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Abstract

A recent line of work studies overparametrized neural networks in the “kernel regime,”
i.e., when during training the network behaves as a kernelized linear predictor, and thus,
training with gradient descent has the effect of finding the corresponding minimum RKHS
norm solution. This stands in contrast to other studies which demonstrate how gradient
descent on overparametrized networks can induce rich implicit biases that are not RKHS
norms. Building on an observation by Chizat et al. (2019), we show how the scale of
the initialization controls the transition between the “kernel” (aka lazy) and “rich” (aka
active) regimes and affects generalization properties in multilayer homogeneous models. We
provide a complete and detailed analysis for a family of simple depth-D linear networks
that exhibit an interesting and meaningful transition between the kernel and rich regimes,
and highlight an interesting role for the width of the models. We further demonstrate this
transition empirically for matrix factorization and multilayer non-linear networks.

1. Introduction

A string of recent papers study neural networks trained with gradient descent in the “kernel
regime.” They observe that, in a certain regime, networks trained with gradient descent
behave as kernel methods (Jacot et al., 2018; Daniely, 2017; Yang, 2019). This allows one
to prove convergence to zero error solutions in overparametrized settings (Li and Liang,
2018; Du et al., 2018, 2019; Allen-Zhu et al., 2018; Zou et al., 2018; Allen-Zhu et al., 2019;

7

© 2020 B. Woodworth, S. Gunasekar, J.D. Lee, E. Moroshko, P. Savarese, I. Golan, D. Soudry & N. Srebro.



KERNEL AND RICH REGIMES IN OVERPARAMETRIZED MODELS

Arora et al., 2019b; Chizat et al., 2019). This also implies that the learned function is
the the minimum norm solution in the corresponding RKHS (Chizat et al., 2019; Arora
et al., 2019b; Mei et al., 2019), and more generally that models inherit the inductive bias
and generalization behavior of the RKHS. This suggests that, in a certain regime, deep
models can be equivalently replaced by kernel methods with the “right” kernel, and deep
learning boils down to a kernel method with a fixed kernel determined by the architecture
and initialization, and thus it can only learn problems learnable by appropriate kernel.

This contrasts with other recent results that show how in deep models, including infinitely
overparametrized networks, training with gradient descent induces an inductive bias that
cannot be represented as an RKHS norm. For example, analytic and/or empirical results
suggest that gradient descent on deep linear convolutional networks implicitly biases toward
minimizing the L, bridge penalty, for p = 2/depth < 1, in the frequency domain (Gunasekar
et al., 2018); on an infinite width single input ReLU network infinitesimal weight decay biases
towards minimizing the second order total variations [|f”(z)|dx of the learned function
(Savarese et al., 2019), further, empirically it has been observed that this bias is implicitly
induced by gradient descent without explicit weight decay (Savarese et al., 2019; Williams
et al., 2019); and gradient descent on a overparametrized matrix factorization, which can be
thought of as a two layer linear network, induces nuclear norm minimization of the learned
matrix and can ensure low rank matrix recovery (Gunasckar et al., 2017; Li et al., 2018; Arora
et al., 2019a). None of these natural inductive biases are Hilbert norms, and therefore they
cannot be captured by any kernel. This suggests that training deep models with gradient
descent can behave very differently from kernel methods, and have richer inductive biases.

So, does the kernel approximation indeed capture the behavior of deep learning in a
relevant and interesting regime, or does the success of deep learning come from escaping
this regime to have richer inductive biases that exploits the multilayer nature of neural
networks? In order to understand this, we must first understand when each of these regimes
hold, and how the transition between the “kernel regime” and the “rich regime” happens.

Early investigations of the kernel regime emphasize the number of parameters (“width”)
going to infinity as leading to this regime (see e.g., (Jacot et al., 2018; Daniely, 2017; Yang,
2019)). However, Chizat et al. (2019) identified the scale of the model at initialization as a
quantity controlling entry into the kernel regime. Their results suggest that for any number
of parameters (any width), a homogeneous model can be approximated by a kernel when
its scale at initialization goes to infinity (see the survey in Section 3). Considering models
with increasing (or infinite) width, the relevant regime (kernel or rich) is determined by how
the scaling at initialization behaves as the width goes to infinity. In this paper we elaborate
and expand of this view, carefully studying how the scale of initialization affects the model
behaviour for D-homogeneous models.

Our Contributions In Section 4 we analyze in detail a simple 2-homogeneous model
for which we can exactly characterize the implicit bias of training with gradient descent
as a function of the scale, a, of initialization. We show: (a) the implicit bias transitions
from the ¢ norm in the v — oo limit to ¢; in the @ — 0 limit; (b) consequently, for
certain problems e.g., high dimensional sparse regression, using a small initialization can be
necessary for good generalization; and (c) we highlight how the “shape” of the initialization,
i.e., the relative scale of the parameters, affects the @ — oo bias but not the o — 0 bias.
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In Section 5 we extend this analysis to analogous D-homogeneous models, showing that the
order of homogeneity or the “depth” of the model hastens the transition into the £; regime.
In Section 6, we analyze asymmetric matrix factorization models, and show that the “width”
(i.e., the inner dimension of the factorization) has an interesting role to play in controlling
the transition between kernel and rich behavior which is distinct from the scale. In Appendix
B, we show qualitatively similar behavior for deep ReLU networks.

2. Setup and preliminaries

We consider models f:RP x X — R which map parameters w € RP and examples x € X
to predictions f(w,x) € R. We denote the predictor implemented by the parameters w as
F(w) € {f : X = R}, such that F(w)(x) = f(w,x). Much of our focus will be on models,
such a linear networks, which are linear in x (but not in the parameters w), in which case
F(w) is a linear functional in the dual space X* and can be represented as a vector By, with
f(w,x) = (Bw, x). Such models are essentially alternate parametrizations of linear models,
but as we shall see that the specific parametrization is crucial.

We focus on models that are D-positive homogeneous in the parameters w, for some
integer D > 1, meaning that for any ¢ € Ry, F(c-w) = c” F(w). We refer to such models
simply as D-homogeneous. Many interesting model classes have this property, including
multi-layer ReLU networks with fully connected and convolutional layers, layered linear
networks, and matrix factorization, where D corresponds to the depth of the network.

We use L(w) = L(F(w)) = SN (f(w,%n) — yn)? to denote the squared loss of the

n=1
model over a training set (x1,y1),...,(Xn,yn). We consider minimizing the loss L(w)

using gradient descent with infinitesimally small stepsize, i.e., gradient flow dynamics
w(t) = =VL(w(t)). (1)

We are particularly interested in the scale of initialization and capture it through a scalar
parameter o € Ry. For scale «, we will denote by wq,w,(t) the gradient flow path (1) with
the initial condition wg w,(0) = awg. We consider underdetermined/overparameterized
models (typically N < p), where there are many global minimizers of L(w) with L(w) = 0.
Often, the dynamics of gradient flow converge to global minimizers of L(w) which perfectly
fits the data—this is often observed empirically in large neural network learning, though
proving this is challenging and is not our focus. Rather, we want to understand which of
the many minimizers gradient flow converges to, i.e., Woy, 1= lim; 00 Wa, w, (t) or, more
importantly, the predictor F'(wg'y, ) reached by gradient flow depending on the scale a.

3. The Kernel Regime
Locally, gradient descent/flow depends solely on the first-order approximation w.r.t. w:

fw,x) = f(w(t), ) + (W — w(t), Vw f(w(t),x)) + O([[w — w(t)|?). (2)

That is, gradient flow operates on the model as if it were an affine model f(w,x) ~ fo(x) +
<w, Pw(1) (x)> with feature map ¢w()(x) = Vwf(W(t),x), corresponding to the tangent
kernel Ky 1) (x,%x") = (Vwf(W(t),x), Vw f(w(t),x')). Of particular interest is the tangent
kernel at initialization, Ky ) (Jacot et al., 2018; Yang, 2019).



KERNEL AND RICH REGIMES IN OVERPARAMETRIZED MODELS

Previous work uses “kernel regime” to describe a situation in which the tangent kernel
K (1) does not change over the course of optimization or, less formally, where it does not
change significantly, i.e., where Vi, Ky () & Ky(g). For D homogeneous models with ini-
tialization w,(0) = awo, Ky, (0) = o?P-D [ where we denote Ko = Kyw,. Thus, in the
kernel regime, training the model f(w,x) is exactly equivalent to training an affine model
fx(w,x) = P f(w(0),x) + (Pw(0)(x), w — w(0)) with kernelized gradient descent/flow
with the kernel Ky, ) and a “bias term” of f(w(0),x). Minimizing the loss of this affine
model using gradient flow reaches the solution nearest to the initialization where distance
is measured with respect to the RKHS norm determined by K. That is, F(w2®) =
arg miny, ||h — F(awg)|| k, s.t. h(X) =y. To avoid handling this bias term, and in particular
its large scale as « increases, Chizat et al. (2019) suggest using “unbiased” initializations
such that F'(wg) = 0, so that the bias term vanishes. This is often achieved by replicating
units with opposite signs at initialization (see, e.g., Section 4).

But when does the kernel regime happen? Chizat et al. (2019) showed that for any
homogeneous' model satisfying some technical conditions, the kernel regime is reached when
a — oo. That is, as we increase the scale of initialization, the dynamics converge to the
kernel gradient flow dynamics for the initial kernel Ky. In Sections 4 and 5, for our specific
models, we prove this limit as a special case of our more general analysis for all a > 0, and
we also demonstrate it empirically for matrix factorization and deep networks in Sections 6
and B. In Section 6, we additionally show how increasing the “width” of certain asymmetric
matrix factorization models can also lead to the kernel regime, even when the initial scale
« goes to zero at an appropriately slow rate.

In contrast to the kernel regime, and as we shall see in later sections, the o — 0 small
initialization limit often leads to very different and rich inductive biases, e.g., inducing
sparsity or low-rank structure (Gunasekar et al., 2017; Li et al., 2018; Gunasekar et al.,
2018), that allow for generalization in settings where kernel methods would not. We will
refer to the limit of this distinctly non-kernel behavior as the “rich limit.” This regime is also
called the “active,” “adaptive,” or “feature-learning” regime since the tangent kernel Ky )
changes over the course of training, in a sense adapting to the data. We argue that this
rich limit is the one that truly allows us to exploit the power of depth, and thus is the more
relevant regime for understanding the success of deep learning.

