part, fix i ∈ [n]. The quantity ∥zi∥2 is a sum of d independent random variables
that are squares of sub-Gaussian random variables with norm at most one, and thus by Vershynin
(2018, Lemma 2.7.6), this is the sum of d sub-exponential random variables with sub-exponential
norm at most one. Thus by Bernstein’s inequality (see (Vershynin, 2018, Theorem 2.8.1)), there is
some absolute constant c > 0 such that for any t ≥ 0,

P(|∥zi∥2 − E ∥zi∥2| ≥ t) ≤ 2 exp

(
−c

(
t ∧ t2

d

))
.

Choosing t = c−1
√
d log(2n/δ), we see that

d ≥ c−2 log(2n/δ) =⇒ t ∧ t2/d = c−2 log(2n/δ).

Thus, we have

P
(
∃i :

∣∣∥zi∥2 − E[∥zi∥2]
∣∣ ≥ c−1

√
d log(2n/δ)

)
≤ δ.

By assumption, κd ≤ E[∥zi∥2] ≤ d. Using

κd

(
1− c−1

√
κ−2 log(2n/δ)

d

)
= κd− c−1

√
d log(2n/δ),

d+ c−1
√
d log(2n/δ) = d

(
1 + c−1

√
log(2n/δ)

d

)
,

we thus have

P

(
∃i : κd

(
1− c−1

√
κ−2 log(2n/δ)

d

)
> ∥zi∥2 or ∥zi∥2 > d

(
1 + c−1

√
log(2n/δ)

d

))
≤ δ.

(44)

Next, note that for any i, j ∈ [n], and any t ≥ 0,

P(|⟨zi, zj⟩| ≥ t) ≤ P
(
|⟨zi, zj⟩| ≥ t

∣∣∥zj∥ ≤
√
2d
)
+ P(∥zj∥ >

√
2d).

For i ̸= j, conditional on zj , since zi has independent sub-Gaussian components with sub-Gaussian
norm at most one, the random variable ⟨zi, zj⟩ is mean-zero sub-Gaussian with sub-Gaussian norm
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at most c1∥zj∥ for an absolute constant c1 > 0 (Vershynin, 2018, Proposition 2.6.1). Thus by
Hoeffding’s inequality (Vershynin, 2018, Theorem 2.6.3) we have for some absolute constant c2 >
0,

P
(
|⟨zi, zj⟩| ≥ t

∣∣∥zj∥ ≤
√
2d
)
≤ 2 exp

(
−c2 ·

t2

2d

)
.

Letting t = c
−1/2
2

√
2d log(2n2/δ) and we see that

P
(
|⟨zi, zj⟩| ≥ c

−1/2
2

√
2d log(2n2/δ)

∣∣∥zj∥ ≤
√
2d
)
≤ δ

n2
.

Using this and (44),

P( for some i ̸= j,|⟨zi, zj⟩| ≥ c
−1/2
2

√
2d log(2n2/δ))

≤ n2P
(
|⟨zi, zj⟩| ≥ c

−1/2
2

√
2d log(2n2/δ)

∣∣∥zj∥ ≤
√
2d
)
+ P(for some j ∈ [n], ∥zj∥ >

√
2d)

≤ 2δ. (45)

In the last inequality we are using the lemma’s assumption that d ≥ 4c−2 log(2n/δ) so that
{∥zi∥2 >

√
2d} ⊂ {∥zi∥2 > d(1 + c−1

√
log(2n/δ)/d)}.

Finally, for v ∈ {v1, . . . , vk} and fixed j, since zj has independent sub-Gaussian components we
know ⟨zj , v⟩ is a sub-Gaussian random variable with sub-Gaussian norm at most c1∥v∥. Therefore,
by Hoeffding’s inequality we have for some constant c3 > 0,

P (|⟨zj , v⟩| ≥ t) ≤ 2 exp

(
−c3 ·

t2

∥v∥2

)
.

Taking t = c−1
3 ∥v∥

√
log(2nk/δ) and a union bound over j ∈ [n] and the k possible options for v,

we see that

P
(
∃j ∈ [n], v ∈ {v1, . . . , vk} s.t. |⟨zj , v⟩| ≥ c−1

3 ∥v∥
√

log(2nk/δ)
)
≤ δ.

Using a union bound with (44), (45) and the above yields a total failure probability of 4δ and
completes the proof.

Next, we show how to use the above to say something about the training data. Recall that we
observe samples {(xi, yi)}ni=1

i.i.d.∼ Pclust which are noisy versions of {(xi, ỹi)}ni=1. We denote by
C ⊂ [n] the clean samples and N ⊂ [n] the noisy examples, so that C ∪N = [n] = I . In particular,
for i ∈ N , yi = −ỹi, while for i ∈ C, yi = ỹi. We further use the notation cluster(i) = qi and
I(q) = {i ∈ I : cluster(i) = q} and

I
(q)
C := {i ∈ I ∩ C : cluster(i) = q}, I

(q)
N := {i ∈ I ∩N : cluster(i) = q},

so that I(q) = I
(q)
C ∪ I

(q)
N .

