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Abstract

Anticipating future actions in a video is use-
ful for many autonomous and assistive tech-
nologies. Most prior action anticipation work
treat this as a vision modality problem, where
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the models learn the task information primar-
ily from the video features in the action antic-
ipation datasets. However, knowledge about
action sequences can also be obtained from
external textual data. In this work, we show
how knowledge in pretrained language models
can be adapted and distilled into vision-based
action anticipation models. We show that a
simple distillation technique can achieve effec-
tive knowledge transfer and provide consistent
gains on a strong vision model (Anticipative
Vision Transformer) for two action anticipation
datasets (3.5% relative gain on EGTEA-GAZE+
and 7.2% relative gain on EPIC-KITCHEN 55),
giving a new state-of-the-art result'.

1 Introduction

Anticipating future actions in the video of an un-
folding scenario is an important capability for
many applications in augmented reality (Salamin
et al., 2006; Azuma, 2004), robotics (Duarte et al.,
2018; Schydlo et al., 2018), and autonomous driv-
ing (Chaabane et al., 2020; Suzuki et al., 2018).
Anticipating what actions will likely happen in a
scenario, requires one to both recognize what has
happened so far, and use anticipative general knowl-
edge about how action sequences tend to play out.
Most models for this task use a pre-trained video
encoder to extract information about what has hap-
pened so far in the scenario, and use a text-based
decoder to predict what action is likely to happen
in the future (Carion et al., 2020; Dessalene et al.,
2021; Liu et al., 2020; Sener et al., 2020).
However, when trained on the target video
datasets, the generalization of the models depends
'"The models and code wused are available
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Figure 1: A model learning the action anticipation from
only the vision modality (video frames) is essentially
exposed to a very limited set of action sequences. Lan-
guage models, which are pre-trained on large-scale text,
can learn this distribution from the task, and a much
larger domain-relevant text. We propose distilling this
knowledge from text modality models to vision modal-
ity model for video action anticipation task.

on how well these video datasets cover the space of
action sequence distributions. In other words, the
knowledge that is learnt for predicting future ac-
tions is, in effect, limited to the information in the
target video datasets, where obtaining large scale
coverage of action sequences is difficult.

Knowledge about action sequences can also
be obtained from text resources at scale. Lan-
guage models, (e.g. BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019b)), are typically pre-
trained on large collections of unlabeled texts with
billions of tokens, where they acquire a wide-
variety of knowledge including large scale knowl-
edge about common action sequences. For exam-
ple, Table 1 illustrates how the pre-trained BERT
is able to predict the next action in a sequence of
actions extracted from a recipe video in terms of
its verb and the object. Also, it is easier to col-
lect a much larger collection of action sequences
from text sources compared to video annotated with
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. BERT
Masked action sequence @tops
Clean the board — takeout pan — fry,k
wash the onion — clean the fish — E(c))(i)l ’
cut the onion — heat the pan — pour il
oil in pan — [MASK] the fish. wash,

clean

Clean the board — takeout pan — gaﬁ,
wash the onion — clean the fish — cl?ic’ken
cut the onion — heat the pan — pour it ’
oil in pan — fry [MASK]. 0;110n

Table 1: Given a sequence of actions extracted from a
video, BERT @top5 shows the top5 prediction made by
a standard pre-trained BERT for the masked verb and
object of the next action.

segments. As illustrated in Figure 1, EPIC55, a
video dataset of about 800GB only has about 38 K
action sequences, whereas there are around 1M
sequences in the text recipes dataset RecipelM.
Text modality models can thus be exposed to a
much larger variety of action sequences compared
to video-modality anticipation models. However,
because the task is defined only over the video in-
puts there is a question of how one can transfer this
knowledge.

In this work, we show that we can augment
video-based anticipation models with this exter-
nal text-derived knowledge. To this end, we pro-
pose a simple cross-modal distillation approach,
where we distill the knowledge gained by a lan-
guage model from the text modality of the data
into a vision-modality model. We build a teacher
using a pre-trained language model which already
carries general knowledge about action sequences.
We adapt this teacher to the action sequences in the
video domain by fine-tuning them for the action
anticipation task. Then, we train a vision-modality
2 student, which is now tasked with both predict-
ing the target action label as well as matching the
output probability distribution of the teacher.

There are two aspects of language models that
can be adjusted further for improved distillation.
First, while they may contain knowledge about
a broad range of action sequences, we can focus
them towards specific action sequences in the target
dataset. Second, the text modality teacher can be
further improved by pretraining on domain-relevant
texts (e.g. cooking recipes), to further adapt it to
the action sequences in the task domain.

The task requires the anticipation model to make infer-
ence based on the vision modality (video frames) of the video

Our empirical evaluation shows that this cross-
modal training yields consistent improvements over
a state-of-the-art Anticipative Vision Transformer
model (Girdhar and Grauman, 2021) on two ego-
centric action anticipation datasets in the cooking
domain. Adapting the teacher to the task domain by
pretraining on domain relevant texts yields further
gains and the gains are stable for different language
models. Interestingly, our analysis shows that the
language model based teacher can provide gains
even when it is not necessarily better than the vi-
sion student, suggesting that distillation benefits
can also come from the complementary of knowl-
edge, as in the case of the text modality.

In summary we make the following contribu-
tions: (i) We show that a simple distillation scheme
can effectively transfer text-derived knowledge
about action sequences (i.e. knowledge external
to the video datasets) to a vision-based action an-
ticipation model. (ii) We show that text-derived
knowledge about actions sequences contain com-
plementary information that is useful for the antici-
pation task, especially for the case where the action
label space is large. (iii) Using a strong action
anticipation model as a student, we achieve new
state-of-the-art results on two benchmark datasets.

