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Abstract

This paper considers the recursive estimation of quantiles using the stochastic gradient
descent (SGD) algorithm with Polyak-Ruppert averaging. The algorithm o↵ers a compu-
tationally and memory e�cient alternative to the usual empirical estimator. Our focus is
on studying the non-asymptotic behavior by providing exponentially decreasing tail prob-
ability bounds under mild assumptions on the smoothness of the density functions. This
novel non-asymptotic result is based on a bound of the moment generating function of
the SGD estimate. We apply our result to the problem of best arm identification in a
multi-armed stochastic bandit setting under quantile preferences.

Keywords: Finite sample bounds, quantiles, stochastic gradient descent, Polyak-Ruppert
averaging, recursive estimation

1. Introduction

The emergence of big data has brought serious challenges to traditional deterministic opti-
mization methods. In many applications, the data arrives sequentially and the sample size
is so large that a storage of the entire dataset is infeasible. In these situations, the stochastic
gradient descent (SGD) algorithm (Robbins and Monro, 1951; Kiefer and Wolfowitz, 1952)
provides a scalable alternative for estimation. The algorithm updates estimates recursively
according to the gradient of the objective function. This recursive nature of the SGD al-
gorithm makes it computationally and memory e�cient. Thus, SGD is naturally suited for
online learning problems. The convergence properties of the algorithm and its asymptotics
have been analyzed thoroughly (Robbins and Siegmund, 1971; Ljung, 1977; Lai, 2003). No-
table applications include anomaly detection (Ahmad et al., 2017) and matrix factorization
(Mairal et al., 2010). The large sample properties of SGD are well established. For an
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averaged version of the algorithm (Ruppert, 1988; Polyak and Juditsky, 1992), it can be
shown that the estimator converges with the optimal parametric rate to a Gaussian limit.
To conduct inference, Chen et al. (2020) and Zhu et al. (2021) proposed methods to esti-
mate the covariance matrix of the parameter estimates. Fang et al. (2018) and Fang (2019)
proposed online bootstrap procedures to measure the uncertainty of SGD estimates.

In this paper, we consider the recursive estimation of quantiles. This classical problem is
of great importance in a variety of applications ranging from finance (Engle and Manganelli,
2004), health care (Wang et al., 2018) and survival studies (Peng and Huang, 2008). The
large sample properties of the traditional estimator for the quantile, which is based on
order statistics, were studied in Bahadur (1966) and Kiefer (1967). The downside of the
empirical estimator is that it is not memory-e�cient in the presence of large and sequentially
arriving datasets. Volgushev et al. (2019) and Chen et al. (2019) proposed new algorithms
for the estimation of conditional quantiles taking into account these computational issues
and memory requirements. Moreover, asymptotic normality provides limited insights on
the performance of the estimator in finite samples. The study of the finite-sample behavior
is an important task since in practical problems the sample size is always finite. Usually,
obtaining such results requires more mathematical e↵ort than merely obtaining asymptotic
results and typically, this involves more restrictive assumptions on the tail behavior and the
existence of moments.

The aim of this paper is to study the tail probability of the averaged version of the
SGD algorithm for estimating quantiles in finite samples. As our main result, we derive
an exponential bound on the tail probability, while only imposing weak assumptions on
the smoothness of the distribution function. The proof relies on the decomposition of the
gradient in the SGD algorithm into a martingale di↵erence part, a shift part and a remainder
part. Another key component of the proof is a novel bound on the moment generating
function of the SGD estimate, which exploits the recursive behavior of the algorithm and
the boundedness of the quantile score function.

The non-asymptotic behavior of the SGD estimate of quantiles with Polyak-Ruppert
averaging was studied in Costa and Gadat (2021). They derived finite sample bounds
for the Lp loss. Another closely related paper is Cardot et al. (2013), who proposed a
SGD estimation procedure for the geometric median (Haldane, 1948), which is a multi-
dimensional generalization of the median. The SGD solution has the same asymptotic
behavior as the empirical estimator of the geometric median. The result can be easily
generalized to the geometric quantiles proposed by Chaudhuri (1996). In a subsequent
paper, Cardot et al. (2017) studied the finite sample performance of the SGD algorithm.
In particular, they derived non-asymptotic confidence balls for the averaged version of the
algorithm. While the geometric median is a generalization of the classic median, their main
result does not directly apply to this univariate case. One contribution of our paper is the
extension to the result of Cardot et al. (2017) to the univariate median with exponential
tail bound. It should be noted that their bound is only valid for a sample size exceeding
a certain rank. In contrast, our new non-asymptotic bound is valid for each finite sample
size. The reason is that the bound derived in this paper is based on a bound of the moment
generating function, while previous results only relied on a finite-sample bound for the L2

risk.
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We apply our novel finite sample bound to the problem of best arm identification in the
context of stochastic multi-armed bandit models. We refer to the monograph of Lattimore
and Szepesvári (2020) for an extensive overview on bandit algorithms. While the majority
of the research on multi-armed bandits focused one the mean case, there are important
arguments in favor of looking at the quantiles. First, quantiles are more robust location
parameters compared to the mean and second, depending on the context of the application,
the focus can be on di↵erent parts of the distribution. Previously, the problem of best
arm identification in a quantile bandit settings were studied in Nikolakakis et al. (2021),
Zhang and Ong (2021) and in Howard and Ramdas (2022). We consider a quantile version
of the successive reject algorithm of Audibert et al. (2010) and the sequential elimination
algorithm of Karnin et al. (2013).

The remainder of the paper is organized as follows. Section 2 provides an overview of the
problem and introduces the SGD algorithm and its averaged version. The main theoretical
results are presented in Section 3. In Section 4 we apply our probability bound to the
problem of best arm identification. Section 5 concludes and Section 6 provides the proofs
of the main results.

We now introduce some notation. For a function g, define |g|1 := supx |g(x)|. For two
sequences of positive numbers, (an) and (bn), write an . bn if there there exists a positive
constant C such that an/bn  C for all n. Alternatively, we write an = O(bn). We write
bn = ⌦(an) if an = O(bn).

2. Overview of the Problem

In this paper, we are interested in estimating quantiles for high dimensional data. For a
random vector X = (X1, X2, . . . , Xp)> 2 Rp, the ⌧ -th quantile of coordinate Xi is defined
as the minimizer of the quantile loss function (see Figure 1),

Qi(⌧) := argminx2RE {(Xi � x) (⌧ � 1x�Xi)} . (1)

Denote the distribution function of Xi as Fi(x), under the assumption of Fi being continu-
ous, we have Fi(Qi(⌧)) = ⌧.

In financial applications, Xi could be the stock return of firm i and Qi(⌧) the correspond-
ing value-at-risk (VaR) at confidence level ⌧ . In survival studies, the variable of interest is
the survival time of an individual.

