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Blink rate and facial orientation 
reveal distinctive patterns 
of attentional engagement 
in autistic toddlers: a digital 
phenotyping approach
Pradeep Raj Krishnappa Babu 1,10, Vikram Aikat 2,10, J. Matias Di Martino 1, Zhuoqing Chang 1, 
Sam Perochon 3, Steven Espinosa 4, Rachel Aiello 5,6, Kimberly L. H. Carpenter 5,6, 
Scott Compton 5,6, Naomi Davis 5,6, Brian Eichner 7, Jacqueline Flowers 5,6, Lauren Franz 5,6,8, 
Geraldine Dawson 5,6,11* & Guillermo Sapiro 1,9,11*

Differences in social attention are well-documented in autistic individuals, representing one of the 
earliest signs of autism. Spontaneous blink rate has been used to index attentional engagement, 
with lower blink rates reflecting increased engagement. We evaluated novel methods using computer 
vision analysis (CVA) for automatically quantifying patterns of attentional engagement in young 
autistic children, based on facial orientation and blink rate, which were captured via mobile devices. 
Participants were 474 children (17–36 months old), 43 of whom were diagnosed with autism. Movies 
containing social or nonsocial content were presented via an iPad app, and simultaneously, the 
device’s camera recorded the children’s behavior while they watched the movies. CVA was used to 
extract the duration of time the child oriented towards the screen and their blink rate as indices of 
attentional engagement. Overall, autistic children spent less time facing the screen and had a higher 
mean blink rate compared to neurotypical children. Neurotypical children faced the screen more often 
and blinked at a lower rate during the social movies compared to the nonsocial movies. In contrast, 
autistic children faced the screen less often during social movies than during nonsocial movies and 
showed no differential blink rate to social versus nonsocial movies.

A large body of literature has utilized eye tracking to document differences in gaze patterns to social versus non-
social stimuli in autistic individuals across the lifespan1–3. While the majority of studies of attention in autism 
have focused on gaze patterns, spontaneous eye blink rate has also been used to assess attention4. Studies have 
demonstrated task-related modulation of blink rate, with rate of blinking inversely related to level of encoding 
of information in working memory and attentional engagement 5–7. The evolutionary basis of varying blink rate 
stems from the idea that real-time assessments of the salience and value of information unconsciously change 
blink rate to increase or decrease the amount of visual information that is processed8. Evidence suggests a con-
nection between spontaneous blink rate and striatal dopamine activity, with decreased blink rate found in persons 
with Parkinson’s disease, attention-deficit/hyperactivity disorder (ADHD), and fragile X syndrome9–11. Hornung 
et al.12 found that, compared to neurotypical children, blink rate and theta spectral EEG power, another measure 
of attentional engagement, were both reduced in autistic children. Another study using eye tracking found that 
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neurotypical children exhibited lower blinking when watching scenes with high affective content, whereas autistic 
children blinked less frequently when looking at physical objects13. These results are consistent with findings that 
autism is associated with reduced social attention1, which is evident as early as 2–6 months of age14,15.

Traditionally, eye tracking has been used to measure gaze and blink rate patterns. We explored whether it was 
possible to detect meaningful patterns of attention via blink rate in toddlers using computer vision analysis (CVA) 
based on data collected via an application (app) on a smart tablet without the use of additional equipment. In a 
previous study, we demonstrated that it was possible to reliably measure atypical patterns of gaze, characterized 
by reduced attention to social stimuli, via CVA in young autistic toddlers compared to their neurotypical peers16.

The current analysis extends previous work by studying blink rate as an additional method for capturing 
patterns of attentional engagement in toddlers while they watched a series of strategically-designed social and 
nonsocial movies on a smart tablet. Along with blink rate, we also estimated the duration of the child orienting 
towards the tablet’s screen, denoted as total time facing forward (TFF). We predicted that neurotypical toddlers 
would reduce their blinking and thus exhibit lower blink rate when viewing movies with high social content, 
as compared to those without social content. In contrast, we predicted that autistic toddlers would either fail to 
exhibit a differential blink rate to movies with social versus nonsocial content or show lower blink rates when 
viewing movies with nonsocial content, suggesting higher attentional engagement when viewing nonsocial 
stimuli.

