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Abstract

Within machine learning, active learning studies

the gains in performance made possible by adap-

tively selecting data points to label. In this work,

we show through upper and lower bounds, that for

a simple benign setting of well-specified logistic

regression on a uniform distribution over a sphere,

the expected excess error of both active learning

and random sampling have the same inverse pro-

portional dependence on the number of samples.

Importantly, due to the nature of lower bounds,

any more general setting does not allow a better

dependence on the number of samples. Addition-

ally, we show a variant of uncertainty sampling

can achieve a faster rate of convergence than ran-

dom sampling by a factor of the Bayes error, a

recent empirical observation made by other work.

Qualitatively, this work is pessimistic with respect

to the asymptotic dependence on the number of

samples, but optimistic with respect to finding

performance gains in the constants.

1. Introduction

Given samples of input-label pairs, machine learning algo-

rithms return decision rules that will predict future labels

given inputs. Active learning studies the possible reduction

in error if the samples are adaptively chosen by the machine

learning system rather than randomly sampled. Active learn-

ing algorithms have been demonstrated to reduce error in a

variety of both theoretical and empirical settings.

Theoretically, there are a variety of cases where the excess

error of active learning has a better dependence (polyno-

mially or even exponentially) on the number of samples,

n, than the excess error of random sampling (Balcan et al.,

2007; Balcan & Long, 2013; Wang & Singh, 2016). In
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Table 1. A table with our lower bounds (impossibility results) and

our upper bounds (algorithm analysis) for both random sampling

and adaptive sampling (active learning) in our setting. c and c′ are

universal constants and err∗ is the Bayes error.

Sampling Result type Exp. Excess Error

Adaptive Impossibility ≥ c err∗ d
n

Adaptive Alg. Analysis ≤ c′err∗ d
n

Random Impossibility ≥ c d
n

Random Alg. Analysis ≤ c′ d log d
n

this work, we show that for a simple benign setting of well-

specified logistic regression on a uniform distribution over

a sphere, the expected excess error of both active learning

and random sampling have the same inverse proportional

dependence on n: the expected excess error decreases as

Θ(1/n).

On a more optimistic note, we show that active learning can

reduce the expected excess error by a distribution-dependent

factor, the Bayes error, which we denote err∗. As our setting

employs well-specified logistic regression as the label distri-

bution, this result matches existing empirical observations

for logistic regression (Mussmann & Liang, 2018a).

A list of the results is shown in Table 1. Note that all results

require the dimension to be larger than a constant and the

number of samples to be sufficiently large in terms of the

specification of the setting (the dimension d, the radius of

the input distribution sphere r, and the norm of the true

parameters M ). Finally, both upper bounds require the

Bayes error, err∗, to be smaller than a constant. Importantly,

because of the simplicity of our setting, the lower bounds

are quite strong while the upper bounds are quite weak and

only show the (almost) tightness of the lower bounds.

The two lower bounds are proved using a variant of Fano’s

inequality (Duchi & Wainwright, 2013; Scarlett & Cevher,

2019) and a carefully designed set of possible logistic re-

gression weights. The proofs use very similar arguments

that differ in the bound on the mutual information. The

random sampling upper bound is shown for the maximum

likelihood estimator (MLE). While the MLE has been ana-

lyzed many times (Van der Vaart, 2000; Lehmann & Casella,

2006; Frostig et al., 2015), our result differs in that we prove
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the upper bound in terms of the excess zero-one loss, not

the excess logistic loss, a non-trivial difference. Finally,

the adaptive algorithm analyzed for the upper bound is a

two-step algorithm where the first half of the queries are

randomly sampled and the second half of the queries are

collected by uncertainty sampling, and used for gradient

updates; that is, instead of optimizing the logistic loss on all

labels thus far, we only take a gradient step at the most re-

cently labeled point. For the analysis, we use the insight that

uncertainty sampling is roughly stochastic gradient descent

on the zero-one loss (Mussmann & Liang, 2018b) and then

adapt a standard stochastic gradient descent convergence

argument (Rakhlin et al., 2012). Finally, we present illus-

trative synthetic experimental results for our upper bounds,

demonstrating the effect of the problem dependent parame-

ters in our setting.

In summary, our contributions are threefold:

• Presentation of four results suggesting that the advan-

tage of active learning is often not in the dependence on

the number of samples but in the constants, particularly

the Bayes error.

• Complete, self-contained proofs of all results from

basic principles with the exception of Fano’s inequality

and a few concentration results from other works.

• Synthetic experiments for the logistic regression uni-

form sphere setting to illustrate our two upper bounds.

The paper is organized as follows: we first review related

work in Section 2 before introducing our notation and setting

in Section 3. We then proceed with our results in Section 4,

present synthetic experiments in Section 5, discuss some

implications in Section 6, and conclude with Section 7.

2. Related work

The problem of learning homogeneous linear separators

over data drawn from the uniform distribution on a sphere

has been a fruitful setting for active learning (Dasgupta

et al., 2005; Dasgupta, 2005; Balcan et al., 2007; 2009;

Wang & Singh, 2016). In the realizable case, also known as

the noiseless case, it is known that active learning enables

dramatic performance gains. While random sampling meth-

ods require Θ(1/ε) samples to achieve ε error, a variety

of active learning methods achieve a sample complexity of

Θ(ln(1/ε)). This improvement is referred to as exponential

because the error rate goes from Θ(1/n) to exp(−Θ(n)).

In the presence of general noise, exponential gains are not

possible (KÈaÈariÈainen, 2006; Beygelzimer et al., 2009). In

particular, the sample complexity for general active learning

grows as Θ(1/ε2) (the excess error is Θ(1/
√
n)) which

is the same dependence on ε as general passive learning.

Interestingly, the sample complexity lower bounds between

passive and active learning differ by a factor of the minimal

error (Hanneke, 2014), a quantity similar to err∗.

The Tsybakov noise condition (see assumption (A1) in Tsy-

bakov (2004)) is an important quantity for characterizing

sample complexities. Intuitively, the Tsybakov noise condi-

tion relates how the excess error of a classifier scales with

the disagreement between the classifier and the optimal clas-

sifier. Using the notation of Tsybakov (2004), this scaling

is measured by a variable κ ≥ 1 which is a function of the

true data distribution and a set of classifiers F :

∃c, c′ > 0 such that ∀f, f ′ ∈ F :

Pr(f(x) ̸= f ′(x)) ≤ c =⇒
Ex[1[f(x) ̸= f ′(x)]|Pr(Y = 1|x)− Pr(Y = 0|x)|]
≥ c′ Pr

x
(f(x) ̸= f ′(x))κ

Perhaps the two most common cases are κ = 1 and κ = 2.

κ = 1 implies noise that is easier to handle; examples in-

clude noiseless (deterministic) label distributions and cases

where the conditional label distribution is bounded away

from 1/2 (Massart noise (Massart & NÂedÂelec, 2006)). κ = 2
involves more noise near the decision boundary. For exam-

ple, if the conditional label distribution behaves linearly

with non-zero slope across the decision boundary, as is the

case with logistic regression, then κ = 2.

The Tsybakov noise condition importantly separates expo-

nential and polynomial error rates, and for polynomial rates,

determines the polynomial exponent. For example, Balcan

et al. (2007) provide an analysis of an uncertainty sampling

variant (known as margin sampling) for homogeneous linear

classifiers on the uniform distribution over a sphere and

show a key dependence on the Tsybakov noise condition.

In the notation of Balcan et al. (2007), α = 1 − 1/κ. In

particular, if α = 0 (κ = 1), the excess error drops exponen-

tially fast in the number of samples. However, for α ∈ (0, 1)
(κ > 1), the rate is significantly slower, the excess error

decays polynomially in the number of samples. In particu-

lar, for α = 1/2 (κ = 2), the excess error goes as Õ(1/n),
approximately (up to log terms) the error rate we find for

logistic regression. Balcan & Long (2013) gives similar

results for log-concave distributions.

The most similar lower bounds to ours in the literature are

in terms of the Tsybakov noise condition. Castro & Nowak

(2007) shows that for distributions where the decision bound-

ary is smooth and κ = 2, the active learning excess error

rate is Ω(1/n). Hanneke & Yang (2015) shows the same

for distributions where κ = 2 in terms of constants such

as those from the definition of the Tsybakov noise condi-

tion. Most recently, Wang & Singh (2016) gave a lower

bound of Ω(1/n) with a construction of a label distribution

with Tsybakov noise condition κ = 2 and the input distribu-
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tion uniform on a sphere. In contrast to the previous lower

bounds, we incorporate the following two aspects:

• We prove a stronger lower bound: rather than showing

there is a hard-to-learn family of distributions within all

distributions with a Tsybakov noise condition of κ = 2
(with an input distribution uniform on a sphere), we

show that there is a hard-to-learn family of distributions

within the strictly smaller set of well-specified logistic

regression label distributions and inputs uniform on a

sphere.

• We work out all constants in terms of intuitive problem

setting quantities (dimension, Bayes error, radius of

sphere, etc) and hide nothing in asymptotic notation

to importantly bring light to the gains possible in the

constants, rather than the dependence on the number

of samples.

Interestingly, while general random sampling lower bounds

for Tsybakov noise condition κ = 2 yield a Ω(1/n2/3)
rate, we show that a random sampling algorithm yields the

standard O(1/n) error rate for logistic regression.

3. Setting

We study a binary classification setting with an input set

X and a label set Y . In particular, we set X ⊂ R
d and

|Y| = 2. The goal is to identify a measurable f : X → Y
that achieves low error, where the error is defined as

err(f) = Pr(f(x) ̸= y) (1)

In this work, we analyze the case that the input data distribu-

tion is uniform on a radius r sphere: X = rSd−1 = {x ∈
R

d : ∥x∥ = r}. Throughout the paper, we require d ≥ 5,

and for the lower bounds we require d ≥ 24.

We further assume the true label distribution is well-

specified logistic regression with parameters w∗ of norm M .