Let Xi,1, . . . , Xi,n denote i.i.d. copies of the coordinates Xi, 1  i  p. Then a natural
empirical estimator of Qi(⌧) takes the form

bQi(⌧) := argminx2R

nX

k=1

�
(Xi,k � x)

�
⌧ � 1Xi,k�x

� 
. (2)

Asymptotic properties of the empirical estimator are well studied (Bahadur, 1966; Kiefer,
1967). It is well known that the estimator is strongly consistent and has an asymptotic
normal distribution.

One of the problems of the classical estimator is that it is not memory e�cient in the
case of streaming data. Munro and Paterson (1980) showed that any algorithm exactly cal-
culating quantiles in q passes requires ⌦(n1/q) memory. Recent developments on estimating
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Figure 1: Quantile loss function (left panel) and score function (right panel) for quantile
level ⌧ = 0.5 (black line) and for ⌧ = 0.1 (red line).)

quantiles in the case of streaming data are discussed in Luo et al. (2016). We therefore follow
a di↵erent approach based on the SGD algorithm of Robbins and Monro (1951). Starting
from a constant initial value Yi,1(⌧) = yi, with max1ip |yi|  cy and some constant cy > 0,
we have

Yi,k+1(⌧) = Yi,k(⌧) + �k
⇣
⌧1Xi,k+1>Yi,k(⌧) � (1� ⌧)1Xi,k+1Yi,k(⌧)

⌘
, (3)

where the sequence of learning rates (�k) determines the convergence of the algorithm. In
particular, the following assumptions need to be fulfilled,

1X

k=1

�2
k
< 1 and

1X

k=1

�k = 1.

The first condition ensures the convergence to some point in R, while the second condition
ensures the convergence to a unique minimizer Qi(⌧). We consider sequences of step sizes
in the form of �k = c�k�� , with 1/2 < � < 1, and some constant c� > 0.

Due to favorable asymptotic properties, we consider an averaged version of the algo-
rithm, which takes the form

Ȳi,n(⌧) =
nX

k=1

Yi,k(⌧)/n,

where Ȳi,0 = 0. Note that the averaged estimator also can be updated recursively by
Ȳi,n(⌧) = (n� 1)Ȳi,n�1(⌧)/n+ Yi,n/n. Such an averaging step is known as Polyak-Ruppert
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averaging (Ruppert, 1988; Polyak and Juditsky, 1992). Estimators based on the averaged
SGD algorithm converge almost surely to the true parameter and have the same Gaussian
limit distribution as the empirical estimator defined in (2). For the estimation of quantiles,
asymptotic normality of the solution of the averaged algorithm was shown by Bardou et al.
(2009). In particular, it holds

p
n
�
Ȳi,n(⌧)�Qi(⌧)

 d! N

✓
0,

⌧(1� ⌧)

f2
i
{Qi(⌧)}

◆
.

However, these asymptotic results do not provide any insights on how well the estimator
will perform in finite samples. Recently, Gadat and Panloup (2023) derived non-asymptotic
bounds on the L2-loss for the recursive quantile estimator based on Polyak-Ruppert aver-
aging. It is shown that for each n � 1 it holds that, given the optimal choice of the learning
rate parameter �,

E
�
Ȳi,n(⌧)�Qi(⌧)

 2
=

⌧(1� ⌧)

f2
i
{Qi(⌧)}n

+O
⇣
n�5/4

⌘
.

Recently, Cardot et al. (2017) analyzed the finite sample tail behavior of the Polyak-
Ruppert algorithm for estimating the geometric median. The geometric median is a multi-
variate generalization of the univariate median (Haldane, 1948; Minsker, 2015), which can
easily be generalized to geometric quantiles (Chaudhuri, 1996). The geometric median is
defined by

m := argminx2HE (kX � xk � kXk) ,

where X is a random variable taking values in a separable Hilbert space H with corre-
sponding norm k · k. The algorithm and its asymptotic properties are studied in Cardot
et al. (2013). In particular, it was shown that the algorithm is strongly consistent and
asymptotically normal. Cardot et al. (2017) further studied the non-asymptotic properties.
In the main theorem of the paper, the authors derived non-asymptotic confidence balls for
the averaged solutions. Although the geometric median generalizes the univariate median,
the asymptotic normality as well as the result on non-asymptotic confidence bounds only
hold for the case of the dimensionality of the data being larger than 2, thus excluding the
univariate median. The reason for this is condition (A3) in Cardot et al. (2017), which
requires the existence of a constant C such that for all x 2 H,

E
�
kX � xk�2

�
 C. (4)

This condition does not hold for H = Rd with d < 3. As a second drawback of the tail
bound the sample size is required to exceed a certain rank n�, which might be prohibitively
large. The order of the rank is O(( 1

�log� )
6), which increases with decreasing confidence level

�. It is therefore crucial to obtain finite sample results which hold in dimension one and
therefore include the important special case of the univariate median.
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3. Theoretical Results

In this section, we shall present the main theoretical results of this paper. All proofs are
deferred to Section 6. We are interested in the tail probability,

P
⇣
max
1ip

|Ȳi,n(⌧)�Qi(⌧)| � x
⌘
, x > 0.

At first, we derive a non-asymptotic probability bound for the averaged SGD solution for
a single coordinate Xi. A simple tail bound can be obtained from the L2 bound in Gadat
and Panloup (2023) and Markov’s inequality

P
�
|Ȳi,n(⌧)�Qi(⌧)| > x

�


E
�
Ȳi,n(⌧)�Qi(⌧)

 2

x2
= O

✓
1

nx2

◆
, where x > 0.

However, the resulting probability bound is only algebraically decreasing in n and x. In the
following we will present a much sharper bound which decreases exponentially fast.

3.1 A Bound on the Moment Generating Function

We need to impose the following smoothness condition on the density of Xi and the bound-
edness of the true quantiles within the interested region. Theses conditions are standard in
the quantile literature.

Assumption 3.1 Let ⌧0 < ⌧1 be some finite constants in (0, 1). Assume the random variable

Xi has a di↵erentiable density function fi(x), with c⌧ := min1ip inf⌧2[⌧0,⌧1] fi(Qi(⌧)) > 0
and max1ip |f 0

i
|1  cf < 1. Moreover for some constant M > 0, |Qi(⌧)|  M , for any

1  i  p and ⌧0  ⌧  ⌧1.

This assumption ensures the existence of a unique theoretical quantile. We require no
assumptions on the tail behavior nor on the existence of any moments of Xi. In order to
derive the tail probability bound, we directly bound the moment generating function of the
SGD solution without averaging, Yi,n(⌧), in the following theorem.

