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Abstract: GPS spoofing attacks are a severe threat to unmanned aerial vehicles. These attacks
manipulate the true state of the unmanned aerial vehicles, potentially misleading the system without
raising alarms. Several techniques, including machine learning, have been proposed to detect
these attacks. Most of the studies applied machine learning models without identifying the best
hyperparameters, using feature selection and importance techniques, and ensuring that the used
dataset is unbiased and balanced. However, no current studies have discussed the impact of model
parameters and dataset characteristics on the performance of machine learning models; therefore,
this paper fills this gap by evaluating the impact of hyperparameters, regularization parameters,
dataset size, correlated features, and imbalanced datasets on the performance of six most commonly
known machine learning techniques. These models are Classification and Regression Decision Tree,
Artificial Neural Network, Random Forest, Logistic Regression, Gaussian Naïve Bayes, and Support
Vector Machine. Thirteen features extracted from legitimate and simulated GPS attack signals are
used to perform this investigation. The evaluation was performed in terms of four metrics: accuracy,
probability of misdetection, probability of false alarm, and probability of detection. The results
indicate that hyperparameters, regularization parameters, correlated features, dataset size, and
imbalanced datasets adversely affect a machine learning model’s performance. The results also
show that the Classification and Regression Decision Tree classifier has an accuracy of 99.99%, a
probability of detection of 99.98%, a probability of misdetection of 0.2%, and a probability of false
alarm of 1.005%, after removing correlated features and using tuned parameters in a balanced dataset.
Random Forest can achieve an accuracy of 99.94%, a probability of detection of 99.6%, a probability
of misdetection of 0.4%, and a probability of false alarm of 1.01% in similar conditions.

Keywords: unmanned aerial vehicle; GPS spoofing attacks; machine learning; dataset bias; hyperparameter
tuning; dataset imbalance; dataset size; correlated features; regularized learning parameters

1. Introduction

Unmanned Aerial Vehicles (UAVs) depend primarily on the Global Navigation Satellite
System (GNSS) for precise navigation and positioning, which is necessary for guidance and
control during flights. Technical improvements in UAV automation and control have largely
increased in the last few decades; however, cybersecurity has received less attention despite
many reported cyberattacks. One of the most dangerous threats is Global Positioning
System (GPS) spoofing attacks [1]. This type of attack occurs when a malicious user
broadcasts false GPS signals that are difficult to detect [2,3]. These attacks significantly
affect the targeted UAV receiver, especially because the vehicle may remain unaware of the
attack for a prolonged period of time since spoofing gives the attacker virtual control [4,5].
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Numerous studies have been conducted to detect, identify, and mitigate attacks on
UAVs. Table 1 compares existing machine learning techniques with respect to the dataset
and model parameters. The authors of [6] proposed a technique for classifying GPS
spoofing attacks using artificial neural networks (ANNs) with a benchmark that includes
signal-to-noise ratio, pseudo-range, and Doppler shift. The authors of [7] proposed using
Linear Regression and Long Short-Term Memory to detect GPS spoofing attacks and
evaluated their proposed model using time steps and neurons. The authors of [8] used the
least absolute shrinkage and selector operator to detect and classify GPS spoofing attacks
on UAVs. The authors of [9] proposed a k-learning-based approach and evaluated its
performance in terms of several k values. An algorithm based on Support Vector Machine
(SVM) was proposed by the authors of [10], who evaluated its performance using the
evaluation window and time width. The authors of [11] proposed a technique, Long
Short-Term Memory, using a dataset of features such as flight speed, altitude, and range.

Table 1. Comparison of existing machine learning techniques with respect to dataset characteristics
and model parameters.