Specifically,

Pr(y|x) = σ(yx · w∗) (2)

where ∥w∗∥ = M , y ∈ {−1, 1}, and σ is the standard

sigmoid function: σ(u) = 1/(1 + exp(−u)).
Because the Bayes-optimal classifier is linear for well-

specified logistic regression, we are especially interested in

linear classifiers:

f(x;w) =

{
−1 w · x < 0

1 w · x ≥ 0
(3)

We define the error of weights w as

err(w) = Pr(f(x;w) ̸= y) (4)

and the Bayes error as

err∗ = err(w∗) (5)

Note that by spherical symmetry, err∗ only depends on the

norm of w∗, that is M , and not on the direction of w∗.

We can think of three variables defining the setting: the

norm of the true parameters M , the radius r of the sphere

from which points are drawn, and the dimension d of the

input space. Although it appears there are three variables,

there are effectively only two. Note that since the true label

distribution depends only on x · w∗, if we double M and

halve r, the structure of the setting stays the same. There-

fore, we can think of the product Mr and the dimension d
as the two defining variables.

Furthermore, given a fixed d, there is a bijection between

Mr ∈ [0,∞) and err∗ ∈ (0, 1/2]. So we can also think of

parametrizing settings by err∗ and d.

We consider two methods of data collection: adaptive sam-

pling and random sampling. A random sampling algorithm

is given n points sampled from the data distribution (inputs

uniform on X with labels according to well-specified logis-

tic regression) and returns a classifier f̂ . An adaptive sam-

pling algorithm iteratively selects a point in X and receives

a label drawn from the true conditional data distribution.

After this process is repeated n times (n labels have been

observed), the algorithm returns a classifier f̂ . Importantly,

an adaptive sampling algorithm’s selection of a point can

depend on previously observed labels.

4. Results

In this work, we show four results: upper and lower bounds

for the adaptive and random sampling settings. We begin

by presenting a few lemmas that provide intuition for the

setting.

4.1. Bayes’ error

First, we analyze the Bayes error and show that it is linearly

related to
√
d−1
Mr . Intuitively, for large d, any component of
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Figure 1. A graphical representation of the two bounds on the

Bayes error err∗ in terms of the quantity
√
d−1

Mr
. Each setting of

M , r, and d corresponds to a point that must lie in the gray shaded

region. Trivially, the Bayes error is below 1/2. The upper blue

line corresponds to Lemma 4.2 while the lower truncated blue line

corresponds to Lemma 4.1. The dashed blue line is a consequence

of the monotonicity of the Bayes error as a function of M .

a random point on a sphere will be approximately a nor-

mal distribution with variance Θ(r2/d) and thus standard

deviation Θ(r/
√
d). Since w∗ has norm M , w∗ · x will be

approximately normal with standard deviation Θ(Mr/
√
d).

The Bayes optimal classifier is unlikely to err when |w∗ · x|
is large, but when w∗ ·x is zero, the Bayes optimal classifier

errs with probability 1/2. Roughly speaking, the probability

that w∗ ·x (normally distributed) is close to zero is inversely

proportional to the standard deviation, Θ(Mr/
√
d). Thus,

we might expect that the Bayes error scales as Θ(
√
d/Mr).

In fact, this is the case as seen in the following two lemmas.

Lemma 4.1. Suppose d ≥ 5. If
√
d−1
Mr ≤ 1, then,

err∗ ≥ 1

20

√
d− 1

Mr
(6)

Lemma 4.2. Suppose d ≥ 5.

err∗ ≤ 8

7

√
d− 1

Mr
(7)

Proofs for these two lemmas can be found in Appendix A.

The implications of these two lemmas are shown graphically

in Figure 1. We see that if err∗ is sufficiently small (less

than 1/20), err∗ scales linearly with
√
d−1
Mr .

4.2. Excess error and angle

We now relate the excess error of an estimated hypothesis

ŵ to the angle between ŵ and w∗: ∠(ŵ, w∗). Note that

the error of a decision rule defined by weights w does not

depend on the norm ∥w∥, but only on the direction ofw, and

by spherical symmetry, only depends on the angle ∠(w,w∗).
In our settings, the angular estimation error is proportional

to the disagreement between the decision rules defined by ŵ
andw∗. Thus, the scaling of the excess error as a function of

the angle is closely related to the Tsybakov noise condition.

We find that the excess error scales as the square of the angle

as shown in the following lemma, yielding a Tsybakov noise

condition of κ = 2 for our setting.

Lemma 4.3. Suppose d ≥ 5. For any w such that

∠(w,w∗) ≤ π
2 ,

err(w)− err(w∗) ≤ 1

5

Mr√
d− 1

∠(w,w∗)2. (8)

Furthermore, for any w such that Mr∠(w,w∗) ≤ 1 and

∠(w,w∗) ≤ π
2 ,

err(w)− err(w∗) ≥ 1

25

Mr√
d− 1

∠(w,w∗)2. (9)

A proof for this lemma can be found in Appendix A. To

gain intuition for this quadratic dependence, see Figure 2.

4.3. Fano’s inequality and mutual information tools

We now discuss some concepts used in the proofs of our

lower bounds. We wish to show that the expected excess

error is bounded below.

Fano’s inequality (Fano, 1961) is an information-theoretic

tool often used for proving impossibility results (Scarlett

& Cevher, 2019). In this work, we make use of Fano’s

inequality to prove our two lower bounds (see Section 4.4).

Here, we summarize some of the tools that can be found in

the survey Scarlett & Cevher (2019).

The setup of the standard Fano’s inequality is the following:

there is an unknown random variable of interest, V ∗, which

is drawn uniformly at random from a finite set V and an

estimate of V ∗ known as V̂ also in the finite set V .

Fano’s inequality is a mathematical identity used to upper

bound the probability that the estimator is correct based on

the mutual information between V̂ and V ∗:

Pr(V̂ = V ∗) ≤ I(V ∗; V̂ ) + log 2

log |V| (10)

Thus, if we can upper bound the mutual information be-

tween V̂ and V ∗ for any estimator V̂ , we can upper bound

the accuracy of the estimator. However, because V̂ can take

many forms, how do we bound the mutual information?
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Figure 2. A diagram for intuition of the quadratic scaling of the

excess error with the angle. This diagram shows the related setting

of threshold logistic regression. The x-axis is the input dimension

while the y-axis is the probability of observing a positive label.

The blue curve is a logistic curve. In the top pane, we see the

threshold decision rule w∗ represented by the vertical green line.

The area of the orange shaded region corresponds to the error of

w∗. In the middle pane we see an estimate ŵ and the error of ŵ as

the area of the orange shaded region. Finally, in the bottom pane,

we see a diagram of the excess error taken by subtracting the top

pane from the middle pane. A rearrangement yields that the excess

error corresponds to the area of a triangle with width and height

determined by the difference between w∗ and ŵ. Thus, we see

that the excess error scales as the square of the difference between

w∗ and ŵ. A similar, but harder to visualize, scenario occurs for

logistic regression on the sphere.

An important tool is the data processing inequality (Cover

& Thomas, 1999). A common situation in machine learn-

ing includes the following three random variables: the true

parameters V ∗, some data {(Xi, Yi)}ni=1, and the estimate

V̂ . Here, we assume that V̂ and V ∗ are conditionally inde-

pendent given the data {(Xi, Yi)}ni=1; in other words, the

estimate V̂ doesn’t depend on the true parameters V ∗ except

through the data generated by V ∗. Under this condition,

I(V ∗; V̂ ) ≤ I(V ∗; {(Xi, Yi)}ni=1) (11)

Intuitively, this means we can not create information by

post-processing: the estimate V̂ can’t be more informative

than the raw data {(Xi, Yi)}ni=1. However, we still need a

technique to bound the mutual information between the raw

observations and the true parameters.

In the adaptive setting, there is a complex dependency be-

tween the data points. Specifically, we generate Xi based

on past observations {(Xj , Yj)}i−1
j=1 then we observe Yi

based on the true parameters V ∗ and Xi. Fortunately, a tool

known as tensorization (Scarlett & Cevher, 2019), based

on the chain rule for mutual information (Cover & Thomas,

1999), yields the following,

I(V ∗; {(Xi, Yi)}ni=1) ≤
n∑

i=1

I(V ∗;Yi|Xi) (12)

Altogether, we can upper bound the probability that any

estimator is correct if we can upper bound the sum of the

information ªleakedº by each of the observations.

4.4. Lower bounds

Both lower bounds are proved using a construction of

2d−1 hard-to-distinguish label distributions parametrized

by ε > 0. Intutively, ε corresponds to the amount of separa-

tion between the distributions. Define

W =
M√

1 + (d− 1)ε2
(1,±ε,±ε, . . . ,±ε) (13)

Note that all elements of W have the same norm of M .

We define a set of 2d−1 conditional label distributions

Π = {πw : w ∈ W} where πw is the conditional

label probability for logistic regression with weights w:

πw(x) = Pr(Y = 1|X = x;w) = σ(yx · w). We let the

true conditional label distribution π∗ be drawn uniformly

from Π, or equivalently, w∗ is drawn uniformly from W . If

we can bound the mutual information between π∗ and Yi
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conditioned on Xi, we can use Fano’s inequality, the data

processing inequality, and tensorization to show it is impos-

sible for an estimator in Π to estimate π∗ well with high

probability. However, what about decision rules? Maybe

we can do better if we return a decision rule that isn’t even

linear?

We can handle these concerns via a reduction. Let ρ(f, π) =
Prx,y∼π(x)(y ̸= f(x)), in other words, the error of the

decision rule f under the conditional label distribution π.

For any estimated decision rule f̂ , define

π̂ = argmin
π∈Π

ρ(f̂ , π) (14)

The proof becomes somewhat technical at this point, but one

can note that if f̂ has sufficiently low error, then π̂ = π∗.

We can additionally use the data processing inequality a

second time:

I(π∗; π̂) ≤ I(π∗; f̂) (15)

This discussion of the lower bounds has left out a quite

important detail: our proofs use an approximate recovery

form of Fano’s inequality. Instead of upper bounding the

probability that π̂ = π∗, we define an appropriate similarity

relation so that we can upper bound the probability that π̂
and π∗ are similar (Duchi & Wainwright, 2013; Scarlett &

Cevher, 2019). Without this detail, we would lose the factor

of d in our lower bounds.