Lemma 29 There is an absolute constant C ′
1 > 1 such that the following holds. For C > 1

sufficiently large under Assumptions (CL1) through (CL4), with probability at least 1− 7δ, items (i)
through (iii) of Lemma 28 hold (with vi = µ(i) for i = 1, . . . , k), and we have the following.
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(i) For all i,

d

(
1− C ′

1

√
log(2n/δ)

d

)
≤ ∥xi∥2 ≤ d

(
1 + C ′

1

√
log(2n/δ)

d
+

2

Cn

)
.

(ii) For each q ∈ Q and i ∈ I(q),∣∣∣⟨µ(q), xi⟩ − ∥µ(q)∥2
∣∣∣ ≤ C ′

1∥µ(q)∥
√

log(2nk/δ).

(iii) For each q ∈ Q, if i, j ∈ I(q) and i ̸= j, then∣∣∣⟨xi, xj⟩ − ∥µ(q)∥2
∣∣∣ ≤ C ′

1

√
d log(2n/δ).

(iv) For each q, r ∈ Q with q ̸= r, if i ∈ I(q) and j ∈ I(r), then

|⟨xi, xj⟩| ≤ max
q ̸=r

|⟨µ(q), µ(r)⟩|+ C ′
1

√
d log(2n/δ).

(v) For all q ∈ Q, ∣∣∣∣∣ |I(q)|n
− 1

k

∣∣∣∣∣ ≤
√

log(2k/δ)

n
,

and ∣∣∣∣∣ |I
(q)
N |

|I(q)|
− η

∣∣∣∣∣ ≤
√

log(2k/δ)

n
,

∣∣∣∣∣ |I
(q)
C |

|I(q)|
− (1− η)

∣∣∣∣∣ ≤
√

log(2k/δ)

n
.

Proof By definition,

∥xi∥2 = ∥zi∥2 + ∥µ(qi)∥2 + 2⟨zi, µ(qi)⟩.

We first note that since d ≥ Cn2 log(n/δ) by Assumption (CL2), with probability at least 1 − 4δ,
all of the results of Lemma 28 hold, where v1, . . . , vk are taken to be the cluster means, vi = µ(i).
We work on this high-probability event in the remainder of the proof.

By definition, since we have assumed E[∥z∥2] = d,

∥xi∥2 = ∥zi∥2 + ∥µ(qi)∥2 + 2⟨zi, µ(qi)⟩

≥ d

(
1− C1

√
log(2n/δ)

d

)
+ ∥µ(qi)∥2 − 2C1∥µ(qi)∥

√
log(2nk/δ)

≥ d

(
1− C1

√
log(2n/δ)

d

)
.
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where we have used Assumption (CL3) (for C > 1 large enough) in the last inequality. On the other
hand, by Lemma 28 we also have,

∥xi∥2 = ∥zi∥2 + ∥µ(qi)∥2 + 2⟨zi, µ(qi)⟩

≤ d

(
1 + C1

√
log(2n/δ)

d

)
+ ∥µ(qi)∥2 + 2C1∥µ(qi)∥

√
log(2nk/δ)

(i)

≤ d

(
1 + C1

√
log(2n/δ)

d

)
+ 2∥µ(qi)∥2

(ii)

≤ d

(
1 + C1

√
log(2n/δ)

d
+

2

Cn

)
.

The inequality (i) uses Assumption (CL3) and inequality (ii) uses Assumption (CL2).
For the second part of the lemma, note that for i ∈ I(q), ⟨µ(q), xi⟩ − ∥µ(q)∥2 = ⟨zi, µ(q)⟩.

Lemma 28 thus bounds the absolute value of this quantity.
For the third part of the lemma, consider those i ̸= j that belong to the same cluster. For these,

we have µ(qi) = µ(qj) so that

⟨xi, xj⟩ = ⟨µ(qi) + zi, µ
(qj) + zj⟩

= ∥µ(qi)∥2 + ⟨zi, µ(qj)⟩+ ⟨µ(qj), zi⟩+ ⟨zi, zj⟩.

By Lemma 28, we thus have

|⟨xi, xj⟩ − ∥µ(qi)∥2| ≤ |⟨zi, µ(qj)⟩|+ |⟨µ(qi), zj⟩|+ |⟨zi, zj⟩|

≤ 2C1max
q

∥µ(q)∥
√

log(2nk/δ) + C1

√
d log(2n/δ)

(i)

≤ 2C1

√
d log(2nk/δ)

Cn
+ C1

√
d log(2n/δ)

(ii)

≤ 2C1

√
d log(2n/δ). (46)

The inequality (i) uses Assumption (CL2). Inequality (ii) follows since Assumption (CL1) implies
that for C > 1 large enough, we have n > 10C2

1k so that

log(2nk/δ) < log(2n2/δ) < 2 log(2n/δ).