Theorem 3.1 Under Assumption 3.1, for 0 < t  cn(1��)�
and ⌧0  ⌧  ⌧1, we have

E(et|Yi,n(⌧)�Qi(⌧)|)  c0n� , (5)

where c, c0 > 0 are some constants independent of i, n, ⌧. Consequently, for any x > 0,

P
�
|Yi,n(⌧)�Qi(⌧)| > x

�
 c0n�exp

�
� cn�(1��)x

 
. (6)

The specific form of constants c and c0 are presented in Subsection 6.1 in equations (20)
and (21) respectively. The key idea of the proof is to exploit the recursive nature of the
SGD algorithm in order to obtain a recursive bound on the moment generating function.

We now compare our bound (6) with the one in Cardot et al. (2017), namely the in-
equality on Page 10 in the Appendix of the latter paper which concerns medians with
⌧ = 1/2:

P
�
|Yi,n(1/2)�Qi(1/2)| > x

�
 2exp

n
� C0x2n�

1 + C3x

o
+

C1e�C4n
1��

x2
+

C2

n�x
, (7)
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where C0, . . . , C4 > 0 are constants. Asymptotically, the upper bound in (7) decays poly-

nomially in x and n, while in comparison, our bound (6) is decreasing exponentially fast.
We shall remark that their paper is concerned with the estimation of the geometric median,
which is a multi-dimensional extension of the median, their theorems are not directly ap-
plicable in dimension one since condition (4) is violated in the latter case. Nonetheless, we
show in Subsection 6.4 that their method can be extended to the univariate case so that
(7) can be obtained.

3.2 Confidence Bounds for the Averaged SGD Algorithm

We now consider the averaged version of the SGD algorithm, which can have a better
convergence property. The following theorem gives the non-asymptotic confidence bounds
for the SGD algorithm with the Polyak-Ruppert averaging.

Theorem 3.2 Under Assumption 3.1, for ⌧ 2 [⌧0, ⌧1], we have for n � 1 and x > 0,

P
�
|Ȳi,n(⌧)�Qi(⌧)| > x

�

.n1+�exp
�
� cn(1��

2)x
 
+ n1+�exp

n
� c0n�(1��)x1/2

o
+ exp

�
� c00nx2

 
, (8)

where the constants in ., c, c0, c00 are all independent of i, n, p. Consequently, we have the

uniform upper bound,

max
1ip

|Ȳi,n(⌧)�Qi(⌧)| = OP(log
2(np)n�2�(1��)). (9)

This implies that if log(p)/n�(1��) ! 0, then we have the uniform consistency.

The specific form of these constants can be found in equation (25) in Subsection 6.2.
The uniform consistency in Theorem 3.2 allows extra high-dimensional settings with p =
exp(o(n�(1��))). While our tail probability bound decreases with an exponential rate, we
cannot make a statement whether the bound is optimal.

The proof of Theorem 3.2 relies on a decomposition of Yi,k(⌧) into a martingale di↵erence
part, a shift part and the remainder. This decomposition scheme is also used in Cardot
et al. (2017). Note that (3) can be rewritten as

Yi,k+1(⌧) = Yi,k(⌧) + �kZi,k+1(⌧), (10)

where

Zi,k+1(⌧) := ⌧1Xi,k+1>Yi,k(⌧) � (1� ⌧)1Xi,k+1Yi,k(⌧) = ⌧ � 1Xi,k+1Yi,k(⌧). (11)

To obtain the martingale di↵erence part, we further decompose the term Zi,k+1(⌧) into
⇠i,k+1 = Zi,k+1(⌧)�E(Zi,k+1(⌧)|Fi,k) and E(Zi,k+1(⌧)|Fi,k), where Fi,k = (Xi,k, Xi,k�1, . . .).
Hence (10) can be rewritten into

��1
k

(Yi,k+1(⌧)� Yi,k(⌧)) = ⇠i,k+1 + E(Zi,k+1(⌧)|Fi,k).
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Furthermore, we have E(Zi,k+1(⌧)|Fk) = c(Yi,k(⌧) � Qi(⌧)) + ⇢i,k, where c = �fi(Qi(⌧)),
c(Yi,k(⌧)�Qi(⌧)) is the linear part and ⇢i,k represents the remainder term. Hence we have
the decomposition

c(Yi,k(⌧)�Qi(⌧)) = ��1
k

(Yi,k+1(⌧)� Yi,k(⌧))� ⇠i,k+1 � ⇢i,k.

Let ⇠̄i,n = n�1Pn

k=1 ⇠i,k+1 and ⇢̄i,n = n�1Pn

k=1 ⇢i,k. Then

c(Ȳi,n(⌧)�Qi(⌧)) =
nX

k=1

��1
k

(Yi,k+1(⌧)� Yi,k(⌧))/n� ⇠̄i,n � ⇢̄i,n.

To bound the first and the third terms, we can adopt our bound on the moment generating
function obtained in Theorem 3.1. For the second term, the martingale di↵erence part, we
shall apply Azuma’s concentration inequality. Details are provided in Subsection 6.2.

In the following, we take a closer look at the three terms on the right hand side of
the probability bound in (8). We want to determine which terms are the leading ones in
di↵erent scenarios.

Remark 3.3 When x � c1n�1/2
for some constant c1 > 0, then the last term in (8) will

be dominated by the second one, that is

P
�
|Ȳi,n(⌧)�Qi(⌧)| > x

�
. n1+�exp

�
� cn(1��

2)x
 
+ n1+�exp

n
� c0n�(1��)x1/2

o
. (12)

In addition, if x � n2��2, then the second term n1+�exp{�c0n�(1��)x1/2} would dominate,

otherwise, the first term n1+�exp{�cn(1��
2)x} would be the leading one.

Figure 2 visualizes the simulation results for the tail probabilities for the averaged algorithm.
The simulation confirms the statements of exponential decay bounds, and the asymptotic
algebraic bounds (7) and (13) can be too crude.

Theorem 3.4 provides an asymptotic algebraic bound for the average SGD solution,
Ȳi,n(⌧), which is a one-dimensional analogue of the geometric median in Cardot et al.
(2017). The conclusion of the comparison between (6) and (7) also applies here: our bound
(8) decreases exponentially fast.

Theorem 3.4 Under Assumption 3.1, for ⌧ 2 [⌧0, ⌧1], we have for n � 1 and x > 0,

P
�
|Ȳi,n(⌧)�Qi(⌧)| > x

�
 2exp

�
� nx2/2

 
+

c

xn1��/2
+

c0

xn
+

c00

xn�
, (13)

where c, c0, c00 are independent of i, ⌧, n.

At the technical level, the proof of Theorem 3.4, similar to the proof of Theorem 3.2, relies
on the decomposition of the SGD solutions into three parts. However, instead of using a
bound on the moment generating function of Yi,n(⌧), the proof is based on a finite-sample
bound on the L2 error derived by Costa and Gadat (2021). Consequently, one can only
obtain asymptotically algebraic bounds. In comparison, our approach based on the moment
generating function can lead to exponential bounds.
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Figure 2: Tail probability as a function of x for n = 500 (left side), and as a function of n
for x = 0.1 (right side), averaged over 10000 Monte Carlo iterations. The data is
drawn i.i.d. from a t-distribution with 10 degrees of freedom, ⌧ = 0.5, while the
SGD algorithm is initialized with a random draw from a uniform distribution on
[�1, 1] and � = 0.7.