2 Related Work

There has been a wide range of solutions for ac-
tion anticipation ranging from hierarchical rep-
resentaions (Lan et al., 2014), unsupervised rep-
resentation learning (Vondrick et al., 2016), to
encoder-decoder frameworks that decode future ac-
tions at different time scales (Furnari and Farinella,
2019), and transformers trained on multiple auxil-
iary tasks (Girdhar and Grauman, 2021). However,
these only use the vision modality features of the
observed video to train the model for the antici-
pation task. Our work aims to distill text-derived
knowledge to improve action anticipation. Here
we relate our work to others that have made use of
(1) textual knowledge for related tasks, (ii) general
knowledge distillation, and (iii) multimodal mod-
els which also allow for integration of information
from different modalities.

Textual Knowledge for Action Anticipation:
Other works have also shown the utility of model-
ing text-modality. Sener and Yao (2019) transfer
knowledge in a text-to-text encoder-decoder to a
video-to-text encoder-decoder, by substituting the
text encoder with the video encoder. However, this



relies on projecting the image and text features
in a shared space, which requires lots of properly
aligned text and its corresponding image. Cam-
porese et al. (2021) model label semantics with
a hand engineered deterministic label prior based
on the global co-occurrence statistics of the action
labels from the overall training data, which can
be ineffective in case the underlying joint action
distribution is complex. In contrast, our work pro-
poses a different approach to leverage the text in
the training data by using language models to learn
the complex underlying distribution of action se-
quences in the video and then distill this knowledge
into a vision model to improve their performance.

Cross-modal Knowledge Distillation: Thoker
and Gall (2019) propose learning from RGB videos
to recognize actions for another modality. Oth-
ers have used cross-modal distillation for video
retrieval tasks (Hu et al., 2020; Chen et al., 2020)
and for text-to-speech (Wang et al., 2020). Most
relevant to ours is a recent system that improves lan-
guage understanding of text models by transferring
the knowledge of a multi-modal teacher trained on
a video-text dataset, into a student language model
with a text dataset (Tang et al., 2021) . In con-
trast, our proposed method for action anticipation
transfers knowledge gained by a text-based teacher
model into a vision-based student model.

Mutlimodal Models: Due to the recent preva-
lence of multimodal data and applications (Lin
et al., 2014; Sharma et al., 2018; Antol et al.,
2015; Krishna et al., 2017; Ordonez et al., 2011;
Abu Farha et al., 2018; Talmor et al., 2021; Afouras
et al., 2018), there has been plethora of recent work
on multimodal transformers. One commonly used
approach used to train these models is to learn a
cross-modal representation in a shared space. Ex-
amples include learning to align text-image pairs
for cross-modal retrieval (Radford et al., 2021;
Wehrmann et al., 2020), grounded image repre-
sentations (Liu et al., 2019a), and grounded text
representations (Tan and Bansal, 2020; Li et al.,
2019). Hu and Singh (2021) extend the idea for
multi-task settings with multiple language-vision
based tasks. Tsimpoukelli et al. (2021) adapt a vi-
sion model to a frozen large LM to transfer its few-
shot capability to a multimodal setting (vision and
language). However these methods rely on large-
scale image-text aligned datasets for the training
the model, which may not always be available, for

e.g. EGTEA-GAZE+ video dataset has only 10.3K
labelled action sequences. In contrast our distil-
lation approach does not require any image-text
alignment for the anticipation task.

3 Language-to-vision knowledge
distillation for action anticipation

The action anticipation task asks to predict the class
label of a future action based on information from
an observed video sequence. In this task setting,
the model has access to both, video and annotated
action segments (action text) during the train time,
but needs to make the inference only using the
video sequence. The input to the prediction model
is a sequence of video frames up until time step ¢:
X = (X1, Xs,...,X}), and the desired output of
the model is the class label Y of the action at time
t + 7, where 7 is the anticipation time.

To learn an anticipation model, we assume there
is training data of the following form: D =

{(X*, L7, Y} |, where X' = (X{,...,X},) is
the ' training video sequence, Y is the class
label of the future action at time ¢* + 7, and
L' = (L},...,Lt,) is the sequence of action label
of the action segments in the video sequence X".
Each human action can span multiple time steps,
so so the number of actions k% might be different

from the number of video frames ¢*.

Our task is to learn a model g that can predict the
future action label based on the vison modality of
the video sequence X’ only. A common approach
is to optimize cross entropy loss £ between the
model’s predicted label g(X*) and the ground truth
label Y of each training instances, i.e., to mini-
mize: Y, £(g(X%),Y"). Although the sequence
of action labels L is available in the training data,
the semantics associated with these labels is not
properly used by the existing methods for training
the anticipation model.

Here we propose to learn a text-based anticipa-
tion model gy¢,+ and use it to supervise the training
of the vision-based anticipation model g. This train-
ing approach utilizes the knowledge from the text
domain, which is easier to learn than the vision-
based knowledge, given the abundance of event
sequences described in text corpora. Hereafter,
we will refer to the language-based model as the
teacher, and the vision-based model as the student.
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Figure 2: METHOD OVERVIEW: Training- The observation video has two set of features, a sequence of T’

image frames X, and a sequence action labels (e.g.

cut-onion, peel-onion etc.) L corresponding to the

K action segments in X. (a) We train a teacher model to predict Y using the text features L. Then we distill the
knowledge gained by the teacher on text features into the student model that operates on vision modality X. For
this, (b), we train a student model on the vision modality feature X while using the corresponding prediction from
the teacher model as a label prior. Inference- During the inference or test time, the trained student model is used to
predict the future action using only the vision modality of the observed video.

