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ABSTRACT
Continuous monitoring of respiration provides invaluable insights
about health status management (e.g., the progression or recovery
of diseases). Recent advancements in radio frequency (RF) technolo-
gies show promise for continuous respiration monitoring by virtue
of their non-invasive nature, and preferred over wearable solutions
that require frequent charging and continuous wearing. However,
RF signals are susceptible to large body movements, which are
inevitable in real life, challenging the robustness of respiration
monitoring. While many existing methods have been proposed to
achieve robust RF-based respiration monitoring, their reliance on
supervised data limits their potential for broad applicability. In this
context, we propose, RF-Q, an unsupervised/self-supervised model
to achieve signal quality assessment and quality-aware estimation
for robust RF-based respiration monitoring. RF-Q uses the recon-
struction error of an autoencoder (AE) neural network to quantify
the quality of respiratory information in RF signals without the
need for data labeling. With the combination of the quantified sig-
nal quality and reconstructed signal in a weighted fusion, we are
able to achieve improved robustness of RF respiration monitor-
ing. We demonstrate that, instead of applying sophisticated models
devised with respective expertise using a considerable amount of
labeled data, by just quantifying the signal quality in an unsuper-
vised manner we can significantly boost the average end-to-end
(e2e) respiratory rate estimation accuracy of a baseline by an im-
provement ratio of 2.75, higher than the gain of 1.94 achieved by a
supervised baseline method that excludes distorted data.
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1 INTRODUCTION
The respiratory rate, one of the basic vital signs, is an important
bio-indicator typicallymeasured at clinical visits for health status as-
sessment [2, 3]. Recently, researchers show that the analysis of con-
tinuous respiration trends is effective in monitoring the progression
or recovery of diseases (e.g., post-COVID conditions). For example,
a novel phenotyping of COVID recovery has been identified us-
ing long-term trajectories of respiratory symptoms [21]. Moreover,
researchers have demonstrated correlations between Parkinson’s
disease and nocturnal breathing signals using an artificial intelli-
gence (AI) model [20]. Despite their popularity, wearable solutions
(e.g., Apple Watch) require frequent charging and wearing, making
it difficult to maintain compliance, especially among those whomay
feel physically or cognitively challenged with smart devices. As an
alternative, radio frequency (RF) technologies achieve passive vital
signs monitoring [15, 18], and require no human cooperative effort
and show promise for long-term, in-home monitoring [16, 20].

The intuition of RF-based respiration monitoring is that the
chest wall displacements due to respiration cause periodic varia-
tions in the RF signals, from which the respiration information can
be extracted [1, 13]. While RF sensing has been demonstrated to
be promising for continuous respiration monitoring, its robustness
remains an open challenge [14]. To be specific, inadvertent body
movements cause large disturbances in RF signals, and multi-path
reflections from the cluttered environment and the intermodulation
between respiration and heartbeat due to non-linear effects further
challenges RF-based respiration monitoring. To address the above
issues, solutions are proposed in the three categories as follows: i)
detecting and excluding the motion-disturbed RF signals to avoid
erroneous respiration extraction [1, 17]; ii) reconstructing respira-
tion signals in the presence of motion disturbance based on deep
learning methods [19, 22]; iii) formulating continuous respiration
monitoring as a tracking problem to smooth out disturbed readings
according to the temporal continuity of the vital signs [8, 15]. While
we have seen promising results reported with such approaches
mostly in well controlled lab environments, we have yet seen them
handily applied in real homes and at scale. One reason is that they
usually require domain expertise to train customized models that
require a large amount of labeled data, which is prohibitively costly.
Furthermore, the development (e.g., design or training) of a model

https://doi.org/10.1145/3580252.3586988
https://doi.org/10.1145/3580252.3586988
https://doi.org/10.1145/3580252.3586988


CHASE ’23, June 21–23, 2023, Orlando, Fl Zongxing Xie*, Ava Nederlander*, Isac Park* and Fan Ye

RF Respiration Sensing
En

co
d

er

D
ec

o
d

er

In
p

u
t 

X

O
u

tp
u

t 
Y

B
o

tt
le

n
ec

k

Autoencoder Quality-aware Estimation

Figure 1: Overview ofRF-Q. 1) The respiration-induced chest wall displacement
causes periodic variations in RF signals repeatedly emitted and received by
the RF sensor. 2) The autoencoder (AE) model is optimized to reconstruct the
input signal. Because the trained autoencoder tends to reconstruct signals of
consistent patterns, the outputwill show large deviation from the input if it has
strong disturbances of dynamic and unseen patterns. 3) The residual between
the reconstructed and original signals is used to quantify the signal quality,
based on which a weighted fusion is applied to achieve reliable respiratory
rate estimation.

for RF-based respiration monitoring may be prone to the bias of
researchers or data, thus hard to generalize.