4. Detailed Study of a Simple Depth-2 Model
Consider the class of linear functions over X = R¢, with squared parameterization as follows:
d 2 2 W 2d 2 2
Fwx) =3 (Wi, = w2 )xi = (Bw, %), w=[W!] € R*, and By = wi — w2 (3)

where z% for z € R? denotes elementwise squaring. The model can be thought of as a
“diagonal” linear neural network (i.e., where the weight matrices have diagonal structure)
with 2d units. A “standard” diagonal linear network would have d units, with each unit

1. Chizat et al. did not consider only homogeneous models, and instead of studying the scale of initialization
they studied scaling the output of the model. For homogeneous models, the dynamics obtained by
scaling the initialization are equivalent to those obtained by scaling the output, and so here we focus on
homogeneous models and on scaling the initialization.
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connected to just a single input unit with weight w; and the output with weight v;, thus
implementing the model f((u,v),x) = ), u;v;x; which is illustrated in Figure 9(a) in
Appendix C. However, we also show in Appendix C that if |u;| = |v;| at initialization,
then their magnitudes will remain equal and their signs will not flip throughout training.
Therefore, we can equivalently parametrize the model in terms of a single shared input and
output weight w; for each hidden unit, yielding the model f(w,x) = <W2, x>.

The reason for using an “unbiased model” with two weights w and w_ (i.e.,. 2d units,
see illustration in Figure 9(b) in Appendix C) is two-fold. First, it ensures that the image of
F(w) is all (signed) linear functions, and thus the model is truly equivalent to standard linear
regression. Second, it allows for initialization at F'(awq) = 0 (by choosing w, (0) = w_(0))
without this being a saddle point from which gradient flow will never escape.?

The model (3) is perhaps the simplest non-trivial D-homogeneous model for D > 1, and
we chose it for studying the role of scale of initialization because it already exhibits distinct
and interesting kernel and rich behaviors, and we can also completely understand both the
implicit regularization and the transition between regimes analytically.

We study the underdetermined N < d case where there are many possible solutions
XB =y. We will use 83%,, to denote the solution reached by gradient flow when initialized
at wi(0) = w_(0) = awy. We will start by focusing on the special case where wy = 1.
In this case, the tangent kernel at initialization is Ky (q)(x,x") = 8a? (x, X’), which is just
a scaling of the standard inner product kernel, so ||B||k,,, o [[Bll2. Thus, in the kernel
regime, Gg° will be the minimum ¢2 norm solution, 3;, = argminyg_,[|3|2. Following
Chizat et al. (2019) and the discussion in Section 3, we thus expect that lima—o0 B3 = 87,

In contrast, from Corollary 2 in Gunasekar et al. (2017), as @ — 0, gradient flow leads
instead to a rich limit of ¢; minimization, i.e., lima—0 B85 = Bj, = arg minyg_, |31
Comparing this with the kernel regime, we already see two distinct behaviors and, in high
dimensions, two very different inductive biases. In particular, the rich limit ¢; bias is not an
RKHS norm for any choice of kernel. We have now described the asymptotic regimes where
a — 0 or a — oo, but can we characterize and understand the transition between the two
regimes as « scales from very small to very large? The following theorem does just that.

Theorem 1 (Special case: wo =1) For any 0 < o < oo, if the gradient flow solution
oo1 for the squared parameterization model in eq. (3) satisfies XBgy =y, then

Ba1= arggnin Qa (B) st. XB =Yy, (4)

a2

where Qq, (B) = a? Zle q (&) and q(z) = foz arcsinh (%) du = 2—+/4+ z2+ zarcsinh (g)

A General Approach for Deriving the Implicit Bias Once given an expression for
Qq, it is straightforward to analyze the dynamics of 3,1 and show that it is the minimum
Q. solution to X3 = y. However, a key contribution of this work is in developing a method
for determining what the implicit bias is when we do not already have a good guess. First,
we analyze the gradient flow dynamics and show that if X85% =y then 8% = b, (XTv)

2. Our results can be generalized to “biased" initialization (i.e., where w_ # w at initialization), or the
asymmetric parametrization f((u,v),x) = >, w;v;x;, however this complicates the presentation without
adding much insight.
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Figure 1: In (a) the population error of the gradient flow solution vs. « in the sparse regression
problem described in Section 4. In (b), we plot [|35° |1 — |87, [l1 in blue and [|35% ||l2 —
187,12 in red vs. a. In (c), the largest o such that 35°; achieves population error at most
0.025 is shown. The dashed line indicates the number of samples needed by 37 .

for a certain function b, and vector v. It is not necessary to be able to calculate v, which
would be very difficult, even for our simple examples. Next, we suppose that there is
some function @, such that (4) holds. The KKT optimality conditions for (4) are X3* =
y and v s.t. VQ4 (B*) = X Tv. Therefore, if indeed Bor = B and XB37 = y then
VQa ( 201) = VQ. (ba(XTV)) = X Tv. We solve the differential equation VQ, = b, ' to
yield Q4. Theorem 1 in Appendix D is proven using this method.

In light of Theorem 1, the function @, (referred to as the “hypentropy” function in Ghai
et al. (2019)) can be understood as an implicit regularizer which biases the gradient flow
solution towards one particular zero-error solution out of the many possibilities. As « ranges
from 0 to oo, the @, regularizer interpolates between the ¢; and ¢ norms, as illustrated
in Figure 3(a) (the line labelled D = 2 depicts the coordinate function ¢q). As o — oo we
have that B3;/a? — 0, and so the behaviour of Q,(3) is governed by ¢(z) = ©(z?) around
z =0, thus Qa(8) < >, B2. On the other hand when o — 0, |8;/a?| — oo is determined by
q(z) = O(|z|log|z|) as |z| = oo. In this regime WQQ(Q) x Wziyﬁi\log\%] =
1811 +0O(1/1log(1/a?)). The following Theorem, proven in Appendix E, quantifies the scale
of o which guarantees that 37 approximates the minimum ¢; or ¢, norm solution:

Theorem 2 For any 0 < € < d, under the setting of Theorem 1 with wg =1,

2+e€

o < min{ 200+ lIB7, 1)~ > sexp (~d/(elBr, 1) } = 182l < (1+ ) 187, I

o>\ 20+ +2/0l8g ]l = 18503 < (1 +€) 187,13

Looking carefully at Theorem 2, we notice a certain asymmetry between reaching the
kernel regime versus the rich limit: polynomially large « suffices to approximate 3; to a
very high degree of accuracy, but ezponentially small « is needed to approximate 3y, .” This
suggests an explanation for the difficulty of empirically demonstrating rich limit behavior

3. Theorem 2 only shows that exponentially small « is sufficient for approximating 8y, and is not a proof
that it is necessary. However, Lemma 6 in Appendix E proves that o < d~*(!/9) is indeed necessary for
Qo to be proportional to the ¢; norm for every unit vector simultaneously. This indicates that a must
be exponentially small to approximate 37, for certain problems.
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in matrix factorization problems (Gunasekar et al., 2017; Arora et al., 2019a): since the
initialization may need to be exceedingly small, conducting experiments in the truly rich
limit may be infeasible for computational reasons.

Generalization In order to understand the effect of the initialization on generaliza-
tion, consider a simple sparse regression problem, where xi,...,xy ~ N(0,I) and y, ~
N({B*, x,),0.01) where 3* is r*-sparse with non-zero entries equal to 1/v/r*. When N < d,
gradient flow will generally reach a zero training error solution, however, not all of these so-
lutions will generalize the same. In the rich limit, N = Q(r*log d) samples suffices for By, to
generalize well. On the other hand, even though we can fit the training data perfectly well,
the kernel regime solution 3;, would not generalize at all with this sample size (N = Q(d)
samples would be needed), see Figure 1(c¢). Thus, in this case good generalization requires
using very small initialization, and generalization will tend to improve as « decreases. From
an optimization perspective this is unfortunate because w = 0 is a saddle point, so taking
a — 0 will likely increase the time needed to escape the vicinity of zero.

Thus, there seems to be a tension between generalization and optimization: a smaller
«a might improve generalization, but it makes optimization trickier. This suggests that one
should operate just on the edge of the rich limit, using the largest « that still allows for
generalization. This is borne out by our experiments with deep, non-linear neural networks
(see Appendix B), where standard initializations correspond to being right on the edge of
entering the kernel regime, where we expect models to both generalize well and avoid serious
optimization difficulties. Given the extensive efforts put into designing good initialization
schemes, this gives further credence to the idea that models will perform best when trained
in the intermediate regime between rich and kernel behavior.

This tension can also be seen through a tradeoff between the sample size and the largest
a we can use and still generalize. In Figure 1(¢), for each sample size N, we plot the largest
a for which the gradient flow solution 83°; achieves population risk below some threshold.
As N approaches the minimum number of samples for which 3j generalizes (the vertical
dashed line), a must become extremely small. However, generalization is much easier if the
number of samples is only slightly larger, and much larger « suffices.

The “Shape” of wy and the Implicit Bias So far, we have discussed the implicit bias
in the special case wy = 1, but we can also characterize it for non-uniform initialization wy:

Theorem 1 (General case) For any 0 < a < oo and wqo with no zero entries, if the
gradient flow solution B2°, satisfies X3 =1y, then

a,Wo

g‘wa = argﬁmin Qaw, (B) st. XB =1y, (5)

o0
@, W0

where Quw, (B) = 25:1 azwg7iq(ﬁ%) and q(z) =2 — V4 + 2% + zarcsinh (%).

Consider the asymptotic behavior of Qg w,. For small z, ¢(z) = % +0(2%) so for a — 00
d 13 d ,82
_ 2,2 i\ ‘ -6
Qa,wo (ﬁ) - ; A"Wo i q(QQWai) - ; 4042\Z7V(2]7i + O(a ) (6)
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In other words, in the a@ — oo limit, Qg w,(3) is proportional to a quadratic norm weighted
by diag(1/wg). On the other hand, for large |z|, ¢(z) = |z|log|z| + O(1/|z]) so as & — 0

1
log(1/a?)