4. Application to Best Arm Identification

4.1 Stochastic Quantile Bandits

As an application of our novel tail probability bound, we consider the problem of best arm
identification in a multi-armed bandit setting. A p-armed stochastic bandit is a collection of
probability distributions, ⌫ = (Fi : i 2 [p]). For each round t = 1, . . . , n, the agent chooses
an action At 2 [p] and observes the reward XtAt drawn independently from the distribution
of the chosen arm, FAt . The rewards of the other arms at time t are not observed. We
refer to the monograph of Lattimore and Szepesvári (2020) for a comprehensive overview
on bandit algorithms. We consider the setting of pure exploration (Bubeck et al., 2009).
The learner is endowed with a fixed budget n and has to commit to one arm after the
exploration phase in period n+1, according to a policy ⇡. The goal is to select with action
An+1 the unique arm with the highest ⌧ -quantile,

i⇤ = argmaxi2[p]Qi(⌧).

In the following, we write Qi⇤(⌧) = Q⇤(⌧). Most of the literature on best arm identification
is concerned with the selection of arms with the highest expected value. Focusing instead on
quantiles has at least two advantages. First, quantiles are more robust location parameters
than the expected value. Many existing results on best arm identification in the mean case
rely on the restrictive assumption of sub-Gaussian distributions. And second, the agent
might be interested in di↵erent regions of the distribution of rewards, depending on her
risk attitudes and preferences. Quantile preferences were first studied by Manski (1988)
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and formalized as a choice-theoretic model in Rostek (2010). A recent extension of quantile
preferences to the dynamic setting was proposed by de Castro and Galvao (2019). We define
the suboptimality gap of a given arm i relative to the optimal arm, for a fixed quantile level
⌧ ,

�⌧

i = Q⇤(⌧)�Qi(⌧).

The agent’s goal is to minimize the regret R⌧
n, which is defined as the expected di↵erence

in quantiles of her policy in comparison to playing the optimal arm i⇤,

R⌧

n(⇡, ⌫) = E
�
Q⇤(⌧)�QAn+1(⌧)

 
= E

⇣
�⌧

An+1

⌘
. (14)

The expectation is taken with respect to the interaction of the bandit environment ⌫ and
the policy of the learner ⇡. In addition, we define the probability of selecting a suboptimal
arm after the exploration period,

en = P (An+1 6= i⇤) . (15)

Let �⌧
max = maxi2[p]�

⌧

i
be the maximal suboptimality gap. Then we can obtain the

following bound for the regret,

R⌧

n(⇡, ⌫)  �⌧

maxen.

Our goal is to find a policy ⇡ which minimizes en and thus minimizes the regret R⌧
n.

Other accounts on best arm identification in a quantile bandit settings were discussed in
Nikolakakis et al. (2021), Szorenyi et al. (2015) and in Howard and Ramdas (2022). Best
arm identification with a fixed budget is discussed in Zhang and Ong (2021). However,
none of the above mentioned papers consider the recursive estimation of quantiles.

4.2 Algorithms and Instance-Dependent Regret Bounds

A naive policy would be to play each arm uniformly during the exploration phase and then
commit to the arm with the largest estimated quantile. The pseudo code for this uniform
exploration algorithm is provided in Algorithm 1.

Algorithm 1: Uniform Exploration Algorithm for Quantiles

for t = 1 to n do
Choose At = 1 + (t mod (p))

end
Choose An+1 = argmaxi2[p]Ȳi,bn/pc(⌧)

Although there is no trade-o↵ between exploration and exploitation in our best arm iden-
tification setting, this strategy might be improved by allocating more actions to promising
arms. The rationale is to avoid playing arms with a low estimated quantile by dividing the
exploration period into di↵erent rounds in which one or several arms are eliminated and not
played anymore in future rounds. For this purpose we adapt both the successive elimination
algorithm of Audibert et al. (2010) and the sequential halving algorithm of Karnin et al.
(2013) to the quantile case.

10
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The successive elimination algorithm divides the exploration period into p � 1 phases.
After each phase, the arm with the lowest estimated quantile is eliminated. Within the
phase, the arms are played uniformly. The recommended arm An+1 is the single remaining
arm after p � 1 rounds. Algorithm 2 provides the pseudo code for the successive reject
algorithm.

Algorithm 2: Successive Reject Algorithm for Quantiles
The budget n is allocated to the rounds r and arms i. For t = 1, . . . , n, only the
reward of the arm which is played, XtAt , is observed and used in the SGD update.
Let S1 = {1, . . . , p}, log(p) = 1

2 +
P

p

i=2
1
i
, and

nr = d 1

log(p)

n� p

p+ 1� r
e, r = 1, . . . , p� 1

for r = 1 to p� 1 do
For each i 2 Sr, select i for nr � nr�1 rounds
Set Sr+1 = Sr\argmini2Sr

Ȳi,nr(⌧)
end
Choose An+1 = argmaxi2Sp�1

Ȳi,np�1(⌧)

Note that the arm eliminated in the first round is played n1 = d 1
log(p)

n�p

p
e times, the

one eliminated in the second round is played n2 = d 1
log(p)

n�p

p�1 e times and the two remaining

arms in round p� 1 are played np�1 = d 1
log(p)

n�p

2 e times. It can be easily verified that the

budget constraint is satisfied. In the following, we denote with (i) 2 {1, . . . , p} the i-th best
arm, which implies �⌧

(1)  �⌧

(2)  . . .  �⌧

(p). Further, we write the tail probability bound
from Theorem 3.2 as a function of the sample size and the suboptimality gap,

B(n,�) = C
⇣
n1+�exp

�
� cn(1��

2)�
 
+ n1+�exp

n
� c0n�(1��)�1/2

o
+ exp

�
� c00n�2

 ⌘
,

where C, c, c0 and c00 are positive constants independent of ⌧ and n.

We bound the regret using the policy of the successive reject algorithm in the following
theorem.