Results
Effects of group and stimulus type on facing forward and blink rate variables.  To estimate the 
main effects of group and stimulus type (social versus nonsocial movies) and their interaction effects for total 
time facing forward (TFF) and blink rate, a 2X2 mixed ANOVA was conducted. This analysis was based on the 
movies that had primarily social or nonsocial content (refer to the “Methods and materials” section along with 
Fig. 1 for details of the movies presented in the app). Mean TFF and mean blink rate were estimated for both 
the social and nonsocial movies. “Blowing Bubbles” and “Spinning Top” were excluded during this analysis 
since they contain both social and nonsocial content (see Fig. 1). Figure 1 depicts the mean with 5th and 95th 
percentile of the time-series associated with the ‘facing forward’ variable per one second window (see “Methods 
and materials” for details on the computation of ‘facing forward’). The distributions associated with the neuro-
typical/autistic groups are shown in blue/orange. Moments of presentation of social and nonsocial movies are 
highlighted with blue and green (respectively) semitransparent boxes.

A main effect of group was found for mean TFF (F (1, 440) = 40.76, P < 0.0001, ηp
2 = 0.086) and mean blink 

rate (F (1, 440) = 17.63, P < 0.0001, ηp
2 = 0.04). On average, autistic children had lower mean TFF and higher 

mean blink rate compared to neurotypical children. A main effect of stimulus type was also found for TFF (F (1, 
440) = 98.17, P < 0.0001, ηp

2 = 0.18) and blink rate (F (1, 440) = 54.30, P < 0.0001, ηp
2 = 0.12), indicating that, on 

(1) Floating Bubbles

(2) Dog in Grass

(3) Dog in Grass
Right-Right-Left

(4) Spinning Top

(5) Mechanical Puppy

(6) Blowing Bubbles

(7) Rhymes

(8) Toys

(9) Make Me Laugh

(10) Playing with Blocks

(11) Fun at the Park

Figure 1.   Representation of the ‘facing forward’ variable for the participants along with snapshots of the 
presented movies. The blue and green semi-transparent areas in the plot represent the time segments of the 
respective social and nonsocial movies. The line plot in the middle shows the mean of ‘facing forward’ with the 
5th and 95th percentile among the neurotypical (NT) and autistic (AUT) groups for a one second window.
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average, participants exhibited higher TFF and lower blink rate during the social movies compared to nonsocial 
ones.

Interaction effects between group and stimulus type were found for both mean TFF (F (1, 440) = 28.27, 
P < 0.0001, ηp

2 = 0.06) and mean blink rate (F (1, 440) = 7.78, P = 0.005, ηp
2 = 0.02). Comparisons of the mean 

TFF and blink rate values within the neurotypical and autistic groups during social versus nonsocial movies 
are shown in Fig. 2. Within-group statistical analysis using Wilcoxon signed-rank test was performed for each 
of the two groups while comparing the social versus nonsocial movies. The results indicate that the neurotypi-
cal children exhibited significantly higher mean TFF (P < 0.0001, r = 0.68; Fig. 2a) and lower mean blink rate 
(P < 0.0001, r = 0.55; Fig. 2b), both with large effect sizes, during social movies compared to nonsocial. This 
potentially indicates higher levels of attentional engagement during the social than the nonsocial movies in the 
neurotypical group. In contrast, the autistic group had lower mean TFF (P = 0.043, r = 0.33; Fig. 2a) during social 
compared to nonsocial movies with medium effect size and showed no difference in mean blink rate for social 
versus nonsocial movies (P = 0.21, r = 0.17; Fig. 2b).

Examining the differences between the groups using the Mann–Whitney U test for movies of a specific type 
(social or nonsocial), on average, the neurotypical children exhibited higher mean TFF during the social mov-
ies than autistic children (P < 0.0001, r = 0.61; Fig. 2), whereas the two groups did not differ in their mean TFF 
during the nonsocial movies (P = 0.1, r = 0.12; Fig. 2) (see also Fig. 1 for line plot of ‘facing forward’ during the 
task progression). In terms of the mean blink rate, the autistic group exhibited significantly higher mean blink 
rate than the neurotypical group both during social (P < 0.001, r = 0.60; Fig. 2) and nonsocial (P = 0.011, r = 0.25; 
Fig. 2) movies.