For the fourth part of the lemma, if i ∈ I(q) and j ∈ I(r) for q ̸= r,

|⟨xi, xj⟩| = |⟨µ(qi) + zi, µ
(qj) + zj⟩|

≤ |⟨µ(qi), µ(qj)⟩|+ |⟨zi, µ(qj)⟩|+ |⟨µ(qi), zj⟩|+ |⟨zi, zj⟩|

≤ max
q ̸=r

|⟨µ(q), µ(r)⟩|+ 2C1max
q

∥µ(q)∥
√

log(2nk/δ) + C1

√
d log(2n/δ)

≤ max
q ̸=r

|⟨µ(q), µ(r)⟩|+ 2C1

√
d log(2n/δ).

where the second-to-last inequality uses Lemma 28, and the last inequality uses an identical argu-
ment to (46).
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For the last part of the lemma, if q ∈ Q then the quantity

|I(q)| =
n∑

i=1

1(cluster(i) = q)

is a sum of n i.i.d. random variables with mean 1/k. By Hoeffding’s inequality, for any u ≥ 0,

P
(∣∣∣|I(q)| − n

k

∣∣∣ ≥ u
)
≤ 2 exp

(
−2u2

n

)
.

In particular, selecting u =
√
n log(2k/δ) and taking a union bound over the k clusters, we see that

with probability at least 1− δ, for all q ∈ Q,∣∣∣∣∣ |I(q)|n
− 1

k

∣∣∣∣∣ ≤
√

log(2k/δ)

n
.

Finally, let us denote by Nq the number of noisy examples within cluster q,

|I(q)N | = Nq =
∑
i∈I(q)

1(i ∈ N ).

Condintioned on the value of |I(q)|, since we are considering random classification noise, Nq is the
sum of |I(q)| independent, identically distributed random variables with mean

mq := P(i ∈ N ) = η.

By Hoeffding’s inequality, for any u ≥ 0,

P
(∣∣∣Nq − |I(q)|mq

∣∣∣ ≥ u
)
≤ 2 exp

(
− 2u2

|I(q)|

)
.

In particular, selecting u =
√

|I(q)| log(2k/δ) and taking a union bound over the k clusters, we see
that with probability at least 1− δ, for all q ∈ Q,∣∣∣∣∣ |I

(q)
N |

|I(q)|
− η

∣∣∣∣∣ ≤
√

log(2k/δ)

n
.

Since samples are ‘clean’ and in cluster q with probability 1−η, a completely identical argument
yields the bound for |I(q)C |. Taking a union bound over the event in Lemma 28 and the three events
above leads to a total failure probability of 7δ.

D.2. Proof of Lemma 10

We now show that under our assumptions on the problem parameters, the training data are p-
orthogonal for large p and the norms of each example are quite close to each other.
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Lemma 30 There exists an absolute constant C2 > 0 such for every large enough constant C > 0,
for any δ ∈ (0, 1/7), under Assumptions (CL1) through (CL4) (defined for these C and δ), with
probability at least 1−7δ over Pclust, the training data is C/C2-orthogonal, and maxi,j ∥xi∥2/∥xj∥2 ≤
(1 + C2/

√
C)2.

Proof All of the results of Lemma 29 hold with probability at least 1 − 7δ. We shall show that the
lemma is a deterministic consequence of this high-probability event.

First, if i, j ∈ I(q) and i ̸= j, then by Lemma 29,

|⟨xi, xj⟩| ≤ max
q

∥µ(q)∥2 + C ′
1

√
d log(2n/δ) ≤ 2C ′

1max

(
max

q
∥µ(q)∥2,

√
d log(2n/δ)

)
.

On the other hand, if i ∈ I(q) and j ∈ I(r) with q ̸= r, then

|⟨xi, xj⟩| ≤ max
q ̸=r

|⟨µ(q), µ(r)⟩|+ C ′
1

√
d log(2n/δ)

(i)

≤ min
q

∥µ(q)∥2 + C ′
1

√
d log(2n/δ)

≤ 2C ′
1max

(
max

q
∥µ(q)∥2,

√
d log(2n/δ)

)
,

where in (i) we use Assumption (CL4). Thus for any i ̸= j we have

|⟨xi, xj⟩| ≤ 2C ′
1max

(
max

q
∥µ(q)∥2,

√
d log(2n/δ)

)
. (47)

On the other hand, by Lemma 29 we also have

d

(
1− C ′

1

√
log(2n/δ)

d

)
≤ min

i
∥xi∥2 ≤ max

i
∥xi∥2 ≤ d

(
1 + C ′

1

√
log(2n/δ)

d
+

2

Cn

)
. (48)