Theorem 4.1 Let ⌫ denote a p-armed stochastic bandit with Fi satisfying Assumption 3.1

and let ⇡ be the policy of the successive reject algorithm. Then,

R⌧

n(⌫,⇡)  p(p� 1)�⌧

max2 max
r2{1,...,p�1}

B

✓
d 1

log(p)

n� p

p+ 1� r
e,�⌧

(p+1�r)/2

◆

11
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Proof Recall that R⌧
n = E{Q⇤(⌧)�QAt+1(⌧)}  �⌧

maxen. In the following, we bound en.

en 
p�1X

r=1

pX

i=p+1�r

P
�
Ȳi⇤,nr(⌧)  Ȳ(i),nr

(⌧)
 

=
p�1X

r=1

pX

i=p+1�r

P
n
Ȳ(i),nr

(⌧)�Q(i)(⌧) +Q⇤(⌧)� Ȳi⇤,nr(⌧) � �⌧

(i)

o


p�1X

r=1

pX

i=p+1�r

2B(nr,�
⌧

(i)/2)


p�1X

r=1

r2B(nr,�
⌧

(p+1�r)/2)

 p(p� 1)2 max
r2{1,...,p�1}

B(nr,�
⌧

(p+1�r)/2).

Plugging in the definition of nr gives the desired result.

An alternative to the successive reject algorithm is the sequential halving algorithm
proposed by Karnin et al. (2013). Instead of eliminating only one arm per phase, the
algorithm dismisses half of the arms with the lowest estimated ⌧ -quantile. The number of
rounds is reduced to blog2pc � 1.

Algorithm 3: Sequential Halving Algorithm for Quantiles
The budget n is allocated to the rounds r and arms i. For t = 1, . . . , n, only the
reward of the arm which is played, XtAt , is observed and used in the SGD update.
Let S1 = {1, . . . , p},

for r = 1 to dlog2pe do
For each i 2 Sr, select i for nr = b n

|Sr|blog2pc
c times

Let Sr+1 denote the set of b|Sr|/2c arms in Sr with the highest value of Ȳi,nr(⌧).
end
Choose An+1 by selecting the remaining arm in Sdlog2pe.

The following theorem bounds the regret of the policy following the sequential elimina-
tion algorithm.

Theorem 4.2 Let ⌫ denote a p-armed stochastic bandit with Fi satisfying Assumption 3.1

and let ⇡ be the policy of the sequential halving algorithm. Then,

R⌧

n(⌫,⇡)  4log2p�
⌧

max max
r2{1,...,log2p}

B

✓
2rn

plog2p
,�⌧

(p/(2r))/2

◆
.

Proof WLOG, assume that p is a power of 2. Note that we can bound the probability
that an arbitrary arm i has an higher estimated quantile than the optimal arm in a given
round r,

P
�
Ȳi⇤,nr(⌧) < Ȳi,nr(⌧)

 
 2B(nr,�

⌧

i /2).

12
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If the best arm i⇤ is eliminated in round r, at least 1/2|Sr| arms need to have a larger
estimated quantile. Denote by Nr the number of arms with a larger estimated quantile
than the optimal arm. Then we have,

E (Nr) =
X

i2Sr

P
�
Ȳi⇤,nr(⌧) < Ȳi,nr(⌧)

 

 |Sr|2B(nr,�
⌧

(p/(2r))/2).

Using Markov’s inequality, we can bound the probability of eliminating the optimal arm in
round r,

P (i⇤ 62 Sr+1) = P
✓
Nr >

1

2
|Sr|

◆

 2E (Nr)

|Sr|

 4B
⇣
nr,�

⌧

(p/(2r))/2
⌘
.

Then we can use the union bound to bound en,

en  4

log2pX

r=1

B(nr,�
⌧

(p/(2r))/2)

 4log2p max
r2{1,...,log2p}

B

✓
2rn

plog2p
,�⌧

(p/(2r))/2

◆

We want to comment on the regret bounds. For a given bandit instance, ⌫, the proba-
bility of selecting a suboptimal arm (15) is decreasing exponentially fast in the budget n for
both the successive reject and the sequential halving algorithm. This due to our tail proba-
bility result for the averaged SGD algorithm in Theorem 3.2 and since the number of times
a given arm is played increases linearly with n for both algorithms. As a consequence, the
simple regret in (14) is also decreasing exponentially fast in n. While most existing results
on the mean bandit case rely on the assumption of sub-Gaussian distributions, we only need
to impose a smoothness on the distribution. The number of arms, p, impacts the regret
bounds in two ways. On the one hand, it increases the number of rounds, which is O(p2)
for the successive reject algorithm and O(log2p) for the sequential halving algorithm. On
the other hand, it decreases the fraction of the budget allocated to a certain arm in a given
round.
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Setting n UE SR SH

Setting 1

1000 0.792 0.190 0.377
2000 0.562 0.058 0.213
4000 0.196 0.005 0.110
8000 0.133 0.000 0.040

Setting 2

1000 0.617 0.134 0.196
2000 0.381 0.047 0.099
4000 0.153 0.002 0.016
8000 0.024 0.000 0.000

Setting 3

1000 0.411 0.162 0.220
2000 0.355 0.101 0.176
4000 0.251 0.024 0.088
8000 0.076 0.000 0.028

Table 1: This table shows the regret (14) for the uniform exploration algorithm (UE), the
successive reject algorithm (SR) and the sequential halving algorithm (SH) for
di↵erent settings and choices for the budget n, averaged over 1000 Monte-Carlo
iterations.

We analyze the performance of the algorithms in a short simulation study. We set p = 16
and ⌧ = 0.5, the data is drawn i.i.d. from a t-distribution with 10 degrees of freedom. For
the SGD estimation, we set � = 0.7 and c� = 1, and the algorithm is initialized with a
random draw from a uniform distribution on [�1, 1]. We consider three settings.

• Setting 1: One type of suboptimal arms, Q1(⌧) = 5 and Qi(⌧) = 4, i = 2, . . . , 16.

• Setting 2: Arithmetic progression of suboptimal arms, Q1(⌧) = 5 and Qi(⌧) = 5 �
0.25i, i = 2, . . . , 16.

• Setting 3: Two types of suboptimal arms, Q1(⌧) = 5, Qi(⌧) = 4.5, i = 2, . . . , 8, and
Qi(⌧) = 3, i = 9, . . . , 16.

Table 1 shows the performance of the three algorithms in terms of the regret for di↵erent
choices for the budget n, based on 1000 Monte-Carlo iterations. In all settings, the successive
reject algorithm (SR) performs best, followed by the sequential halving algorithm (SH) and
the uniform exploration algorithm (UE) performs worst. It becomes clear that the regret
can be e↵ectively reduced with a growing budget, n. It should be noted that the dominance
of the successive reject algorithm cannot be solely explained by Theorems 4.1 and 4.2.
However, a plausible explanation arises by looking at the budget allocated to each arm in
the first round of the sequential halving algorithm, which is n1 = bn/64c in our simulation
setting. The decision to reject a given arm thus hinges on a small sample size. The main
advantage of the successive reject algorithm is that the optimal arm only needs to avoid
being the arm with the lowest estimated quantile, while the sequential halving algorithm
requires the optimal arm to be in the upper half of arms in order to survive the round.