So, in the a — 0 limit, Qqa,w,(B) is proportional to ||3||; regardless of the shape of the
initialization wg! The specifics of the initialization, wq, therefore affect the implicit bias in
the kernel regime (and in the intermediate regime) but not in the rich limit.

For wide neural networks with i.i.d. initialized units, the analogue of the “shape” is the
distribution used to initialize each unit, including the relative scale of the input weights,
output weights, and biases. Indeed, as was explored by Williams et al. (2019) and as we
elaborate in Appendix B, changing the unit initialization distribution changes the tangent
kernel at initialization and hence the kernel regime behavior. However, we also demonstrate
empirically that changing the initialization distribution (“shape”) does not change the rich
regime behavior. These observations match the behavior of Qq,w, analyzed above.

72 Qo) = Zasz () = wa (1/1og(1/a®) (7

Explicit Regularization From the geometry of gradient descent, it is tempting to imag-
ine that its implicit bias would be minimizing the Euclidean norm from initialization:

BE wo = F(argmin”w —awg|l% s.t. L(w) = 0) =argmin Ry w,(8) s.t. XB=y (8)
w B

where Rg w,(8) = min||w — awg|]3 s.t. F(w) = 3. 9)

It is certainly the case for standard linear regression f(w,x) =
<W x), where from standard analysis, it can be shown that

W = = Bk ‘wo S0 the bias is captured by Raw,. But does
this Characterlzation fully explain the implicit bias for our 2-
homogeneous model? Perhaps the behavior in terms of Quw, |—*
can also be explained by R, w,? Focusing on the special case R
wo = 1, it is easy to verify that the limiting behavior when
a — 0 and o — oo of the two approaches match. We can
also calculate R, 1(3), which decomposes over the coordinates,
as: Ra1(B) = Y_;7(8i/a?) where 7(z) is the unique real root of p,(u) = u* — 6u? + (12 —
222)u? — (8 +102%)u + 22 4 24

This function r(z) is shown next to ¢(z) in Figure 2. They are similar but not the same

since 7(z) is algebraic (even radical), while ¢(z) is transcendental. Thus, Qq.1(8) # Ra,1(8)
and they are not simple rescalings of each other either. Furthermore, while o needs to be
exponentially small in order for Q,,1 to approximate the ¢; norm, the algebraic R, 1(8)
approaches ||3]|1 polynomially in terms of the scale of a. Therefore, the bias of gradient
descent and the transition from the kernel regime to the rich limit is more complex and
subtle than what is captured simply by distances in parameter space.

Figure 2: ¢(z) and r(z2).

5. Higher Order Models

So far, we considered a 2-homogeneous model, corresponding to a simple depth-2 “diag-
onal” network. Deeper models correspond to higher order homogeneity (e.g., a depth-D
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O 000 =

o U wN

100 200 300 400 500
log(a®) N

(a) Regularizer (b) Approximation ratio  (c¢) Sparse regression simulation

Figure 3: (a) ¢p(z) for several values of D. (b) The ratio % as a function of «, where

e1 = [1,0,0,...,0] is the first standard basis vector and 14 = [1,1,...,1] is the all ones
vector in R?. This captures the transition between approximating the f5 norm (where the
ratio is 1) and the ¢; norm (where the ratio is 1/v/d). (c) A sparse regression simulation
as in Figure 1, using different order models. The y-axis is the largest a” (the scale of
(3 at initialization) that leads to recovery of the planted predictor to accuracy 0.025.
The vertical dashed line indicates the number of samples needed in order for 8j to
approximate the plant.

ReLU network is D-homogeneous), motivating us to understand the effect of the order of
homogeneity on the transition between the regimes. We therefore generalize our model and
consider:

D

Fp(w)=Bw,p =w{ —w” and fp(w,x)=(w} —w?, x) (10)

As before, this is just a linear regression model with an unconventional parametrization,
equivalent to a depth-D matrix factorization model with commutative measurement matri-
ces, as studied by Arora et al. (2019a), or a depth-D diagonal linear network. We can again
study the effect of the scale of o on the implicit bias. Let B5°,, denote the limit of gradient
flow on w when w, (0) = w_(0) = a1. In Appendix F we prove:

Theorem 3 For any 0 < a < 0o and D > 3, if XBap =y, then
Bap = argming QS(,@) st. XB=y

where QF(B) = P XLy ap(Bi/a”) and gp

inverse of hp(z) = (1 —2) P2 — (14 2z) D2
and limg, oo ,@g‘?D = ,@ZQ

= fhf)l is the antiderivative of the unique
on |

—1,1]. Furthermore, limq,_ Bap = By,

In the two extremes, we again get 8y, in the kernel regime, and more interestingly, for
any depth D > 2, we get the ,62‘1 in the rich limit, as has also been observed by Arora et al.
(2019a). That the rich limit solution does not change with D is surprising, and disagrees
with what would be obtained with explicit regularization (regularizing ||w]|2 is equivalent
to ||Bll2/p regularization), nor implicitly on with the logistic loss (which again corresponds
to [|Bll2/p, see, e.g., (Gunasekar et al., 2017; Lyu and Li, 2019)).

Although the two extremes do not change as we go beyond D = 2, what does change
is the intermediate regime, particularly the sharpness of the transition into the extreme
regimes, as illustrated in Figures 3(a)-3(¢). The most striking difference is that, even at
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order D = 3, the scale of a needed to approximate #; is polynomial rather then exponential,
yielding a much quicker transition to the rich limit versus the D = 2 case above. This
allows near-optimal sparse regression with reasonable initialization scales as soon as D > 2,
and increasing D hastens the transition to the rich limit. This may explain the empirical
observations regarding the benefit of depth in deep matrix factorization (Arora et al., 2019a).

6. The Effect of Width

The kernel regime was first discussed in the context of the high (or infinite) width of a
network, but our treatment so far, following Chizat et al. (2019), identified the scale of the
initialization as the crucial parameter for entering the kernel regime. So is the width indeed
a red herring? Actually, the width indeed plays an important role and allows entering the
kernel regime more naturally.

The fixed-width models so far only reach the kernel regime when the initial scale of
parameters goes to infinity. To keep this from exploding both the outputs of the model and
F(w(0)) itself, we used Chizat and Bach’s “unbiasing” trick. However, using unbiased models
with F(awg) = 0 conceals the unnatural nature of this regime: although the final output
may not explode, outputs of internal units do explode in the scaling leading to the kernel
regime. Realistic models are not trained like this. We will now use a “wide” generalization
of our simple linear model to illustrate how increasing the width can induce kernel regime
behavior in a more natural setting where both the initial output and the outputs of all
internal units, do not explode and can even vanish.

Consider an (asymmetric) matrix factorization model, i.e., a linear model over matrix-
valued observations’ X € R%*? described by f((U,V),X) = (UV', X) where U,V €
Rk and we refer to k > d as the “width.” We are interested in understanding the behaviour
as k — oo and the scaling of initialization « of each individual parameter changes with k. Let
Myyv =F(U,V) = UV denote the underlying linear predictor. We consider minimizing
the squared loss L(U,V) = L(Myy) = Zﬁ;l((Xn,MU’V) —yn)? on N samples using
gradient flow on the parameters U and V. This formulation includes a number of special
cases such as matrix completion, matrix sensing, and two layer linear neural networks.

We want to understand how the scale and width jointly affect the implicit bias. Since
the number of parameters grows with k, it now makes less sense to capture the scale via
the magnitude of individual parameters. Instead, we will capture scale via o = éHMU’vH F,
i.e., the scale of the model itself at initialization. The initial predictions are also of order
o, e.g., when X is Gaussian and has unit Frobenius norm. We will now show that the
model remains in the kernel regime depending on the relative scaling of k and o. Unlike
the D-homogeneous models of Sections 4 and 5, My v can be in the kernel regime when o
remains bounded, or even when it goes to zero.

"Lifted" symmetric factorization Does the scale of My v indeed capture the relevant
notion of parameter scale? In case of a symmetric matrix factorization model My = WW T
My captures the entire behaviour of the model since the dynamics on Myy(;) induced by
gradient flow on W (¢) given by Mw(t) = VI:(MW(t))MW(t) + Mw(t)VI:(MW(t)) depends
only on Myy(;) and not on W (?) itself (Gunasekar et al., 2017).

4. X need not be square; the results and empirical observations extend for non-square matrices.

10
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For the asymmetric model My v, this is no longer the case, and the dynamics of
Muy4),v(r) do depend on the specific factorization U(t), V(t) and not only on the prod-

uct My v. Instead, we can consider an equivalent “lifted” symmetric problem defined by
T

Muy = VIV = [y, Wy ] and X, = 3% 70 ] with f(U,V),X) = (Mu,v, X).
The dynamics over Mu,\}—which on the off diagonal blocks are equivalent to those of
My v—are now fully determined by 1\7/IU7V itself; that is, by the combination of the “ob-
served” part My v as well as the “unobserved” diagonal blocks UUT and VVT. To see how
this plays out in terms of the width, consider initializing U(0) and V(0) with i.i.d. M'(0, a?)
entries. The off-diagonal entries of 1\_/IU-,V, and thus o, will scale with o?vk while the
diagonal entries of 1\7IU7V will scale with o2k = oV/k.

By analogy to the models studied in Sections 4 and 5, we can infer that the relevant scale
for the problem is that of the entire lifted matrix 1\_/IU,V, which determines the dynamics,
and which is a factor of vk larger than the scale of the actual predictor My v. We now
show that in the special case where the measurements X1, ..., X commute with each other,
the implicit bias is indeed precisely captured by ov/k—when this quantity goes to zero, we
enter the rich limit; when this quantity goes to infinity, we enter the kernel regime; and in
the transition we have behavior similar to the 2-homogeneous model from Section 4.