3.1 Overview

The overview of our proposed method is shown
in Figure 2. We augment vision-based anticipa-
tion models (students) with knowledge distilled
from text-based models (teachers) that have access
to knowledge from large scale action sequences.
To this end we fine-tune a pre-trained language
model on the action sequences in the training data.
However, unlike the student, the teacher gets to
see the action labels of the input video segment to
make its predictions (Figure 2a). Then, we train a
vision-based student that learns from the text-based
teacher (Figure 2b).

The teacher in our setting is built using a pre-
trained language model g;,; that has access to
broad knowledge about action sequences. We
fine-tune it on the target dataset as follows. For
each instance, the teacher is given the textual ac-
tion sequence L’ in the input video as the in-
put (or conditioning context), Whicl} then pre-
dicts the anticipated future action Yi,.. The
teacher is trained to minimize the loss defined over

the predicted and true labels, i.e., to minimize:
> Liat(geat(LY), YY), where £ denotes the cross-
entropy loss and Y;,; = gs,¢(L?) is the output of
the text-based teacher model.

We then freeze the reacher, and train a vision-
based student model g that predicts the future ac-
tion using the vision features X". The student is
trained to minimize the loss Lg(Y?,Y",Y,,,) such
that it’s output probability distribution ¥ = ¢(X?)

matches that of the teacher’s output Y?;,;, in addi-
tion to matching the true label Y.

3.2 Teacher

The input to the teacher is a sequence of action
phrases L = (L1, -, L) that denotes the se-
quence of actions observed in the input video seg-
ment. The teacher first uses a standard language
model ¢7,3s to produce a vector fi.+, of the input se-
quence L. In transformer-based language models,
a special token (e.g. [CLS] in BERT) is prepended
to the input sequence. The output contextual repre-
sentation of this special token is used as the final
representation of the entire input sequence.

The teacher uses this f;,; vector to predict the
output labels using the standard linear transforma-
tion (W, b) followed by a softmax layer. In addi-
tion we also train the teacher to predict the main
verb Y,; and the object Yy, of the action Y. These
are predicted using separate linear transformations
(Wy, by) and (W, b,), followed by softmax.

The full set of predictions for input L =
(L1, -+, L) is obtained as:

ft:l?t = ¢LN[(L17 seey Lk)
Y 1ot = softmax(W fi; + b)
Y, = softmax (W fizt + bo)

A~

Y ,p = softmax(Wy fiz¢ + by)

To fine-tune the teacher model, we minimize the
weighted sum of the cross-entropy loss between



the predicted triplet of action, verb and noun and
their corresponding ground truth values.
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3.2.1 Adapting Teacher using Domain
Relevant Texts

Pre-trained LMs have been shown to contain a wide
variety of knowledge, which we hope to distill into
the vision student model. However, there are two
aspects about LMs which limit their applicability.
First, LMs are general purpose models that cover
many domains, but the target video datasets cover
specific domains. For example, many action antic-
ipation datasets are built for the cooking domain.
Second, unlike fluent texts that LM’s are trained on,
the action sequences in the videos are annotated
using simpler verb/object constructions. Adapting
LMs to these differences can benefit the knowledge
distillation. To this end, we make use of domain-
relevant texts (for e.g. the recipes in RecipelM
(Marin et al., 2019) dataset). The recipes are nat-
ural language instructions. To mimic the target
sequences in the video datasets, we convert these
into simpler verb-object constructs, and then use
the standard Masked Language Modeling training
task. Thus, this allows us to not only make use
of generic knowledge about action sequences but
also adapt the text-derived knowledge to the target
domain.

3.3 Student

The student is trained to take the video frames in
the video segment X = (X1, ..., X¢) as input and
predict the future action Y as output. Though the
applicability of the proposed distillation method
is not restricted to any particular class of student
model, we use the recent state-of-the-art Anticipa-
tive Vision Transformer (AVT) (Girdhar and Grau-
man, 2021) as our student model. In AVT, the video
to action prediction is done in two stages, first a
backbone network B generates the feature repre-
sentation of the individual frames in X in a non-
contextual manner.

Zlyeey Rt = B(Xl),,B(Xt)

This is then followed by a transformer based de-
coder head network D, that generates the contex-
tual representation of the frames by transforming

the frame features z;’s in an autoregressive manner.
fvu ey f’Ut = D(zl7 bR Zt)

Y,, = softmax(W,f, + b;)
V=7,

VJE{l,,t}

The feature representations from the head network
Jv;’s are then used to make predictions for the an-
ticipated action f/vj at time unit 5. The anticipated
action Y for the input video X is simply the pre-
dicted label at time unit ¢ i.e. th. During training
the model is also supervised for two other auxiliary
tasks namely future feature prediction and interme-
diate action prediction (see (Girdhar and Grauman,
2021) for details). We denote this combined train-
ing loss function as £ Ay 7.

For the teacher to student distillation, we want
the AVT’s output distribution over action classes
Y to match the teacher’s distribution Ym. To this
end, we minimize the KL divergence between the
teacher prediction ?th and student predictions Y7,
after smoothing the distributions using a tempera-
ture parameter -y, following the standard distillation
technique (Hinton et al., 2015).

Ls=Lavr+As DY [ Y") ()

Dataset Segments Classes T
Epic 55 28.6K +9K 2,513 1.0 sec
EGTEA-Gaze+ 7.3K + 3K 106 0.5 sec

Table 2: Datasets on which the proposed method is
benchmarked. Segments are the number of action seg-
ments in the train + test set, Classes are the number of
action classes in the dataset, 7 is the anticipation time.