14
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5. Conclusion

This paper studies the non-asymptotic performance of the SGD algorithm with Polyak-
Ruppert averaging for the recursive estimation of quantiles. The algorithm is a computa-
tionally and memory e�cient alternative to traditional estimators based on order statistics.
We derive an exponentially fast decreasing tail probability bound while only imposing as-
sumption on the smoothness of the distribution. Instead of only bounding a few moments
of the distribution, our proof relies on a bound on the moment generating function of the
SGD solution.

6. Proofs for Results in Section 3

6.1 Proof of Theorem 3.1

Since our goal is to establish an exponential tail probability for Yi,k(⌧), we will need to work
with its moment generating function. Woodroofe (1972) used characteristic and moment
generating functions to derive normal approximations and large deviations of SGD solutions.
Here we shall carry out a meticulous analysis and show that

E(et(Yi,k+1(⌧)�Qi(⌧)))  ak,tE(et(Yi,k(⌧)�Qi(⌧))) + c0, where ak,t = 1� c1�k + c2t
2�2

k
,

by considering two cases Xi,k+1 > Yi,k(⌧) and Xi,k+1  Yi,k(⌧) separately. Here c0, c1, c2
are positive constants. Recursively applying above inequality, we have

E(et(Yi,n(⌧)�Qi(⌧)))  c0
⇣
1 +

nX

k=kt+1

�k

⌘
+ �ktE(et(Yi,kt (⌧)�Qi(⌧))), where �k =

nY

l=k

al,t

and kt > 0 is a selected starting point. We choose kt = d(c�t)1/�e, so that
P

n

k=kt+1 �k and

the starting term �ktE(et(Yi,kt (⌧)�Qi(⌧))) are both of order n� when t  cn�(1��).

Proof Recall that Fi is the distribution function of Xi and t > 0. We shall firstly bound
the term E{et(Yi,k+1(⌧)�Qi(⌧))}, the other one E{e�t(Yi,k+1(⌧)�Qi(⌧))} will be handled at the
end of the proof. To start with, by the iteration mechanism of SGD in (3) we have

E
�
et(Yi,k+1(⌧)�Qi(⌧))

 

=E
n
E
⇣
et(Yi,k(⌧)�Qi(⌧)+�k⌧)1Xi,k+1>Yi,k(⌧) + et(Yi,k(⌧)�Qi(⌧)��k(1�⌧))1Xi,k+1Yi,k(⌧)

���Yi,k(⌧)
⌘o

=E
n
et(Yi,k(⌧)�Qi(⌧))

h
et�k⌧

�
1� Fi(Yi,k(⌧))

�
+ e�t�k(1�⌧)Fi(Yi,k(⌧))

io

=E
n
et(Yi,k(⌧)�Qi(⌧))

h
et�k⌧ � (et�k⌧ � e�t�k(1�⌧))Fi(Yi,k(⌧))

io
,

where the second equation is due to the independence between Xi,k+1 and Yi,k(⌧). Since
et�k⌧ � 1 � e�t�k(1�⌧), the term (et�k⌧ �e�t�k(1�⌧))Fi(x) monotonically increases in x. Take
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L = c⌧/(2cf t), for any k � (c�t)1/� we have that t�k  1 and

E
�
et(Yi,k+1(⌧)�Qi(⌧))

 

E
n
et(Yi,k(⌧)�Qi(⌧))

⇥
et�k⌧ � (et�k⌧ � e�t�k(1�⌧))Fi(L+Qi(⌧))

⇤
1Yi,k(⌧)�Qi(⌧)�L

+ etL+t�k⌧1Yi,k(⌧)�Qi(⌧)<L

o

E
n
et(Yi,k(⌧)�Qi(⌧))

⇥
et�k⌧ (1� Fi(L+Qi(⌧))) + e�t�k(1�⌧)Fi(L+Qi(⌧))

⇤o
+ c0, (16)

where c0 = ec⌧/(2cf )+⌧ . Since t�k⌧  ⌧ < 1, by Taylor’s expansion, et�k⌧  1+t�k⌧+t2�2
k
⌧2.

Then we have

et�k⌧ (1� Fi(L+Qi(⌧))) + e�t�k(1�⌧)Fi(L+Qi(⌧))

(1 + t�k⌧ + t2�2
k
)(1� Fi(L+Qi(⌧))) + (1� t�k(1� ⌧) + t2�2

k
)Fi(L+Qi(⌧))

1� t�k
⇥
Fi(L+Qi(⌧))� ⌧)

⇤
+ t2�2

k

1� t�k
�
fi(Qi(⌧))� cfL)L+ t2�2

k
, (17)

where the last inequality is due to the fact that ⌧ = Fi(Qi(⌧)) and

Fi(L+Qi(⌧))� Fi(Qi(⌧))� fi(Qi(⌧))L � �|fi|1L2.

Recall that L = c⌧/(2cf t). Inserting above into (16), we have

E(et(Yi,k+1(⌧)�Qi(⌧)))  E(et(Yi,k(⌧)�Qi(⌧)))(1� c1�k + t2�2
k
) + c0,

where c1 = c2⌧/(4cf ). Recursively applying above inequality, for kt = d(c�t)1/�e, we have

E(et(Yi,n+1(⌧)�Qi(⌧)))  c0
⇣
1 +

nX

k=kt+1

�k

⌘
+ �ktE(et(Yi,kt (⌧)�Qi(⌧))) (18)

where

�k =
nY

l=k

(1� c1�l + t2�2
l
). (19)

In the following, we shall bound the terms
P

n

k=kt+1 �k and �ktE(et(Yi,kt (⌧)�Qi(⌧))) separately.
Firstly, for the

P
n

k=kt+1 �k part, note that 1 + x  ex, hence

�k  exp
n
�

nX

l=k

(c1�l � t2�2
l
)
o

 exp
n
� c1c�(n

1�� � k1��)/(1� �) + t2c2�(k
�2�+1 � n�2�+1)/(2� � 1)

o
.

To calculate
P

n

k=kt
�k, we shall deal with k close to n and far away from n separately.

Denote c2 = c1c�(1� (1/2)1��)/(1� �). If kt  k  n/2 and t  cn�(1��), where

c = min
�
((2� � 1)c2/2)

�/c� , (c1/c�)
1/22���1/2, ((1� �)c2/4)

�/c� , c2/(4(M + cy))
 
, (20)
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we have

�k  exp
�
� c2n

1�� + c2�t
2k�2�+1

t
/(2� � 1)

 

 exp
�
� c2n

1�� + c1/�� t1/�/(2� � 1)
 

 exp
�
� c2n

1��/2
 
.

When k � n/2, by the mean value theorem,

�k  exp
n
� c1c�n

��(n� k) + c2�t
2(n/2)�2�(n� k)

o

 exp
n
� c�n

��(n� k)(c1 � c�c
2n�(2��1)�22�)

o

 exp
�
� c1c�n

��(n� k)/2
 
.