To ensure that the overall group difference in TFF was not driving results, we repeated these analyses using 
only the participants having TFF > 0.80 and found that the pattern of results remained consistent along with 
statistical significance (see supplementary materials Figs. S1 and S2 for more details and statistics). The number 
of participants with TFF > 0.80 for the mean TFF and mean blink rate of the social and nonsocial movies are: 
autistic group (N = 20) and neurotypical group (N = 394). The numbers of participants for each individual movie 
are presented in Fig. S2 of the supplementary material. Furthermore, to test whether the participant’s age had 
any effect on the measures, ANCOVA was conducted using ‘age’ as covariate. The pattern of results remained 
consistent after including the covariate.

It is possible that the autistic children were facing forward less during the social movies because, on average, 
the social movies were longer and tended to come toward the end of the app administration, as compared to the 
nonsocial movies. To address this, group differences in TFF were also examined separately for each individual 
movie (Fig. 3). For each social movie, even those that were shorter and presented earlier in the sequence rather 
than toward the end (e.g., “Rhymes”), the difference in TFF between the two groups was significantly different 
with medium to large effect size (P-values and the effect size are presented in Fig. 3), with the autistic group hav-
ing a reduced TFF. For each nonsocial movie, except for “Toys,” there were no significant differences between the 
two groups. Thus, even for the nonsocial movie that was of comparable length to the social movies (“Dog in the 
Grass” = 56 s), the groups did not differ. Additionally, while considering “Toys,” a nonsocial movie, which was 
presented right after the “Rhymes,” a social movie, the autistic group exhibited a large increase in their ‘facing 
forward’ (Fig. 1) towards “Toys,” potentially indicating increased attention to dynamic toys, which was not seen 
for the neurotypical group since they were already ‘facing forward’ during the social movie, “Rhymes”.

Group differences in blink rate were also examined separately for each individual movie (Fig. 3). During each 
of the social movies, the blink rate was significantly different between the two groups with medium effect size 
(P-values and the effect sizes are presented in Fig. 3); the neurotypical group exhibited lower blink rate than the 
autistic group during the social movies. For the nonsocial movies, the autistic group showed significantly higher 
blink rates than the neurotypical for “Floating Bubbles” (medium effect size) and “Toys” (small effect size), but 
no significant differences were observed during “Dog in Grass Right-Right-Left (RRL)” and “Mechanical Puppy”.

In addition to the estimation of the blink rate (see “Methods and materials”), in the supplementary material 
we present the (i) valid number of frames (Table S1) and (ii) raw blinks quantity without normalizing with respect 
to the valid number of frames (Table S2) for both the groups. The blink rate is a normalized representation of 
the ratio of raw blink quantity and valid number of frames for each participant during a movie since we wanted 
to have an estimate of blinking only when the participants are ‘facing forward’ towards the movie. However, to 

Figure 2.   Mean of total facing forward and blink rate for social and nonsocial movies. NT neurotypical and 
AUT​ autistic.
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ensure that the valid number of frames are not inflating the blink rate, we present a similar statistical analysis for 
the valid number of frames and the raw blinks quantity (see Tables S1 and S2). The statistically significant dif-
ferences between the two groups remained the same for the raw blinks quantity. Furthermore, we observed only 
a moderate correlation (Pearson correlation coefficient, r = − 0.45) between the mean TFF and mean blink rate. 
This level of correlation indicates that the TFF and blink rate are two different measures that are complementing 
each other to quantify the participant’s engagement towards the movies.

Distinguishing groups based on three CVA‑based attention measures.  We next examined how 
well the attention measures, mean TFF and mean blink rate, along with mean gaze percent social (MGPS; social 
attention variable) distinguished the two groups using a classification tool. MGPS was based on the percentage 
of time the child gazed at the social elements during “Blowing Bubbles” and “Spinning Top” which displayed 
both social and nonsocial elements separately either on the right or left side of the screen (see “Methods and 
materials” for details about the movies, and Fig. 1). The MGPS variable was available from a previously published 
analysis16. We have included the MGPS for classification analysis because we excluded the movies “Blowing Bub-
bles” and “Spinning Top” in the estimation of mean TFF and mean blink rate. Since MGPS gives an estimate of 
the child’s percentage of look duration towards the social part (left/right) of the screen, we explored its impor-
tance in complementing the mean TFF and mean blink rate for classification.