Detection Model

Dataset Characteristics Model Parameters

Correlation
Technique Class Imbalance Dataset Size Hyperparameter

Tuning Regularization

Artificial Neural
Network [6] - Balanced 3000 Samples - -

Linear Regression-Based
and Long Short-Term

Memory [7]
- - 40,000 Samples - -

Selection Operator, Least
Absolute Shrinkage [8]

Two-Phase
Correlator - -

Selection Operator
and Least Absolute

Shrinkage
-

K-Learning-Based [9] - - - - -

Support Vector
Machine [10] - - - - -

Long Short-Term
Memory [11] - Balanced - - -

Support Vector
Machine [12]

Pearson’s
Correlation
Coefficient

- - - -

DeepSIM [13] - - 7740 Images - -

Metric Optimized
Dynamic and Weighted

Metric Optimized
Dynamic [14]

Spearman’s
Correlation
Coefficient

Balanced 10,055 Samples Bayesian
Optimization -

Random Forest,
Gradient Boost,
XGBoost, and
LightGBM [2]

Spearman’s
Correlation
Coefficient

Balanced 10,055 Samples - -

Bagging, Boosting, and
Stacking [15]

Pearson’s
Correlation
Coefficient

Balanced 10,055 Samples Grid Search -
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Table 1. Cont.

Detection Model

Dataset Characteristics Model Parameters

Correlation
Technique Class Imbalance Dataset Size Hyperparameter

Tuning Regularization

Gaussian Naïve Bayes,
Random Forest,

Classification and
Regression Decision
Tree, Linear-Support

Vector Machine, Logistic
Regression, Principal
Component Analysis,

Artificial Neural
Network, and

Autoencoder [16]

Pearson’s
Correlation
Coefficient

Balanced 10,055 Samples
Grid Search and

Adadelta
optimizer

-

Support Vector Machine
and K-fold [17] - - - K-fold cross

validation -

CONSDET [18] Simple Correlation Balanced 10,296 Samples - -

Resilient State
Estimation [19] - - - - -

5G-assisted UAV [20] - - - - -

Vision Inertial
Measurement Unit [21] - - - - -

Visual Odometry [22] - - - - -

The authors of [12] also applied SVM to detect GPS spoofing attacks by conducting a
correlation analysis and evaluating their model based on accuracy. The authors of [13] used
a deep learning (DL)-based method, DeepSIM, to detect GPS spoofing attacks by employing
a camera and comparing historical GPS images to incoming GPS images using image
processing techniques. The authors of [14] proposed two dynamic selection approaches
based on ten commonly used ML models. The authors of [2] compared several tree-based
ML models, Extreme Gradient Boosting (XGBoost), Random Forest (RF), Gradient Boosting
(GBM), and Light Gradient Boosting (LightGBM), to detect GPS spoofing attacks targeting
UAVs. The authors performed a correlation analysis and used a benchmark with 13 features.
The authors of [15] analyzed three types of ensemble models to detect GPS spoofing attacks
targeting UAVs, including bagging, boosting, and stacking.

The authors of [16] also compared the performance of supervised and unsupervised
ML models, namely Gaussian Naïve Bayes, Random Forest, Classification and Regression
Decision Tree, Linear-Support Vector Machine, Logistic Regression, Principal Component
Analysis, Artificial Neural Network, and Autoencoder, to detect GPS spoofing attacks.
Another study [17] incorporated Support Vector Machine with K-fold cross-validation to
detect GPS spoofing attacks on UAVs. The authors of [18] proposed a semantic-based
detection technique, CONSDET, to support onboard GPS spoofing attack detection. The
authors of [19] proposed a resilient state estimation framework that combines Kalman filter
and Inertial Measurement Unit to address UAV sensor drift issues. The authors of [20]
provided a strategy, 5G-assisted UAV position monitoring, and an anti-GPS spoofing system
to detect live GPS spoofing attack detection. This strategy involves the uplink receiving
signal strength measurements used to detect these attacks. The authors of [21] used a
vision-based approach, combining UAV’s sensors, camera, and Inertial Measurement Unit
to detect GPS spoofing attacks on small UAVs. Another study [22] used a vision-based
approach, employing Visual Odometry methods to detect GPS spoofing attacks on UAVs.
The authors compared the extracted images with the flight trajectory information to detect
and classify spoofed signals.
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Most research on this subject has focused on using specific ML and DL models without
addressing the impact of dataset characteristics and model parameters on model perfor-
mance (Table 1). Multiple issues can hinder the development of feasible models for the
problem at hand. For instance, classification algorithms can perform poorly and have low
generalization ability when trained on small or biased datasets. The classification problem
becomes more challenging when working with unreliable and biased data, such as datasets
containing correlated features. Data reflecting GPS spoofing attacks are challenging to
acquire and are limited; therefore, it is essential to find solutions that improve the quality
of the corresponding dataset instead of focusing solely on increasing model accuracy. In-
vestigating the impact of these factors on GPS spoofing detection techniques is needed to
provide a consensus on best practices and create a basis for future research directions.