We can thus bound

mini ∥xi∥4

maxi ∥xi∥2
≥ d ·

(
1− C ′

1

√
log(2n/δ)

d

)2

(
1 + C ′

1

√
log(2n/δ)

d + 2
Cn

)
(i)

≥ d ·

(
1− C ′

1

√
log(2n/δ)

d

)2

·

(
1− C ′

1

√
log(2n/δ)

d
− 2

Cn

)
(ii)

≥ 1

2
d. (49)

In inequality (i) we have used that 1/(1 + x) ≥ 1 − x for x > 0, and in inequality (ii) we have
taken C > 1 large enough in Assumption (CL2). Thus, we have

mini ∥xi∥4

maxi ∥xi∥2maxi̸=j |⟨xi, xj⟩|
≥ d

2maxi̸=j |⟨xi, xj⟩|
≥ d

2C ′
1max

(
maxq ∥µ(q)∥2,

√
d log(2n/δ)

) .
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Rearranging and using Assumption (CL2), this implies

min
i

∥xi∥2 ≥
1

2C ′
1

· maxi ∥xi∥2

mini ∥xi∥2
· d

max(maxq ∥µ(q)∥2,
√

d log(2n/δ))
·max

i̸=j
|⟨xi, xj⟩|

≥ C

2C ′
1

· maxi ∥xi∥2

mini ∥xi∥2
· nmax

i̸=j
|⟨xi, xj⟩|.

In particular, the training data is C/C2-orthogonal for C2 := 2C ′
1 (see Definition 1). Moreover,

by (48) we have

R2 ≤

(
1 + C ′

1

√
log(2n/δ)

d
+

2

Cn

)
·

(
1− C ′

1

√
log(2n/δ)

d

)−1

(i)

≤
(
1 + C ′

1/
√
C +

2

Cn

)
·
(
1− C ′

1/
√
C
)−1

≤
(
1 + 2C ′

1/
√
C
)2

.

The inequality (i) uses Assumption (CL2). The final inequality uses that C′
1√
C
+ 2

Cn ≤ 2C′
1√
C

for C
large enough and that 1/(1− x) ≤ 1 + 2x for x ∈ (0, 1/2).

D.3. Proof of Theorem 11

We now show that any τ -uniform linear classifier projected onto any direction of the form y(q)µ(q)

is large and positive. By Lemma 27, this will be a key ingredient for a test error bound.

Lemma 31 Let u ∈ Rd be τ -uniform w.r.t. {(xi, yi)}ni=1 for some absolute constant τ ≥ 1.
Let ∆ > 0 be an absolute constant and assume η ≤ 1

1+τ − ∆. Then under Assumptions (CL1)
through (CL4), provided C > 1 is a large enough absolute constant (depending only on η, τ , and
∆), then with probability at least 1− 7δ over Pn

clust, for each q ∈ Q,

〈
u, y(q)µ(q)

〉
∥u∥

≥
√
3(1 + τ)∆

4
√
10τ

·
√
n∥µ(q)∥2

k
√
d

.

Proof First note that with probability at least 1 − 7δ, the items in both Lemma 29 and Lemma 28
(with the vectors vi = µ(i)) hold. We also showed that Lemma 10 holds as a deterministic conse-
quence of these lemmas. In the remainder of the proof, we will work on this high-probability event
and show that Lemma 31 follows as a deterministic consequence of Lemmas 28, 29, and 10 under
Assumptions (CL1) through (CL4).
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Since u is τ -uniform, there are strictly positive numbers si such that u =
∑n

i=1 siyixi and
maxi,j si/sj = τ . Our proof consists in two parts: first, we want to show that for each q, the quantity

⟨u, y(q)µ(q)⟩ =

〈
n∑

i=1

siyixi, y
(q)µ(q)

〉

=
k∑

r=1

∑
i∈I(r)

si⟨yixi, y(q)µ(q)⟩

=
∑
i∈I(q)

si⟨yixi, y(q)µ(q)⟩+
∑
r ̸=q

∑
i∈I(r)

si⟨yixi, y(q)µ(q)⟩

is large. We will do so by considering the two terms above. Intuitively, when i ∈ I(q) then the
summands in the first term ⟨yixi, y(q)µ(q)⟩ will be large and positive for clean points i ∈ I

(q)
C and

negative for noisy points i ∈ I
(q)
N , and so as long as there are more clean points than noisy ones,

the first term will be large and positive. For the second term above, this term will not be too large
in absolute value since the clusters are nearly-orthogonal. After we show that the above holds, we
then want to provide an upper bound on ∥u∥2.

We will first show that the quantity ⟨u, y(q)µ(q)⟩ is large and positive by considering the two
terms in the above decomposition separately.