Theorem 4.4. Fix d ≥ 24, M > 0, r > 0. For sufficiently

large n (in terms of M , r, d, and err∗), for any data collec-

tion strategy for n data points and estimator f̂ depending on

those data points (and conditionally independent of the true

label distribution given the data), there exists a norm-M
w∗ such that,

E[err(f̂)]− err∗ ≥ 1

250000
err∗

d

n
. (16)

Theorem 4.5. Fix d ≥ 24, M > 0, r > 0. For sufficiently

large n (in terms of M , r, d, and err∗), for any estimator

f̂ computed from n random samples (and conditionally

independent of the true label distribution given the data),

there exists a norm-M w∗ such that:

E[err(f̂)]− err∗ ≥ 1

22000000

d

n
. (17)

The proofs for these theorems are in Appendix C and Ap-

pendix D, respectively. The lemmas for the two arguments

are very similar and can be found in Appendix B. We have

hidden how large n must be in both theorems, but full con-

ditions on n can be found in the statements of the theorems

in the appendix.

Note that we have not hidden any constants. The universal

constants in the front are rather small. Note that we did not

optimize the universal constants and they are most likely

very loose.

4.5. Algorithms for upper bounds

In this section, we define the random sampling and adaptive

sampling algorithms used for our upper bounds. Briefly,

the random sampling algorithm is simply logistic regression

maximum likelihood estimation and the adaptive algorithm

is an uncertainty sampling variant: random sample with half

of the budget n to initialize the weights, then use the other

half of the budget to iteratively take uncertainty sampling

gradient steps with a decaying step size.

4.5.1. RANDOM SAMPLING

Given n random samples {(xi, yi)}ni=1, the random sam-

pling estimate is the weights that maximize the probability

of observing the labels:

ŵ = argmax
w

Pr(∀i : Yi = yi|w, ∀i : Xi = xi) (18)

= argmax
w

n∏

i=1

σ(yixi · w) (19)

= argmin
w

1

n

n∑

i=1

− log σ(yixi · w) (20)

(21)

This motivates us to define the loss function ℓ(x, y, w) as the

negative log-likelihood: ℓ(x, y, w) = − log σ(yixi ·w) and

the empirical loss L̂n(w) = 1
n

∑n
i=1 ℓ(xi, yi, w) yielding

ŵ = argminw L̂n(w).

Intuitively, if we define L(w) = E[ℓ(x, y, w)], then w∗ =
argminw L(w) and L̂n(w) →P L(w) as n → ∞, so we

might hope ŵ ≈ w∗ for large n.

4.5.2. ADAPTIVE SAMPLING

For adaptive sampling, we begin with random sampling

for the first n/2 samples. Then, an estimate of the true

weights is calculated by minimizing the logistic loss, or

equivalently maximizing the likelihood. We then rescale the

estimate to produce w1; this is done to ensure ∥w1∥ ≤ M
with high probability. A constraint set W is constructed as

the intersection of a origin-centered sphere of radius ∥w1∥
and a cone around w1. In the next phase, we proceed by

iterations of uncertainty sampling gradient updates with an
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L2 orthogonal projection onto W .

For each iteration, we randomly draw xt from the decision

boundary defined by the current weight iterate wt: {x ∈
X : wt · x = 0}. After querying the label of xt as yt,
we compute the gradient gt = ∇wℓ(xt, yt, wt) on the new

point. Finally, we update wt+1 = ΠW(wt − ηtgt) where

ηt = 1
λt and λ = 1

12
r2

d−1 . After n/2 iterations, we have

exhausted the label budget, and we return the last iterate.

This entire process is shown as Algorithm 1. Note that the

algorithm does not require knowledge of M or err∗.

Algorithm 1 Active learning algorithm

Set convexity parameter λ = r2

12(d−1)

Randomly sample and label n/2 points as Brandom

Compute wrandom = argminw
∑

(x,y)∈Brandom
ℓ(x, y, w)

for ℓ(x, y, w) = − log σ(yx · w)
Set w1 = 2wrandom/3

Set θmax = 1
2 min

(
π
2 ,

2
3∥w1∥r

)

Set W = {w : ∥w∥ ≤ ∥w1∥,∠(w,w1) ≤ θmax}
for t = 1, . . . , n/2 do

Sample xt uniformly from {x : ∥x∥ = r, x · wt = 0}
Label xt to get yt
Compute gt = ∇wℓ(xt, yt, wt) = − 1

2ytxt
Compute wt+1 = ΠW(wt − ηtgt) where ηt =

1
λt

end for

Return: ŵ = wn/2+1

4.6. Upper bounds

In this section, we present the guarantees for the random

sampling and adaptive sampling algorithms. The random

sampling guarantee follows from a second-order Taylor ex-

pansion along with several geometric lemmas. The adaptive

sampling guarantee uses the random sampling guarantee for

the initialization, then proceeds with a standard stochastic

gradient descent analysis (Rakhlin et al., 2012; Nemirovski

et al., 2009). The choice of this type of analysis is inspired

by the observation that uncertainty sampling roughly corre-

sponds to stochastic gradient descent steps on the zero-one

loss (Mussmann & Liang, 2018b).

Theorem 4.6. Fix d ≥ 5, M > 0, r > 0 such that
√
d−1
Mr ≤

1/12. For sufficiently large n (in terms of M , r, d, and

err∗), for ŵ as the logistic MLE estimator from n randomly

sampled points,

E[err(ŵ)]− err(w∗) ≤ 240000
d log(d)

n
. (22)

Theorem 4.7. Fix d ≥ 5, M > 0, r > 0 such that
√
d−1
Mr ≤

1/12. For sufficiently large n (in terms ofM , r, d, and err∗),

for the estimator ŵ returned from Algorithm 1,

E[err(ŵ)]− err(w∗) ≤ 26001err∗
d

n
. (23)

The proofs for these Theorems are in Appendix E and Ap-

pendix F, respectively. As with the lower bounds, full con-

ditions on n can be found in the statements of the theorems

in the appendix.

The universal constants in the front are rather large, though

they they are most likely very loose from a lack of optimiza-

tion. We can interpret the condition
√
d−1
Mr ≤ 1/12 with the

lemmas from Section 4.1. For example, if err∗ ≤ 1/240,

the condition is satisfied.

5. Experiments

In this section, we run experiments in our synthetic setting:

well-specified logistic regression with a uniform distribution

over a radius r sphere. We compare random sampling and

our adaptive algorithm (Algorithm 1) for varying n (Fig-

ure 3), M (Figure 4), and d (Figure 5). We fix r = 1 in all

cases since learning behavior only depends on the product

Mr. We make one small change to the algorithm and set

θmax = π
4 instead of θmax = min(π/4, 1/(3∥w1∥r)). We

found experimentally that the latter would require a larger

n. All experiments are run with 100 replicates with error

bars as 95% confidence intervals using a Gaussian approxi-

mation.

The test excess error of both random sampling and our

adaptive algorithm appear to have an empirical inverse linear

dependency on n (as predicted by our theory). Furthermore,

while the test excess error of random sampling appears

nearly independent of the limiting error, err∗, the test excess

error for our adaptive algorithm seems to scale linearly with

err∗. The dependence of random sampling’s test excess

error on the dimensionality d is less clear: it could be super-

linear (as predicted by the upper bound) or it could be linear

(matching the lower bound).

6. Discussion

Mussmann & Liang (2018a) show both experimentally and

theoretically that the data efficiency of uncertainty sampling

is inversely proportional to the limiting error, which is the

same as the Bayes error for well-specified logistic regres-

sion. In that work, the data efficiency (of an active learning

algorithm relative to random sampling) is defined as the

ratio of the sample complexities, or the factor reduction in

data samples required for an algorithm to match the per-

formance of random sampling. Our four results allow us

to compare lower and upper bounds on the expected ex-

cess error to compute both a lower and upper bound on the

data efficiency. In particular, the data efficiency is at least
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Figure 3. A plot comparing the test excess error of random sam-

pling and our adaptive algorithm (Algorithm 1) for a varying num-

ber of samples n. The gray curves are of the form α/n to show

the inverse dependence on n. We fix r = 1, d = 10, and M = 20,

yielding between 7% and 8% limiting error.
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Figure 4. A plot comparing the test excess error of random sam-

pling and our adaptive algorithm (Algorithm 1) for setups with

varying the norm of the true parameters M (which changes the

limiting error err∗). We fix r = 1, d = 10, and n = 1000 while

varying M ∈ {5, 10, 20, 50, 100}. We note that while random

sampling’s test excess error remains approximately constant, adap-

tive sample’s excess error grows linearly with the limiting error as

our bounds show.
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Figure 5. A plot showing the test excess error of the MLE perfor-

mance of random sampling for various dimensionalities d. We

set r = 1, M = 20, and n = 100 · d. Note that although d/n
remains constant, the test excess error seems to not be constant as

a function of d, hinting that there may be an additional dependence

on d, such as log(d). We did not run adaptive sampling for varying

d because changing d affects the limiting error, err∗.

Ω(1/err∗) and is at most O(log(d)/err∗).

One may wonder what is the correct data efficiency for our

setting. In the proof of the upper bound for random sam-

pling, where the log d appears, we use two concentration

inequalities: a Bernstein inequality applied dimension-by-

dimension and a Matrix Chernoff inequality (Tropp, 2015).

The union bound associated with the Bernstein inequality

over d dimensions incurs a possibly unnecessary factor of

log d. Although Tropp (2015) show that their Matrix Cher-

noff bound is tight for the assumptions they make (see the

coupon-collector discussion in Tropp (2015)), it seems that

our setting is easier and so we may be able to shave off

a log d. In particular, the rank one matrices which com-

pose the Hessian of the empirical loss will be nearly uni-

formly distributed in all directions, unlike the harder coupon-

collector example. Thus, from a theoretical perspective, the

log d is perhaps loose. However, the synthetic experiment

may hint that the log d factor is necessary and perhaps the

lower bound is loose. We note the possibility that random

sampling with MLE includes log d while another estimator

does not.