In this work, we investigate the key factors that impact the performance of the most
widely used AI models, including dataset characteristics and model parameters such as
feature correlation, class imbalance, dataset size, hyperparameter tuning, and regularization
(Figure 1). The investigated models in this study are SVM, ANN, RF, Gaussian Naïve Bayes
(GNB), Classification, Regression Decision Tree (CART), and Logistic Regression (LR). We
used a benchmark consisting of 13 features [15] for training and testing the models. The
performance of the models are evaluated on the basis of accuracy (ACC), probability of
false alarm (Pfa), probability of detection (PD), and probability of misdetection (Pmd).
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Figure 1. Overview of dataset characteristics and model parameters for detecting GPS spoofing
attacks targeting UAVs.

The main contributions of this paper are:

• Evaluating the impact of hyperparameter tuning and regularization parameters on
the performance of ML techniques to detect GPS spoofing attacks targeting UAVs,

• Evaluating the impact of correlated and uncorrelated features on ML model performance,
• Investigating the impact of correlated features on ML model performance with respect

to dataset size,
• Examining the impact of the percentage of malicious samples in the dataset on ML

model performance.

The remainder of this paper is organized as follows: Section 2 indicates the used
materials and methodology, Section 3 presents and discusses the simulation results, and
the conclusion and future work recommendations are highlighted in Section 4.

2. Methodology

This section briefly discusses the study’s main components: the dataset, data prepro-
cessing and feature selection techniques, classification techniques, and the hyperparameter
tuning approach.
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Figure 2 illustrates the process of the proposed approach. This process comprises
several phases: dataset building, dataset assessment, model training, and model evaluation.
Authentic signals were collected from real-time experiments and malicious signals gener-
ated by simulating 3 types of GPS spoofing attacks [2]. We performed two steps during
data assessment: data preprocessing and feature selection, then applied several techniques
to clean the input data, perform data transformation, and encode the input data. We used a
feature correlation technique, Pearson’s Correlation Coefficient, and a feature importance
technique known as the Chi-Squared Test.
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These techniques led to the identification of correlated features of low importance and
their removal from the dataset. Bayesian Optimization was used during the hyperparam-
eter tuning phase to determine each model’s best parameters for training, guaranteeing
optimal performance. This study targeted six well-known and frequently used classification
algorithms: SVM, ANN, RF, GNB, CART, and LR. We evaluated the selected models in
terms of ACC, PD, Pfa, and Pmd in the last phase.

2.1. Dataset Assessment

The dataset used in this study was previously developed and described in [2]. This
dataset contains legitimate and spoofed GPS samples from three GPS spoofing attacks:
simplistic, intermediate, and sophisticated. These attacks can affect features such as Carrier
Doppler and Carrier to Noise. The corresponding dataset consists of 14,000 samples; 50%
normal signals and 50% spoofed. It includes 13 features (Table 2).

2.1.1. Data Pre-Processing

The dataset used in this study is balanced and does not contain any noisy or missing
values. We used two preprocessing methods: normalization and standardization. The
normalization process rescales the values to fall between zero and one [23]. We applied
a power transformer scalar using the Yeo–Johnson transformation technique [24]. This
approach transforms the data to fit a Gaussian distribution and handles zero, positive,
and negative data values. Other power transformation methods, such as the Box–Cox
transform, are applicable only for positive values. The standardization process rescales the
sample data’s feature values to provide a mean of zero and a standard deviation of one.
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Table 2. List of features with their abbreviations.