To achieve a robust RF-based respiration monitoring solution
without labeling efforts, we propose RF-Q (illustrated in Figure 1)
for quality-aware respiratory rate estimation based on an unsuper-
vised signal quality assessment that provides contextual informa-
tion about how reliable the respiratory information can be extracted
from noisy RF signals without ground truth. To be specific, we apply
a self-supervised learning framework to train an autoencoder (AE)
model, of which the decoder is optimized to reconstruct the original
signal from a latent representation compressed by the encoder. We
use the reconstruction error, the residual between the reconstructed
signal and original input, as the indicator of the signal quality. This
is inspired by the fact that RF vital signal observations available
for vital signs extraction are of consistent patterns (e.g., condensed
energy distribution in frequency domain, periodic variations in
time domain). However, the disturbed signals are of varying pat-
terns, which are uncontrollable and nonrecurring, thus unseen to
the training dataset, and the trained AE model would have great
difficulty in faithful reconstruction. Therefore, we use the recon-
struction error to quantify the signal quality. As Figure 2 shows, a
larger reconstruction error indicates a larger deviation from regular
patterns, attributed to the signal quality with disturbance.

In addition, we make full use of an AE to reconstruct the dis-
turbed portion of RF respiratory signals combined with signal qual-
ity assessment in a weighted fusion for improved e2e performance
of RF respiration monitoring. To evaluate the proposed RF-Q, we
conduct experiments of RF respiration monitoring using real-world
testbeds in interference-rich environments. We show RF-Q is dis-
creminative of signal quality between the regular and disturbed
ones. By combining the signal quality score and the reconstructed
signal in a weighted fusion, RF-Q boosts the end-to-end (e2e) respi-
ration accuracy of a baseline estimator by an improvement ratio
of 2.75. We also conduct experiments to study the impact of the
ratio between the regular and disturbed signals on training the AE
model, and show that the difference is marginal for the ratio within
the range of 10 to 90 percent. This observation implies that the
training itself does not require much labeling effort to differentiate
between regular and disturbed signals, which is time consuming
and effort intensive.

We summarize our key contributions as follows:

• We propose, RF-Q, an unsupervised signal quality assessment
method for robust RF-based respiration monitoring using
an AE, which can be trained by using only input data with
very little effort or domain expertise in providing labels or
ground truth, thus easy to scale.

• We evaluate RF-Q with RF respiratory data collected in real
world testbeds. We show that the proposed RF-Q can boost
a baseline by an improvement ratio of 2.75 in average e2e
respiration monitoring accuracy with a weighted fusion of
the signal quality scores and reconstructed signals. Such
performance is achieved on all data, even better than what
achieved by SQD on excluding data of bad quality.

2 BACKGROUND AND RELATEDWORK
The RF signal have been thoroughly investigated as a sensingmodal-
ity for vital signs extraction throughout the last few decades [1].
The fundamental idea is that chest movement from breathing and
rhythmic heartbeats modulates reflected RF signals, which may be
analyzed through phase [5, 7], or derived Doppler features [4, 9].
The majority of currently available RF vital sign detection systems
were tested in controlled environments with a human subject who
remains still in front of the radar. However, in real-world situations,
the person could do more complex activities [16] that severely dis-
turb vital signals and impair physiological parameter estimation,
challenging robustness of RF-based vital signs monitoring. To elim-
inate destructive effect of motion artifacts on RF-based vital signs
monitoring, many methods have been proposed to either recovery
the signals in the presence of motion disturbance [19, 22], or ex-
clude the motion-disturbed RF signals for reliable vital signs estima-
tion [1, 17]. However, they all used supervised learning techniques
from labeled data, which is often time-consuming and expensive,
limiting their potential for broad applicability. Inspired by the re-
lated work using unsupervised learning for ECG signal quality
assessment[12], we apply a self-supervised/unsupervised learning
scheme to train an autoencoder model for quality-aware vital sign
monitoring.

3 RF-Q FRAMEWORK
Figure 1 shows an overview of RF-Q which has three components:
RF respiration sensing, signal quality assessment with autoencoder
and quality-aware estimation.