First term: i ∈ I(q). In this case, we have µ(qi) = µ(q). If i ∈ I
(q)
C , then yi = y(q), while if

i ∈ I
(q)
N , then yi = −y(q). We will thus show a positive lower bound for clean points and an upper

bound on the absolute value of noisy points.
We first provide a lower bound for clean samples i ∈ C. For such samples, xi = µ(qi) + zi and

yi = ỹ(qi) = ỹ and so

⟨siyixi, y(q)µ(q)⟩ = si⟨µ(q) + zi, µ
(q)⟩

≥ si

[
∥µ(q)∥2 − |⟨zi, µ(q)⟩|

]
= si∥µ(q)∥2

(
1− |⟨zi, µ(q)⟩|

∥µ(q)∥2

)
(i)

≥ si∥µ(q)∥2
(
1−

C1

√
log(2nk/δ)

∥µ(q)∥

)
.

Inequality (i) uses Lemma 28. Using an identical sequence of calculations, we can derive a similar
upper bound for |⟨siyixi, ỹ(µ(q) + z)⟩| for noisy examples: we have for i ∈ I

(q)
N ,

|⟨siyixi, ỹµ(q)⟩| = si|⟨µ(q) + zi, µ
(q)⟩|

≤ si

[
∥µ(q)∥2 + |⟨zi, µ(q)⟩|

]
≤ si∥µ(q)∥2

(
1 +

C1

√
log(2nk/δ)

∥µ(q)∥

)
.
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Putting the two preceding displays together, we get,

si⟨yixi, y(q)µ(q)⟩ ≥ si∥µ(q)∥2 ·
(
1− C1

√
log(2nk/δ)

∥µ(q)∥2

)
, i ∈ I

(q)
C ,

|si⟨yixi, y(q)µ(q)⟩| ≤ si∥µ(q)∥2 ·
(
1 + C1

√
log(2nk/δ)

∥µ(q)∥2

)
, i ∈ I

(q)
N .

(50)

Second term: i ∈ I(r), r ̸= q. Since µ(qi) ̸= µ(q), we have for both noisy and clean examples,

|si⟨yixi, y(q)µ(q)⟩| = si|⟨µ(r) + zi, µ
(q)⟩|

≤ si

(
|⟨zi, µ(q)⟩|+max

q ̸=r
|⟨µ(q), µ(r)⟩|

)
(i)

≤ si

(
C1∥µ(q)∥

√
log(2nk/δ) + max

q ̸=r
|⟨µ(q), µ(r)⟩|

)
(51)

Inequality (i) uses Lemma 28. Putting the above together, we get,

⟨u, y(q)µ(q)⟩

=
∑
i∈I(q)

si⟨yixi, y(q)µ(q)⟩+
∑
r ̸=q

∑
i∈I(r)

si⟨yixi, y(q)µ(q)⟩

≥
∑
i∈I(q)C

si∥µ(q)∥2
(
1− C1

√
log(2nk/δ)

∥µ(q)∥2

)
−
∑
i∈I(q)N

si∥µ(q)∥2
(
1 + C1

√
log(2nk/δ)

∥µ(q)∥2

)

−
∑
r ̸=q

∑
i∈I(r)

si

(
C1∥µ(q)∥

√
log(2nk/δ) + max

q ̸=r
|⟨µ(q), µ(r)⟩|

)

≥
(
min
i

si

)
|I(q)C |∥µ(q)∥2

(
1− C1

√
log(2nk/δ)

∥µ(q)∥2

)
−
(
max

i
si

)
|I(q)N |∥µ(q)∥2

(
1 +

√
log(2nk/δ)

∥µ(q)∥2

)

−
(
max

i
si

)
·
(
n− |I(q)|

)
·
(
C1∥µ(q)∥

√
log(2nk/δ) + max

q ̸=r
|⟨µ(q), µ(r)⟩|

)
. (52)

For notational simplicity let us define

ν := C1

√
log(2nk/δ)

∥µ(q)∥2
≪ 1, (53)
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where ν small follows by Assumption (CL3). Since τ := maxi si/mini si and |I(q)| = |I(q)C | +
|I(q)N |, we can then write the above inequality as

⟨u, y(q)µ(q)⟩

≥
(
min
i

si

)
·
(
|I(q)| − |I(q)N |

)
· ∥µ(q)∥2(1− ν)−

(
max

i
si

)
· |I(q)N | · ∥µ(q)∥2(1 + ν)

−
(
max

i
si

)
· (n− |I(q)|) ·

(
∥µ(q)∥2ν +max

q ̸=r
|⟨µ(q), µ(r)⟩|

)
=

(
min
i

si

)
|I(q)|∥µ(q)∥2

[
1− ν − (1− ν)

|I(q)N |
|I(q)|

− (1 + ν)τ ·
|I(q)N |
|I(q)|

− τ

(
n

|I(q)|
− 1

)
·

(
ν +

maxq ̸=r |⟨µ(q), µ(r)⟩|
∥µ(q)∥2

)]