4 Experimental Setup
4.1 Datasets

1. Anticipation Datasets We evaluate the
proposed method on two different datasets that
are summarised in Table. 2. Both the datasets,
Epic-Kitchen 55 (Damen et al.,, 2018) and
EGTEA-GAZE+ (Li et al., 2018), are egocentric (first-
person) videos of people cooking some recipe.
Note the proposed method is broadly applicable
to other types of dataset as long as the input video
segments in the training set contain action sequence
annotations. For the Epic-Kitchen 55 dataset, we
use the standard train-test split followed in Furnari
and Farinella (2019). For the EGTEA-GAZE+ dataset,



we report performance on the first of the three train-
test splits following previous work by Girdhar and
Grauman (2021).

2. Domain-Relevant Dataset The teacher can be
improved further by adapting its language model
(LM) to domain relevant texts. To test the effective-
ness of this, we use the Recipel1M dataset (Marin
et al., 2019) to pre-train the LM. The Recipe1M
dataset contains one million recipes along with as-
sociated images (which are not used in this work).
The instructions in a recipe can be seen as a se-
quence of cooking actions to be performed.

4.2 Performance Metrics

For the EGTEA-Gaze+, we report the performance
on topl accuracy (Acc@1) and class mean
recall (Rec@1)-mean recall of the individual
classes, as reported by Girdhar and Grauman
(2021). For the Epic-Kitchen 55 dataset, there
are a set of action classes that occur only in the
train set but not in the test set and vice versa.
Existing anticipation methods, including our pro-
posed work does not support zero-shot learning.
Therefore top5 many-shot class-mean recall
(MS-Rec@5)-mean top5 recall of the classes in the
many-shot-classes, as mentioned in Furnari et al.
(2018), is our primary metric for model evaluation.

4.3 Implementation Details

1. Teacher Training: The teacher model is a
classification layer on top a pre-trained language
model. For the main set of experiments we used
Al1BERT (Lan et al., 2019) as the base language
model. Our choice here is motivated by two main
factors: (i) the pre-training task for A1IBERT focuses
on modeling the inter-sentence coherence which
is important when modeling the sequence of dis-
parate action phrases (ii) it enables faster training of
deeper models. For the EGTEA-GAZE+ dataset, we
trained the model for 4 epochs by minimizing the
weighted cross-entropy loss (inversely weighted by
the relative class frequency) due to the high degree
of class imbalance in the dataset (~ 1 : 24). For the
EPIC-Kitchen-55 dataset, the model was trained
for 8 epochs using regular cross-entropy loss in-
stead of weighted cross-entropy as a lot of classes
in the test label set are not present in the train-set,
and vice versa.

The classification head is a single linear layer
(W - z + b) that projects the feature representa-
tion of the input action sequence into the label

space of the target dataset. For optimizing on both
the datasets, we used the AdamW ((Loshchilov
and Hutter, 2017)) optimizer, with a learning rate
of 1072 and weight decay of 10~7. The context
window for the Epic-Kitchen was set to 5 action
segments whereas for the EGTEA-GAZE+ it was set
to 15 action segments. The teacher training was
performed on two Nvidia RTX Titan-X GPUs. The
teacher training for the EGTEA-GAZE+ takes about
2-4 hours depending on the LM base whereas the
EPIC-Kitchen-55 takes about 3-5 hours to train.

2. Teacher Pre-training: We first parse each
instruction in the RecipelM dataset into a se-
quence event tuples of the form (subject, verb,
object) using an open information extraction sys-
tem (Stanovsky et al., 2018) made available by
AllenNLP (Gardner et al., 2018). To match the
action label structure we see in the video datasets,
we represent each instruction using the sequence
of action, i.e. <verb, object> part of the event. The
actions in the action sequence are sorted by the
discourse order of their corresponding verb in the
instruction. The language model is pretrained on
these (verb, object) sequences using the standard
masked language modeling objective (Devlin et al.,
2019), where some token in the sequence is masked
at random and the model is tasked with predicting
the masked token.

For pre-training, the language models were
trained on the RecipelM dataset for 200K steps
with a batch size of 16. The optimizer used was
AdamW (Loshchilov and Hutter, 2017), with a
learning rate of 10~° and weight decay of 10~ 7.
LM pre-training was performed on a single Nvidia
A100 GPU with the training time varying from 12
hrs for the smallest model (DistilBERT) to 24 hrs
for BERT, RoBERTa, and A1BERT.

3. Student Training: For the student training, all
the hyperparameters and initial conditions (param-
eter initialization) are exactly identical to the ones
used to train the AVT (Girdhar and Grauman, 2021)
baseline model. So any change in the performance
from the baseline is the result of adding the knowl-
edge distillation. The distillation loss coefficient
Mg, for the EGTEA-GAZE+ dataset was set to 150,
and 20 for EPIC-Kitchen 55.

4. Top-K logit distillation: The label space of
EPIC-Kitchen 55 has 2, 513 classes, out of which
only 31% of the classes in the training data are
present in the test data. This leads to the teacher



model assign relatively low probability values to
many classes, which may not be reliable signals
for distillation. Therefore, instead of matching the
probability distribution over all the action classes,
we only match the relative probability distribution
of the top-50 classes with the highest teacher prob-
abilities. For this, we consider the classes cor-
responding to the top-50 logits from the teacher
prediction, normalize them, and only minimized
the KL-Divergence between them and their cor-
responding logits of the student prediction. The
student training was performed on either Nvidia
Tesla V100 GPU and the training time was ~ 24
hrs for EGTEA-GAZE+ and ~ 6 hrs for the EPIC-55
dataset.