3.1 RF Respiration Sensing
The RF signals propagated in the monitoring space carry informa-
tion about dynamics of human subjects, including the chest wall
displacements due to inhaling and exhaling. The respiratory in-
formation can be extracted from the baseband of the received RF
signals, which can be modeled as:

𝑠 (𝑡) = 𝛼𝑑𝑒
− 𝑗

4𝜋 𝑓𝑐
𝑐

𝑑 (𝑡 )+𝜃 + 𝜔, (1)

where 𝛼𝑑 denotes the magnitude of the received signal depending
on the distance and radar cross-section (RCS) of the target. 𝑓𝑐 de-
notes the center frequency of RF signals, and 𝑐 is the propagation
speed of RF signals, i.e., the speed of light. 𝜃 denotes an initial
phase, and 𝜔 denotes the measurement noise. The information
about respiration-induced chest wall displacements 𝑑 (𝑡) can be
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(a) Regular signal in time domain.
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(b) Regular signal in frequency domain.
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(c) Disturbed signal in time domain.
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(d) Disturbed signal in frequency domain.

Figure 2: Examples of regular and disturbed signals in time and frequency
domains. The reconstructed signal (Rec.) of the regular signal matches the
original signal (Ori.), and the residual between them is limited in both (a)
time and (b) frequency domains. The disturbed signal has (c) large jumps in
the time domain and (d) its spectrum is noisy. However, only more regular
variations with a condensed spectrum can be reconstructed, thus the residual
between the original and reconstructed ones is large.

demodulated from the phase of the baseband signal 𝑠 (𝑡). While the
received RF signals carry information of respiration, they are often
noisy, interfered and disturbed by various sources, and thus reliable
respiration extraction is difficult. Awareness of the signal quality is
critical to robust long-term respiration monitoring.

3.2 Autoencoder for Signal Quality Assessment
We achieve unsupervised signal quality assessment with an autoen-
coder (AE) network. The goal of an AE is to generate an output
that reconstructs the input to the maximum extent. The AE has
an “hourglass” structure, comprised of an encoder, a decoder, and
one bottleneck in between that is made up of much fewer neu-
rons. This structure allows the bottleneck to capture only the most
representative features of the original input data and ignore the
detailed specifics of the input data, such as outliers, in order to
reconstruct the input as closely as possible. Therefore, it is much
easier to reconstruct regular signals of consistent patterns than
disturbed signals of dynamic patterns. We leverage this observa-
tion, and use the residual difference between the the reconstructed
and original signals to quantify the signal quality. The larger the
residual difference, the more likely that the corresponding input
signal is disturbed. We model the residual difference with the mean
squared error (MSE) between the input (𝑋 ) and output (𝑌 ), which
is also used as the loss function L to optimize AE:

L = 𝑀𝑆𝐸 (𝑋,𝑌 ) = 1
𝑁

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖 )2, (2)

where 𝑥𝑖 and 𝑦𝑖 are samples in input and output signals, respec-
tively. Because the AE is trained using only input signals and their
reconstructed version without supervised information (i.e., labels
or ground truth), this method is self-supervised, which is a variant
of unsupervised method.
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(a) Box plots show the distribution of RR
errors based on a baseline RR estimator
with regular and disturbed signals, and
regular signals have smaller errors than
disturbed signals in general.
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(b) Signals collected during overnight
sleep are less disturbed than during
sedentary activities, thus having better
quality and higher RR accuracy with a
baseline RR estimator.
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(c) Nocturnal respiratory data. Because signals are less disturbed during sleep, the
predicted respiratory rates (Pred. RR) from a baseline RR estimator are reasonably
accurate for the majority of the nocturnal period and match well the overall trend of
ground truth (True RR) from a medical device.

Figure 3: Data characteristics. Results show that the accuracy of RRmonitoring
is largely dependent on the signal quality and the awareness of signal quality
is critical to robust RR monitoring.

3.3 Quality-aware Estimation
With the AE trained with unsupervised data for signal quality
assessment, we can combine the quantified signal quality and the
reconstructed signal from AE for better estimation accuracy. The
idea is that we assign a larger weight to a signal with a better signal
quality for respiration rate estimation, and mitigate the detrimental
impact of disturbed signals with a small weight. By doing so we
can fuse the information for reliable respiratory rate estimation
from local periods, during which the variability of vital signs (e.g.,
respiratory and heart rates) is limited. To formally describe it, we
denote the original signal by 𝑋𝑖 as input to AE, its reconstructed
signal from AE by AE(𝑋𝑖 ), G as a respiratory rate estimator (see
§4.2 for detailed implementation), and 𝑟𝑟 𝑖 is one estimation of
the local ground truth 𝑟𝑟 , and we use the reconstructed signal for
respiratory rate estimation: 𝑟𝑟 𝑖 = G(𝐴𝐸 (𝑋𝑖 )). Two requirements
are considered defining a signal quality score (𝑄) as the weight:
1) a larger weight indicates a better signal quality, that is, with a
smaller residual difference D(𝑋𝑖 )=𝑀𝑆𝐸(X, AE(𝑋𝑖 )), 2) the weight
is normalized with (0, 1) given unbounded residual. We empirically
define a signal quality score (𝑄) in the form of exponential decay,
as 𝑄𝑖 = 𝑒−𝜆 ·D (𝑋𝑖 ) . The fused respiratory rate estimation ¤𝑟𝑟 is
expressed as a weighted summation:

¤𝑟𝑟 =
∑𝑁
𝑖=1 (𝑄𝑖 · 𝑟𝑟 𝑖 )∑𝑁

𝑖=1𝑄𝑖

, (3)

4 EVALUATION
In this section, we first describe the data collection and datasets,
and then introduce the metrics and baselines. Lastly, we discuss the
experimental results and summarize findings.
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Figure 4: Box plots show that two classes of signals are more separable in the
dimension of MSE than PNR.

4.1 Data Collection and Datasets
To evaluate RF-Q and validate our hypothesis, we conduct experi-
ments with data collected in the real-world testbed for RF-based
respiration monitoring from 8 participants, whose heights ranged
from 156–192 cm and weights ranged from 49–108 kg. The RF data
collection testbed is implemented with a COTS IR-UWB sensor
XeThru X4 [11], of which the frequency band is 7.25-10.2 GHz. The
RF sensor is configured to repeatedly transmit impulse radio signals
and measure the displacements of target chest wall at 10 Hz. We use
a 30-seconds time window to extract respiratory information, so
the input is a 1-D time series data of the length 300. We obtain the
ground truth of continuous respiratory rates from a FDA approved
medical device, Masimo Pulse Oximeter [10].

We collected data in various settings, including during sleeping
and sedentary behaviors with frequent body movements as well as
lab controlled settings, where participants were instructed to keep
stationary. The data is balanced across 8 participants. We build two
data sets, independent to each other. The first data set has in total
∼ 40k samples for training, and the second data set has in total
∼8k samples for testing, and each sample is a time series vector of
a length 300 in a 30-second time window. Although the unsuper-
vised training requires no labels, we manually label data into two
classes for better understandings of data characteristics. One class
is of “regular” patterns, e.g., periodic variations in time domain
(Figure 2(a)) and condensed energy distribution in frequency do-
main (Figure 2(b)). The other class is of dynamic patterns, e.g., large
jumps in time series (Figure 2(c)) and noisy spectrum (Figure 2(d)).
Figure 3(a) show the distribution of respiration rate errors between
two classes. Notably, data collected during sedentary behaviors (i.e.,
reading, surfing the internet and typing) include more disturbed
signals thus worse resulting RR accuracy than data collected during
sleep (Figure 3(b)). In contrast, data collected during sleep include
more regular signals, and the resulting respiratory rate (RR) estima-
tion is more accurate and aligned with the ground truth (shown in
Figure 3(c)). In the default setting, we use comparable amounts of
“regular” signals and disturbed signals for training, and we will also
study the impact of the ratio between “regular” and disturbed data.

4.2 Metrics and Baselines
For the robustness of respiration monitoring, we evaluate the end-
to-end performance in the metric of respiratory rate estimation
error compared to the ground truth, expressed as 𝑒𝑅𝑅 = |𝑟𝑟 − 𝑟𝑟 | in
the unit of breaths per minute (bpm).
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Figure 5: Original signals (including regular and disturbed ones) result in a
75-percentile RR error of 10.0 bpm with a baseline RR estimator. The recon-
structed signals from the trained autoencoder have a reduced 75-percentile
RR error (6.5 bpm). The RF-Q combines the reconstructed signals and the
signal quality scores for a further reduced 75-percentile RR error (2.8 bpm).
The SQD detects and excludes the disturbed signals from the original signals
and achieves a reduced 75-percentile RR error (4.2 bpm).

Autoencoder neural network. The autoencoder of RF-Q has
an “hourglass” structure with one encoder and one decoder sym-
metric to each other. The encoder takes the 1D input tensor in the
dimension of (1, 300), and it has two fully-connected (fc) layers, one
with 100 neurons and the other with 40 neurons, each is followed
by an ReLu activation layer. Between the encoder and decoder, the
bottleneck has 10 neurons. The decoder is structured in a reverse
order to the encoder. We use Adam as the optimizer to train the
model. We use the trained autoencoder to reconstruct input signals,
and we use MSE to quantify the deviation between the input and
output signals thus the signal quality.