Combining the above two cases, we obtain that

nX

k=kt+1

�k =

n/2X

k=kt+1

�k +
nX

k=n/2+1

�k

 (n/2)exp
�
� c2n

1��/2
 
+

Z
n/2

0
exp
�
� c1c�n

��x/2
 
dx

 (n/2)exp
�
� c2n

1��/2
 
+ (2/c1c�)n

�
�
1� exp

�
� c1c�n

1��/4
 �

 c3n
� ,

where c3 = 1/c2 + 2/(c1c�).
Secondly, for the �ktE(et(Yi,kt (⌧)�Qi(⌧))) part, note that

|Yi,k(⌧)�Qi(⌧)|  |yi �Qi(⌧)|+
kX

j=1

|�j |  |yi �Qi(⌧)|+ (1� �)�1c�k
1�� .

Hence

�ktE(et(Yi,kt (⌧))�Qi(⌧)))  exp
�
� c2n

1��/2 + (1� �)�1c�tk
1��

t
+ t|yi �Qi(⌧)|

 
 1.

Therefore by (18), we have

E(et(Yi,n(⌧)�Qi(⌧)))  c0
⇣
1 + c3n

�

⌘
+ 1  c0n� ,

where

c0 = c0c3 + (c0 + 1)/(c0c3). (21)

On the other hand, by the argument in (16) with truncated value replaced by Qi(⌧)�L,
we have

E
�
e�t(Yi,k+1(⌧)�Qi(⌧))

 

E
n
e�t(Yi,k(⌧)�Qi(⌧))

⇥
e�t�k⌧ (1� Fi(Qi(⌧)� L)) + et�k(1�⌧)Fi(Qi(⌧)� L)

⇤o
+ c0.
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Similar to (17), by Taylor’s expansion we have

e�t�k⌧ (1� Fi(Qi(⌧)� L)) + et�k(1�⌧)Fi(Qi(⌧)� L)

1� t�k
�
fi(Qi(⌧))� cfL)L+ t2�2

k
.

Then by the same argument as for E
�
et(Yi,k+1(⌧)�Qi(⌧))

 
case, we have

E
�
e�t(Yi,k+1(⌧)�Qi(⌧))

 
 c0n� ,

for 0 < t  cn�(1��). Combining the two cases we complete the proof of (5). To obtain the
tail probability (6), by Markov’s inequality with t = cn�(1��), we have

P(|Yi,n(⌧)�Qi(⌧)| � x)  e�txE
h
exp
�
t|Yi,n(⌧)�Qi(⌧)|

 i
= c0n�e�cn

�(1��)
x.

6.2 Proof of Theorem 3.2

Proof Let Gi,⌧ (x) = ⌧ � Fi(x). Recall the definition of Zi,k+1(⌧) in (11). Notice that
Gi,⌧ (Yi,k(⌧)) = E(Zi,k+1(⌧)|Fi,k) and Gi,⌧ (Qi(⌧)) = 0. Hence Zi,k+1(⌧) can be written as

Zi,k+1(⌧) = ⇠i,k+1 +G0
i,⌧ (Qi(⌧))(Yi,k(⌧)�Qi(⌧)) + ⇢i,k, (22)

where ⇠i,k+1 = Zi,k+1(⌧)�Gi,⌧ (Yi,k(⌧)) is the martingale di↵erence part with respect to the
filtration Fi,k and

⇢i,k = Gi,⌧ (Yi,k(⌧))�G0
i,⌧ (Qi(⌧))(Yi,k(⌧)�Qi(⌧)).

Then by (22), the SGD equation (10) can be written as

Yi,k+1(⌧) = Yi,k(⌧) + �k
⇥
⇠i,k+1 +G0

i,⌧ (Qi(⌧))(Yi,k(⌧)�Qi(⌧)) + ⇢i,k
⇤
. (23)

Averaging (23) for k from 1 to n leads to

n�1
nX

k=1

��1
k

(Yi,k+1(⌧)� Yi,k(⌧)) = ⇠̄i,n +G0
i,⌧ (Qi(⌧))(Ȳi,n(⌧)�Qi(⌧)) + ⇢̄i,n.

By the summation by parts formula on the left hand side of the above identity, we obtain

G0
i,⌧ (Qi(⌧))(Ȳi,n �Qi(⌧))

=n�1��1
n (Yi,n+1(⌧)� Yi,1(⌧))� n�1

n�1X

k=1

(Yi,k+1(⌧)� Yi,1(⌧))(�
�1
k+1 � ��1

k
)� ⇠̄i,n � ⇢̄i,n

=
h
n�1��1

n (Yi,n+1(⌧)�Qi(⌧))� n�1��1
1 (Yi,1(⌧)�Qi(⌧))

i

� n�1
n�1X

k=1

(Yi,k+1(⌧)�Qi(⌧))(�
�1
k+1 � ��1

k
)� ⇠̄i,n � ⇢̄i,n

=(I11 � I12)� I2 � I3 � I4. (24)
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For I11, by Theorem 3.1, we have

P(|I11| > x)  c0n�exp
�
� c�cn

(1+�)(1��)x
 
.

For I12, by the boundedness of Yi,1(⌧) and Qi(⌧) we have

|I12|  (cy +M)/(nc�).

For I2, take ak = �2k�(1+�)(1��)n��
2
, such that

P
n�1
k=1 ak  1. By Theorem 3.1 we have

P
⇣��(Yi,k+1(⌧)�Qi(⌧))(�

�1
k

� ��1
k+1)

�� > nakx
⌘

c0k�exp
n
� cnakk

�(1��)x/|��1
k

� ��1
k+1|

o

c0n�exp
�
� cc��

�1nakk
(1+�)(1��)x

 

c0n�exp
�
� c1n

1��
2
x
 
,

where the second inequality is due to ��1
k+1 � ��1

k
 c�1

� �k�(1��), c1 = cc�� and c, c0 are
constants in Theorem 3.1. Therefore, by above inequality we have

P(|I2| > x) 
n�1X

k=1

P
⇣
|Yi,k+1(⌧)(�

�1
k

� ��1
k+1)| > nakx

⌘


n�1X

k=1

c0n�exp
n
� c1n

1��
2
x
o

 c0n1+�exp
�
� c1n

1��
2
x
 
.

To deal with I3, since (⇠i,k)k are martingale di↵erences with respect to filtration Fi,k, and
|⇠i,k|  1, thus by Azuma’s concentration inequality, we have

P(|I3| > x)  2exp
�
� nx2/2

 
.