=

(
min
i

si

)
|I(q)|∥µ(q)∥2

[
1− (1 + τ) ·

|I(q)N |
|I(q)|

−

(
1− (1− τ) ·

|I(q)N |
|I(q)|

)
ν

− τ

(
n

|I(q)|
− 1

)
·

(
ν +

maxq ̸=r |⟨µ(q), µ(r)⟩|
∥µ(q)∥2

)]
. (54)

From here we see we need to control |I(q)| and |I(q)N |. Using Lemma 29, we have∣∣∣∣∣ |I(q)|n
− 1

k

∣∣∣∣∣ ≤
√

log(2k/δ)

n
,

∣∣∣∣∣ |I
(q)
N |

|I(q)|
− η

∣∣∣∣∣ ≤
√

log(2k/δ)

n
.

In particular, we have

|I(q)| ≥ n

k
−
√
n log(2k/δ) =

n

k

(
1−

√
k2 log(2k/δ)

n

)
(i)

≥ n

2k
, (55)

where inequality (i) uses Assumption (CL1) so that n ≥ 4k2 log(2k/δ). We therefore have

n

|I(q)|
− 1 ≤ 2k.

Substituting these inequalities into (54) and using that (1− (1− τ)|I(q)N |/|I(q)|) ≤ τ , we get,

⟨u, y(q)µ(q)⟩ ≥ |I(q)|∥µ(q)∥2
(
min
i

si

)
·

[
1− (1 + τ) ·

(
η +

√
log(2k/δ)

n

)
− τν

− 2kτ ·

(
ν +

maxq ̸=r |⟨µ(q), µ(r)⟩|
∥µ(q)∥2

)]
. (56)

Algebraic calculations to finish the bound on ⟨u, y(q)µ(q)⟩. We now want to show that the
quantity appearing in the brackets in (56) is positive. Since by assumption η ≤ 1

1+τ −∆ for some
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absolute constant ∆ > 0,

1− (1 + τ) ·

(
η +

√
log(2k/δ)

n

)
− τν − 2kτ ·

(
ν +

maxq ̸=r |⟨µ(q), µ(r)⟩|
∥µ(q)∥2

)

≥ 1− (1 + τ) ·

(
1

1 + τ
−∆+

√
log(2k/δ)

n

)
− τν − 2kτ ·

(
ν +

maxq ̸=r |⟨µ(q), µ(r)⟩|
∥µ(q)∥2

)

= (1 + τ) ·

[
∆−

√
log(2k/δ)

n
− τν

1 + τ
− 2kτ

1 + τ
·

(
ν +

maxq ̸=r |⟨µ(q), µ(r)⟩|
∥µ(q)∥2

)]

= (1 + τ)∆ ·

[
1−

√
∆−2 log(2k/δ)

n
− τν∆−1

1 + τ
− 2kτ∆−1

1 + τ
·

(
ν +

maxq ̸=r |⟨µ(q), µ(r)⟩|
∥µ(q)∥2

)]
.

(57)

For the second term in the brackets, Assumption (CL1) implies√
∆−2 log(2k/δ)

n
≤ 1

8
.

For the next two terms, note that τ
1+τ ≤ 1 since τ ≥ 1. Since ν = C1

√
log(2nk/δ)/∥µ(q)∥2, the

second term can be driven to zero by taking C > 1 sufficiently large by Assumption (CL3) (namely,
minq ∥µ(q)∥ ≥ Ck

√
log(2nk/δ)):

τν∆−1

1 + τ
≤ ∆−1 · C1

√
log(2nk/δ)

∥µ(q)∥2
≤ 1

8
.

Again using Assumption (CL3), for C > 1 large enough we have,

2kτ∆−1

1 + τ
· ν ≤ 2k∆−1 · C1

√
log(2nk/δ)

∥µ(q)∥2
≤ 1

32
.

Finally, Assumption (CL4) implies that for C > 1 large enough,

2kτ∆−1

1 + τ
·
maxq ̸=r |⟨µ(q), µ(r)⟩|∥∥µ(q)

∥∥2 ≤ 1

32
.

Putting the above into (57), we get

1− (1 + τ) ·

(
η +

√
log(2k/δ)

n

)
− τν − 2kτ ·

(
ν +

maxq ̸=r |⟨µ(q), µ(r)⟩|
∥µ(q)∥2

)

≥ (1 + τ)∆

(
1− 1

8
− 1

8
− 1

32
− 1

32

)
>

(1 + τ)∆

2
.
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Substituting this into (56), we get

⟨u, y(q)µ(q)⟩ ≥ |I(q)|∥µ(q)∥2
(
min
i

si

)
·

[
1− (1 + τ) ·

(
η +

√
log(2k/δ)

n

)
− τν

− 2kτ ·

(
ν +

maxq ̸=r |⟨µ(q), µ(r)⟩|
∥µ(q)∥2

)]

≥ 1

2
(1 + τ)∆|I(q)|∥µ(q)∥2

(
min
i

si

)
(i)

≥ (1 + τ)n∥µ(q)∥2∆(mini si)

4k
. (58)

The inequality (i) uses (55). This provides the requisite lower bound for ⟨u, y(q)µ(q)⟩.