Matrix Sensing with Diagonal/Commutative Measurements Consider the special
case where X1, ..., Xy are all diagonal, or more generally commutative, matrices. The
diagonal elements of My v (the only relevant part when X is diagonal) are [Myv]i =
Zle U;;V;, and so the diagonal case can be thought of as an (asymmetric) “wide” analogue
to the 2-homogeneous model we considered in Section 4, i.e., a “wide parallel linear network”
where each input unit X;; has its own set of k& hidden (Uj;1,Vi1),..., (Ui, Vi) units.
This is depicted in Figure 4. We consider initializ-
ing U(0) and V(0) with i.i.d. N(0,a?) entries, so
My (0),v(0) Will be of magnitude o = a?Vk, and take
k — o0, scaling « as a function of k.

Theorem 4, proven in Appendix G, completely
characterizes the implicit bias of the model, which Figure 4: A wide parallel network
corresponds to minimizing @, applied to its spectrum (the “Schatten-@Q,-norm”). This
corresponds to an implicit bias which approximates the trace norm for small y and the
Frobenius norm for large p. In the diagonal case, this is just the minimum @, solution, but
unlike the “width-1” model of Section 4, this is obtained without an “unbiasing” trick.

Theorem 4 Let k — oo, (k) — 0, and p? := %limk_mo o(k)Vk, and suppose Xy,..., Xy
commute. If My v(t) converges to a zero error solution My; v, then

My, v = argmin Q) (spectrum(M)) s.t. L(M) =0
M

Non-Commutative Measurements We might expect that in the general case, there is
also a transition around o < 1/vVk: (a) if ¢ = w(1/Vk), then Myy — oo I and the model
should remain in the kernel regime, even in cases where ¢ = |[Myv|r — 0; (b) on the
other hand, if ¢ = o(1/vk) then |My v|r — 0 and the model should approach some rich
limit; (c) at the transition, when o = ©(1/vk), My v will remain bounded and we should

11
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be in an intermediate regime. In light of Theorem 4, if 0 < p? = %lim ovVk < oo exists,
we expect an implicit bias resembling @Q,. Geiger et al. (2019) also study such a transition
using different arguments, but they focus on the extremes o = o(1/vk) and o = w(1/Vk)
and not on the transition. Here, we understand the scaling directly in terms of how the
width affects the magnitude of the symmetrized model MU,V-

For the symmetric matrix factorization model with non-commutative measurements, we
can analyze the case w(1/Vk) = 0 = o(1) and prove it, unsurprisingly, leads to the kernel
regime (see Theorem 9 and Corollary 10 in Appendix H, which closely follow the approach
of Chizat et al. (2019)). It would be more interesting to characterize the implicit bias across
the full range of the intermediate regime, however, even just the rich limit in this setting
has defied generic analysis so far (q.v., the still unresolved conjecture of Gunasekar et al.
(2017)), and analyzing the intermediate regime is even harder (in particular, the limit of
the intermediate regime describes the rich limit). Nevertheless, we now describe empirical
evidence that the behavior of Theorem 4 may also hold for non-commutative measurements.

Low-Rank Matrix Completion Matrix completion is a natural and commonly-studied
instance of the general matrix factorization model where the measurements X, = ei"ean
are indicators of single entries of the matrix (note: these measurements do not commute),
and so y, corresponds to observed entries of an unknown matrix Y*. When N < d2, there
are many minimizers of the squared loss which correspond to matching Y* on all of the
observed entries, and imputing arbitrary values for the unobserved entries. Generally, there
is no hope of “generalizing” to unseen entries of Y*, which need not have any relation to
the observed entries. However, when Y* is rank-r for r < d, the minimum nuclear norm
solution will recover Y* when N = Q(d"?r) (Candés and Recht, 2009). While Theorem
4 does not apply for these non-commutative measurements, our experiments described in
Appendix A (Figure 5) indicate the same behavior appears to hold: when o = o(1/Vk), the
nuclear norm is nearly minimized and My v converges to Y*. On the other hand, the kernel
regime corresponds to implicit Frobenius norm regularization, which does not recover Y*.
Therefore, in order to recover Y*, it is necessary to choose an initialization with vk < 1.

Conclusion In this section, we provide evidence that both the scale, o, and width, k, of
asymmetric matrix factorization models have a role to play in the implicit bias. In particular,
we show that the scale of the equivalent “lifted” or “symmetrized” model 1\7IU’V is the relevant
parameter. Under many natural initialization schemes for U and V, e.g., with i.i.d. Gaussian
entries, the scale of MU7V is vk times larger than the scale of My v. Consequently, wide
factorizations can reach the kernel regime even while My v remains bounded, even without
resorting to “unbiasing.” On the other hand, reaching the rich limit requires an even smaller
initialization for large k.

Acknowledgments

This work was supported by NSF Grant 1764032. BW is supported by a Google PhD Re-
search Fellowship. DS was supported by the Israel Science Foundation (grant No. 31/1031).
This work was partially done while the authors were visiting the Simons Institute for the
Theory of Computing.

12



KERNEL AND RICH REGIMES IN OVERPARAMETRIZED MODELS

References

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. arXiv preprint arXiw:1811.03962, 2018.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overpa-
rameterized neural networks, going beyond two layers. In Advances in neural information
processing systems, pages 6155-6166, 2019.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep
matrix factorization. In Advances in Neural Information Processing Systems, pages 7411—
7422, 2019a.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis
of optimization and generalization for overparameterized two-layer neural networks. arXwv
preprint arXiv:1901.08584, 2019b.

Emmanuel J Candés and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational mathematics, 9(6):717-772, 2009.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable pro-
gramming. In Advances in Neural Information Processing Systems, pages 2933-2943,
2019.

Amit Daniely. SGD learns the conjugate kernel class of the network. In Advances in Neural
Information Processing Systems, pages 2422-2430, 2017.

Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds
global minima of deep neural networks. arXiv preprint arXiv:1811.03804, 2018.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. In International Conference on Learning
Representations, 2019.

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling fea-
ture and lazy learning in deep neural networks: an empirical study. arXiv preprint
arXiv:1906.08054, 2019.

Udaya Ghai, Elad Hazan, and Yoram Singer. Exponentiated gradient meets gradient descent.
arXiw preprint arXiv:1902.01908, 2019.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati
Srebro. Implicit regularization in matrix factorization. In Advances in Neural Information
Processing Systems, pages 6151-6159, 2017.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient
descent on linear convolutional networks. In Advances in Neural Information Processing
Systems, pages 9461-9471, 2018.

13



KERNEL AND RICH REGIMES IN OVERPARAMETRIZED MODELS

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026-1034, 2015.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. In Advances in neural information processing sys-
tems, pages 8571-8580, 2018.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochas-
tic gradient descent on structured data. In Advances in Neural Information Processing
Systems, pages 8157-8166, 2018.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-
parameterized matrix sensing and neural networks with quadratic activations. In Confer-
ence On Learning Theory, pages 2—47, 2018.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural
networks. arXiv preprint arXiw:1906.05890, 2019.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers
neural networks: dimension-free bounds and kernel limit. In Conference on Learning
Theory, pages 2388—-2464, 2019.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias:
On the role of implicit regularization in deep learning. arXiv preprint arXiw:1412.661/,
2014.

Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do infinite width
bounded norm networks look in function space? In Conference on Learning Theory,
pages 2667-2690, 2019.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge University Press, 2019.

Francis Williams, Matthew Trager, Daniele Panozzo, Claudio Silva, Denis Zorin, and Joan
Bruna. Gradient dynamics of shallow univariate relu networks. In Advances in Neural
Information Processing Systems, pages 8376-8385, 2019.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process
behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint
arXiv:1902.04760, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent
optimizes over-parameterized deep ReLU networks. arXiv preprint arXiv:1811.08888,
2018.

14



KERNEL AND RICH REGIMES IN OVERPARAMETRIZED MODELS

Appendix A. Matrix Completion Experiments

We display the results of our matrix completion experiments in Figure 5. The experiments
indicate that when o = o(1/ \/E), the implicit regularization indeed appears to correspond
to nuclear norm regularization, and My v converges to Y*. On the other hand, the kernel
regime corresponds to implicit Frobenius norm regularization, which does not recover Y*
until N = Q(d?).
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Figure 5: Matrix Completion We generate rank-1 ground truth Y* = u*(v*)T where u*,v* ~
N(0,T1px10) and observe N = 60 random entries. We minimize the squared loss on the
observed entries of the model F(U,V) = UV T with U,V € R¥* using gradient descent
with small stepsize 107°. We initialize U(0);;, V(0);; ~ N (0, &?). For the solution, M, x,
reached by gradient descent, the left heatmap depicts the excess nuclear norm |[|[Mg k||« —
I'Y*||« (this is conjectured to be zero in the rich limit); and the right heatmap depicts the
root mean squared difference between the entries M, ; and U(0)V(0)" corresponding
to unobserved entries of Y* (in the kernel regime, the unobserved entries do not move).
Both exhibit a phase transition around o’k = oVvk = 1. For ovVk < 1 the excess
nuclear norm is approximately zero, corresponding to the rich limit. For ov/k > 1, the
unobserved entries do not change, which corresponds to the kernel regime. This phase
transition appears to sharpen somewhat as k increases.

Appendix B. Neural Network Experiments

In Sections 4 and 5, we intentionally focused on the simplest possible models in which a
kernel-to-rich transition can be observed, in order to isolate this phenomena and understand
it in detail. In those simple models, we were able to obtain a complete analytic description of
the transition. Obtaining such a precise description in more complex models is too optimistic
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at this point, but we demonstrate the same phenomena empirically for realistic non-linear
neural networks.

Figures 6(a) and 6(b) indicate that non-linear ReLU networks remain in the kernel regime
when the initialization is large, they exit from the kernel regime as the initialization becomes
smaller, and exiting from the kernel regime allows for smaller test error on the synthetic
data. On MNIST data, Figure 6(c) shows that previously published successes with training
very wide depth-2 ReLU networks without explicit regularization (e.g., Neyshabur et al.,
2014) relies on the initialization being small, i.e., being outside of the kernel regime. In fact,
the 2.4% test error reached for large initialization is no better than what can be achieved
with a linear model over a random feature map. Turning to a more realistic network, 6(d)
shows similar behavior when training a VGG11-like network on CIFAR10.

