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1 Introduction

Over the past thirty years, numerous psycholin-

guistic studies have shown the structural priming

effect (also called syntactic priming) (Dell and Fer-

reira, 2016): speakers tend to reuse the syntactic

structures they have recently encountered during

production (Bock, 1986). For example, speakers

tend to produce a double object (DO) structure

(e.g. The student sent the professor a letter) rather

than a prepositional dative (PD) structure (e.g. The

student sent a letter to the professor) after encoun-

tering a DO sentence (e.g. Alice gave Bob a book).

Structural priming is observed even when no word

is shared between prime and target sentences (Pick-

ering and Branigan, 1998).

Two mainstream theories have been proposed

to account for structural priming, specifically the

factors that affect priming strength. Pickering and

Branigan’s (1998) lexical activation theory claims

that activation of the representations that have been

accessed to produce or comprehend a structure per-

sists for a short time, so the representations can be

reused on the next relevant opportunity. The lexical

activation theory correctly predicts that the struc-

tural priming effect is stronger when the word that

heads the primed structures is repeated between

prime and target sentences, which is known as the

lexical boost effect (Pickering and Branigan, 1998).

For example, if the target sentence is Alice gave

Bob a book, the structural priming effect is stronger

if the prime is Carl gave Danis a letter rather than

Alice showed Bob a book.

Alternatively, the implicit learning theory by

Chang et al. (2006) claims that humans implic-

itly learn probabilistic information about different

structures from experience and use such informa-

tion to predict the form of a prime sentence. Cru-

cially, priming strength is determined by the dif-

ference between the predictions from probabilistic

information and the actual input. Therefore, the im-

plicit learning theory predicts the inverse frequency

effect (Jaeger and Snider (2007), Bernolet and Hart-

suiker (2010)): less preferred syntactic alternatives

(measured by the relative frequency in the learner’s

experience against those of the counterparts) cause

stronger overall priming than more preferred struc-

tures. For example, since give is biased towards

DO in English, a prime sentence with give in a PD

structure will cause greater priming effect than a

prime sentence with give in a DO structure.

Recently, Cho et al. (2020) and Smolensky et al.

(2022) proposed the Gradient Symbolic Computa-

tion (GSC) framework as a general model of human

cognitive processing. Brehm et al. (2022) instanti-

ated this framework in a model of the incremental

processes involved in language production, result-

ing in the Parallelism in Producing Syntax (PIPS)

model. Brehm et al. (2022) showed that PIPS can

effectively simulate the agreement attraction effect

(Bock and Miller, 1991) in language production

with the preamble-completion paradigm. In the

current paper, we show that the same PIPS model

can be used to model the strength of structural prim-

ing. Specifically, our simulation results suggest that

the PIPS model can qualitatively reproduce both

the lexical boost effect and the inverse frequency

effect observed in humans by varying the model

parameters determining the strength and modes of

priming, as well as the hyperparameters determin-

ing the internal representation of the model.

2 Background: GSC and PIPS

In this section, we briefly introduce relevant fea-

tures of GSC and PIPS, but refer the reader to the

original papers for mathematical and implemen-

tational details (Cho et al. (2020), Brehm et al.

(2022)). A GSC parser simulates a continuous-

time, continuous state cognitive system with a neu-

ral network that uses tensor product representation

(filler-role bindings) to encode binary tree struc-

tures Ð decomposable vector representations of
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symbolic structures (Cho et al., 2020). As illus-

trated in Cho et al. (2018), to encode a tree struc-

ture S[1](A,B), we can represent each unique

position by a role and bind the content (i.e. filler) at

that position to the role. If we assign roles r,0,1

to the root, the left child, and the right child, re-

spectively, the filler/role binding of the structure is:

S[1](A,B) ≡ {B/1,S[1]/r,A/0}.

As a stochastic dynamic system, a GSC parser

computes a discrete structure gradually by optimiz-

ing over a set of grammatical and non-grammatical

constraints. The grammatiacl constraints, defined

in terms of Harmonic Grammar (Hale and Smolen-

sky, 2006), impose a reward or a penalty on the

wellformedness of a gradient symbolic structure.

Optimizing over grammatical constraints means

finding the structures that best satisfy the con-

straints of the grammar. To model the structural

uncertainty during incremental parsing, the GSC

parser yields a conjunctive blend of multiple possi-

ble parsing structures simultaneously. It is forced

to converge to a final parsing decision within fixed

time steps through a commitment policy q. As q

increases at each time step, the parser is forced

to move closer to grid states, at which the bind-

ings of each role to all symbols have activation

0 except one, which has activation 1 (Cho et al.,

2018). When q reaches its maximum value, the

parser commits to a parsing structure.