Upper bound on ∥u∥. Here we use the fact that the samples are nearly-orthogonal: we have,∥∥∥∥∥
n∑

i=1

siyixi

∥∥∥∥∥
2

≤
n∑

i=1

s2i ∥xi∥2 +
∑
i̸=j

sisj |⟨xi, xj⟩|

≤ n

(
max

i
s2i

)(
max

i
∥xi∥2

)
+ n2

(
max

i
s2i

)
max
i̸=j

|⟨xi, xj⟩|

= n

(
max

i
s2i

)(
max

i
∥xi∥2 + nmax

i̸=j
|⟨xi, xj⟩|

)
(i)

≤ 5

4
n

(
max

i
s2i

)(
max

i
∥xi∥2

)
(ii)

≤ 5

4
n

(
max

i
s2i

)
· d

(
1 + C1

√
log(2n/δ)

d
+

2

Cn

)
(iii)

≤ 10

3
ndmax

i
s2i . (59)

Inequality (i) above uses Lemma 10. Inequality (ii) uses Lemma 29, and inequality (iii) follows
by taking C > 1 large enough by Assumptions (CL1) and (CL2). Putting (59) and (58) together,
we get, 〈

u, y(q)µ(q)
〉2

∥u∥2
≥ (1 + τ)2n2∥µ(q)∥4∆2mini s

2
i

16k2 · 10
3 ndmaxi s2i

=
3(1 + τ)2∆2

160τ2
· n∥µ

(q)∥4

k2d
.

Taking square roots of the above completes the proof.

Putting together Lemma 31 and Lemma 27, we can derive a generalization bound for the linear
classifier

∑n
i=1 siyixi.

Theorem 11 Let τ ≥ 1 be a constant, and suppose η ≤ 1
1+τ − ∆ for some absolute constants

η,∆ > 0. There exist constants C,C ′ > 0 (depending only on η, τ , and ∆) such that for any
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δ ∈ (0, 1/14), under Assumptions (CL1) through (CL4) (defined for these C and δ), with probability
at least 1− 14δ over Pn

clust, if u ∈ Rd is τ -uniform w.r.t. {(xi, yi)}ni=1, then

for all k ∈ [n], yk = sign
(
⟨u, xk⟩

)
,

while simultaneously, η ≤ P(x,y)∼Pclust

(
y ̸= sign(⟨u, x⟩)

)
≤ η + exp

(
−nminq ∥µ(q)∥4

C ′k2d

)
.

In particular, if nminq ∥µ(q)∥4 = ω(k2d), then the linear classifier x 7→ sign(⟨u, x⟩) exhibits
benign overfitting.

Proof By a union bound, with probability at least 1− 14δ, the results of Lemmas 31 and Lemma 10
hold. In the remainder of the proof we will work on this high-probability event and show that the
theorem is a deterministic consequence of it and the Assumptions (CL1) through (CL4).

Since u is τ -uniform, there are strictly positive numbers si such that u =
∑n

i=1 siyixi. We
shall first show this estimator interpolates the training data. An identical calculation used as in (38)
shows that

⟨u, ykxk⟩ = sk∥xk∥2 +
∑
i̸=k

⟨siyixi, ykxk⟩

≥ sk∥xk∥2
(
1−

nτ maxi̸=j |⟨xi, xj⟩|
∥xk∥2

)
(i)

≥ sk∥xk∥2
(
1− C2τ

C

)
≥ 1

2
sk∥xk∥2 > 0.

The inequality (i) uses that the training data is C/C2-orthogonal by Lemma 10, and we took C
large relative to the absolute constants C2, τ .

We now show the generalization error is close to the noise rate. Since η ≤ 1
1+τ − ∆, by

Lemma 31, we know that for each q we have,〈∑n
i=1 siyixi, y

(q)µ(q)
〉

∥
∑n

i=1 siyixi∥
≥

√
3(1 + τ)∆

4
√
10τ

·
√
n∥µ(q)∥2

k
√
d

.

Now using Lemma 27, this implies that

P(x,y)∼Pclust

(
y ̸= sign(⟨µ̂, x⟩)

)
≤ η +

1

k

k∑
q=1

exp

(
−3c(1 + τ)2n∆2∥µ(q)∥4

160τ2k2d

)

≤ η + exp

(
−nminq ∥µ(q)∥4

C ′k2d

)
,

where C ′ is an absolute constant independent of d and n.
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D.4. Proof of Corollary 12 and Corollary 13

In this section we show how to use Theorem 11 and Lemma 10 to prove Corollary 12 and Corol-
lary 13.