RF respiration monitoring. We use an existing respiratory
rate estimation algorithm proposed in Vital-Radio [1] as a baseline,
because it is effective with a light and explainable implementation.
It shows reasonable performance given regular signals. For example,
its predicted RR matches the ground truth of RR during sleep for
most of the monitoring period during sleep as shown in Figure 3(c).
We also follow Vital-Radio [1] to use the peak-to-noise ratio (PNR)
as a baseline of signal quality indicator, which models the sharpness
of the spectrum due the periodic variations. In addition, we use
signal quality detector (SQD) [17] as another baseline of signal
quality indicator, which classifies the availability of RF signals for
reliable vital signs extraction.

4.3 Experimental Results
4.3.1 Signal quality indicator. we compare the effectiveness be-
tween MSE and PNR, based on separability and correlations with
the target metric, which is e2e RR accuracy in this paper. Figure 4
show that two classes are less overlapped thus more separable using
the metric of MSE compared to PNR.

4.3.2 End-to-end respiratory rate monitoring. Figure 5 shows the
comparison of e2e RR accuracy between different methods. We first
use Vital-Radio [1] as the baseline to estimate RR with original
signals, and then estimate RR with reconstructed signals from the
trained autoencoder. RF-Q combines the reconstructed signals with
the corresponding signal quality scores for better estimation with
weighted summation. Besides, we compare the performance with
SQD [17], which detects and excludes the corrupted signals to
avoid erroneous estimation. SQD achieves better e2e accuracy than
using only reconstructed signals, however, at the cost of a portion
(more than 30%) of partially disturbed signals that could have been
salvaged to have reasonable estimation. In addition to comparison
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Table 1: Comparison of gain according to the improvement ratio of average
accuracy (Avg. Acc.) compared to the baseline.

Method Avg. Acc. (bpm) Gain

Original 6.39 1
Reconstruction 4.64 1.38

RF-Q 2.32 2.75
SQD 3.29 1.94

of the distribution of RR errors, we show the gain of each method
according to the improvement ratio of average accuracy compared
to the baseline with original signals in Table 1. RF-Q largely boosts
the accuracy of the baseline by the improvement ratio of 2.75.

4.3.3 Impact of ratio between “regular” and disturbed signals. In
real life, we have no control on the ratio between “regular” and
disturbed signals for training the autoencoder neural network (AE).
We evaluate the model trained with different ratios (including 10:90,
30:70, 50:50, 70:30, and 90:10). Interestingly, no significant difference
has been observed between all settings, while a larger percentage of
the training data being “regular” signals shows a marginal increase
in the e2e gain. This implies that AE can learn effective representa-
tion for reconstructing signals with regular patterns given sufficient
training data. Besides, the nocturnal respiratory data consistently
have a high percentage of regular signals, and can be used for
training AE in RF-Q.

5 DISCUSSION
Based on results from this preliminary study, we certainly see there
is room for further improvement. Nonetheless, it demonstrates
that self-supervised learning with a vanilla autoencoder for sig-
nal quality assessment without extra supervised information can
largely boost the accuracy of respiration monitoring. With that,
we believe it would also be interesting to see how this method
would perform with other RF technologies, e.g., WiFi and RFID in
related work, even though there are no such benchmarks for direct
comparison. As a preliminary study, RF-Q leaves a few directions
to further studies. First, we only explore one simple autoencoder
architecture with one single configuration of hyper-parameters. In
the future, we will investigate different autoencoder variants, e.g.,
variational autoencoder [6], with more diverse configurations of
hyper-parameters. Second, we are yet to demonstrate its effective-
ness with sophisticated vital sign estimators rather than a simple
baseline estimator. We will also evaluate the effectiveness of RF-Q
for heartbeat extraction. Finally, we will conduct more experiments
to understand the impact of the amount and type of training data,
e.g., with different levels of body movements, on the performances.

6 CONCLUSIONS
In this paper, we present, RF-Q for quality-aware and robust RF
respiratory monitoring. We propose to use an autoencoder neu-
ral network for quantifying the signal quality and reconstructing
regular signals of consistent patterns in an unsupervised scheme.
Experiments show that our proposed RF-Q largely reduce the aver-
age error of RR estimation from a baseline estimator by a gain of
2.75, which is higher than a gain of 1.94 achieved by a supervised
method 𝑆𝑄𝐷 that detects and excludes data of bad quality.
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