PIPS implements a GSC parser for sentence pro-

duction by co-activating possible parses according

to a given preamble (Brehm et al., 2022). Crucially,

PIPS represents the similarity between filler vec-

tors (similarly between role vectors) by similarity

scores, which is defined as the dot product between

the two vectors. Higher similarity scores means

greater co-activation between two roles (or fillers).

Similarity score is the key component in PIPS that

models the structural and lexical similarities among

representations.

3 Simulation Procedure

We have adapted the PIPS model for simulating

the structural priming results from Pickering and

Branigan (1998) in the following way.

3.1 Training

We constructed three probabilistic context free

grammars (PCFGs) that generate ditransitive sen-

tences with both DO and PD structures using the

9 dative verbs studied by Pickering and Branigan

(1998). To isolate the verb effect, we abstracted

away the content of the noun phrases and only in-

cluded three fillers for noun phrases: NPs (subject),

NPi (indirect object), and NPd (direct object). The

three PCFGs can therefore each produce exactly 18

sentences: for each verb, either the DO structure

(NPs VERB NPi NPd) or the PD structure (NPs
VERB NPd to NPi). The frequency distribution

over the 18 sentences is determined by counting the

verb-specific occurrences of DO and PD structures

in the British National Corpus (Yi et al., 2019), see

Appendix A for reference.

Since the absolute frequency of give dominates

those of the remaining 8 verbs, this caused other

verbs to be underrepresented. For example, give

has 23713 total occurrences while loan only has

23, so that loan almost vanished in the probabilistic

distribution over the 18 sentences with absolute fre-

quency. To mitigate such a dominance effect, we

trained three separate models over the three PCFGs

with different probabilities over the 18 structures,

as they are proportional either to: (i) the absolute

frequency of verbs in each structure; (ii) the nor-

malized frequency, such that all verbs are equiprob-

able yet the relative probability of DO vs. PD for

each verb is preserved; or (iii) all 18 sentences are

equiprobable. We labeled the three models as ABS,

NORM, and BASE, respectively.

As is mentioned in section 2, similarity scores

are hyperparameters defined over pairs of fillers.

We did a hyperparameter search over three types

of similarities on the VP fillers: (i) two sentences

share the same structure; (ii) two sentences share

the same verb; (iii) two sentences share nothing.

Each similarity score ranges from 0.2 to 0.7, on par

with Brehm et al. (2022). We used the similarity

scores (0.7, 0.2, 0.2) for the three types in training

since this set of scores yielded the most human-like

behavior in terms of structural priming.

3.2 Evaluating Priming Effects

An evaluation trial consists of a priming phase fol-

lowed by a preamble completion phase.

We simulated priming by activating the relevant

bindings (a symbol at a position in tree representa-

tions) of a prime sentence to the activation level (i.e.

priming weights) at time step 0 (i.e. before the start

of production). Such activations decay in the rate

of 0.9, together with the preamble input, simulat-

ing the memory decay in humans, as is on par with

Brehm et al. (2022). We experimented with three
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modes of priming: (i) only the nonterminal bind-

ing for the prime’s VP node (which encodes both

structural and verb information) (structure); (ii) all

terminal bindings, corresponding to the words in

the prime sentence but no structural information in

higher layers of the tree (words); (iii) all bindings,

both terminal (words) and nonterminal (structure)

information of the prime sentence (whole). We

varied activation values of the prime among 0.05,

0.1, and 0.2.

For the preamble completion phase, we gave the

preamble ªNPs VERBº to the model with each of

the 9 verbs, having primed it with each of the 18

conditions (9 verbs and 2 structures for each verb)

in each of the three priming modes with the three

weights. Following previous work, we activated the

preamble to 0.5. For each of the prime+preamble

combinations, we ran the model with 50 production

trials and recorded the production proportion of

each of the 18 sentences. Productions that were not

equal to any of the 18 sentences (i.e. ungrammati-

cal productions) were recorded as Others. We con-

sequently obtained the production distribution of

each target verb primed with all 18 structure prim-

ing conditions, which we used to compute the rela-

tive priming strength of each structure+preamble

combination. We also ran each model with no prim-

ing as the baseline for comparison.

4 Results and Discussion

4.1 Quantifying Priming Effects

To assess the strength of structural priming, we

computed for each target verb (given in the pream-

ble) the average deviation between the primed pro-

duction and the baseline (i.e. production without

priming), as shown in (1) and (2) 1.

Ratiov(DO) =
#DOv

#DOv +#PDv

(1)

Devv
′

v (DO) = Ratiov(DO)byv′−Ratiov(DO)unprimed

(2)

First, we computed the proportion of sentences

generated with the correct verb that contained the

primed structure. We also did this distinguishing

whether the prime sentence contained the target

verb or not. We call the first quantity the Structure

Priming score as shown in (3), which measures the

1For the sake of space, we don’t lay out the formula for
the PD counterpart

structural priming effect: within the cases in which

the model correctly produced the target verb, prim-

ing by a DO sentence should increase the propor-

tion of DO over PD sentences, and vice versa. We

call the second quantity the LBE score as shown in

(4), which measures the lexical boost effect: when

the verb is repeated in prime and target, we expect

the model to produce even more sentences of the

primed structure, compared to priming by another

verb.