We considered mean values during social movies (mean TFFsocial and mean blink ratesocial) for this analysis. 
These two measures were moderately correlated (negative) with each other (r = − 0.45), when analyzed using 
the Pearson correlation coefficient. The mean TFFsocial (r = 0.13) was positively correlated and mean blink ratesocial 
(r = − 0.13) was negatively correlated with MGPS. We trained the logistic regression-based classifier using these 
three attention features and the participant diagnostic group as the classification target to assess how these 
measures can potentially be used to identify behaviors linked to autism (Fig. 4). Combining the three features 
achieved a higher area under the curve (AUC) of the receiver operating characteristic (ROC) curve compared to 
when these features were used individually, indicating that these features complement each other. The confidence 

Measures
FB RRL ST Mpuppy BB Rhymes Toys MML PWB FunP

P r P r P r P r P r P r P r P r P r P r
Total facing
forward .08 .13 .11 .12 <.0001 .45 .33 .04 <.0001 .50 <.0001 .63 .001 .28 <.0001 .54 <.0001 .45 <.0001 .43

Blink rate .0001 .35 .06 .14 .0002 .34 .43 .02 .0004 .33 <.0001 .46 .009 .28 .0005 .34 .0001 .42 <.0001 .48

Figure 3.   The box plot shows (i) total facing forward and (ii) blink rate for each of the stimuli based on 
the order in which they were presented. The table shows the respective P-values and the effect size (r). NT 
neurotypical, AUT​ autistic, FB Floating Bubbles, RRL Dog in Grass Right-Right-Left, ST Spinning Top, Mpuppy 
Mechanical Puppy, BB Blowing Bubbles, MML Make Me Laugh, PWB Playing with Blocks, FunP Fun at the 
Park.
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intervals of the ROC curves indicate there was an overlap between the individual features and their combination, 
though the combination still achieved a higher performance.

Relationship between attention variables and clinical characteristics.  For the autistic group, 
we examined the relationship between the mean TFF and blink rate during the social and nonsocial movies 
and several clinical variables, including Mullen Early Learning Composite Score and Visual Reception Score, 
and Autism Diagnostic Observation Schedule (ADOS) Calibrated Severity Scores (ADOS CSS total, restricted/
repetitive behavior, social affect). As shown in Table 1, total time facing forward during the social movies was 
negatively correlated with ADOS total and social affect scores. Autistic children with higher total and social 
affect ADOS CSS spent less time facing forward during the social movies. Mean total time facing forward (TFF) 
during the nonsocial, but not the social, movies was negatively correlated with cognitive abilities (Mullen Early 
Learning Composite Score and Visual Reception Score). Children with higher cognitive abilities spent less time 
facing forward during the nonsocial movies. We did not find any relationships between the mean blink rate and 
the clinical variables (Table 1).

Discussion
Research has consistently documented differences in attentional patterns in autistic individuals, characterized by 
reduced visual social engagement1. Such differences are apparent during infancy and offer a means of detecting 
early signs of autism14,15,17. Thus, developing scalable, objective, and quantitative methods for measuring patterns 
of attentional engagement in infants and toddlers is an important goal.

We have previously shown that CVA can be used to detect distinct patterns of gaze in autistic toddlers, char-
acterized by reduced social attentional engagement, using relatively low-cost, scalable devices without any special 
set-up, equipment, or calibration16. In the present study, we extend this work by demonstrating that using the 
same app shown on a tablet, we can use CVA to capture distinctive patterns of attentional engagement to social 
and nonsocial stimuli in autistic toddlers, based on facial orientation and blink rate. This offers an additional 
quantitative, objective approach to assessing early attention in toddlers.

Overall, autistic toddlers spent less time with their face oriented forward to the movies and exhibited higher 
blink rates compared to neurotypical toddlers. Our finding of reduced attentional engagement, regardless of 

Figure 4.   ROC curves using the features individually or in combination. A mean TFFsocial, B mean blink 
ratesocial, C MGPS, and D all the three features.

Table 1.   Relationships between attention variables and clinical characteristics for autistic group. *P < 0.05, the 
r values are based on Pearson correlation coefficient.