For I4, by Assumption 3.1, |⇢i,k|  cf (Yi,k(⌧)�Qi(⌧))2, take bk = cbk�2�(1��)n�1+2�(1��),
where cb = (1� 2�(1� �))�1, such that

P
n

k=1 bk  1. Then by Theorem 3.1,

P(|I4| > x) 
nX

k=1

P
�
cf (Yi,k(⌧)�Qi(⌧))

2 > nbkx
�

 c0
nX

k=1

k�exp
�
� ck�(1��)(nbkx/cf )

1/2
 

 c0n1+�exp
�
� c2n

�(1��)x1/2
 
,

where c2 = c(cb/cf )1/2. Combining I1-I4, we obtain

P(|Ȳi,n �Qi(⌧)| > x)  c0n�exp
�
� c�cn

(1+�)(1��)(x/4� (cy +M)/(nc�))
 

+c0n1+�exp
�
� c1n

1��
2
x/4
 
+ 2exp

�
� n(x/4)2/2

 

+c0n1+�exp
�
� c2n

�(1��)(x/4)1/2
 
, (25)
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which completes the proof of (8). Let x = Clog2(np)n�2�(1��), where C > 0 is a su�ciently
large constant, by (8) and the union bound, we have

P
�
max
1ip

|Ȳi,n(⌧)�Qi(⌧)| > x
�

.pn1+�exp
�
� cn(1��

2)x
 
+ pn1+�exp

n
� c0n�(1��)x1/2

o
+ pexp

�
� c00nx2

 

.pn1+�exp
�
� cClog2(np)n(1��)2

 
+ pn1+�exp

n
� c0C1/2log(np)

o

+ pexp
�
� c00C2n1�4�(1��)log4(np)

 
, (26)

then (9) follows.

6.3 Proof of Theorem 3.4

Proof Recall the following decomposition,

G0
i,⌧ (Qi(⌧))

�
Ȳi,n(⌧)�Qi(⌧)

�
=
⇥
n�1��1

n (Yi,n+1(⌧)�Qi(⌧))� n�1��1
1 (Yi,1(⌧)�Qi(⌧))

⇤

� n�1
n�1X

k=1

(Yi,k+1(⌧)�Qi(⌧)) (�
�1
k+1 � ��1

k
)� ⇠̄i,n � ⇢̄i,n

=: I1 � I2 � I3 � I4.

Following the proof of Theorem 4.2 of Cardot et al. (2017), we again bound each term on the
right-hand side separately. By Condition 3.1, we can apply Theorem 2.2 of Costa and Gadat
(2021). For each n � 1, there is a constant C > 0 such that E(|Yi,n+1 �Qi(⌧)|2)  Cn�� .
For the I1 part, we have

E
(����

Yi,n+1(⌧)�Qi(⌧)

n�n

����
2
)

 n2��2E
�
|Yi,n+1(⌧)�Qi(⌧)|2

 
 C

1

n2��
.

Applying Cauchy-Schwarz, we have for a constant C1 > 0,

E
⇢����

Yi,n+1(⌧)�Qi(⌧)

n�n

����

�
 C1

1

n1��/2
.

Further, there is a constant C2 > 0 such that

E
⇢����

Yi,1(⌧)�Qi(⌧)

n�1

����

�
 C2

n
.

For the I2 part, since ��1
k+1 � ��1

k
 2�k��1, there exists a constant C3 > 0 such that

E
(�����

1

n

n�1X

k=1

(Yi,k+1(⌧)�Qi(⌧))
�
��1
k+1 � ��1

k

�
�����

)
 2�

n

n�1X

k=1

E (|Yi,k+1(⌧)�Qi(⌧)|) k��1

 C3

n1��/2
.
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For the I4 part, by condition 3.1, we have that |⇢i,n|  cf (Yi,n(⌧)�Qi(⌧))2. Consequently,
we have for a constant C4 > 0,

E
 �����

1

n

nX

k=1

⇢i,k

�����

!


cf
n

nX

k=1

E
�
|Yi,k(⌧)�Qi(⌧)|2

 


cfC

n

nX

k=1

k��  C4
1

n�
.

Finally, we bound the martingale term by using Azuma’s inequality,

P(|I3| > x)  2exp
�
� nx2/2

 
.

By Markov’s inequality, we have

P
���G0

i,⌧ (Qi(⌧))
�
Ȳi,n(⌧)�Qi(⌧)

��� > x
 

 2exp
�
� nx2/2

 
+

C1 + C3

xn1��/2
+

C2

xn
+

C4

xn�
.

6.4 Proof of (7)

Following the notation of Cardot et al. (2017), let Zn be the SGD estimate of the univariate
median, m, updated recursively via

Zk+1 = Zk + �k
⇣
⌧1Xk+1>Zk � (1� ⌧)1Xk+1Zk

⌘
, (27)

with constant initial value Z0 = z and learning rate �k = c�k�↵, with 1/2 < ↵ < 1,
and some constant c� > 0. Define Un+1 := ⌧1Xk+1>Zk � (1 � ⌧)1Xk+1Zk and consider
a sequence of �-algebras Fn := �(X1, . . . , Xn). Further, let �(Zn) := E (Un+1|Fn) and
⇠n+1 := �(Zn)� Un+1. Let �n := �(Zn)� f(m)(Zn �m), where f is the density of Xk.

Consider the following decomposition of the SGD estimate of the median in (4.2) of
Cardot et al. (2017) with d = 1,

Zn �m = Zn�1 �m� �nf(m) (Zn�1 �m) + �n⇠n � �n�n�1

= �n�1 (Z1 �m) + �n�1Mn � �n�1Rn

=: I1 + I2 + I3,

(28)

where

Rn :=
n�1X

k=1

�k�
�1
k

�k,

Mn :=
n�1X

k=1

�k�
�1
k

⇠k+1,

and �n =
Q

n

k=1 ↵k with ↵l = 1� �kf(m) and �0 = 1.
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We want to show that the following upper bound in the Proof of Theorem 4.1 on Page
10 in the Appendix of Cardot et al. (2017) is also valid in the univariate case, which is not
covered due to the violation of Assumption (A3),

P (|Zn �m| > t)  2exp

⇢
��C0t2n↵

1 + C3t

�
+

C1e�C4n
1�↵

t2
+

C2

n↵t
,

for constants C0, C1, C2, C3 > 0. The bounds for parts I1 and I2 follow from the proof of
Theorem 4.1. For part I3, we have to assume that the random variable X has a di↵erentiable
density function f(x), with f(m) > 0 and |f 0|1  cf < 1. Then we have, since |�k| 
cf (Zk �m)2,

E (|�n�1Rn|) 
n�1X

k=1

���n�1�
�1
k

��E (|�k|)


n�1X

k=1

���n�1�
�1
k

�� cfE
⇣
|Zk �m|2

⌘
.

By Theorem 2.2 of Costa and Gadat (2021) there exists a constant C > 0 such that

E
⇣
|Zk �m|2

⌘
 Ck�↵. Finally, we have

E (|�n�1Rn|)  CfCc�

n�1X

k=1

1

k2↵
���n�1�

�1
k

��

= O(n�↵).
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