In this work we considered the adaptive sampling and ran-

dom sampling settings. There are other important settings

in between adaptive and random sampling. In particular, we

note that the techniques in this work are insufficient to give

(non-trivial) results for non-adaptive experimental design

and batched adaptive sampling. Non-adaptive experimen-

tal design is the setting where the points to be labelled are

chosen by the algorithm, similar to adaptive sampling, but
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all labels are revealed at the same time so that adaptivity

is not possible. Batched adaptive sampling is the setting

where an algorithm makes queries in the form of b points

to be labelled at the same time where a batch can be cho-

sen based on the labels of previous batches. Note that the

batched adaptive sampling setting is a generalization of

adaptive sampling (with b = 1) and non-adaptive experi-

mental design (with b = n). These settings form a nested

hierarchy where random sampling is the most restrictive

setting and adaptive sampling is the most powerful setting.

A possible analysis strategy for batched adaptive sampling

is an stochastic gradient descent convergence argument that

makes use of the covariance of the gradient which decays as

the batch size b grows; perhaps contributing a
√
b factor to

the expected excess error. A possible analysis strategy for

non-adaptive experimental design is to dramatically expand

W , the set of possiblew∗, or to apply some clever symmetry

argument. We conjecture that the expected excess error rate

of non-adaptive experimental design is the same as random

sampling for our setting.

7. Conclusion

In summary, we analyzed upper and lower bounds on the

expected excess error for both adaptive sampling and ran-

dom sampling for a simple benign setting of well-specified

logistic regression on inputs drawn uniformly at random

from a sphere. Most importantly, all bounds had the same

dependence on the number of samples. Because of the sim-

plicity and naturalness of the construction for the lower

bounds, this paper contributes evidence that in most prac-

tical cases, the advantage of active learning does not lie

in a improved dependence on the number of samples, but

rather in the problem dependent constants. As a result, we

might abandon hope that active learning can provide gains

for all problems, but instead search for problems where the

constants are advantageous to active learning.
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Appendix

The appendix is organized as follows: general lemmas regarding geometric properties of the sphere are stated and proved in

Section A, lemmas necessary for showing both lower bounds are stated and proved in Section B, the adaptive and random

sampling lower bounds are given in Sections C and D, and the random sampling and adaptive upper bounds are given in

Sections E and F.

A. General sphere lemmas

A.1. Sine integral bounds

Lemma A.1. For integral n ≥ 2,

7

4
√
n+ 1

≤
∫ π

0

sinn(θ)dθ ≤ 5√
n+ 1

(24)

Proof. We first note that, by a standard recursive integration by parts,

∫ π

0

sin2k(θ)dθ = π

k∏

i=1

2i− 1

2i
(25)

(26)

For both the upper and lower bounds, we first prove the result for even n, then use montonicity to derive a bound for odd n.

Suppose n is even and let n = 2k.

∫ π

0

sin2k(θ)dθ = π
k∏

i=1

2i− 1

2i
(27)

= π

k∏

i=1

(
1− 1

2i

)
(28)

ln

(∫ π

0

sin2k(θ)dθ

)
= ln(π) +

k∑

i=1

ln

(
1− 1

2i

)
(29)

≤ ln(π) +

k∑

i=1

− 1

2i
(30)

= ln(π)− 1

2

k∑

i=1

1

i
(31)

≤ ln(π)− 1

2
ln(k + 1) (32)

≤ ln

(
π√
k + 1

)
(33)

∫ π

0

sin2k(θ)dθ ≤ π√
k + 1

=
π
√
2√

n+ 2
≤ 5√

n+ 2
(34)

For odd n, let n = 2k + 1,
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∫ π

0

sin2k+1(θ)dθ ≤
∫ π

0

sin2k(θ)dθ (35)

≤ π√
k + 1

=
π
√
2√

n+ 1
≤ 5√

n+ 1
(36)

So in either case,

∫ π

0

sinn(θ)dθ ≤ π
√
2√

n+ 1
≤ 5√

n+ 1
(37)

Now for lower bounds, and for even n, let n = 2k,

∫ π

0

sin2k(θ)dθ = π
k∏

i=1

2i− 1

2i
(38)

= π

k∏

i=1

1− 1

2i
(39)

ln

(∫ π

0

sin2k(θ)dθ

)
= ln(π) +

k∑

i=1

ln(1− 1

2i
) (40)

≥ ln(π) +

k∑

i=1

(− 1

2i
)− (− 1

2i
)2 (41)

≥ ln(π)− 1

2

k∑

i=1

1

i
− 1

4

k∑

i=1

1

i2
(42)

≥ ln(π)− 1

2
(1 + ln(k))− 1

4

π2

6
(43)

≥ ln(π)− 1

2
ln(k)− 1

2
− π2

24
(44)

∫ π

0

sin2k(θ)dθ ≥ π√
k
exp

(
−1

2
− π2

24

)
(45)

≥ π√
k
exp

(
−1

2
− π2

24

)
=
π
√
2√
n

exp

(
−1

2
− π2

24

)
≥ 7

4
√
n

(46)

For odd n, let n = 2k − 1,

∫ π

0

sin2k−1(θ)dθ ≥
∫ π

0

sin2k(θ)dθ (47)

≥ π√
k
exp

(
−1

2
− π2

24

)
=

π
√
2√

n+ 1
exp

(
−1

2
− π2

24

)
≥ 7

4
√
n+ 1

(48)

So in either case,

∫ π

0

sinn(θ)dθ ≥ 7

4
√
n+ 1

(49)
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A.2. Spherical Coordinates

We now introduce spherical coordinates which will be used to compute spherical integrals.

x1 = r sin(θ1) sin(θ2) . . . sin(θd−2) sin(θd−1) (50)

x2 = r sin(θ1) sin(θ2) . . . sin(θd−2) cos(θd−1) (51)

x3 = r sin(θ1) sin(θ2) . . . cos(θd−2) (52)

. . . (53)

xd−1 = r sin(θ1) cos(θ2) (54)

xd = r cos(θ1) (55)

where all angles are in [0, π] except θd−1 which is in [0, 2π] and where the Jacobian determinant is

rd−1 sind−2(θ1) sin
d−3(θ2) . . . sin(θd−2).

A.3. Bounds on CDF of absolute value of coordinate drawn from sphere

Lemma A.2. Let x be drawn from a d-dimensional sphere of radius ρ, where d ≥ 5. Then, for 0 ≤ α ≤ ρ,

2

5

√
d− 1

(
1− (d− 3)α2

2ρ2

)
α

ρ
≤ Pr(|x1| ≤ α) ≤ 8

7

√
d− 1

α

ρ
(56)

Proof. Using symmetry and spherical coordinates,

Pr(|x1| ≤ α) = Pr(|xd| ≤ α) (57)

= Pr(|ρ cos(θ1)| ≤ α) (58)

= E

[
1

[
| cos(θ1)| ≤

α

ρ

]]
(59)

Since we are drawing uniformly from the sphere:

E

[
1

[
| cos(θ1)| ≤

α

ρ

]]
(60)

=

∫
∥x∥=ρ

1

[
| cos(θ1)| ≤ α

ρ

]
dx

∫
∥x∥=ρ

dx
(61)

=

∫ π

0
· · ·
∫ π

0

∫ 2π

0
1

[
| cos(θ1)| ≤ α

ρ

]
ρd−1 sind−2(θ1) . . . sin(θd−2)dθd−1 . . . dθ1

∫ π

0
· · ·
∫ π

0

∫ 2π

0
ρd−1 sind−2(θ1) . . . sin(θd−2)dθd−1 . . . dθ1

(62)

=
ρd−1

∫ π

0
1

[
| cos(θ) ≤ α

ρ

]
sind−2(θ)dθ

∫ π

0
sind−3(θ)dθ· · ·

∫ π

0
sin(θ)dθ

∫ 2π

0
dθ

ρd−1
∫ π

0
sind−2(θ)dθ

∫ π

0
sind−3(θ)dθ· · ·

∫ π

0
sin(θ)dθ

∫ 2π

0
dθ

(63)

=

∫ π

0
1

[
| cos(θ)| ≤ α

ρ

]
sind−2(θ)dθ

∫ π

0
sind−2(θ)dθ

(64)

From Lemma A.1, we know that the denominator is bounded as
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7

4
√
d− 1

≤
∫ π

0

sind−2(θ)dθ ≤ 5√
d− 1

(65)

To bound the numerator, we use a change of variables of u = cos(θ):

∫ π

0

1

[
| cos(θ)| ≤ α

ρ

]
sind−2(θ)dθ =

∫ 1

−1

1

[
|u| ≤ α

ρ

]
(1− u2)(d−3)/2du (66)

=

∫ α/ρ

−α/ρ

(1− u2)(d−3)/2du (67)

To bound the numerator above, we note that the integrand is less than 1:

∫ α/ρ

−α/ρ

(1− u2)(d−3)/2du ≤ 2
α

ρ
(68)

To bound the numerator below, we note that (1− a)b ≥ 1− ab for a ∈ [0, 1] and b ≥ 1 (raise both sides to 1
ab then note

(1− x)1/x is monotonically decreasing). Then, because d ≥ 5, (d− 3)/2 ≥ 1 and we have

∫ α/ρ

−α/ρ

(1− u2)(d−3)/2du ≥
∫ α/ρ

−α/ρ

(1− u2(d− 3)/2) (69)

≥
∫ α/ρ

−α/ρ

(1− (α/ρ)2(d− 3)/2) (70)

= 2
α

ρ

(
1− (d− 3)α2

2ρ2

)
(71)

Putting together the bound on the denominator and the numerator, we arrive at the result.