Clinical measures

Mullen scales of early learning ADOS calibrated severity score

Early learning 
composite score Visual reception

Restricted repetitive 
behavior Social affect Total

Mean total facing 
forward

Social − 0.23 0.08 − 0.16 − 0.57* − 0.5*

Nonsocial − 0.38* − 0.37* 0.03 − 0.01 − 0.01

Mean blink rate
Social − 0.14 − 0.09 0.11 0.27 0.26

Nonsocial 0.1 0.11 0.06 − 0.04 0.01
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stimulus type, is consistent with past work18, performed with consumer-grade eye-tracking tools, indicating 
that reduced visual engagement in autistic toddlers is not limited to social stimuli, but also extends to nonsocial 
stimuli. This finding is also consistent with eye tracking studies that reported that autistic toddlers exhibit lower 
overall sustained attention to any dynamic stimuli19. A recent review of studies using functional brain imaging 
to assess social and nonsocial reward processing in autistic individuals suggested that autism is associated with 
general differences in reward anticipation that are not specific to social stimuli20. Considering previous findings 
linking blink rate to reward circuitry mediated by dopaminergic activity11,12, it is possible that differences in 
blink rate in autistic children found in the present study are associated with alterations in brain circuitry related 
to reward anticipation while watching the movies.

In addition to overall differences in attentional engagement, autistic and neurotypical toddlers displayed 
distinctive patterns of attentional engagement when viewing social compared to the nonsocial movies. These 
results align with previous findings indicating that toddlers later diagnosed with autism tend to exhibit reduced 
attention to social scenes in free-viewing eye tracking tasks14, evident as early as 6 months of age21. Neurotypi-
cal children faced the screen more often and blinked at a lower rate during social than nonsocial movies, with 
large effect sizes, suggesting that the social stimuli had higher salience. In contrast, autistic children faced the 
screen less often during social than nonsocial movies and did not exhibit a differential blink rate to social 
versus nonsocial movies. This is consistent with a previous study of blink rate which found reduced blink rate 
in neurotypical children during viewing of social stimuli, possibly due to their increased engagement with the 
stimuli13. Group comparisons showed that, on average, the neurotypical children faced toward the screen more 
often during the social movies than autistic children, whereas the two groups did not differ in their tendency to 
face toward the screen during the nonsocial movies. The combination of three different measures of attentional 
engagement (facing the screen and blink rate during social movies and percent time gazing at social stimuli) 
distinguished between autistic and neurotypical children with an AUC = 0.82.

Limitations of this study include the sample size, which despite being relatively large, did not offer sufficient 
power to determine the influence of sex and other demographic characteristics, such as race and ethnicity. 
Future studies are planned to assess the generalizability of these findings to diverse populations. Such studies 
are particularly important in light of previous findings linking differences in gaze patterns to face stimuli of 
same- versus different-race22,23. Moreover, future studies will be needed to examine the specificity of the findings 
to autism by directly comparing blink rate and facial orientation during viewing of social and nonsocial stimuli 
in autistic children to that of children with other neurodevelopmental disorders, such as ADHD and language 
or developmental delay.

By combining these novel indices of attention with other digital phenotypic features, such as facial 
dynamics24,25, orienting26, and head movements27,28, in the future, it may be possible to develop a scalable robust 
phenotyping tool to detect autism in toddlers, as well as monitor longitudinal development and response to 
early intervention.

Methods and materials
Participants.  Participants were 474 toddler age children recruited during their well-child checkup at four 
pediatric primary care clinics. Based on DSM-5 criteria, 43 toddlers were subsequently diagnosed with autism 
spectrum disorder. Further, 15 toddlers were diagnosed with language delay/developmental delay, and the 
remaining 416 participants were neurotypical (NT). Inclusion criteria were: (i) age 16–38 months and (ii) car-
egiver’s primary language was English or Spanish. Exclusion criteria were: (i) hearing or vision impairments; (ii) 
the child was too upset or ill during the visit; (iii) the caregiver expressed they had no interest or did not have 
enough time; (iv) the child would not stay in their caregiver’s lap, or the app or device failed to upload data, or the 
clinical information was missing; and (v) presence of a significant sensory or motor impairment that precluded 
the child from watching the movies and/or sitting upright.