5 Results and Analysis

We present the results of text to video knowl-
edge distillation on the AVT (Girdhar and Grau-
man, 2021) model as the student. AVT is the
state-of-the-art model for action anticipation on
the EGTEA-GAZE+ and EPIC-Kitchen 55 datasets
on all performance metrics.

For each of these datasets, we consider the AVT
variants with the best performance as our baseline
and student model. For the EGTEA-GAZE+ dataset,
we consider AVT-h + AVT-b in (Girdhar and Grau-
man, 2021) as our baseline model. Similarly for
the EPIC-Kitchen 55 dataset, we consider, AVT-h
+ 1irCSN152 in (Girdhar and Grauman, 2021) as
our baseline model. > Throughout this section, we
refer to AVT-h + AVT-b and AVT-h + irCSN152
as AVT-1 and AVT-2 respectively. The baseline
models distilled with LM based teacher is denoted
as AVT-1(or 2) + LM Distillation and in case
teacher LM is pre-trained on the recipe domain text,
the resulting model is referred to as AVT-1(or 2)
+ RcpLM Distillation. We tried to reproduce the
AVT model to use as our student and obtain stronger
results than the published version (see Table 3), on
all but one metric. We use this stronger implemen-
tation as our baseline and our student model.

5.1 Does Knowledge distillation from
Language Models help ?

Table 3 shows the result of training the state-
of-the-art baseline model AVT, with and without
the text to vision knowledge distillation, for the
EGTEA-GAZE+ and EPIC-Kitchen 55 dataset. We

3%AVT variants used for the EGTEA-GAZE+ and
EPIC-Kitchen 55 baselines are AVT-1 and AVT-2.

can observe that applying text to vision knowledge
distillation to the AVT leads to performance gains
on both the datasets. For EGTEA-GAZE+, adding
knowledge distillation leads to 2.1% and 2% rel-
ative percentage improvement over AVT-1 on the
Acc@1 and Rec@1 metrics respectively. For the
EPIC-Kitchen 55 dataset, knowledge distillation
leads to a relative performance gain of 3.5% over
AVT-2 on MS-Rec@5 metric.

5.2 Does domain-adaptive pre-training of
teacher improves the task performance ?

To analyze the effect domain adaptive pre-training
on the task, we pre-train the teacher LM on the
RecipelM dataset through the MLM task. The
pre-trained model was then finetuned on the task-
specific video dataset for the anticipation task.
As seen in Table 3, the performance gain of the
teacher directly translates to the performance gain
of the student. For EGTEA-GAZE+ dataset, pre-
training teacher leads to 3.9% and 3.4% rela-
tive improvement over the AVT-1 on Acc@1 and
Rec@1 metric compared to 2.1% and 2% relative
improvement when not pretraining the teacher.
For the EPIC-Kitchen 55 dataset, teacher pre-
training leads to a relative improvement of 7.2%
on MS-Rec@5 metric compared to only 3.5% when
not pre-training the teacher.

EGTEA-GAZE+ EPIC-55

Model

Acce@1 Rec@1 MS-Rec@5
AVT (Girdhar
and Grauman, 2021) | 43.0 35.5 13.6
-published
AVT (Girdhar
and Grauman, 2021) | 43.52 34.87 15.25
-reproduced
AVT + LM 4441 | 3554 | 15.79
Distillation
AVT + RepLM 452 | 361 | 16.36
Distillation

Table 3: Effect of knowledge distillation: Distilling
knowledge from teacher (ALBERT LM) trained on text-
modality of the video data, into vision based student
model leads to student performance gain. Pre-training
the teacher on domain relevant text before task specific
finetuning leads to further performance improvement.*

5.3 How sensitive is the distillation to the
choice of Language Model ?

In order to analyze the sensitivity of the distillation
scheme towards the choice of the language model,



EGTEA-GAZE+ EPIC-55 EGTEA-GAZE+ EPIC-55
Model Model

Acce@1 Rec@1 MS-Rec@5 Acce1 Rec@1 MS-Rec@5
AVT (Girdhar and AVT (Girdhar and
Grauman, 2021) 43.52 | 34.87 | 15.25 Grauman, 2021) 43.52 | 34.87 | 15.25
+ Rcp-ALBERT Rcp-ALBERT
Distillation 45.2 36.1 16.36 Teacher 21.66 | 22.63 | 21.78
+ Rcp-BERT Rcp-BERT
Distillation 44.81 | 35.57 | 15.98 Teacher 22.05 | 23.39 | 21.43
b o ROBERT 45.5 | 36.53| 15.97 Rep~RoBERTa 19.98 | 21.58 | 22.41
istillation Teacher
+ Rcp-ELECTRA Rcp-ELECTRA
Distillaticn 452 | 35.58 | 15.34 it 21.46 | 23.71 | 15.19
+ Rcp-DistillBERT Rcp-DistillBERT
Distillation 44.86 | 35.64 | 16.23 Teacher 21.86 | 22.58 | 21.56

Table 4: Effect of the choice of teacher LM on the
distillation performance. Each of the pre-trained LMs
that we tested as a teacher, showed performance gain
over the baseline AVT model for both the datasets.®

we also trained multiple teachers with different pre-
trained LMs. The result of using different teachers
for the anticipation task is specified in Table 4.
From the table, we can observe that all the teacher
distilled models perform better than the baseline
AVT on all the metrics for both the datasets. This
indicates that the text modality has some informa-
tion that complementary to the vision modality that
if properly exploited can lead to improved perfor-
mance for the anticipation task.