Feature Abbreviation

Pseudorandom Number PRN
Carrier Doppler DO

Carrier Phase Shift CP
Pseudo Range PD

Prompt In-phase Component PIP
Receiver Time RX

Prompt Quadrature Component PQP
Time of Week TOW

Prompt Correlator PC
Early Correlator EC

Tracking Carrier Doppler TCD
Carrier to Noise C/N0
Late Correlator LC

2.1.2. Feature Selection

Identifying correlated features during the data preprocessing process is essential since
they indicate a strong relationship between two dependents. This study used a correlation
technique, Pearson’s Correlation [24,25], to predict how well the variables are correlated.
This technique calculates a score that quantifies the strength of a linear relationship between
x and y. A positive score represents a positive linear correlation, while a negative score
indicates a negative correlation. This coefficient, P, is calculated using the following:

P =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1 (xi − x )2 (yi − y)2
(1)

where P is the correlation coefficient, xi is the value of the x-variable for sample i, x is
the mean of the values of the x-variable for sample i, yi is the value of the y-variable for
sample i, y is the mean of the values of the y-variable for sample i, n is the number of
samples in the dataset, and i is the index of a sample. If P is less than 0.39, it is considered a
weak correlation between the two given variables; however, it is a moderate correlation
if P is between 0.40 and 0.89. If P is greater than 0.9, then the those two variables are
highly correlated.

A feature importance approach, the Chi-Squared Test [25], was used to estimate each
feature significance. This technique is widely used to test the independence of two variables:
O and E. It computes how the expected and observed variables deviate from each other.
The Chi-Squared Test score is given by:

X2
c = ∑

(Oi − Ei)
2

Ei
(2)

where c is the degree of freedom, Oi denotes the observed value, and Ei is the expected
value. The degree of freedom is a statistical measure that indicates the number of samples,
or the number of control points, that can be used in the computation. This value can guar-
antee the test’s validity when comparing the observed and expected values to determine
whether a particular hypothesis is correct. Higher parameter values indicate a more reliable
classification decision, which also strongly affects the related ACC.

2.2. Classification Techniques

The machine learning process begins by feeding a training set to an algorithm so it
can learn to categorize data into a given number of classes or labels. The six ML models are
as follows.

RF: a tree-based algorithm commonly used as a supervised machine learning technique
for regression and classification problems. This model generates several decision trees
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on various samples. Every decision tree in the forest can be applied for a majority vote
of the class output. The class with the highest votes becomes the model’s predicted class.
One of the most important aspects of this classifier is its ability to handle continuous and
categorical variables for regression or classification problems [26].

ANN: a supervised neural network consisting of three layers: input, hidden, and
output. This neural network uses backpropagation as a learning technique for training,
testing, and validating data. This function, the gradient of the loss function, can be com-
puted using the weights of every node, one layer at a time, iterating backward from the
last layer to prevent redundant computations in the chain rule. An ANN can employ
non-linear activation functions, distinguishing it from linear perceptron. This model is
sensitive to feature scaling and is a non-convex function with different random weight
initializations [27]. Figure 2 provides a schematic overview of this model.

SVM: a technique that can find a hyperplane in N-dimensional space, where N is the
number of input features that can divide the data points into several classes. It is a complex
algorithm that can achieve high ACC while preventing over-fitting. The training instances
used for the prediction process are selected using a kernel function. Linear SVM, which
employs a linear kernel, is faster than non-linear SVM for multi-class data [28].

GNB: a machine learning technique based on the Bayesian Theorem that classifies data
observations into one of the pre-defined sets of classes using the information provided by
attribute variables. GNB classification suffers from conditional independence. This classifier
assumes that attribute values have a Gaussian distribution given the class label [29]. For
example, suppose that attribute I is continuous with a mean µc,i, a variance σ2

i,c, and belongs
to the class label c. The probability of observing the value xi in attribute i given the class c
is computed using Equation (3):

p(xi|c)
1√

2πσ2
i,c

e
(xi−µc,i)

2

2σ2
i,c (3)

LR: another powerful supervised machine learning algorithm employed for binary
classification and linear regression. This algorithm works based on a logistic function (LF),
defined in Equation (4), to model the probabilities for classification problems with binary
outputs. This model takes a linear combination of features for the input variable X and
applies a non-linear sigmoidal function as given by [30]:

LF =
1

1 + e−x (4)

CART: a nonparametric algorithm that can identify a population’s mutually exclusive
and exhaustive subgroups. These subgroups consist of members that can share similar
features. These features can impact the dependent variable of interest. This algorithm
is one of the oldest and most basic decision tree algorithms. It generates a multi-level
structure that resembles tree branches as a visual output. The class label has two options:
(1) categorical, such as a classification tree, and (2) continuous, such as a regression tree [31].