Ethical considerations.  The study protocols were reviewed and approved by the Duke University Health System 
Institutional Review Board (Pro00085434, Pro00085435). All the methods used in this study were performed in 
accordance with all relevant guidelines and regulations. Informed consent was obtained from all participants’ 
parents or their legal guardians. Informed consent was obtained from actors shown in Fig. 1 to publish identify-
ing information/images in an online open-access publication.

Clinical measures.  Modified checklist for autism in toddlers: revised with follow‑up (M‑CHAT‑R/F).  A 
commonly used screening questionnaire, M-CHAT-R/F29 was administered to all the participants. The caregiver-
completed M-CHAT-R/F (20 questions) was used to evaluate the presence/absence of autism-related symptoms.

Diagnostic and cognitive assessments.  Participants whose M-CHAT-R/F score was ≥ 3 initially or had a total 
score ≥ 2 after the follow-up questions, or whose pediatrician or caregiver expressed developmental concerns, 
were referred for diagnostic evaluation. The Autism Diagnostic Observation Schedule—Toddler Module 
(ADOS-2) was administered by a research-reliable licensed psychologist from the study team who determined 
whether the child met DSM-5 criteria for autism30. The Mullen Scales of Early Learning31 was used to assess the 
participant’s cognitive and language abilities.

Group definitions.  Autistic (N = 43).  This group included toddlers with an M-CHAT-R/F positive score 
and/or with developmental concerns raised by the pediatrician/caregiver who subsequently met DSM-5 diag-
nostic criteria for autism spectrum disorder with or without developmental delay based on both the ADOS-2, 
Mullen Scales, and clinical judgment by a research reliable psychologist.
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Neurotypical (N = 416).  This group included toddlers having a high likelihood of typical development with an 
M-CHAT-R/F score ≤ 1 and no developmental concerns raised by the pediatrician/caregiver, or those who had a 
positive M-CHAT-R/F score and/or the pediatrician/caregiver raised concerns but then were determined to not 
have developmental or autism-related concerns by the psychologist based on the ADOS-2, cognitive testing via 
Mullen Scales, and clinical judgment. Table 2 shows the participants’ demographic characteristics for the autistic 
and neurotypical groups, consisting of 459 participants.

There was another group of participants (N = 15) who had a positive M-CHAT-R/F score and received a 
diagnosis of language delay/developmental delay (LD-DD) without autism. Children included in the LD-DD 
group were those who had failed the M-CHAT-R/F or had provider or caregiver developmental concerns, were 
referred for evaluation and administered the ADOS-2 and Mullen Scales and were then determined by a licensed 
psychologist not to meet DSM-5 criteria for autism. All children in the LD-DD group scored ≥ 9 points below 
the mean on at least one Mullen Early Learning Subscale (1 SD = 10 points). Given the small sample size, we 
present data for the LD-DD group only in the supplementary materials (refer to Table S1, Figs. S3 and S4). The 
demographic characteristics of 474 participants, including the LD-DD participants, are presented in Table S3.

Application (app) administration and stimuli.  The app was administered on a tablet (iPad) that dis-
played developmentally appropriate, short social and nonsocial movies during the child’s well-child visit. The 
tablet was mounted on a tripod placed at ~ 60 cm from the child while the caregiver was holding the child on 
their lap. Any other family members (e.g., siblings) and the research staff who administered the app stayed 
behind both the caregiver and the child. The tablet’s frontal camera recorded the video of the child at 30 fps 
which was further used for CVA to automatically capture their behavioral responses. The social and nonsocial 

Table 2.   Demographic characteristics for neurotypical and autistic groups. The age (in months) at which 
participants received their diagnosis (ADOS-2): M = 23.9, SD = 4.5. The interval (in months) between the age at 
diagnosis and the app administration: M = 0.7, SD = 1.2. ADOS-2 Autism Diagnostic Observation Schedule—
Second Edition. a Significant difference between the two groups based on ANOVA test. b Significant difference 
between the two groups based on Chi-Square test.