5.4 Should the teacher be always better than
the student ?

To understand the impact of the quality of the teach-
ers, we measured the performance of the teacher
models by themselves on the anticipation task as
show in Table 5. For the EPIC-Kitchen 55 dataset
the teacher performance is much better than the
video-only baseline, whereas, for the EGTEA-GAZE+
dataset, the baseline vision model’s performance
is much better than any of the teachers. Despite
this, the performance gain due to distillation is
greater for the EGTEA-GAZE+ dataset compared to
the EPIC-Kitchen 55 dataset, as seen in Table 3.
This suggests that what matters more for distilla-
tion in this case is the complementary information
gained from the text modality that is not already
present in the vision modality.

6 Conclusions

Action anticipation is a challenging problem that
requires training large capacity video models. In

Table 5: Teacher performance on the anticipation task.
For the EGTEA-GAZE+ dataset, the teacher performance
is much lower than the video only AVT model, where
as for the EPIC-Kitchen 55 dataset, the teacher perfor-
mance is much better than the video-only AVT model.*

this work, we showed how the textual modality of
the input videos, which is often ignored in train-
ing, can be leveraged to improve the performance
of the video models. In particular, we can exploit
the large scale knowledge acquired by pre-trained
language models to build a text-modality teacher
that can provide useful complementary information
about the action sequences to a vision modality stu-
dent. This cross-modal distillation strategy yields
consistent gains achieving new state-of-the-art re-
sults on multiple datasets. Last, the gap between
the performance of the teacher and the student mod-
els for domains with large label space suggests that
there is still room for improvement with better dis-
tillation techniques.

7 Limitations

Real life scenarios have a large space of human
actions which cannot be exhaustively covered by
manually annotated training data. As such it is im-
portant to have models with zero-shot anticipation
capabilities to predict unseen actions. This work
did not explore zero-shot settings but we believe
text-to-video distillation holds promise given the
recent successes of language models in zero-shot
tasks.

In this work we have shown the capability of
text based language models for action anticipation,
especially when the action space is very large and
sparse. Though this work is intended to be a proof
of concept for leveraging text based model for im-



proving video based action anticipation, there is
still a large performance gap between the a text
based language model and vision modality model.
This performance gap indicates fruitful research
avenues in text to vision knowledge distillation for
action anticipation task.

8 Ethical Considerations

Anticipation future action based on videos is an im-
portant for many applications such as assistive tech-
nologies, augmented reality etc. Our work demon-
strates that knowledge derived from text sources
can be used to further improve the performance
of video based action anticipation model. Even
though our proposed work is able to improve the
current state-of-art numbers on the standard bench-
mark datasets, the absolute performance is still low,
especially in the case where the action space is very
large. As such we would recommend to carefully
analyze the cost of erroneous prediction before de-
ploying the system for real world application.

Since the proposed method involves distilling the
knowledge gained by pre-trained language model
from text sources into a vision based model for
action anticipation, this can also transfer the bi-
ases that these languages models can learn from
the training text. As such data on which these
text-based teacher models are trained should be
analyzed for potential biases before deploying the
proposed system for actual application. Analysis
of bias propagation during knowledge distillation
and devising bias reduction techniques are some
potential extension of this work that we are highly
interested in.

9 Acknowledgement

This material is based on research that is sup-
ported in part by the Air Force Research Labo-
ratory (AFRL), DARPA, for the KAIROS program
under agreement number FA8750-19-2-1003 and
in part by the National Science Foundation under
the award IIS #2007290.

References

Yazan Abu Farha, Alexander Richard, and Juergen Gall.
2018. When will you do what?-anticipating temporal
occurrences of activities. In Proceedings of the IEEE

conference on computer vision and pattern recogni-
tion, pages 5343-5352.

Triantafyllos Afouras, Joon Son Chung, Andrew Senior,
Oriol Vinyals, and Andrew Zisserman. 2018. Deep

audio-visual speech recognition. IEEE transactions
on pattern analysis and machine intelligence.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and
Devi Parikh. 2015. Vqa: Visual question answering.
In Proceedings of the IEEE international conference
on computer vision, pages 2425-2433.

Ronald Azuma. 2004. Overview of augmented reality.
In ACM SIGGRAPH 2004 Course Notes, pages 26—
es.

Guglielmo Camporese, Pasquale Coscia, Antonino
Furnari, Giovanni Maria Farinella, and Lamberto
Ballan. 2021. Knowledge distillation for action an-
ticipation via label smoothing. In 2020 25th Inter-
national Conference on Pattern Recognition (ICPR),
pages 3312-3319. IEEE.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. In European conference on computer
vision, pages 213-229. Springer.

Mohamed Chaabane, Ameni Trabelsi, Nathaniel Blan-
chard, and Ross Beveridge. 2020. Looking ahead:
Anticipating pedestrians crossing with future frames
prediction. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision,
pages 2297-2306.

Hui Chen, Guiguang Ding, Xudong Liu, Zijia Lin,
Ji Liu, and Jungong Han. 2020. Imram: Iterative
matching with recurrent attention memory for cross-
modal image-text retrieval. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 12655—-12663.

Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos,
Davide Moltisanti, Jonathan Munro, Toby Perrett,
Will Price, et al. 2018. Scaling egocentric vision:
The epic-kitchens dataset. In Proceedings of the
European Conference on Computer Vision (ECCV),
pages 720-736.

Eadom Dessalene, Chinmaya Devaraj, Michael
Maynord, Cornelia Fermuller, and Yiannis Aloi-
monos. 2021. Forecasting action through contact rep-
resentations from first person video. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.


https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Nuno Ferreira Duarte, Mirko Rakovié, Jovica Tasevski,
Moreno Ignazio Coco, Aude Billard, and José Santos-
Victor. 2018. Action anticipation: Reading the in-
tentions of humans and robots. IEEE Robotics and
Automation Letters, 3(4):4132-4139.