Interestingly, in all experiments, when « = 1, the models both achieve good test error
and are just about to enter the kernel regime, which may be desirable due to the learning
vs. optimization tradeoffs discussed in Section 4. Not coincidentally, & = 1 corresponds to
using the standard out-of-the-box Uniform He initialization. Given the extensive efforts put
into designing good initialization schemes, this gives further credence to the idea that model
will perform best when trained just outside of the kernel regime.

B.1. Univariate 2-layer ReLU Networks

Consider a two layer width-k ReLU network with univariate input « € R given by f((w,b), z)
woo (W1iz + by) + by where wy € R¥¥1 wy € R1F and by € RF*! by € R are the weights
and bias parameters, respectively, for the two layers. This setting is the simplest non-linear
model which has been explored in detail both theoretically and empirically (Savarese et al.,
2019; Williams et al., 2019). Savarese et al. (2019) show that for an infinite width, univari-
ate ReLU network, the minimal ¢ parameter norm solution for a 1D regression problem,
i.e., argming, |wl|3 s.t. Vn, f((w,b),x,) = y, is given by a linear spline interpolation. We
hypothesize that this bias to corresponds to the rich limit in training univariate 2-layer
networks. In contrast, Theorem 5 and Corollary 6 of (Williams et al., 2019), show that
the kernel limit corresponds to different cubic spline interpolations, where the exact form of
interpolation depends on the relative scaling of weights across the layers. We explored the
transition between the two regimes as the scale of initialization changes. We again consider
a unbiased model as suggested by (Chizat et al., 2019) to avoid large outputs for large .

In Figure 7, we fix the width of the network to & = 10000 and empirically plot the
functions learned with different initialization w(0) = awy for fixed wy. Additionally, we
also demonstrate the effect of changing wq, by relatively scaling of layers without changing
the output as shown in Figure 7-(b,c). First, as we suspected, we see that the rich limit of
a — 0 indeed corresponds to linear spline interpolation and is indeed independent of the
specific choice w( as long as the outputs are unchanged. In contrast, as was also observed by
(Williams et al., 2019), the kernel limit (large «), does indeed change as the relative scaling
of the two layers changes, leading to what resembles different cubic splines.

B.2. Neural Network Experiment Details

Here, we provide further details about the neural network experiments.
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Figure 6: Synthetic Data: We generated a small regression training set in R? by sampling 10
points uniformly from the unit circle, and labelling them with a 1 hidden layer teacher
network with 3 hidden units. We trained depth-D, ReLU networks with 30 units per
layer with squared loss using full GD and a small stepsize 0.01. The weights of the
network are set using the Uniform He initialization, and then multiplied by «. The
model is trained until & 0 training loss. Shown in (a) and (b) are the test error and the
“grad distance” vs. the depth-adjusted scale of the initialization, o”. The grad distance
is the cosine distance between the tangent kernel feature map at initialization versus
at convergence. MINIST: We trained a depth-2, 5000 hidden unit ReLU network with
cross-entropy loss using SGD until it reached 100% training accuracy. The stepsizes were
optimally tuned w.r.t. validation error for each « individually. In (c), the dashed line
shows the test error of the resulting network vs. o and the solid line shows the test error
of the explicitly trained kernel predictor. CIFAR10: We trained a VGG11-like deep
convolutional network with cross-entropy loss using SGD and a small stepsize 10~ for
2000 epochs; all models reached 100% training accuracy. In (d), the dashed line shows
the final test error vs. a. The solid line shows the test error of the explicitly trained
kernel predictor. See Appendix B.2 for further details about all of the experiments.

Synthetic Experiments We construct a synthetic training set with N = 10 points drawn
uniformly from the unit circle in R? and labelled by a teacher model with 1 hidden layer
of 3 units. We train fully connected ReLLU networks with depths 2, 3, and 5 with 30 units
per layer to minimize the square loss using full gradient descent with constant stepsize 0.01
until the training loss is below 1072, We use Uniform He initialization for the weights and
then multiply them by «.
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Figure 7: Each subplot has functions learned by univariate ReLU network of width k& = 10000 with
initialization w(0) = awy, for some fixed wy. In Figure (a), wq are fixed by a standard
initialization scheme as w{, b} ~ A(0,1) and w9 ~ N(0,+/2/k) for second layer. In (b)
and (c), the relative scaling of the layers in wy is changed without changing the scale of
the output.

Here, we describe the details of the neural network implementations for the MNIST and
CIFARI10 experiments.

MNIST Since our theoretical results hold for the squared loss and gradient flow dynamics,
here we empirically assess whether different regimes can be observed when training neural
networks following standard practices.

We train a fully-connected neural network with a single hidden layer composed of 5000

units on the MNIST dataset, where weights are initialized as awg, wo ~ N (0, \/%), Nin

denoting the number of units in the previous layer, as suggested by He et al. (2015). SGD
with a batch size of 256 is used to minimize the cross-entropy loss over the 60000 training
points, and error over the 10000 test samples are used as measure of generalization. For
each value of a, we search over learning rates (0.5,0.01,0.05,...) and use the one which
resulted in best generalization.

There is a visible phase transition in Figure 6(¢) in terms of generalization (=~ 1.4% error
for « < 2, and ~ 2.4% error for a > 50), even though every network reached 100% training
accuracy and less than 1075 cross-entropy loss. The black line indicates the test error (2.7%)
when training only the output layer of the network, as a proxy for the performance of a linear
predictor with features given by a fixed, randomly-initialized hidden layer.

CIFAR10 We trained a VGG11-like architecture, which is as follows: 64-M-128-M-256-
256-M-512-512-M-512-512-M-FC (numbers represent the number of channels in a convolu-
tion layers with no bias, M is a maxpooling layer, and FC is a fully connected layer). Weights
were initialized using Uniform He initialization multiplied by «. No data augmentation was
used, and training done using SGD with batch size of 128 and learning rate of 0.0001. All
experiments ran for 2000 epochs, and reached 100% train accuracy except when training
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Figure 9: Diagonal linear networks.

only the last layer, which reached 50.38% train accuracy with LR = 0.001 (chosen after
hyperparameter tuning).

In addition, to approximate the test error in the kernel regime, we experimented with
freezing the bottom layers and only training the output layer for both datasets (the solid
lines in Figures 6(c) and 6(d)).

Figure 8 illustrates some of the optimization difficulties that arise from using smaller «
as discussed in Section 4.

Appendix C. Diagonal Linear Neural Networks

Consider the model f((u,v),x) = >, u;v;x; as described in Section 4, and suppose that
|u;(0)] = |vi(0)|, i.e., the input and output weights for each hidden unit are initialized to
have the same magnitude. Now, consider the gradient flow dynamics on the weights when
minimizing the squared loss:

@ u(t)] = —sign(u(r)a() .
N d 2
=-2 Z (Z uz(t)vi(t)xl(,n) _ y(n)> sign(u(t)) o v(t) o x™ (12)
n=1 \i=1
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where a o b denotes the element-wise multiplication of vectors a and b, and sign(a) is the
vector whose ith entry is sign(a;). Similarly,

Do) = —sin(v0)¥() -
N d 2
=9 Z (Z ui(t)vi(t)xl(”) _ y(n)) sign(v(t)) o u(t) o <™ (14)
n=1 \i=1

Therefore, if |u;(0)] = |v4(0)|, then sign(u;(0))v;(0) = sign(v;(0))u;(0), so the dynamics
on |u;| and |v;| are the same, and their magnitudes will remain equal throughout training.
Furthermore, the signs of the weights cannot change, since |u;(¢)| = |v;(¢)] = 0 implies
u;(t) = v;(t) = 0.

Appendix D. Proof of Theorem 1

We prove Theorem 1 using the general approach outlined in Section 4.

Theorem 1 (General case) For any 0 < a < oo and wo with no zero entries, if the
gradient flow solution B, satisfies XB3 'y, =y, then

ﬂg?wo = arg,;nin Qa,wo (ﬂ) s.t. X/B =Y, (5)

where Qa.w,y (B) = ch'l:1 a2wg,iq( Bi ) and q(z) =2 — V4 + 22 4 zarcsinh ().

2
a"wWq

Proof We begin by calculating the gradient flow dynamics on w, since the linear predictor
oo is given by F applied to the limit of the gradient flow dynamics on w. Recalling that

a,Wo

X=[X -X]|,
Wa(t) = ~VL(wa (1) = =V (IIXwa(t)? = yl) = —2X Tra(t) owa(t)  (15)

where the residual r4(t) £ Xwq(t)2 — y, and a o b denotes the element-wise product of a
and b. It is easily confirmed that these dynamics have a solution:

t
Wa(t) = wqo(0) o exp (—2XT/ ra(s)ds> (16)
0
Since wq, 1 (0) = wq,—(0) = awg we can then express Bq,w, (t) as

Ba,wo (t) = Wa,+ (t)Q - wa’,(t)2

= a?wlo <exp <—4XT /0 t Ta(s)ds> — exp <4XT /O t ra(s)ds>> (17)
= 20°w osinh <—4XT /0 t Ta(s)ds>

Supposing also that 85%, is a global minimum with zero error, i.e., X357, =Yy. Thus,

XBow, =Y

B0 = ba(XTV) (18)
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for bq(z) = 20*w§osinh(z) and v = —4 [ ro(s)ds. Following our general approach detailed
in Section 4, we conclude

1
VQawa(B) = b5 (8) = arcsinh <2aw ’ ﬂ) "

where we write 1/wg to denote the vector whose ith element is 1/wyg ;. Integrating this
expression, we have that

d B
Qa,wo (,@) = Z a2W(2),z'q <0112> (20)

=1

where

q(z) = / arcsinh<;)dt =2-V4+22+42 arcsinh(%) (21)
0

Appendix E. Proof of Theorem 2
Lemma 5 For any 3 € RY,

1 d
a<a (6B, d) = min{l, 181, (2[1Bl1) 2 , exp <_26HBII1)}

guarantees that

A=) lBll < 5 Qa(B) < (1 +¢) 18]

L
n(1/a?)