A.4. Lower bound for Bayes error

Lemma 4.1. Suppose d ≥ 5,

If
√
d−1
Mr ≤ 1, then,

err∗ ≥ 1

20

√
d− 1

Mr
(72)

Proof. Note that

err∗ = err(w∗) (73)

= E∥x∥=r[σ(w
∗ · x)1[w∗ · x < 0] + σ(−w∗ · x)1[w∗ · x > 0]] (74)

= E∥x∥=r[σ(−|w∗ · x|)] (75)

Without loss of generality, assume w∗ =Me1.
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E∥x∥=r[σ(−|w∗ · x|)] = E∥x∥=r[σ(−|Mx1|)] (76)

= E∥x∥=Mr[σ(−|x1|)] (77)

≥ E∥x∥=Mr[
1

4
1[|x1| ≤ 1]] (78)

=
1

4
Pr

∥x∥=Mr
[|x1| ≤ 1] (79)

(80)

Using Lemma A.2 and using the assumption
√
d−1
Mr ≤ 1,

1

4
Pr

∥x∥=Mr
[|x1| ≤ 1] ≥ 1

4

2

5

√
d− 1

(
1− (d− 3)

2M2r2

)
1

Mr
(81)

≥ 1

4

2

5

√
d− 1

1

2

1

Mr
(82)

≥ 1

20

√
d− 1

Mr
(83)

A.5. Expression for error

We now derive the error of parameters w given that the true parameters are w∗. Without loss of generality, let w∗ =Me1.

err(w) =

∫

∥x∥=r

p(x)[P (y = 1|x)1[x · w < 0] + PD(y = 0|x)1[x · w > 0]]dx (84)

=
1∫

∥x∥=r
dx

∫

∥x∥=r

[σ(w∗ · x)1[x · w < 0] + σ(−x · w∗)1[x · w > 0]]dx (85)

=
1∫

∥x∥=r
dx

∫

∥x∥=r

2σ(w∗ · x)1[x · w < 0]dx (86)

=
2∫

∥x∥=r
dx

∫

x·w<0,∥x∥=r

σ(w∗ · x)dx (87)

This derivation will be used in the next two lemmas.

A.6. Upper bound for Bayes error

Lemma 4.2. Suppose d ≥ 5.

err∗ ≤ 8

7

√
d− 1

Mr
(88)

Proof. By definition,

err∗ = err(w∗) (89)
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From equation 87 and assuming (without loss of generality) w∗ = −Med.

err(w∗) =
2∫

∥x∥=r
dx

∫

x·w∗<0,∥x∥=r

σ(w∗ · x)dx (90)

=
2∫

∥x∥=r
dx

∫

xd>0,∥x∥=r

σ(−Mxd)dx (91)

Changing the denominator integral to spherical coordinates:

∫

∥x∥=r

dx =

∫ π

0

∫ π

0

· · ·
∫ π

0

∫ 2π

0

rd−1 sind−2(θ1) sin
d−3(θ2) . . . sin(θd−2)dθd−1 . . . dθ1 (92)

= rd−1

∫ π

0

sind−2(θ)dθ

∫ π

0

sind−3(θ)dθ· · ·
∫ π

0

sin(θ)dθ

∫ 2π

0

dθ (93)

Changing the numerator integral to spherical coordinates:

∫

xd>0,∥x∥=r

σ(−Mxd)dx (94)

=

∫ π/2

0

∫ π

0

· · ·
∫ π

0

∫ 2π

0

exp(−M · r cos(θ1))rd−1 sind−2(θ1) sin
d−3(θ2) . . . sin(θd−2)dθd−1 . . . dθ1 (95)

= rd−1

∫ π/2

0

σ(−Mr cos(θ)) sind−2(θ)dθ

∫ π

0

sind−3(θ)dθ· · ·
∫ π

0

sin(θ)dθ

∫ 2π

0

dθ (96)

Taking the ratio and using a change of variables (u = cos(θ)), we find,

err(w∗) =
2∫ π

0
sind−2(θ)dθ

∫ π/2

0

σ(−Mr cos(θ)) sind−2(θ)dθ (97)

=
2∫ π

0
sind−2(θ)dθ

∫ 1

0

σ(−Mru)(1− u2)(d−3)/2du (98)

Note that σ(v) ≤ exp(−v) and (1− u2)(d−3)/2 ≤ 1.

So

err(w∗) ≤ 2
7

4
√
d−1

∫ 1

0

exp(−Mru)du (99)

=
8
√
d− 1

7

1

Mr
(1− exp(−Mr)) (100)

≤ 8

7

√
d− 1

Mr
(101)
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A.7. Bounding excess error in terms of angle

Lemma 4.3. Suppose d ≥ 5.

For any w such that ∠(w,w∗) ≤ π
2 ,

err(w)− err(w∗) ≤ 1

5

Mr√
d− 1

∠(w,w∗)2 (102)

If Mr∠(w,w∗) ≤ 1 and ∠(w,w∗) ≤ π
2

err(w)− err(w∗) ≥ 1

25

Mr√
d− 1

∠(w,w∗)2 (103)

Proof. With the expression for error from equation 87, we can find the excess error:

err(w)− err(w∗) = (104)

=
2∫

∥x∥=r
dx

(∫

x·w<0,∥x∥=r

σ(w∗ · x)dx−
∫

x·w∗<0,∥x∥=r

σ(w∗ · x)dx
)

(105)

=
2∫

∥x∥=r
dx

(∫

x·w<0,x·w∗>0,∥x∥=r

σ(w∗ · x)dx−
∫

x·w>0,x·w∗<0,∥x∥=r

σ(w∗ · x)dx
)

(106)

=
2∫

∥x∥=r
dx

(∫

x·w<0,x·w∗>0,∥x∥=r

σ(w∗ · x)dx−
∫

−x·w>0,−x·w∗<0,∥x∥=r

σ(w∗ · (−x))dx
)

(107)

=
2∫

∥x∥=r
dx

(∫

x·w<0,x·w∗>0,∥x∥=r

σ(w∗ · x)dx−
∫

x·w<0,x·w∗>0,∥x∥=r

(1− σ(w∗ · x))dx
)

(108)

=
2∫

∥x∥=r
dx

∫

x·w<0,x·w∗>0,∥x∥=r

(2σ(w∗ · x)− 1)dx (109)

Our next strategy is to upper and lower bound the integrand with a linear approximation. This strategy is motivated by the

following lemma:

Lemma A.3.

2∫
∥x∥=r

dx

∫

x·w<0,x·w∗>0,∥x∥=r

c(w∗ · x)dx =
cMr

2π
(1− cos(∠(w,w∗)))

∫ π

0

sind−1(θ)dθ (110)

Proof. Let us use spherical coordinates and without loss of generality we assume w∗ =Me1 and w is in the plane spanned

by e1 and e2. Without loss of generality, since the misclassification error does not depend on the norm of w, assume w is a

unit vector, so w = cos(∠(w,w∗))e1 + sin(∠(w,w∗))e2.

Note that the integral is over the set of points x on the r-radius sphere where

x · w∗ > 0 ∧ x · w < 0 (111)

x1 > 0 ∧ cos(∠(w,w∗))x1 + sin(∠(w,w∗))x2 < 0 (112)

sin(θd−1) > 0 ∧ cos(∠(w,w∗)) sin(θd−1) + sin(∠(w,w∗)) cos(θd−1) < 0 (113)

sin(θd−1) > 0 ∧ sin(θd−1 − ∠(w,w∗)) < 0 (114)

θd−1 ∈ [0,∠(w,w∗)] (115)
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Thus,

2∫
∥x∥=r

dx

∫

x·w<0,x·w∗>0,∥x∥=r

c(w∗ · x)dx = (116)

= 2

∫ π

0

∫ π

0
· · ·
∫
∠(w,w∗

D
)

0
c(w∗ · x)rd−1 sind−2(θ1) sin

d−3(θ2) . . . sin(θd−2)dθd−1 . . . dθ1∫ π

0

∫ π

0
· · ·
∫ 2π

0
rd−1 sind−2(θ1) sin

d−3(θ2) . . . sin(θd−2)dθd−1 . . . dθ1
(117)

(118)

Note that w∗ · x =Mx1 =Mr sin(θ1) sin(θ2) . . . sin(θd−1)

2∫
∥x∥=r

dx

∫

x·w<0,x·w∗>0,∥x∥=r

c(w∗ · x)dx = (119)

= 2c

∫ π

0

∫ π

0
· · ·
∫
∠(w,w∗)

0
Mrd sind−1(θ1) sin

d−2(θ2) . . . sin
2(θd−2) sin(θd−1)dθd−1 . . . dθ1∫ π

0

∫ π

0
· · ·
∫ 2π

0
rd−1 sind−2(θ1) sin

d−3(θ2) . . . sin(θd−2)dθd−1 . . . dθ1
(120)

= 2cMr

∫ π

0
sind−1(θ)dθ · · ·

∫ π

0
sin2(θ)dθ

∫
∠(w,w∗)

0
sin(θ)dθ

∫ π

0
sind−2(θ)dθ · · ·

∫ π

0
sin(θ)dθ

∫ 2π

0
dθ

(121)

= 2cMr

∫ π

0
sind−1(θ)dθ(1− cos(∠(w,w∗)))

2 · 2π (122)

=
cMr

2π
(1− cos(∠(w,w∗)))

∫ π

0

sind−1(θ)dθ (123)

We now return to the proof of Lemma 4.3.

Bounding it above:

Note that 2σ(u)− 1 ≤ u/2 (for u ≥ 0). Note that since ∠(w,w∗) ≤ π
2 , w∗ · x ≥ 0. Thus,

err(w)− err(w∗) =
2∫

∥x∥=r
dx

∫

x·w<0,x·w∗>0,∥x∥=r

(2σ(w∗ · x)− 1)dx (124)

≤ 2∫
∥x∥=r

dx

∫

x·w<0,x·w∗>0,∥x∥=r

1

2
(w∗ · x)dx (125)

=
1

2

Mr

2π
(1− cos(∠(w,w∗)))

∫ π

0

sind−1(θ)dθ (126)

≤ 1

2

Mr

2π

∠(w,w∗)2

2

5√
d

(127)

≤ 1

5

Mr√
d− 1

∠(w,w∗)2 (128)

Bounding it below:

Note that 2σ(u)− 1 ≥ 5u/11 for u ∈ [0, 1].