Groups

N (%)

Neurotypical (N = 416; 90.63%) Autistic (N = 43; 9.37%)

Age in months

 Mean (SD) 20.59 (3.18)a 24.32 (4.64)a

Sex

 Boy 209 (50.24%)b 32 (74.42%)b

 Girl 207 (49.76%)b 11 (25.58%)b

Race

 American Indian/Alaskan Native 1 (0.24%) 3 (6.97%)

 Asian 6 (1.44%) 1 (2.32%)

 Black or African American 43 (10.33%) 6 (13.95%)

 Native Hawaiian or Other Pacific Islander 0 (0.00%) 0 (0.00%)

 White/Caucasian 316 (75.96%) 22 (51.16%)

 More than one race 41 (9.85%) 7 (16.28%)

 Other 9 (2.16%) 4 (9.30%)

Ethnicity

 Hispanic/Latino 31 (7.45%)b 13 (30.23%)b

 Not Hispanic/Latino 385 (92.54%)b 30 (69.77%)b

Caregiver’s highest level of education

 Without high school diploma 2 (0.49%)b 4 (9.30%)b

 High school diploma or equivalent 14 (3.36%)b 6 (13.95%)b

 Some college education 40 (9.61%)b 10 (23.25%)b

 4-year college degree or more 356 (85.57%)b 23 (53.48%)b

 Unknown/not reported 4 (0.96%) 0 (0.00%)

Clinical variables Mean (SD)

ADOS-2 Toddler Module

 Calibrated Severity Score – 7.60 (1.67)

Mullen Scales of Early Learning

 Early Learning Composite Score – 63.15 (9.94)

 Expressive Language T-score – 28.02 (7.25)

 Receptive Language T-score – 22.90 (4.81)

 Fine Motor T-score – 33.97 (10.40)

 Visual Reception T-score – 33.22 (10.67)
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movies were presented in the same order for all participants, as described next. The total duration of the mov-
ies was about 8 min. All movies contained both visual and auditory stimuli, described below. In both the social 
and nonsocial movies, visual and auditory stimuli were sometimes synchronized (e.g., "Dog in the Grass" and 
"Rhymes") and sometimes non-synchronized (e.g., "Floating Bubbles and "Make Me Laugh"). Nonsocial movies 
contained dynamic objects with sound, unlike the social movies that had higher social content with ethnically 
and racially diverse human actors in the scenes. All the social movies depicted human actors. The language used 
by the actors was provided in English or Spanish depending on the child’s primary language at home. Figure 1 
shows a snapshot of the movies.

	 (1)	 Floating Bubbles (35 s; nonsocial). Bubbles move randomly throughout the frame of the screen with a 
gurgling sound.

	 (2)	 Dog in Grass (16 s; nonsocial). In the first part of this movie, a cartoon barking puppy appears at the center 
and the four corners of the screen.

	 (3)	 Dog in Grass Right-Right-Left (RRL) (40 s; nonsocial). In the second part of this movie, the barking puppy 
appears randomly in the right/left side of the screen at first, followed by a constant right-right-left (RRL) 
pattern. Total length of Dog in Grass = 56 s.

	 (4)	 Spinning Top (53 s; social). An actress plays with a spinning top with successful and unsuccessful attempts 
at spinning, looks towards the screen to convey eye contact, smiles, frowns, and makes a few verbal expres-
sions in English or Spanish.

	 (5)	 Mechanical Puppy (25 s; nonsocial). A mechanical toy puppy barks, jumps, and walks towards a group of 
toys.

	 (6)	 Blowing Bubbles (64 s; social). An actor with a bubble wand blows bubbles with successful and unsuccessful 
attempts blowing, along with smiling and frowning, and looks towards the screen to convey eye contact 
with a few verbal expressions in English or Spanish.

	 (7)	 Rhymes (30 s; social). An actress says nursery rhymes such as Itsy-Bitsy Spider in English or Spanish with 
smiles and gestures.

	 (8)	 Toys (19 s; nonsocial). Dynamic toys with sound are shown.
	 (9)	 Make Me Laugh (56 s; social). An actress demonstrates silly, funny actions with smiling and eye contact.
	(10)	 Playing with Blocks (71 s; social). Two child actors, a boy and a girl, interact and play with toys with occa-

sional verbalizations in English or Spanish.
	(11)	 Fun at the Park (51 s; social). Two actresses stand at each side of the frame, having a turn-taking conversa-

tion in English or Spanish with no gestures.