Corollary 32 Suppose 0 < η ≤ 0.49. There exist constants C,C ′ > 0 such that for any δ ∈
(0, 1/21), under Assumptions (CL1) through (CL4) (defined for these C and δ), with probability at
least 1 − 21δ over Pn

clust, the max-margin linear classifier w = argmin{∥w∥2 : yi⟨w, xi⟩ ≥ 1 ∀i}
satisfies

for all k ∈ [n], yk = sign
(
⟨w, xk⟩

)
,

while simultaneously, η ≤ P(x,y)∼Pclust

(
y ̸= sign(⟨w, x⟩)

)
≤ η + exp

(
−nminq ∥µ(q)∥4

C ′k2d

)
.

In particular, if nminq ∥µ(q)∥4 = ω(k2d) then w exhibits benign overfitting.

Proof The calculation is essentially identical to that used for the proof of Corollary 7. By a union
bound, the results of Theorem 11 and Lemma 10 hold with probability at least 1 − 21δ, and any
τ -uniform linear classifier exhibits benign overfitting with noise tolerance determined by τ . We
therefore verify that the linear max-margin classifier is τ -uniform with small τ .

By Lemma 10, the training data is C/C2-orthogonal and R2 = maxi,j ∥xi∥2/∥xj∥2 ≤ (1 +
C2/

√
C)2. Since for C large enough we have C/C2 ≥ 3, by Proposition 3 this means the linear

max-margin w is τ -uniform with τ ≤ R2
(
1 + 2

CC−1
2 R2−2

)
. In particular, we have

τ ≤
(
1 +

C2√
C

)2

·
(
1 +

2

CC−1
2 R2 − 2

)2

≤ 100

99
· 201
200

=
201

198
.

The final inequality follows by taking C > 1 a large enough absolute constant. Thus the max-
margin linear classifier is τ -uniform where τ ≤ 201

198 . Since 1
1+τ ≥ 198

399 ≥ 0.496, by taking η ≤
0.49 = 0.496− 0.006 we may apply Theorem 11.

Finally, we prove Corollary 13, again re-stated for convenience.

Corollary 33 Suppose that 0 < η ≤ 49γ2

100 . There exist constants C,C ′ > 0 such that for any
δ ∈ (0, 1/21), under Assumptions (CL1) through (CL4) (defined for these C and δ), with probability
at least 1− 21δ over Pn

clust, any KKT point W of Problem (3) satisfies

for all k ∈ [n], yk = sign
(
f(xk;W )

)
,

while simultaneously, η ≤ P(x,y)∼Pclust

(
y ̸= sign

(
f(x;W )

)
≤ η + exp

(
−nminq ∥µ(q)∥4

C ′k2d

)
.

In particular, if nminq ∥µ(q)∥4 = ω(k2d) then the neural network f(x;W ) exhibits benign overfit-
ting. Moreover, for any initialization W (0), gradient flow converges in direction to a network which
satisfies the above.
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Proof As in the preceding corollary, with probability at least 1− 21δ the results of Theorem 11 and
Lemma 10 hold and any τ -uniform linear classifier exhibits benign overfitting with noise tolerance
determined by τ . By Lemma 10, the training data is C/C2-orthogonal for C > 3C2γ

−3 we may
apply Proposition 4 so that sign(f(x;W )) = sign(⟨z, x⟩) where z is τ -uniform w.r.t. the training
data for τ = R2γ−2

(
1 + 2

γCR2/C2−2

)
. Lemma 10 shows that R2 ≤ 100

99 for C large enough,

and hence τ ≤ 201
198γ

−2 for large C. Note that 1
1+201γ−2/198

≥ 0.496γ2. Hence, we may apply
Theorem 6 with η ≤ 0.49γ2 = 0.496γ2 − 0.006γ2 since γ is an absolute constant.

Appendix E. Experiment details

In this section we provide details for the experiment in Figure 1. We consider two-layer leaky ReLU
networks of the form (2) where γ = 0.1 with m = 512 neurons, so that half of the second-layer
weights are fixed at +1/

√
m and the other half at −1/

√
m. We initialize the first-layer weights

using the TensorFlow default of Glorot uniform initialization. We assume data of the form (4),
where d = 800, ∥µ∥ = d0.26 and η = 0.15. We consider two settings: either n = 8000 or n = 100.
We train for 106 steps with learning rate α = 0.01 in each setting. The figure plots the average over
3 random seeds over the random initialization and the sampling of the data, with the shaded area
corresponding to the range of the minimum to the maximum accuracies across the three seeds.
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