Proof We consider only the special case wg = 1 and will drop the subscript for brevity.
First, we show that Q. (8) = Qu(|3]). Observe that g(z) = x arcsin(x/2) is even because x
and arcsin(x/2) are odd. Therefore,

—04222 \/4+——|—&arcs1nh <2€[2)
_ 2 _ 1672 /62
=« ;2 \/4—1— +g<a> (22)

d
:CYZZQ— |ﬁz‘ +g<’ﬁz>
i=1

= Qa(18])
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Therefore, we can rewrite

(1/a2)Qa(IB) = ( / )Qa(|18‘)
_ L 207 \/40‘44“31'2 |Bi] inh |Bi]
_Zln(l/aQ) T (/%) | In(1ja2) T <2a2>
B 4 942 _\/40‘4"‘/81'2_1_ 1Bl | 1B n 1+ﬂ712 (23)
T Zm(1/e?) " In(l/a?) " In(lja?) | 202 da’
I 1Bi] 4 B

d 20(2 40[4 +/Bz2 In <2 + a* + 4>

:;111(1/(12) T (e TG+ In(1/a?)
Using the fact that
la] < Va?+b% <la| + |b] (24)

we can bound for @ < 1

1
(1/a2

| A

1/a2 ~In(1/a2)

( In (‘,32’4-0(2))
In(1/a?)
n i 042
< 1811 (1 +max1('ﬁ'+)>
1€[d]

d o2 202 In (lﬁT"'—i—aQ—i— |'62"|)
Z + 18 [ 1+
d

(25)

In(1/a?)

n a2
i, (1420 00)

So, for any a < min{l, 1811, 2118]1) "2 } then

1 In (||8 a?
e Qu(8) < 1) (1 . (l‘r'l(ﬂ};) ))

n 26
<t (1+ A2 .

< (I8l (1 +€)
On the other hand, using (23) and (24) again,

1 2% |+ 20 n (|8;])
(1/a2) Zln (1/a2)  In(1/a?) + 184 <1+ln(1/a2)>

o )
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Using the inequality In(xz) > 1 — %, this can be further lower bounded by

(/ ZIBZ —m

(28)
=Bl - W
Therefore, for any « < exp (—m) then
1
WQa(ﬁ) > (|8l (1 —¢) (29)
We conclude that for a < min{l, VB, (2||BH1)7i , €Xp (—m)} that
1
(1=elBlh < WQQ(Q) < L+ 9118l (30)
|

Lemma 6 Fiz any e > 0 and d > max{e, 1246}. Then for any o > d_i_é, Qa1(B) %
|B||l1 in the sense that there exist vectors v, w such that

Qa1 (v)
[[v]lx

> (14 ¢
Proof First, recall that

1 1 1 . 1
q <wz2> =2—4/4+ g + ] arcsinh <20a2>
1

1 1
— <2ca —V4ctat+1+1n 5 5 +4/1+ 12 4>> (31)
ca? ca Aa

[
<2ca — V4ot 4 14+ 1In <;) +1In (;er))
)

1 1
—1+ln< 2>§ca2q<2
ca ca

Now, consider the ratio

Thus,
1
<3ca’—1+1In <2> (32)

(33)
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Using (32), we conclude

Vi Qa1 (1) > —1+1n(55)
Qal(uld\u) 3Vda? _1““( d)

—1+1In (ai

2
= 34
3\/;1&2—14—111(%) Tl (34)
_ 14— Inld) = 6Vdo?
6\fa272+21n( f)
Fix any € > 0 and d > max{e, 1246}, and set a = d~1 5. Then,
1
1 die
2d e 26 and 7111(126
1
e ooat —6+ P ma-950
2¢ €
. <1_1> nd_ 84 = > 6ddc — 2 (35)
€ 2 €
= llnd—gd*iz&rﬁ—u%lnd

€

— In (d)—6a2f>e<6a2f 2+21n<a2\[>>

This implies that the second term of (34) is at least e. We conclude that for any € > 0 and
d> max{e, 1246}, o =d 1% implies that

Qa1 (1) > (146 ”illHl
Qa1 (\1d\|2> Iz [

Consequently, for at least one of these two vectors, @) is not proportional to the ¢ norm up
to accuracy O(e) for this value of a. Since

1_Qus (o)
“ Qo (ulduz)

this conclusion applies also for larger a. |

(36)

>0 (37)

Lemma 7 For any B € RY,

a > as(e, 1By, d) = /|1Bll2 (1 n e‘i)

guarantees that

(1 =983 < 40*Qu1(B) < (1 +)18l3
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Proof The regularizer Qo1 can be written
d Bi/a? t
Qon(B) = ? ;/0 arcsinh (2) dt (38)
Let ¢(z) = foz/a2 arcsinh (%) dt, then
¢(0) =0

1 z
(0) = —aresinh (=5 )| =0
¢'(0) 3 arcsinh (5 L
1 1
S0 = —r—| =5
a*ty/4+ ;—i 2
=0 (39)
—z
(b///(o) e —3/2 — 0
(e m) L,
2=
322 1
1 o
¢ (2) = NG N 3/2
al? (4 + %) a® (4 + %)
Also, note that
1222 — 40|
’¢////(Z)| = 52
12 z
o (4+ %) (40)
22 4+ 204
- 1612
Therefore, by Taylor’s theorem, for some & with |£] < |z
2|9
’W el T
z2 ”//(f) z6 4 2044,24 z2 24 + 204422 (41)
= [¢(2) — —| < sup 2t < =
4o 1€1<]2] 4! 3840&12 40&4 960[8
Therefore, for any 8 € R¢,
|40%Qa,1(8) — 1813 = 4a4
3?
<4a
v
4a (42)
,34 + 20432
< 2
Z'B 9608
4 432
2 ,8 + 2a ﬁ
< [I18]lz max =g+
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Therefore, a > /|| 3]|2 (1 + efi) ensures
(1= 9)lBI3 < 40’Qan(B) < (1 +0)|18I3 (43)

Theorem 2 For any 0 < € < d, under the setting of Theorem 1 with wg =1,

o < mind 200+ )18, 1)~ exp (~d/(eB5, 1) } A

>\ 20+ 1+ 2/018; ]l = 18313 < (1+€) 118,13

Proof We prove the ¢; and /5 statements separately.

(1 approximation First, we will prove that [|8%[1 < (1+ 2¢) |87 |- By Lemma 5,
since o < g (ﬁ, (1+2¢) (187, 1, ) for all B with [|B(1 < (1 + 2¢) |87, |1 we have

O

Let B be such that X3 =y and ||B([1 = (1 + 2¢)[|87,[/1. Then

(1= 55 ) et
:<1_ 66>(1+26)Hﬂ2‘1!\1
< _

(

18I < e @aa(8) < (145 ) I8l (44

(/ )Qa 1(8) >

(1 +2€) 175 Qa1 (B,)

i) (15)

= 1_|_E 1n(1/0¢2)Qa1(ﬂ£1)

1/ Qoz 1(5@1)

> ln(l/az)Qa 1(5 )

Therefore, B # 855 Furthermore, let 8 be any solution X3 = y with [|3[[1 > (1+2¢)[|87, [|1-
It is easily confirmed that there exists ¢ € (0,1) such that the point 3’ = (1 — ¢)8 + By,
is satisfies both X3' = y and ||@'|l1 = (1 + 2¢)[|B;,|l1. By the convexity of @, this implies
Qu1(8) > Qa 1(8") > Qaal o1)- Thus a B with a large ¢; norm cannot be a solution,

even if ; 1/a2 Qa1(8) #1181
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Since |85 11 < (1 + 2€)[|87, [[1, we conclude
1 1

1820l < T Qa1(B31)
1 1-— 2¥e 111(]./(){2) 1
1 1
S — Qa1 (67,)
L~ 5t In(1/a?) =100 (46)
1 + 66 *
< —l1Bi I
24-€

= 1+ 98z, h

Next, we prove ||85% [l2 < (1 + 2¢) |37, [|2. By Lemma 7, since o > a2 (ﬁ, (1+ 2¢) ||ﬁz2|\2>,
for all B with ||B[[2 < (1 + 2¢) [| B, |l2 we have

1813 (1~ 55 ) < 10%Qua(d) < 1815 (14 5 ) (a7
Let B be such that X3 =y and ||B(|2 = (1 + 2¢)[|87,[|2. Then,
107Qua(8) > (1- 75 ) 1912

= (1- 5 ) 2008,
(1 B 2L+E) 2 *

> (1+2040°Q0 1 (87 (19
(1+5%)
142

— T 40%Qaa(B))

> 40°Qa,1(67,)
2 4042@0(,1 (52?1)

Therefore, B # 85 . Furthermore, let 8 be any solution X3 = y with [|B[|2 > (1+2¢)|37, ||2-
It is easily confirmed that there exists ¢ € (0,1) such that the point 3’ = (1 — ¢)8 + cfy,
satisfies X3 = y and ||B'|l2 = (1 + 2¢)[|8},[l2. By the convexity of Qq 1, this implies
Qa1(B) > Qu1(B) > Qa,1(B;,)- Thus a B with a large £ norm cannot be a solution, even
if 40*Qa,1(8) # [18l3-

Since [|85% ll2 < (1 + 2€)[|87, |2, we conclude

1
182115 < T —40°Qa,1(831)
2+€
<7 40*Qa 1 (B7,)
T 2%e (49)
1+ 55
< 1813
2+€

(1+ ), 113
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Appendix F. Proof of Theorem 3

Lemma 8 For D > 2 and the D-homogeneous model (10),

_— 2D
X d < —
Yy /OT(T)TOO_D(D_Q)
Proof For the order-D unbiased model B(t) = Wf — wP, the gradient flow dynamics are
A e D-1 _
wy(t) = =-DX r(t)owy (t), wi(0)=al (50)
dW+
¢ e
= wy(t) = (az_Dl + D(D — 2)XT/ T‘(T)dT) (51)
0

Where o denotes elementwise multiplication, r(t) = X3(t) —y, and where all exponentiation
is elementwise. Similarly,

W_(t) = ——— = DX "r(t) ow? 1), w_(0)=al (52)

1
t D2
= w_(t) = <a2_D1 — D(D — 2)XT/ r(T)dT) (53)
0
First, we observe that V,V; wi(t), > 0 and V;V; w_(t); > 0. This is because at time 0,
w4 (0), = w_(0); = a > 0; the gradient flow dynamics are continuous; and w, (t), =0 =
wi(t);,=0and w_(t), =0 = w_(t), =0.