StrucPriming =

∑
v∈V

∑
s∈{DO, PD} Devv(s)

#conditions
(3)

LBE =

∑
v∈V

∑
s∈{DO, PD}[Devvv(s)− Devv

′

v (s)]

#conditions
(4)

Finally, we computed the difference between the

deviation primed by the less preferred structure

and the deviation primed by the more preferred

structure. We call it the IFE score as shown in

(5), which measures the inverse frequency effect:

if a verb is biased towards PD, then we expect

the model to produce more DO sentences when

being primed by a sentence with this verb in a DO

structure (i.e. the less preferred one) than such

a priming boost of producing more PD sentences

when primed by a sentence with this verb in a PD

structure (i.e. the more preferred one). We only

computed IFE score for NORM and ABS models,

since there is by definition no structural bias in the

BASE distribution.

IFE =

∑
v∈V

∑
v′∈VPD

[Devv
′

v (DO)− Devv
′

v (PD)]

#conditions
(5)

Since all three scores are computed as the de-

viation from baseline or from the counterpart, we

interpret positive values as aligning with the human

results.

4.2 Results

As shown in Fig. 1, in all priming settings, the

Structural Priming scores and the LBE scores are

positive, suggesting that PIPS can qualitatively re-

produce human results in structural priming and

lexical boost effects. Moreover, we found a strictly

increasing relation of both quantities with respect to

priming modes and weights. The more the priming
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Figure 1: The Structural Priming score is plotted at the

top, the LBE score is plotted in the middle, and the IFE

score is plotted at the bottom.

bindings are activated, the stronger both effects are.

Priming the model on solely structural information

is less effective (i.e., yields weaker effects) than

on all lexical information, which is less effective

than on both types of information. The simulation

results align with results in Pickering and Brani-

gan (1998) and correctly reflect our predictions on

priming modes and weights.

Turning to the IFE scores, we observe that the

scores are only positive in the NORM model, while

they are negative in most of the priming settings for

the ABS model. Further in the NORM model, we

only observe an increasing relation of the inverse

frequency effect when the priming weight is 0.1

and 0.2, and we interpret the values with priming

weights equals 0.5 as noise. However, no correla-

tion is observed in the BASE and ABS models be-

tween priming settings and weights. Therefore, we

conclude that the PIPS model with the current hy-

perparameter setting could only model the inverse

frequency effect when the training probabilistic

distribution of the 18 sentences are normalized.

4.3 Interpreting the Results

Our results show that the PIPS model is capable

of modeling both the structural priming effect and

the lexical boost effect. We haven’t found a good

way of aligning our simulation results with human

results directly, since the human baseline produc-

tion distribution of the 9 verbs isn’t presented in

Pickering and Branigan (1998).

It remains a question why only the NORM model

captures the inverse frequency effect. As noted

earlier, the inverse frequency effect has been at-

tested in Jaeger and Snider (2007) and Bernolet

and Hartsuiker (2010). Why might we find a dif-

ference in the ability of the different models to

simulate this effect? One additional difference we

note among our models is their ability to learn

the data distribution reflected in the PCFGs used

for training. We computed the Jensen-Shannon

divergence between the probabilistic distribution

specified in each PCFG and the production distri-

bution of the two models in the unprimed base-

line: JS(NORM) = 1.2698, JS(ABS) = 2.5982.

Since the NORM model learns the target PCFG

distribution better than the ABS model, this could

be one factor explaining the NORM model’s ability

of modeling the inverse frequency effect. We leave

the question of what parameters and target distri-

butions the PIPS model is sensitive to for future

investigation.

5 Conclusion

We have shown that the PIPS model is able to sim-

ulate the structural priming effect, the lexical boost

effect, and the inverse frequency effect under some

conditions. More broadly, we demonstrate the po-

tential of GSC framework to simulate the process

of human sentence production. The relation be-

tween the model and the two theories, though, is

worth discussion. On the surface, it follows a tran-

sient activation approach, yet the fact that it could

model the inverse frequency effect, as a prediction

of implicit learning theory, is interesting. In future

work, we will extend this priming simulation to

the production of filler-gap dependencies (Momma,

2022) with PIPS.
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A List of Verbs and Structure

Frequencies

Verb DO Frequency PD Frequency

give 15311 8402

show 502 571

send 658 3134

lend 177 677

hand 308 659

loan 12 11

offer 752 1203

sell 190 1288

post 1 55

Table 1: The DO vs. PD frequencies of the 9 verbs

studied in Pickering and Branigan (1998).
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