Antonino Furnari, Sebastiano Battiato, and Giovanni
Maria Farinella. 2018. Leveraging uncertainty to
rethink loss functions and evaluation measures for
egocentric action anticipation. In Proceedings of the
European Conference on Computer Vision (ECCV)
Workshops, pages 0-0.

Antonino Furnari and Giovanni Maria Farinella. 2019.
What would you expect? anticipating egocentric ac-
tions with rolling-unrolling Istms and modality atten-
tion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6252—6261.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-0OSS), pages 1-6,
Melbourne, Australia. Association for Computational
Linguistics.

Rohit Girdhar and Kristen Grauman. 2021. Anticipative
video transformer. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages

13505-13515.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7).

Hengtong Hu, Lingxi Xie, Richang Hong, and Qi Tian.
2020. Creating something from nothing: Unsuper-
vised knowledge distillation for cross-modal hash-
ing. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages

3123-3132.

Ronghang Hu and Amanpreet Singh. 2021. Unit: Mul-
timodal multitask learning with a unified transformer.
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 1439—-1449.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
2017. Visual genome: Connecting language and vi-
sion using crowdsourced dense image annotations.
International journal of computer vision, 123(1):32—
73.

Tian Lan, Tsung-Chuan Chen, and Silvio Savarese.
2014. A hierarchical representation for future action
prediction. In European Conference on Computer
Vision, pages 689-704. Springer.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. Visualbert: A sim-
ple and performant baseline for vision and language.
arXiv preprint arXiv:1908.03557.

Yin Li, Miao Liu, and James M Rehg. 2018. In the
eye of beholder: Joint learning of gaze and actions in
first person video. In Proceedings of the European

conference on computer vision (ECCV), pages 619—
635.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dolldr,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740-755. Springer.

Fenglin Liu, Yuanxin Liu, Xuancheng Ren, Xiaodong
He, and Xu Sun. 2019a. Aligning visual regions
and textual concepts for semantic-grounded image
representations. Advances in Neural Information
Processing Systems, 32.

Miao Liu, Siyu Tang, Yin Li, and James M Rehg. 2020.
Forecasting human-object interaction: joint predic-
tion of motor attention and actions in first person
video. In European Conference on Computer Vision,

pages 704-721. Springer.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes,
Amaia Salvador, Yusuf Aytar, Ingmar Weber, and
Antonio Torralba. 2019. Recipelm+: A dataset for
learning cross-modal embeddings for cooking recipes
and food images. IEEE transactions on pattern anal-
ysis and machine intelligence, 43(1):187-203.

Vicente Ordonez, Girish Kulkarni, and Tamara Berg.
2011. Im2text: Describing images using 1 million
captioned photographs. Advances in neural informa-
tion processing systems, 24.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748—8763.
PMLR.

Patrick Salamin, Daniel Thalmann, and Frédéric Vexo.
2006. The benefits of third-person perspective in
virtual and augmented reality? In Proceedings of
the ACM Symposium on Virtual Reality Software and
Technology, VRST 06, page 27-30, New York, NY,
USA. Association for Computing Machinery.


https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.1145/1180495.1180502
https://doi.org/10.1145/1180495.1180502

Paul Schydlo, Mirko Rakovic, Lorenzo Jamone, and
José Santos-Victor. 2018. Anticipation in human-
robot cooperation: A recurrent neural network ap-
proach for multiple action sequences prediction. In
2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 5909-5914. IEEE.

Fadime Sener, Dipika Singhania, and Angela Yao. 2020.
Temporal aggregate representations for long-range
video understanding. In European Conference on
Computer Vision, pages 154-171. Springer.

Fadime Sener and Angela Yao. 2019. Zero-shot antic-
ipation for instructional activities. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, pages 862—871.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic im-
age captioning. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2556-2565,
Melbourne, Australia. Association for Computational
Linguistics.

Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer,
and Ido Dagan. 2018. Supervised open information
extraction. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 885-895,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Tomoyuki Suzuki, Hirokatsu Kataoka, Yoshimitsu Aoki,
and Yutaka Satoh. 2018. Anticipating traffic acci-
dents with adaptive loss and large-scale incident db.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3521-3529.

Alon Talmor, Ori Yoran, Amnon Catav, Dan Lahav,
Yizhong Wang, Akari Asai, Gabriel Ilharco, Han-
naneh Hajishirzi, and Jonathan Berant. 2021. Mul-
timodalqa: Complex question answering over text,
tables and images. arXiv preprint arXiv:2104.06039.

Hao Tan and Mohit Bansal. 2020. Vokenization: Im-
proving language understanding via contextualized,
visually-grounded supervision. In EMNLP.

Zineng Tang, Jaemin Cho, Hao Tan, and Mohit Bansal.
2021. Vidlankd: Improving language understanding
via video-distilled knowledge transfer. Advances in
Neural Information Processing Systems, 34.

Fida Mohammad Thoker and Juergen Gall. 2019. Cross-
modal knowledge distillation for action recognition.
In 2019 IEEE International Conference on Image
Processing (ICIP), pages 6—10. IEEE.

Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi,
SM Eslami, Oriol Vinyals, and Felix Hill. 2021. Mul-
timodal few-shot learning with frozen language mod-

els. Advances in Neural Information Processing Sys-
tems, 34:200-212.

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba.
2016. Anticipating visual representations from unla-
beled video. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages

98-106.