Consequently,
0<wi(); " =a’P+D(D-2) [X ' /ot ?"<T>d7] |
0<w ()PP =a>P - D(D-2) [XT / t rde] | (54)
= o> P <DD-2) [XT /OtT(T)dT] <a¥?
which concludes the proof. m

Theorem 3 For any 0 < a <oco and D > 3, if XB3’p =y, then

Bap = argming Qf(,@) st. XB=y

where QP(B) = oP 25:1 qp(Bi/aP) and qp = thl s the antiderivative of the unique

D D

inverse of hp(z) = (1 —2) P2 — (1+2) P2 on [—1,1]. Furthermore, lima—0 B5°p = B,
and lim, oo ,BZ?D = ,[3;2

28



KERNEL AND RICH REGIMES IN OVERPARAMETRIZED MODELS

Proof For the order-D unbiased model B(t) = Wf — wP, the gradient flow dynamics are

w(t) = ;% = -DXTrt)owP™!, w(0)=al (55)
— w(t) = <a2_D +DD-2)X" /Ot r(T)dT> o (56)

D—2

= B(t) =a” <1 +a”7?D(D - 2)X T /O tr(T)dT>

__D_
D-2

o (1 _aP2p(D—2)XT /0 tr(T)dT) (57)

where X = [X — X] and r(t) = XB(t) — y. Supposing B(t) converges to a zero-error
solution,

XB(oc)=y and  B(c0) = a”hp(X Tv(c0)) (58)
where v(00) = —aP72D(D — 2) [;° r(7)dr and the function hp is applied elementwise and
is defined b b

hp(z) = (1 —2) P2 = (1+2) P2 (59)

By Lemma 8, || X "v|| < 1, so the domain of hp is the interval [—1,1], upon which it is
monotonically increasing from hp(—1) = —oo to hp(l) = oo. Therefore, there exists an
inverse mapping hp,'(t) with domain [—oc, c0] and range [—1, 1].

This inverse mapping unfortunately does not have a simple closed form. Nevertheless,
it is the root of a rational equation. Following the general approach outlined in Section 4,

we conclude: b

Bi/c
2=ty [ (60)
—Jo
Rich Limit Next, we show that if gradient flow reaches a solution X35°, = y, then
lima—0 Bap = By, for any D. This is implied by the work of Arora et al. (2(319‘@), but we
include it here for an alternative, simpler proof for our special case, and for completeness’s
sake.

The KKT conditions for 8 = @; are X3 =y and Jv sign(8) = X Tv (where sign(0) =
[—1,1]). The first condition is satisfied by assumption. Define v as above. We will demon-
strate that the second condition holds too in the limit as o — 0.

First, by Lemma 8, || X "v||w < 1 for all & and D. Thus, for any coordinates i such
that lim,—0[B2°p)i = 0, the second KKT condition holds. Consider now ¢ for which
limg_0 [:62?1)]2' > 0. As shown above,

D D
. o 1.1 D . T ‘_D—Q_ D T 1\ D2
lim [83p); = lim o (1 X ,,]Z) a (1+[X u],) >0 (61)
D
. D T 1\ D-2
— lima (1—[X y]z> >0 (62)

This and [X Tv]; < 1 implies lim,_,0[X "v]; = 1, and thus the positive coordinates satisfy
the second KKT condition. An identical argument can be made for the negative coordinates.
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Kernel Regime Finally, we show that if gradient flow reaches a solution X 52‘:D =y,
then lima—00 B57p = By, for any D.

First, since X and y are finite, there exists a solution 3* whose entries are all finite, and
thus all the entries of ﬁng, which is the QQ -minimizing solution, will be finite.

The KKT conditions for 8 = 8j, are X8 =y and 3u 8 = X Tp. The first condition is
satisfied by assumption. Defining v as above, we have

__D_ __D_
Jim [Bp); = lim o <1 — [XTV}Z) P _aP (1 + [XTV]Z) "7 <0 (63)
= lim_ (XTv); =0 (64)
Consequently, defining y = 253‘; v, and observing that for small z,
__D_ __D_ 2D
(1=2)777% —(142)7772 = =2+ 0(+) (65)
we conclude
__D_ __D_
. [Bgo ]l ' aD (1 o [XTV]Z') D—2 __ aD (1 + [XTV]Z') D—2
lim : = lim
A TXT iy e Xl
P (BBIX T+ o(xX V)
= h_>m 2Dal T (66)
a—r00 o [X V}i
=1+ lim O([X "v]?)
a—r 00
=1
Thus, the KKT conditions are satisfied for limq_, oo ,Bgf’D = By, |

Appendix G. Proof of Theorem 4
Here, we prove Theorem 4:

Theorem 4 Let k — oo, o(k) — 0, and p? := %limk_mo o(k)Vk, and suppose X1,...,Xn
commute. If My v(t) converges to a zero error solution My; v, then

My v = argmin Q,(spectrum(M)) s.t. L(M) =0
M

Proof As k — oo, MU(O),V(O) — 24?1, so the four d x d submatrices of the lifted matrix
Muy(0),v(0) have diagonal structure. The dynamics on My v () are linear combination
of terms of the form My v)Xn + XaMuy),v(), and each of these terms will share
this same block-diagonal structure, which is therefore maintained throughout the course of
optimization. We thus restrict our attention to just the main diagonal of MU(t),V(t) and
the diagonal of Myy) v (), all other entries will remain zero. In fact, we only need to track
A(t) == 2 diag(U)U®#) " + V()V(H)T) € R? and §(t) = diag(U(t)V () ") € R?, with the
goal of understanding limy_,o §(%).
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Since the dynamics of MU(t),V(t) depend only on the observations and MU(t)y(t) itself,
and not on the underlying parameters, we can understand the implicit bias via analyzing
any initialization U(0), V(0) that gives MU(O),V(O) = 2u?I. A convenient choice is U(0) =
[V2ul,0] and V(0) = [0,v/2ul] so that §(0) = 0 and A(0) = 2u?1. Let X € RNxd
denote the matrix whose nth row is diag(X,,), and let r(¢) be the vector of residuals with
rn(t) = <1\_/IU(t)7V(t),Xn> —yn. A simple calculation then shows that the dynamics are given
by 0(t) = —4XTr(t) o A(t) and A(t) = —4X Tr(t) 0 §(t) which have as a solution

§(t) = 2u* sinh ( - 4XT/tr(s)ds) and A(t) = 2p% cosh ( - 4XT/tr(s)ds) (67)
0 0

This solution for §(t) is identical to the one derived in the proof of Theorem 1, so if indeed
0 reaches a zero-error solution, then using the same argument as for Theorem 1 we conclude
that diag(M{yy) = lim;—00 6(¢) = argming Q,(6) s.t. X0 =Y. [ |

Appendix H. Kernel Regime in Matrix Factorization

Here, we provide additional kernel regime results in the context of matrix factorization
model in Section 6. Recall the notation for f((U,V),X), My v and their “lifted” space
representations f((U,V),X), My.y, respectively, from Section 6. Let W = [Y] be the
concatenation of U and V, let X € RV*? be the matrix whose nth row is vec(X,,), let
y* € RN be the vector of targets y1,...,yn, and let y(t) = Xvec(MU(t)y(t)) be the vector
of predictions at time ¢, where U(t), V(t) follow the gradient flow dynamics.

Consider the tangent kernel model for the factorized problem in the “lifted" space

f((U,V),X) = f(W,X)
Jrx(Wrk, X) = f(W(0),X) + (VF(W(0),X), Wk — W(0)) (68)
Let ytx = [frk (WK, X»)] fz\f:l € RY denote the tangent kernel model’s vector of predictions

and let Wk (t) = [g;igg] denote gradient flow path wrt the linearized model in (68). The

following theorem establishes the conditions under which W (t) ~ Wk ().

Theorem 9 Let k > d and let \I < XX < AI. Fiz v >0 and p > 4/\77} and suppose
that |[W(0)W(0)T — MIHOP <~ and ||ly(0) — y*|| < \’j—%(l - \/(1 + %)/(1 + ﬁ)) Then

A+ 7lly(0) — o7

sup [|[W(T) — W(0 < and
Teﬂhll () Ol W
W (T) = W ri(T)|| < A1+ 2xlly(0) = v ? .\ 2VA 1+ 2ly(0) — 7|
S _
TR, A N2y AH

The proof of Theorem 9 follows a similar approach as the proof of (Chizat et al., 2019,
Theorem 2.4), except we do not make the assumption that F(W(0)) = 0 (see Section H.1).

Additionally, using Theorem 9, we can show the following corollary on the kernel regime
for matrix factorization based on the scale of initialization a and the width of the factoriza-
tion k (proof in Section H.2).
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Corollary 10 Let A = XX < AI, and |ly*|| < Y. If U(0),V(0) have i.i.d. N(0,a?)
entries for o > Q(k™1), then with probability at least 1 — 2exp(—d) over the randomness
in the initialization.

s |vin) - Voo |, <o (e ) )
wr[BE) ]| so(ober )

From Corollary 10, we can infer that the gradient flow over matrix factorization model
remains in the kernel regime whenever the scale of the initialization of the prediction matrix
My o), v(0) given by o = o?\/k satisfies 0 = w(1/vk). In particular, unlike width 1 diagonal
network model in Section 4 (where the kernel regime is reached only as scale of initialization
a — 00), with a width k& model, we see that kernel regime can happen even when o — 0 as
long as o to zero slower than 1/vk (or a goes to zero slower than 1/k).

H.1. Proof of Theorem 9

In order to prove Theorem 9, we require the following lemmas. We use ytk(t) € RV denote
the tangent kernel model’s vector of predictions at corresponding to Wk (%).