2.3. Hyperparameter Tuning

ML model construction requires the careful consideration of several parameters. Hy-
perparameter tuning techniques allow the selection of optimal hyperparameters for a given
ML algorithm. The best combination of hyperparameters can improve the learning process
and achieve maximum performance. These techniques can be categorized into manual and
automatic search tuning [32]. Key features are identified and set manually in the manual
tuning technique; however, this does not guarantee optimal results. Automatic search
tuning is a more effective solution for addressing this issue. Examples of automatic search
models include random search, Bayesian Optimization, and grid search [33].

Grid and random search techniques have some limitations that do not assure the most
optimal parameter combinations, such as the curse of dimensionality and unreliability
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when training complicated models [32,33]. Genetic algorithms suffer from other issues, such
as repetitive fitness functions and insufficiency for dynamic datasets; therefore, we used
the Bayesian Optimization algorithm, which is a global optimization technique for noisy
black-box functions intended to achieve the best results [34]. A probabilistic function model
can map the hyperparameter values to the objective, which is evaluated on a validation
set [35]. This technique is based on Bayes’ Theorem, performing a search process that aims
to find the maximum or minimum for the objective function [36]. Bayesian optimization
is widely used for complex, noisy, and expensive objective functions in applied machine
learning [37].

Hyperparameter tuning can also help mitigate model learning issues, such as over-
fitting. This issue can occur when a model can barely capture noise in the given dataset.
A solution is to regularize the model’s parameters, which significantly decreases model
variance without substantial improvement in its bias; therefore, hyperparameter tuning can
effectively control the effects of bias and variance. All critical data features are preserved
during this process until a specific tuning parameter is reached, at which point the model
begins to lose important features, increasing its bias and likely causing underfitting [38];
therefore, the regularized parameter values must be carefully chosen. We have determined
each model’s most important regularized learning parameters and investigated their per-
formance based on selected values ranging from 0.001 to 10 to avoid these issues. The
regularized learning parameters, ranges, and values were obtained from [39,40].

3. Results

Four metrics were used to evaluate model performance: ACC, PD, Pfa, and Pmd. These
metrics are defined as:

ACC =
TP + TN

TP + TN + FP + FN
∗ 100 (5)

PD =
Tp

Tp + FN
∗ 100 (6)

P f a =
Fp

TF + FN
∗ 100 (7)

Pmd =
FN

TN + FP
∗ 100 (8)

where TP defines the number of accurately predicted malicious samples, TN denotes the
number of predicted normal samples, FP is the number of falsely predicted malicious
samples, and FN is the number of falsely predicted normal samples. This work applied
a 10-fold cross-validation method to train 80% of the given data and test 20% of the
remaining data.

Table 3 summarizes the hyperparameter settings for the evaluated models with the
best parameter values according to the Bayesian optimization technique. The regularized
learning parameters determine the level of bias each model can tolerate with respect to an
optimal value. We selected the degree of a correct classification parameter, such as C in
SVM; a penalty parameter, alpha, in ANN; a complexity parameter, such as ccp_alpha, in RF
and CART; a stable value of var_smothing in GNB; and a regularization strength parameter,
C, in LR as the regularized learning parameters that play significant roles in model learning.

The results are illustrated in Figures 3–8. Figure 3 depicts the detection model’s per-
formance using the different values of the regularized learning parameter, r. A significant
improvement for each model can be observed when using specific values. For instance,
SVM reaches the highest performance at r = 8 with an ACC of 96.2%, a PD of 96.2%, a
Pmd of 4.9%, and a Pfa of 6.2%. For r values higher than 8, this classifier’s performance
stagnates. The ANN classifier reaches its maximum performance at r = 5 with an ACC of
99.34%, a PD of 99.4%, a Pmd of 0.6%, and a Pfa of 1.7%. This classifier also stagnates at
values higher than r = 5. Other classifiers performe similarly in terms of the regularized
learning parameters, excluding the GNB classifier.
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Table 3. Hyperparameter settings.