Estimation of ‘facing forward’ and blink rate variables.  We first used CVA to determine the 
amount of time the child’s face was oriented toward the screen of the device (‘facing forward’). A face detec-
tion algorithm32 was used to capture the child’s face in each frame of the recorded video. In order to track 
only the participant’s face and ignore all other faces in the frame, we performed a semi-supervised face detec-
tion algorithm (for details, see Refs.16,26). Subsequently, we extracted 49 facial landmark points consisting of 
2D-positional coordinates33 that were time-synchronized with the movies. Using the facial landmarks, for each 
frame, we computed the child’s head pose angles relative to the tablet’s frontal camera such as θyaw (left–right), 
θpitch (up-down), and θroll (tilting left–right) (as described in Ref.34).

Facing forward.  A child’s orientation towards the screen, i.e. ‘facing forward’ during any given frame was 
defined using their (i) head pose angle, (ii) eye gaze, and (iii) rapidity in head movement. The child’s head pose 
|θyaw|< 25° was used, acting as a proxy for attentional focus on the screen, consistent with our previous work27,34, 
which is supported by the central bias theory for gaze estimation35,36. Then, for each frame, we checked if the 
estimated gaze of the participant was on the tablet’s screen and if their eyes were open. The participant’s gaze 
information was extracted using an automatic gaze estimation algorithm based on a pre-trained deep neural 
network16,37. Finally, we excluded the frames where the head was moving rapidly (this can lead to errors in the 
CVA). To this end, we first performed smoothing of the head pose signal θyaw, obtaining θyaw’. The head was 
considered to be moving rapidly if at any point θyaw’ of the current frame was > 150% of the previous frame. 
Finally, the total facing forward variable (TFF) was estimated as a percentage of frames ‘facing forward’ out of 
the number of frames for each movie (ranging between 0 and 100). Details on the algorithm are presented in the 
supplementary materials, Algorithm S1.

Blink rate.  We estimated the participant’s number of blinks while they were watching each of the presented 
movies, as described next. OpenFace, a facial analysis toolkit38 that offers facial action units on a frame-by-frame 
basis, was used. These action units are based on the standard facial action coding system39. For the blinking 
action, we used action unit 45 (AU45) to estimate the participant’s blinks. A smoothing of the AU45 time-series 
signal was performed, followed by detecting the number of peaks, which are associated with blink actions (see 
supplementary materials, Algorithm S2). To obtain the blink rate (blink rate), we normalized the number of 
blinks with respect to the number of valid frames. The valid frames were defined as frames during which the 
participant was (i) ‘facing forward’ (see above) and (ii) the confidence outcome of the OpenFace was at or above 
the recommended threshold (i.e. 0.75)38.

Social attention variable using eye gaze estimation.  The “Spinning Top” and “Blowing Bubbles” 
stimuli had equally spatially halved representations of social (actor/actress) and nonsocial (toys/bubbles) com-
ponents on the right or left side of the screen (see Fig. 1). For these two movies, we computed the percentage 
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of the time the participants gazed toward the social/nonsocial portion of the screen. The average gaze towards 
the social portion across the two movies was referred to as mean gaze percent social (MGPS). Previous work by 
our team based on this app16 showed that autistic toddlers looked significantly less to the side of the screen that 
displayed the social elements compared to neurotypical toddlers.

Statistical analysis.  A 2X2 mixed ANOVA was used to estimate the main effects due to (i) participant 
group and (ii) movie type (social and nonsocial) and their interaction effects via the Python method pinguouin.
mixed_anova from Pingouin package version 0.5.240. The Mann–Whitney U test was used to estimate the statis-
tical significance between the groups, using Python method pingouin.mwu. Withingroup comparisons were per-
formed using the Wilcoxon signed-rank test using pingouin.wilcoxon. The statistical power was presented with 
effect size, ‘r’ for pingouin.mwu and pingouin.wilcoxon, and ‘ηp

2’ for ANOVA. Additionally, analysis of covari-
ance (ANCOVA) using pingouin.ancova was performed to determine the influence of covariates. To assess the 
contribution of the three attention features (TFF, blink rate, and MGPS) either individually or in combination to 
distinguish the autistic and neurotypical groups, we used a linear logistic regression from sklearn Python pack-
age version 0.23.241. The classification performance was compared using the area under the curve of the receiver 
operating characteristic considering leave-one-out cross-validation42. Using the Hanley and McNeil method43, 
we have presented the 95% confidence interval (CI).

Data availability
Data that support the findings of this study are available from the corresponding authors upon request and fol-
lowing IRB and privacy regulations.
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