Lemma 11 Suppose that the weights are initialized such that HW(O)VV(O)T — ,LLIHOP <~

and the measurements satisfy 0 < A\I <= XX < Al If supge;<p|W(t) — W(0)||» < R,
then for allt <T

ly(t) = y*[I < [ly(0) — y*|| exp(—2pAt + 4A(y + R* + 2R\/u 7)),
lyrx(t) = y*l| < [lyrk(0) — y*[| exp(—2pAt + 4A71).
Proof First, consider the dynamics of y(t):

0= [(wowar )

- [<2W(t)W(t)T, Xn>]N

n=1

N

. N
— 4 [Z (WOWDT, X0 ) =y ) (WOWD), xnxm>]
S0 v -
where the symmetric matrix %(¢) € RV*Y has entries
S () = 4 [<W(t)W(t)T, anm>] (72)
This matrix can also be written:
N(t) = 4X (Igxa @ WHOW () AT (73)

where ® denotes the Kronecker product. Therefore, for t < T
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HE(t) —apx X7

op
= 4 (Liea @ WOWOT = tlia @ Laa) X7

op

< 4szxd SWOW®O) — plaxa ® Lixa]| X1,
‘ — plgxaq op (74)
<ar([WOW O - ptd] -+ [Wow - wowo| )
op
<4 (w H = W)W (@) - WO)T| -+ 2[(wt) - wo)w(o)T )
<4A(v+R* + 2R||W<0>||op)
<4A(y+ R*+ 2R/ +7)
Therefore, for all ¢t < T, y/'(t) = =X(t)(y(t) — y*) for

2(t) = 2uX — 4N (v + R* + 2R + 7). (75)

If u\ > 2A (’y + R?2 4+ 2R/ + ’y), then applying (Chizat et al., 2019, Lemma B.1) completes
the first half of the proof. Otherwise, noting that ||y(t) — *||* is non-increasing in ¢ implies

ly() = Il < [[y(0) — v*|.
Similarly, the dynamics of yrgk are

, d T N
V() = 2 [(WOWO)T, X0 ) + 2 (Wrk(t) = W(0), X, W(0)]
N
= [2(Wrtt). X W<0>>L:1
N (76)
_ 4[ (yrx(t)m = ym) {WOW(0)T, XnXm>]
=1 n=1
= —2(0)(yrx(t) —y")
From here, we can follow the same argument to show that
3(0) = 2uX — 4A~. (77)
Applying (Chizat et al., 2019, Lemma B.1) again concludes the proof. |

Lemma 12 Suppose that the weights are initialized such that HW(O)VV(O)T — ,ulHop <
and that the measurements satisfy \I < XX T < AI. Suppose in addition that

4\~ U 142
> —— and < 1-— .
ps B0 and ) - ) ﬁ< —
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Then,
W) — W) < + 3 1y(0) — 7|
sup - <
>0 E AV
Proof To begin, define
Re=\fut 22— T, (78)
Since p > %, R > 0. Note that with this choice
2uX — 4N (v + R* + 2R(Vu + 7)) = pA (79)

Let T = inf{t|||[W(t) — W(0)| > R}, and suppose towards contradiction that 7" < oo.

Then
R < |W(T) - W(0)|l

T

/W(t)dt

0 F
Tl N

< /0 > () — y)Xa W (1) =

n=1
l/ | (Taea o WA (00) — )|t

(80)
s/umeJM@mw—mﬂt
0

T
< VA [ (WOl + B) ln(6) —
T
< VAWEFT+R) [ ) = wlar

—f\/quM/ ly(t) — ylldt

From here, we apply Lemma 11 and (79) to conclude that

R <\ fud + 2200 yry/’exp )

< uA+ny yH/ exp(—pAt)dt

+ 2y(0) — 7|
i (s1)

1/A—i— 1_|_l

AN VA 1+ 4
-+
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This is a contradiction, so we conclude T' = co. We conclude the proof by pointing out that
the same line of reasoning from the righthand side of (80) through to (81) applies even when
T = . |

Theorem 9 Let k> d and let \I < XX T < AI. Fizy >0 and p > 4/\777 and suppose that
[WOW©) —ut],, <7 and [y(0) — vl < 25 (1 /AT /(0 + ). Then

IW(T) - W), < Vo alv© -vl
o B an
Teﬂng F = A\/ﬁ
IW(T) = Worwe(T)| » < A1+ fxlly(0) = v . 2VA, /14 2y(0) — |
S n b
T;a Dl < =5 W

Proof Our proof follows the approach of Chizat et al. (2019) closely, but it is specialized to
our particular setting and formulation. We also do not require that F(W(0)) = 0.
Consider for some T'

IW(T) = Wrk(T) »

’ F

< / S 00— 5 X W) — (i )X W(O)

n=1

— Wk (t)dt

dt
F

T
= [ e WA (0 =) = (Faa © WODX (rm(t) = )|t

T
= [ (W) = WODAT (010 = 5) = (e © WODX (ymc(t) = (o)

T
< \/K/O IW(#) = W(O)loply(t) = 575 + W (O)lop llyr (¢) — y(E)l|pdt

< \/K/OOOHW(t) = W(O0)lloplly (@) = v ll2 + IW ()l op llyr () — y(t)|dt (82)
By Lemma 12,
+ 311y(0) — vl
supl|[W(t) = W(0)llo, < sup|W(t) = W(0)][p < Wi (83)
By Lemma 11, for R = w, we have
ly(t) = y*II < [ly(0) — y* [l exp(—2pAt + 4A(y + R* + 2R/ + 7)t) (84)

lyri(t) — || < |ly(0) — y* || exp(—2uAt + 4A~1)
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1+
Since p > 4AT7 and |ly(0) — y*|| < % (1 BRI ) this further implies

ly(#) =37l < ly(0) — y"[| exp(—pAt)

lynsc(®) — 571l < [9(0) — ]| exp(—pre) (85)

Finally,

lyrk () =yl < ly(@) — "l + lyrx (@) — 7l < 2[|ly(0) — y* [ exp(—pAt)  (86)
Combining the above inequalities, we have
|W(T) - W(T)

I

< \/K/OOOHW(t) = W(O)lloplly(®) = y™lly + [IW(0)[[op 5(2) — (@)l 0t

Hy() v

< VA / 7 + 2/ y(0) =y | exp(—puAt)dt

e (87)

A+3 IIy(O) y I .

( + 2V F7y(0) — y ||>
<
< M
A1+ Zlly(0) =y 1> 2VA 1+ Zy(0) — vl
o 22/3/2 + Wi
|

H.2. Proof of Corollary 10

Finally, we prove Corollary 10 using the following:
Lemma 13 (cf. Theorem 6.1 Wainwright (2019)) Let W € R¥* with d < k and with
Wi j ~ N(0,0?), then
d
]P’[HVVI/V—r — 0%kI||,p > 8%V k:d] < 2exp <2>

Corollary 10 Let A = XX < AI, and |ly*|| < Y. If U(0),V(0) have i.i.d. N(0,a?)
entries for o > Q(k™1), then with probability at least 1 — 2exp(—d) over the randomness
in the initialization.

= Egﬂ ) Eggﬂ = O<M * a) (69)
o |Vm] - )l <oGmraz ) @
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Proof All that is needed is to show the relationship between k£ and the quantities involved

U] € R?¥*k By Lemma 13,

in the statement of Theorem 9. Let W = [V

P[HWWT okl < 8a? de} > 1 — 2exp(—d) (88)

op

For the remainder of the proof, we condition on the event HWW—r - azleop < 8a?V/2kd.
Next, we bound ||y(0) — y*||*:

ly(0) — y*||* < 2Y* + 2||y(0)|*

N
—2v2+ 23 (WOW(0)', Xn>2
n=1

N
@ 5y2 +2 Z <W(O)W(0)T — o’k Xn>2
n=1

<2v2 42 iHW(o)W(o)T - a2kIH2 1%, (89)
— ~ F N\ g

2 N 1
—oy? 4 4dHW(0)W(0)T - a2k1H 3 SIXal%
op n—1 2

< 2¥? 4 280> V2Rd) |3
< 2Y? + 256kd3aA?,

where for (a), we used that X,, is zero on the diagonal. In order to apply Theorem 9 using
v = 8a?V2kd and W= azk, (90)

we require that
4Ny 3202AV2kd 2048A2d
= = k> —

27, _

ok =p> \ \ 2 (91)
and
o o« HA

ly(0) —y*[| < Ji (92)

By (89), this is implied by

2\k
V2Y2 + 256kd3atA? < & (93)
8192A2d 512d3A3 (4 + 164) Y

<= k > max , A2 94
z { X \2 N TN
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.. 2
This is because k > 819/\2# ensures

1+ sf 1+ 8A
16A (95)

Consider two cases: either 2Y? < 256kd3a*A? or it is not. In the first case,

S Wk ' V512d3A3 (4 + 164) (96)
T VA(4+ 184 A

= V512kd3atA?

> \/2Y2 + 256kd3atA?

. . . . 512d3A3 (44 164)?
For the first inequality, we used (95), for the second inequality we used k > —

Otherwise, 2Y?2 > 256kd®a*A? and

>
— 16A
VA (4 + 164)
> 2y
> /2Y2 1 256kd3at A2

(97)

Y
202/ AA+4A)
Therefore, for k sufficiently large (94), by Theorem 9

For the second inequality, we used that k >

A *
1lly(0) — 7|
sup |[W(T) —W(0 <
s [W(T) = W) N

+ 2V2Y2 + 256kd3a A2
AWalk (98)
2VA(2Y +16VkdaTA?)

vk
4Y\F 32d3/2A3/2¢,
)\a\f A

IN
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and -
sup |W(T) — W(T)||,
TeR4
_AyLA xly(0) =y 7 2VA 1+ y(0) =y
>~ )\2u3/2 )\\/,E
99
o 20277 4 512kd%a’A?) 2VAy /1 + Lﬁ(mf + 512kd3a4A2) 59)
N2(a?k)** MWaZk

- NG N 1024d3 A3 N 8Y VA N 64d3/2A3/2¢,
= \203k3/2 A2VE Aok A

It is clear from (98) and (99) that there is some scalar ¢ which depends only on A, A, d, and
Y such that

1
sup |[W(T) —W(0)| p < c( + a), and
TeR4 O[\/E
. . (100)
W(T) - W(T <el ——— + —
s (W) = W), < o g+ e )
n
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