Classifier Regularized Learning Parameter Optimal Hyperparameters Values

SVM C C = 8, degree = 1, gamma = 1.717,
kernel = ‘poly’

ANN alpha activation = ‘identity’, solver = ‘lbfgs’,
alpha = 0.173

RF ccp_alpha n_estimators = 738, max_depth = 112,
min_samples_split = 5, ccp_alpha = 10

GNB var_smoothing var_smoothing = 5

CART ccp_alpha
max_depth = 32.0, Criterion = ‘gini’,

splitter = ‘best’, ccp_alpha = 5,
max_features = ‘log2’

LR C max_iter = 10, penalty = ‘l2’, C = 10
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The GNB classifier reaches its highest performance at r = 5 with an ACC of 91.2%, a
PD of 86.16%, a Pmd of 13.84%, and a Pfa of 2.23%. The ACC of this classifier decreases
slightly in the range of 0 to 0.1; however, it reaches a constant value of 84.9%. Other metrics,
including PD, Pfa, and Pmd, follow similar trends. The RF classifier reaches a maximum
ACC of 99.43% at r = 5 and a maximum PD of 99.6% at r = 0. This classifier also reaches
a minimum Pmd of 1.8% at r = 5 and a minimum Pfa of 1.01% at r = 0.9. This classifier’s
performance remains constant with higher r values. The CART classifier also reaches its
maximum with an ACC of 99.9% at r = 10, a maximum PD of 99.98% at r = 0.9, a minimum
with a Pmd of 0.02% at r = 10, and a Pfa of 1.005 at r = 0.9. This classifier’s performance
remains constant at higher r values. The LR classifier reaches a maximum ACC of 91.2% at
r = 10 and a maximum PD of 86.19% at r = 5, while reaching a minimum Pmd of 13.84%
and a Pfa of 3% at r = 8. The performance of the six selected models slightly increase as the
regulated parameters gradually increased; therefore, optimizing these hyperparameters
can drastically improve the ML model’s performance.

Figure 4 illustrates the simulation results of the selected ML models with default and
tuned parameters in terms of the four evaluation metrics. There is a modest improvement
in the performance of all models after using the hyperparameters identified by the Bayesian
optimization tuning technique. For instance, under the default hyperparameter values, the
ANN classifier scores an ACC of 93%, a PD of 93.4%, a Pmd of 6.6%, and a Pfa of 3.37%. This
classifier achieves an ACC of 99.3%, a PD of 99.4%, a Pfa of 2.01%, and a Pmd of 0.6% with
the tuned values. Similarly, when the RF classifier used the default parameters, it achieves
an ACC of 95.23%, a PD of 96%, a Pfa of 3.2%, and a Pmd of 4%. The model achieves an
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ACC of 99.89%, a PD of 99.87%, a Pfa of 1.8%, and a Pmd of 1.3% when using the tuned
hyperparameters.

The GNB classifier yields an ACC of 88%, a PD of 84.44%, a Pmd of 15.56%, and a Pfa of
5.8%. The same classifier yields an ACC of 91%, a PD of 86.16%, a Pmd of 13.84%, and a Pfa
of 5.8% with tuned parameters. The CART classifier has an ACC of 97%, a PD of 98.1%, a
Pfa of 4.6%, and a Pmd of 1.9% with the default parameters, while the same classifier using
the tuned parameters yields an ACC of 99.99%, a PD of 99.98%, a Pfa of 1.1%, and a Pmd of
0.02%. The same observations hold true for the LR classifier. This classifier yields an ACC
of 89.6%, a PD of 84.4%, a Pmd of 15.6%, and a Pfa of 3.3% with the default parameters, and
an ACC of 91%, a PD of 86.19%, a Pmd of 13.81%, and a Pfa of 3% with tuned parameters.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 15 
 

Figure 7B illustrates the results without correlation. Like in the previous case (Figure 
A), the accuracy and probability of detection increase as the dataset size increases for all 
models, while the probabilities of false alarm and misdetection decrease.  

Therefore, with and without correlations, the performance of machine learning  
models improves when more training data are used.  

(A)  

 
(B) 

Figure 7. Impact of training set size on model performance. (A) Without correlation; (B) With cor-
relation. 