By assumption, Mr∠(w,w∗) ≤ 1. Then, w∗ · x =Mr sin(θ1) sin(θ2) . . . sin(θd−1) ≤Mr sin(θd−1) ≤Mr∠(w,w∗) ≤
1. Further, since ∠(w,w∗) ≤ π

2 , w∗ · x ≥ 0. So w∗ · x ∈ [0, 1].
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err(w)− err(w∗) =
2∫

∥x∥=r
dx

∫

x·w<0,x·w∗>0,∥x∥=r

(2σ(w∗ · x)− 1)dx (129)

≥ 2∫
∥x∥=r

dx

∫

x·w<0,x·w∗>0,∥x∥=r

5

11
(w∗ · x)dx (130)

=
5

11

Mr

2π
(1− cos(∠(w,w∗)))

∫ π

0

sind−1(θ)dθ (131)

≥ 5

11

Mr

2π

∠(w,w∗)2

3

7

4
√
d

(132)

≥ 1

25

Mr√
d− 1

∠(w,w∗)2 (133)

B. Lower bound setup and lemmas

Let F be the set of (measurable) decision rules f : X → Y = {0, 1}. Note we use Y = {0, 1} here for notational simplicity,

but the same results hold for Y = {−1, 1}.

Suppose we have a finite set of conditional distributions Π, where π : X → [0, 1].

We can define a dissimilarity between decision rules f ∈ F and distributions π ∈ Π as following:

ρ(f, π) = E[f(x)(1− π(x)) + (1− f(x))π(x)] (134)

Intuitively, ρ(f, π) is the zero-one loss or misclassification error if we predict f(x) and the probability of y = 1 is π(x).

We study a setup where there is a true label distribution π∗ (which generates data) and an estimated classifier f̂ (computed

from data).

Motivated by this observation, let err(f) = ρ(f, π∗), and err∗ = inff∈F ρ(f, π∗).

Define the closest distribution to f̂ as π̂.

π̂ = argmin
π∈Π

ρ(f̂ , π) (135)

We proceed with a general lemma that the error of a hypothesis on a mixture of distributions is the mixture of the error on

the distributions.

Lemma B.1. If
∑

i αi = 1, then

ρ

(
f,
∑

i

αiπi

)
=
∑

i

αiρ(f, πi) (136)
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Proof.

ρ

(
f,
∑

i

αiπi

)
= E

[
f(x)

(
1−

∑

i

αiπi(x)

)
+ (1− f(x))

(
∑

i

αiπi(x)

)]
(137)

= E

[
f(x)

(
∑

i

αi(1− πi(x))

)
+ (1− f(x))

(
∑

i

αiπi(x)

)]
(138)

=
∑

i

αiE[f(x)(1− πi(x)) + (1− f(x))πi(x)] (139)

=
∑

i

αiρ(f, πi) (140)

B.1. Excess error difference

Define πw be the conditional label distribution corresponding to logistic regression with weights w: πw(x) = Pr(y =
1|x) = σ(w · x).
Lemma B.2. Let d ≥ 5. Suppose w1, w2 ∈ R

d such that ∥w1∥ = ∥w2∥ = M , Mr∠(w1, w2) ≤ 2, and ∠(w1, w2) < π.

Let x be drawn uniformly from a radius r sphere in d dimensions. If π1 = πw1
and π2 = πw2

,

inf
f
ρ

(
f,
π1 + π2

2

)
− inff ρ(f, π1) + inff ρ(f, π2)

2
>

1

101

Mr√
d− 1

∠(w1, w2)
2 (141)

Proof. Define the decision rule fw(x) = 1[w · x ≥ 0]. Note that the infima inff ρ(f, π1) and inff ρ(f, π2) are attained at

f1 = fw1
and f2 = fw2

.

Define π = π1+π2

2 .

For π, the infimum is attained at f :

f(x) = 1

[
π(x) ≥ 1

2

]
(142)

= 1

[
σ(w1 · x) + σ(w2 · x)

2
≥ 1

2

]
(143)

= 1 [σ(w1 · x) ≥ 1− σ(w2 · x)] (144)

= 1[σ(w1 · x) ≥ σ(−w2 · x)] (145)

= 1[w1 · x ≥ −w2 · x] (146)

= 1 [(w1 + w2) · x ≥ 0] (147)

Let w = w1 + w2, so f = fw.

Thus,

inf
f
ρ(f, π)− inff ρ(f, π1) + inff ρ(f, π2)

2
= ρ(f, π)− ρ(f1, π1) + ρ(f2, π2)

2
(148)

=
ρ(f, π1) + ρ(f, π2)

2
− ρ(f1, π1) + ρ(f2, π2)

2
(149)

=
1

2

([
ρ(f, π1)− ρ(f1, π1)

]
+
[
ρ(f, π2)− ρ(f2, π2)

])
(150)
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Note that the terms in the square brackets are the excess error of f if πi were the true distribution. Furthermore, πi is a

logistic conditional label distribution and f is a linear classifier, so we can use Lemma 4.3.

Note that by symmetry, ∠(w,w1) = ∠(w,w2).

Furthermore,

cos(2∠(w,w1)) = 2 cos(∠(w,w1))
2 − 1 (151)

= 2

(
w · w1

∥w∥∥w1∥

)2

− 1 (152)

= 2
(∥w1∥2 + w1 · w2)

2

(∥w1∥2 + 2w1 · w2 + ∥w2∥2)∥w1∥2
− 1 (153)

=
(M2 + w1 · w2)

2

(M2 + w1 · w2)M2
− 1 (154)

=
M2 + w1 · w2

M2
− 1 (155)

=
w1 · w2

M2
(156)

= cos(∠(w1, w2)) (157)

Thus, 2∠(w,w1) = ∠(w1, w2). Since Mr∠(w1, w2) ≤ 2, Mr∠(w,w1) = Mr∠(w,w2) ≤ 1 and since ∠(w1, w2) < π,

∠(w,w1) = ∠(w,w1) <
π
2 . Thus, we meet the conditions of Lemma 4.3.

Using Lemma 4.3,

1

2

([
ρ(f, π1)− ρ(f1, π1)

]
+
[
ρ(f, π2)− ρ(f2, π2)

])
≥ 1

2

(
1

25

Mr√
d− 1

∠(w,w1)
2 +

1

25

Mr√
d− 1

∠(w,w2)
2

)
(158)

=
1

100

Mr√
d− 1

∠(w1, w2)
2 (159)

>
1

101

Mr√
d− 1

∠(w1, w2)
2 (160)

B.2. Excess error and distribution similarity

Recall Π is a set of conditional label distributions. Let S ⊂ Π×Π be a set of ªsimilarº pairs of distributions.

Lemma B.3. Suppose inff ρ(f, π) = inff ρ(f, π
′) for all π, π′ ∈ Π. Fix a > 0.

If, for all π1, π2 ∈ Π where (π1, π2) ̸∈ S ,

inf
f
ρ

(
f,
π1 + π2

2

)
− inff ρ(f, π1) + inff ρ(f, π2)

2
> a (161)

then

err(f̂)− err∗ ≤ a =⇒ (π̂, π∗) ∈ S (162)

Proof. For any f̂ and for any π1, π2 such that (π1, π2) ̸∈ S ,
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ρ

(
f̂ ,
π1 + π2

2

)
− inff ρ(f, π1) + inff ρ(f, π2)

2
> a (163)

ρ(f̂ , π1) + ρ(f̂ , π2)

2
− inff ρ(f, π1) + inff ρ(f, π2)

2
> a (164)

(
ρ(f̂ , π1)− inf

f
ρ(f, π1)

)
+

(
ρ(f̂ , π2)− inf

f
ρ(f, π2)

)
> 2a (165)

Thus, if ρ(f̂ , π1)− inff ρ(f, π1) ≤ a, it must be the case that ρ(f̂ , π2)− inff ρ(f, π2) > a.

Therefore,

err(f̂)− err∗ ≤ a =⇒ ρ(f̂ , π∗)− inf
f
ρ(f, π∗) ≤ a (166)

=⇒ ∀π′ : (π∗, π′) ̸∈ S, ρ(f̂ , π′)− inf
f
ρ(f, π′) > a (167)

=⇒ ∀π′ : (π∗, π′) ̸∈ S, ρ(f̂ , π∗) < ρ(f̂ , π′) (168)

=⇒ ∀π′ : (π∗, π′) ̸∈ S, π̂ ̸= π′ (169)

=⇒ (π∗, π̂) ∈ S (170)

Thus, if the ªexcess errorº of f̂ is low enough, then the estimated distribution π̂ is similar to π∗.

err(f̂)− err∗ ≤ a =⇒ (π̂, π∗) ∈ S (171)

B.3. Fano’s inequality

Suppose we have a finite set of objects V . Suppose we have a random variable V ∗ ∈ V uniformly at random drawn from V
that we attempt to estimate by a random variable V̂ .

We are interested in upper bounding the probability that V̂ and V ∗ are ªsimilarº. In other words, let S ⊂ V × V . Then we

wish to upper bound the probability that (V ∗, V̂ ) ∈ S .

Define,

Nmax(S) = max
v̂∈V

∑

v∗∈V
1[(v∗, v̂) ∈ S] (172)

Then,

Lemma B.4 (Theorem 2 from Scarlett & Cevher (2019)).

Pr((V ∗, V̂ ) ∈ S) ≤ I(V̂ ;V ∗) + ln(2)

ln |V|
Nmax(S)

(173)

This lemma is proved in Duchi & Wainwright (2013).

B.4. Instantiation of Π and S
Given the previous lemmas, we are ready to instantiate Π = V and S .
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Let ε > 0. Let W = M√
1+(d−1)ε2

(1,±ε, · · · ± ε) be a set of |W| = 2d−1 vectors of dimension d. Further note that for any

w ∈ W , ∥w∥ =M . Let V = Π = {πw : w ∈ W}
Now, we prove a small lemma bounding the maximum angle between two vectors in W .