Disong Wang, Jianwei Yu, Xixin Wu, Songxiang Liu,
Lifa Sun, Xunying Liu, and Helen Meng. 2020.
End-to-end voice conversion via cross-modal knowl-
edge distillation for dysarthric speech reconstruction.
In ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing

(ICASSP), pages 7744-7748. IEEE.

Jonatas Wehrmann, Camila Kolling, and Rodrigo C Bar-
ros. 2020. Adaptive cross-modal embeddings for
image-text alignment. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34,
pages 12313-12320.


https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/N18-1081
https://doi.org/10.18653/v1/N18-1081

A Appendix

In this section, we present examples of model pre-
diction for the video action anticipation task for
the EPIC-55 dataset. For each instance we show
the top-5 predictions for (i) video-only model -
AVT (ii) text-based teacher model - LM-teacher
(Rcp-ALBERT) (iii) a LM-teacher distilled student
video model - AVT + LM teacher Distl (AVT +
Rcp-ALBERT Distillation). Note that the end-
task setting is such that, the inference has to be
done only from the video frames, as the text label
for the action segment won’t be available during
the inference time.

Figure 3 and 4 shows example of cases where the
base video only model makes incorrect prediction,
where as the text-based teacher and the teacher-
distilled video model makes correct predictions.
Figure 5 and 6 shows example of cases where the
base video only model makes incorrect prediction,
the text-based teacher makes correct prediction,
however the teacher-distilled video model makes
incorrect predictions.


fig:base_w_teacher_c_distil_c1

EXAMPLE 1

INPUT

put-down_vegetable open_door take_greater take_pan put-down_pan
TARGET: close_door
PREDICTIONS

AVT : [put-down_pan, take_pan, turn-on_hob, open_door, open_drawer]
LM-teacher : [open_door, close_door, put-down_pan, take_pan, turn-on_hob]
AVT + LM teacher Distl : [put-down_pan, take_pan, open_door, close_door,
turn-on_hob]

EXAMPLE 2

put-down_pan put_lid put-down_pan take_pan take_lid

TARGET: put_lid

PREDICTIONS

AVT : [put-down_pan, turn-on_hob, open_door, take_pan, close_door]
LM-teacher: [put-down_pan, open_door, take_pan, put_lid, wash_pan]

AVT + LM teacher Distl: [put-down_pan, turn-on_hob, open_door, take_pan,
put_lid]

Figure 3: Example of instances where the base video-only model makes wrong prediction, whereas the text-based
teacher and the teacher distilled video model makes correct prediction.



EXAMPLE 3

put-down_board:cuttingut_onion put_knife pick-up_kettle open_kettle

TARGET: fill_kettle

PREDICTIONS

AVT: [open_door, turn-on_tap, pour_water, close_bin, open_tap]

LM-teacher: [pour_water, fill_kettle, put-down_kettle, open_kettle, close_kettle]
AVT + LM teacher Distl: [open_door, pour_water, close_bin, fill_kettle,

turn-on_tap]

EXAMPLE 4

INPUT

put_lid move_spoon take_flour open_flour pour_flour
TARGET: put-down_flour
PREDICTIONS

AVT : [pour_flour, put-down_bag, mix_mixture, roll_dough, knead_dough]
LM-teacher : [put-down_flour, pour_flour, ’ stir_flour, mix_mixture, check_flour]
AVT + LM teacher Distl: [pour_flour, roll_dough, mix_mixture, put-down_bag

put-down_flour]

Figure 4: Example of instances where the base video-only model makes wrong prediction, whereas the text-based
teacher and the teacher distilled video model makes correct prediction.



EXAMPLE 1

4

open_fridge take_carrot open_drawer close_fridge putdown_vegetable
TARGET: open_door
PREDICTIONS

AVT: [close_door, close_fridge, put_container, open_drawer, take_knife]
LM-teacher: [close_fridge, open_drawer, open_door, close_door, take_sausage]
AVT + LM teacher Distl: [close_door, put_container, take_knife, open_drawer,

take_container]

EXAMPLE 2

INPUT

put_filter:water drink-from_cup put_cup take_lid take_pan
TARGET: put-down_pan
PREDICTIONS

AVT : [put_lid, stir_pasta, put-down_spoon, change_temperature, stir_pan]
LM-teacher : [put-down_pan, wash_pan, open_door, take_pan, dry_saucepan]
AVT + LM teacher Distl: [put_lid, stir_pasta, put-down_spoon, change_temperature,

open_door]

Figure 5: Example of instances where the base video-only model makes wrong prediction, the text-based teacher
makes the correct prediction, however the teacher distilled video model makes incorrect prediction.



EXAMPLE 3

take_onion put-down_onion close_container take_spatula take_knife
TARGET: cut_onion
PREDICTIONS

AVT: [put_container, take_knife, turn-on_tap, open_fridge, put-down_onion]
LM-teacher: [put-down_knife, cut_onion, mix_food, open_drawer, take_spoon]
AVT + LM teacher Distl: [put_container, take_knife, put-down_knife,
take_container, open_fridge]

EXAMPLE 4

INPUT

take_dough put_dough open_door take_tomato
TARGET: put-down_tomato
PREDICTIONS

AVT : [open_fridge, open_door, turn-on_tap, open_drawer, rinse_hand]
LM-teacher : [put-down_tomato, close_door, take_tomato, take_plate, take_pan]
AVT + LM teacher Distl: [open_fridge, open_door, open_drawer, close_door,
take_bowl]

Figure 6: Example of instances where the base video-only model makes wrong prediction, the text-based teacher
makes the correct prediction, however the teacher distilled video model makes incorrect prediction.