We also evaluated the effect of dataset imbalance on ML model performance by ex-
amining different percentages of normal and malicious data samples in the dataset size of 
14,000 samples (without correlation) by using the following ratios: 10% malicious signals 
to 90% normal signals, 20% malicious signals to 80% normal signals, 30% malicious signals 
to 70% normal signals, and 40% malicious signals to 60% normal signals. The results of 
these four scenarios were compared with those of the original balanced dataset (50% nor-
mal samples and 50% malicious samples). Figure 8 presents the performance of the six 
models for different percentages of malicious signals. As it can be seen, the accuracy and 
probability increase with the rate of malicious signals and reach their best values at a rate 

Figure 7. Impact of training set size on model performance. (A) Without correlation; (B) With correlation.



Appl. Sci. 2023, 13, 383 12 of 15

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 15 
 

of 50%. In addition. the probability of misdetection and false alarm decrease as functions 
of malicious signals rate and reach their best values at 50% rate. Therefore, an imbalance 
dataset causes degradation in classifiers’ performance. 

 
Figure 8. Impact of class imbalance on model performance. 

In summary, we can conclude that: 
• Tuned hyperparameters and regularized learning parameters improve models’ per-

formance in terms of the selected metrics. 
• The presence of correlated features in a dataset degrades models’ performance. Iden-

tifying and removing redundant features from the dataset improves significantly this 
performance. 

• Dataset size plays an important role in models’ performance which increases as the 
size increases. 

• Class imbalance leads to biased models with degrading performance. 

4. Conclusions 
This study aims to investigate the impact of hyperparameters, regularization param-

eters, correlated features, dataset sizes, and imbalanced datasets on the performance of 
six machine learning models in detecting GPS spoofing attacks: ANN, SVM, RF, GNB, 
CART, and LR. The evaluation was performed using four metrics: probability of detection, 
probability of false alarm, probability of misdetection, and accuracy. The simulation re-
sults indicate that using inappropriate of hyperparameters, dataset size, features, and im-
balanced datasets adversely affect the models’ performance. Although this study was per-
formed on GPS spoofing attacks, the results apply to any applications that use machine 
learning models. AS future work, we plan to extend this investigation to evaluate the ef-
fectiveness of other widely used approaches, such as deep learning and deep convolu-
tional models, considering additional evaluation metrics, such as computational complex-
ity, memory usage, and detection time. 

Author Contributions: Conceptualization, T.T.K. and S.I.; software, T.T.K.; data curation, T.T.K.; 
formal analysis, T.T.K. and S.I.; investigation, T.T.K.; methodology, T.T.K. and S.I.; visualization, 
T.T.K. and S.I.; writing—original draft, T.T.K., S.I., and N.K.; writing—review and editing, T.T.K., 
S.I., and N.K.; project administration, K.A.S. and V.K.D.; validation, K.A.S. and V.K.D.; supervision, 

Figure 8. Impact of class imbalance on model performance.

Figure 5 depicts the heatmap for the Pearson’s Correlation Coefficient and Chi-squared
feature importance results. Figure 5a indicates that five pairs of features, DO and TCD,
TOW and RX, PC and LC, PC and EC, and EC and LC, are highly correlated with coefficient
values greater than 0.9. Figure 5b illustrates that the importance of TCD is greater than DO,
RX is greater than TOW, LC is greater than PC, EC is greater than PC, and LC is greater than
EC; therefore, we can keep the features with higher importance scores and remove those
with lower scores. We discarded TOW, PC, and DO from the given dataset and conducted
the training, testing, and validation of all models with the remaining nine features: PRN,
PD, RX, PIP, PQP, TCD, C/N0, CP, and LC.

Figure 6 depicts the simulation results of the models’ performance with and without
correlated features. All models with correlated features yield better results in terms of
the four metrics. For instance, the models have lower ACC with the three correlated
features than those without correlation. The LR classifier yields the highest difference
between correlations and without correlations. This classifier has a 5.23% lower ACC
without correlated features. The SVM model also achieves a 2.39% lower ACC without
correlation. Other models, such as ANN, RF, GNB, and CART, have a lower ACC without
correlations. The CART model exhibits the lowest difference between model ACC in terms
of with and without correlation, with a 0.05% lower accuracy, while the ANN, RF, and
GNB has approximately the same difference, 0.6%, after removing correlations from the
given dataset.