Lemma B.5.

max
w∈W

∠(w, e1) ≤ 2
√

(d− 1)ε2 (174)

and thus, by triangle inequality

max
w1,w2∈W

∠(w1, w2) ≤ 4
√
(d− 1)ε2 (175)

Proof. For any w ∈ W ,

cos(∠(w1, e1)) =
w · e1

∥w∥∥e1∥
(176)

=
1√

1 + (d− 1)ε2
(177)

1− ∠(w1, e1)
2

5
≥ 1√

1 + (d− 1)ε2
(178)

∠(w1, e1)
2 ≤ 5

(
1− 1√

1 + (d− 1)ε2

)
(179)

≤ 5

2
(d− 1)ε2 (180)

∠(w1, e1) ≤ 2
√

(d− 1)ε2 (181)

The second to last line follows from noting that 1− 1√
1+a

≤ a
2 for a > 0.

Let S =
{
(πw1

, πw2
) : w1, w2 ∈ W,∠(w1, w2)

2 ≤ (d−1)ε2

1+(d−1)ε2

}
⊂ Π×Π.

Define the Hamming distance between two vectors to be the number of dimensions with different values: Hamm(w1, w2) =∑d
i=1 1[(w1)i ̸= (w2)i]. This allows for a lemma connecting the Hamming distance to the angle for vectors in W .

Lemma B.6. For any w1, w2 ∈ W

∠(w1, w2)
2 ≥ 4Hamm(w1, w2)ε

2

1 + (d− 1)ε2
(182)
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Proof.

cos(∠(w1, w2)) =
w1 · w2

∥w1∥∥w2∥
(183)

=
1

M2

(
M2

1 + (d− 1)ε2

)(
1 + ((d− 1)− Hamm(w1, w2))(ε

2) + (Hamm(w1, w2))(−ε2)
)

(184)

=

(
1

1 + (d− 1)ε2

)(
1 + (d− 1)ε2 − 2Hamm(w1, w2)ε

2
)

(185)

= 1− 2Hamm(w1, w2)ε
2

1 + (d− 1)ε2
(186)

1− ∠(w1, w2)
2

2
≤ 1− 2Hamm(w1, w2)ε

2

1 + (d− 1)ε2
(187)

∠(w1, w2)
2 ≥ 4Hamm(w1, w2)ε

2

1 + (d− 1)ε2
(188)

This Hamming distance lemma is important in proving the following Lemma:

Lemma B.7.

Nmax(S) ≤ |W| exp
(
−d− 1

16

)
(189)

Proof.

Nmax(S) = max
w1∈W

∑

w2∈W
1

[
∠(w1, w2)

2 ≤ (d− 1)ε2

1 + (d− 1)ε2

]
(190)

≤ max
w1∈W

∑

w2∈W
1

[
4Hamm(w1, w2)ε

2

1 + (d− 1)ε2
≤ (d− 1)ε2

1 + (d− 1)ε2

]
(191)

= max
w1∈W

∑

w2∈W
1

[
Hamm(w1, w2) ≤

d− 1

4

]
(192)

= |W|Pr
(

Binomial

(
d− 1,

1

2

)
≤ d− 1

4

)
(193)

≤ |W| exp
(
−d− 1

16

)
(194)

Where the last line follows from a Chernoff bound.

B.5. Putting the parts together

Let π∗ = πw∗ be drawn uniformly from Π defined by W = M√
1+(d−1)ε2

(1,±ε, . . . ,±ε). Let f̂ be a (random) estimated

decision rule that possibly depends on π∗.

Lemma B.8. Let d ≥ 24. For any estimator f̂ , if there exists an ε > 0 small enough so that 4(d−1)ε2 ≤ 1, 2Mr
√
d− 1ε ≤

1, and I(f̂ ;π∗) ≤ d−1
64 , then,

E[err(f̂)]− err∗ ≥ 1

808
Mr

√
d− 1ε2 (195)

Proof. From Lemma B.5,
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max
w1,w2∈W

∠(w1, w2) ≤ 4
√
d− 1ε (196)

Therefore, Mrmaxw1,w2∈W ∠(w1, w2) ≤Mr(4
√
d− 1ε) ≤ 2

Furthermore, maxw1,w2∈W ∠(w1, w2) ≤ 4
√
d− 1ϵ ≤ 2

From Lemma B.2, for w1, w2 ∈ W and since Mr∠(w1, w2) ≤ 2 and ∠(w1, w2) ≤ 2 < π, for π1 = πw1
and π2 = πw2

,

inf
f
ρ

(
f,
π1 + π2

2

)
− inff ρ(f, π1) + inff ρ(f, π2)

2
>

1

120

Mr√
d− 1

∠(w1, w2)
2 (197)

By the definition of S , if (π1, π2) ̸∈ S , ∠(w1, w2)
2 > (d−1)ε2

1+(d−1)ε2 and thus,

inf
f
ρ

(
f,
π1 + π2

2

)
− inff ρ(f, π1) + inff ρ(f, π2)

2
>

1

101

Mr√
d− 1

(d− 1)ε2

1 + (d− 1)ε2
(198)

Since all w ∈ W have the same norm, inff ρ(f, πw) are all equal. Therefore, by Lemma B.3,

err(f̂)− err∗ ≤ 1

101

Mr√
d− 1

(d− 1)ε2

1 + (d− 1)ε2
=⇒ (π̂, π∗) ∈ S (199)

Pr

(
err(f̂)− err∗ ≤ 1

101

Mr√
d− 1

(d− 1)ε2

1 + (d− 1)ε2

)
≤ Pr ((π̂, π∗) ∈ S) (200)

Then, by Lemma B.4

Pr

(
err(f̂)− err∗ ≤ 1

101

Mr√
d− 1

(d− 1)ε2

1 + (d− 1)ε2

)
≤ I(π̂;π∗) + ln 2

ln |W|
Nmax(S)

(201)

By Lemma B.7 and noting that by the data processing inequality I(π̂;π∗) ≤ I(f̂ ;π∗),

Pr

(
err(f̂)− err∗ ≤ 1

101

Mr√
d− 1

(d− 1)ε2

1 + (d− 1)ε2

)
≤ I(f̂ ;π∗) + ln 2

(d− 1)/16
(202)

Since (d− 1)ε2 ≤ 1,

Pr

(
err(f̂)− err∗ ≤ 1

202
Mr

√
d− 1ε2

)
≤ I(π̂;π∗) + ln 2

(d− 1)/16
(203)

Since d ≥ 24, 16 ln 2
d−1 ≤ 1

2 .

By assumption, I(f̂ ;π∗) ≤ d−1
64 ,

16I(f̂ ,π∗)
d−1 ≤ 1

4

Pr

(
err(f̂)− err∗ ≤ 1

202
Mr

√
d− 1ε2

)
≤ 1

4
+

1

2
=

3

4
(204)
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Looking at the complementary event,

Pr

(
err(f̂)− err∗ ≥ 1

202
Mr

√
d− 1ε2

)
≥ 1

4
(205)

By a Markov-style inequality,

E[err(f̂)]− err∗ ≥ 1

808
Mr

√
d− 1ε2 (206)

Finally, since the expectation includes the draw of w∗, the worst-case w∗ has at least as much excess error.

B.6. Mutual information lemmas

We now switch to the objective of bounding the mutual information between labels and the distributions that they are drawn

from.

Lemma B.9. Let P and Q be Bernoulli random variables. Then,

DKL(P∥Q) ≤ (E[P ]− E[Q])2

E[Q](1− E[Q])
(207)

Proof.

DKL(P∥Q) = Pr(P = 1) ln
Pr(P = 1)

Pr(Q = 1)
+ Pr(P = 0) ln

Pr(P = 0)

Pr(Q = 0)
(208)

= E[P ] ln
E[P ]

E[Q]
+ (1− E[P ]) ln

1− E[P ]

1− E[Q]
(209)

≤ E[P ]

(
E[P ]

E[Q]
− 1

)
+ (1− E[P ])

(
1− E[P ]

1− E[Q]
− 1

)
(210)

=
(E[P ]− E[Q])2

E[Q](1− E[Q])
(211)

Consider a parametrized family of conditional probability models {πw : w ∈ W} on input space X and binary label space

Y = {0, 1}.

πw(x) = Pr(Y = 1|x;w) (212)

For a fixed x ∈ X , consider the process:

• w ∼ U(W)

• Y ∼ Bernoulli(πw(x))

Define Ix(Y ;w) as the mutual information between Y and w.

Lemma B.10.

Ix(Y ;w) ≤ Varw(pw(x))

Ew[pw(x)(1− pw(x))]
(213)
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Proof.

Ix(Y ;w) = Ew[DKL(pY |w∥pY )] (214)

≤ Ew

[
(E[Y |w]− E[Y ])2

E[Y ](1− E[Y ])

]
(215)

=
Ew[(E[Y |w]− E[Y ])2]

E[Y ](1− E[Y ])
(216)

=
Ew[(pw(x)− Ew[pw(x)])

2]

Ew[pw(x)](1− Ew[pw(x)])
(217)

=
Varw(pw(x))

Ew[pw(x)](1− Ew[pw(x)])
(218)

≤ Varw(pw(x))

Ew[pw(x)(1− pw(x))]
(219)

where the last line follows from Jensen’s inequality.

B.6.1. SPECIALIZING FOR LOGISTIC REGRESSION

Specializing to the case of logistic regression:

Lemma B.11. Let Σw be the covariance of w ∼ U(W). Let C(W) be the convex hull of W and D(C(W)) be the diameter

of the convex hull of W . Then, if πw(x) = σ(w · x),

Ix(Y ;w) ≤ 4

[
max

w∈C(W)
ψ(w · x)

]
exp(D(C(W))∥x∥)xTΣwx (220)

Proof.