The PD exhibits the same trends. The highest reduction in correlated feature removal
is exhibited by the LR classifier, with 2.31%, whereas the CART classifier has the lowest
reduction of 0.01% in the PD. The GNB classifier has a 0.09% lower PD after removing the
correlated features. Other models, ANN and RF, also slightly have reduced PD by 0.5%
and 0.27%, respectively. The classifiers have a higher Pmd after removing correlations. The
highest Pmd with correlations is exhibited by the LR classifier, at 3.1%, while the CART
classifier has slightly higher results after removing correlations, with a 0.2% lower Pmd.
GNB and AN, have an approximately 2% higher Pmd without correlations, while ANN
and RF have an increase of Pmd by 1% after removing correlations.

Removing correlations also impacts the probability of false alarm. The SVM classifier
has the highest reduction in Pfa, at 1.3%, after discarding the correlated features. The CART
classifier has a higher Pfa, 0.02%, after removing correlated features. The RF classifier has
a slightly higher Pfa after removing the correlated features of 0.01%. Other models, such
as GNB, have an approximately 1% higher Pfa without correlations. Using a dataset with
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correlated features increases model ACC and PD and decreases the Pfa and Pmd. Eliminating
correlated features will ensure more optimal learning and accurate performance for the
final ML models.

Figure 7 illustrates the impact of dataset size on model performance for 1000, 2000,
4000, 6000, 8000, 10,000, 12,000, and 14,000 samples. All created datasets were balanced,
that is, we used equal numbers of both spoofed and normal GPS signal samples from the
original dataset. This investigation evaluates two scenarios: one with correlated features
and the other after removing the correlated features.

Figure 7A illustrates the performance of the six models with correlations in terms of
the four metrics. As it can be observed, all the models exhibit an increase in ACC and PD
and a decrease in the probabilities of false alarm and misdetection ranging from 2% to 10%
as the dataset size increases.

Figure 7B illustrates the results without correlation. Like in the previous case (Figure 7A),
the accuracy and probability of detection increase as the dataset size increases for all models,
while the probabilities of false alarm and misdetection decrease.

Therefore, with and without correlations, the performance of machine learning models
improves when more training data are used.

We also evaluated the effect of dataset imbalance on ML model performance by
examining different percentages of normal and malicious data samples in the dataset size
of 14,000 samples (without correlation) by using the following ratios: 10% malicious signals
to 90% normal signals, 20% malicious signals to 80% normal signals, 30% malicious signals
to 70% normal signals, and 40% malicious signals to 60% normal signals. The results
of these four scenarios were compared with those of the original balanced dataset (50%
normal samples and 50% malicious samples). Figure 8 presents the performance of the six
models for different percentages of malicious signals. As it can be seen, the accuracy and
probability increase with the rate of malicious signals and reach their best values at a rate
of 50%. In addition. the probability of misdetection and false alarm decrease as functions
of malicious signals rate and reach their best values at 50% rate. Therefore, an imbalance
dataset causes degradation in classifiers’ performance.

In summary, we can conclude that:

• Tuned hyperparameters and regularized learning parameters improve models’ perfor-
mance in terms of the selected metrics.

• The presence of correlated features in a dataset degrades models’ performance. Iden-
tifying and removing redundant features from the dataset improves significantly
this performance.

• Dataset size plays an important role in models’ performance which increases as the
size increases.

• Class imbalance leads to biased models with degrading performance.

4. Conclusions

This study aims to investigate the impact of hyperparameters, regularization param-
eters, correlated features, dataset sizes, and imbalanced datasets on the performance of
six machine learning models in detecting GPS spoofing attacks: ANN, SVM, RF, GNB,
CART, and LR. The evaluation was performed using four metrics: probability of detec-
tion, probability of false alarm, probability of misdetection, and accuracy. The simulation
results indicate that using inappropriate of hyperparameters, dataset size, features, and
imbalanced datasets adversely affect the models’ performance. Although this study was
performed on GPS spoofing attacks, the results apply to any applications that use machine
learning models. AS future work, we plan to extend this investigation to evaluate the
effectiveness of other widely used approaches, such as deep learning and deep convolu-
tional models, considering additional evaluation metrics, such as computational complexity,
memory usage, and detection time.
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