Ix(Y ;w) ≤
1
2Ew,w′ [(σ(w · x)− σ(w′ · x))2]
Ew[σ(w · x)(1− σ(w · x))] (221)

≤
1
2Ew,w′ [(σ′(w′′ · x)x · (w − w′))2]

minw∈W σ(w · x)(1− σ(w · x)) (222)

where w′′ is on the line between w and w′. Define C(W) as the convex hull of W , then note that

Ix(Y ;w) ≤ maxw∈C(W) σ
′(w · x)2 1

2Ew,w′ [(x · (w − w′))2]

minw∈W σ(w · x)(1− σ(w · x)) (223)

Define ψ(u) = σ(u)(1− σ(u)), and note that σ′(u) = ψ(u).

Ix(Y ;w) ≤
[

max
w∈C(W)

ψ(w · x)
]
maxw∈C(W) ψ(w · x)
minw∈W ψ(w · x) xTΣwx (224)

Next, note that ψ(u) ≤ 1
4 and 1

4 exp(−|u|) ≤ ψ(u) ≤ exp(−|u|) for all u.



Constants Matter: The Performance Gains of Active Learning

Ix(Y ;w) ≤
[

max
w∈C(W)

ψ(w · x)
]
maxw∈C(W) exp(−|w · x|)
minw∈W

1
4 exp(−|w · x|) x

TΣwx (225)

≤ 4

[
max

w∈C(W)
ψ(w · x)

]
max

w,w′∈C(W)
exp(|w · x| − |w′ · x|)xTΣwx (226)

≤ 4

[
max

w∈C(W)
ψ(w · x)

]
max

w,w′∈C(W)
exp(|(w − w′) · x|)xTΣwx (227)

≤ 4

[
max

w∈C(W)
ψ(w · x)

]
exp(D(C(W))∥x∥)xTΣwx (228)

(229)

Lemma B.12. Suppose w is drawn uniformly at random from W = M√
1+(d−1)ε2

(1,±ε, . . . ,±ε) and x is on a radius r

sphere (∥x∥ = r)

Ix(Y ;w) ≤ 4

[
max

w∈C(W)
ψ(w · x)

]
M2ε2r2 exp

(
2
√
d− 1εMr

)
(230)

Proof. For the particular setting of W ,

Σw =
M2ε2

1 + (d− 1)ε2
(Id − e1e

T
1 ) (231)

D(C(W)) =
M√

1 + (d− 1)ε2
(2
√
d− 1ε) (232)

and thus, by Lemma B.11,

Ix(Y ;w) ≤ 4

[
max

w∈C(W)
ψ(w · x)

]
M2ε2

1 + (d− 1)ε2
∥x∥2 exp

(
M√

1 + (d− 1)ε2
2
√
d− 1ε∥x∥

)
(233)

≤ 4

[
max

w∈C(W)
ψ(w · x)

]
M2r2ε2 exp

(
2
√
d− 1Mrε

)
(234)

C. Adaptive lower bound

Let π∗ = πw∗ be drawn uniformly from Π defined by W = M√
1+(d−1)ε2

(1,±ε, . . . ,±ε). Let there be a strategy to collect

(possibly adaptively) n data points {(Xi, Yi)}ni=1 where Xi is on the surface of a radius r sphere and Yi is the associated

label generated under π∗. Let f̂ be a decision rule based on the data, so that f̂ is conditionally independent of w∗.

Theorem 4.4. Suppose d ≥ 24. Furthermore, suppose n ≥ (d−1)2

64M2r2 and n ≥ (d−1)2

64 . For any data collection strategy for n

data points and estimator f̂ depending on those data points (and conditionally independent of the true label distribution),

there exists a norm-M w∗ such that,

E[err(f̂)]− err∗ ≥ 1

250000
err∗

d

n
(235)
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Proof. Since ψ is bounded by 1/4 globally, from Lemma B.12:

I(Yi;π
∗|Xi) ≤M2ϵ2r2 exp

(
2
√
d− 1ϵMr

)
(236)

From the data-processing inequality and adaptive mutual information tensorization,

I(f̂ , π∗) ≤ I({(Xi, Yi)}ni=1;π
∗) (237)

≤
n∑

i=1

I(Yi;π
∗|Xi) (238)

≤ nIx(Y ;w∗) (239)

≤ nM2ϵ2r2 exp
(
2
√
d− 1ϵMr

)
(240)

Let ϵ = 1
16

√
d−1

Mr
√
n

. By assumption, n is large enough so 4(d− 1)ϵ2 ≤ 1 and 2Mr
√
d− 1ϵ ≤ 1.

Then,

I(f̂ , π∗) ≤ nM2 1

256

d− 1

M2r2n
r2 exp

(
2
√
d− 1ϵMr

)
(241)

≤ d− 1

64

e

4
(242)

≤ d− 1

64
(243)

Thus, the conditions of Lemma B.8 are satisfied, so,

E[err(f̂)]− err∗ ≥ 1

808
Mr

√
d− 1

1

256

d− 1

M2r2n
(244)

=
1

206848

√
d− 1

Mr

d− 1

n
(245)

Finally, using Lemma 4.2,

E[err(f̂)]− err∗ ≥ 1

206848

7

8
err∗

d− 1

d

d

n
(246)

≥ 1

250000
err∗

d

n
(247)

Finally, since the expectation includes the draw of w∗, the worst-case w∗ has at least as much excess error.

D. Random sampling lower bound

The setup here is the same as for the adaptive lower bound. We show that with constant probability, the randomly sampled

points have low information and then apply the key lemma.

Recall ψ(u) = σ(u)σ(−u).
Define f(x) = maxw∈C(W) ψ(w · x).
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Lemma D.1. If 2Mr
√
d− 1ϵ ≤ 1, for X drawn uniformly at random from a radius r sphere,

1

2
err∗ ≤ E[f(X)] ≤ (2e)err∗ (248)

Proof. For the lower bound,

E[f(X)] = E

[
max

w∈C(W)
ψ(w ·X)

]
(249)

≥ max
w∈C(W)

E[ψ(w ·X)] (250)

= E[ψ(MX1)] (251)

≥ 1

2
E[σ(−M |X1|)] (252)

=
1

2
err∗ (253)

For the upper bound,

f(x) ≤ max
w∈C(W)

ψ(w · x) (254)

≤ max
w∈C(W)

exp(−|w · x|) (255)

= exp(−|Me1 · x|) max
w∈C(W)

exp(|Me1 · x| − |w · x|) (256)

≤ 2σ(−M |x1|) max
w∈C(W)

exp(|Me1 · x| − |w · x|) (257)

(258)

Next, note that if w ∈ C(W) (and thus ∥w∥ ≤M ),

|Me1 · x| − |w · x| ≤ |(Me1 − w) · x| (259)

≤ ∥Me1 − w∥∥x∥ (260)

≤Mr∠(e1, w) (261)

≤ 2Mr
√
d− 1ϵ (262)

≤ 1 (263)

The second to last line follow from Lemma B.5 and the last line follows by assumption.

Thus,

f(x) ≤ 2σ(−M |x1|) exp(1) (264)

E[f(X)] ≤ (2e)E[σ(−M |X1|)] (265)

≤ (2e)err∗ (266)
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Lemma D.2. If 2Mr
√
d− 1ε ≤ 1 and nerr∗ ≥ 6 ln(2), then, with probability at least 1

2 over a random sample of {Xi}ni=1,

n∑

i=1

I(Yi;π
∗|Xi = xi) ≤ 44err∗nM2ϵ2r2 exp(2

√
d− 1ϵMr) (267)

(268)

Proof. From Lemma B.12,

I(Yi;π
∗|Xi = x) ≤ 4

[
max

w∈C(W)
ψ(w · x)

]
M2ϵ2r2 exp

(
2
√
d− 1ϵMr

)
(269)

So, for randomly sampled {xi}ni=1,

n∑

i=1

I(Yi;π
∗|Xi = xi) ≤

[
n∑

i=1

max
w∈C(W)

ψ(w · xi)
]
· 4M2ϵ2r2 exp(2

√
d− 1ϵMr) (270)

Note that ψ(u) ∈ [0, 1] so f(X) ∈ [0, 1] and we can apply a Chernoff bound (over the random sample) and use D.1

Pr

(
n∑

i=1

f(Xi) ≥ 2E

[
n∑

i=1

f(Xi)

])
≤ exp

(
−1

3
E

[
n∑

i=1

f(Xi)

])
(271)

Pr

(
n∑

i=1

f(Xi) ≥ (4e)err∗n

)
≤ exp

(
−1

3

1

2
err∗n

)
(272)

Then, if nerr∗ ≥ 6 ln(2),

Pr

(
n∑

i=1

f(Xi) ≥ (4e)err∗n

)
≤ 1

2
(273)

Pr

(
n∑

i=1

f(Xi) ≤ (4e)err∗n

)
≥ 1

2
(274)

Thus, with probability at least 1
2 over the random draw of the inputs,

n∑

i=1

I(Yi;π
∗|Xi = xi) ≤ (4e)err∗n · 4M2ϵ2r2 exp(2

√
d− 1ϵMr) (275)

(276)

Theorem 4.5. Suppose d ≥ 24. Furthermore, suppose n ≥ (d−1)2

64M2r2·44err∗
, n ≥ (d−1)2

64·44err∗
, and n ≥ 6 ln(2)

err∗
. For any estimator

f̂ computed from n random samples (and conditionally independent of the true label distribution given the data), there

exists a norm-M w∗ such that:

E[err(f̂)]− err∗ ≥ 1

22000000

d

n
(277)
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Proof. By Lemma D.2, with probability at least 1/2 for a random draw of {xi}ni=1,

n∑

i=1

I(Yi;π
∗|Xi = xi) ≤ 44err∗nM2ϵ2r2 exp(2

√
d− 1ϵMr) (278)

(279)

From the data-processing inequality and mutual information tensorization,

I(f̂ , π∗|{Xi = xi}ni=1) ≤ I({(Xi, Yi)}ni=1;π
∗|{Xi = xi}ni=1) (280)

≤
n∑

i=1

I(Yi;π
∗|Xi = xi) (281)

≤ 44err∗nM2ϵ2r2 exp
(
2
√
d− 1ϵMr

)
(282)

Let ϵ = 1√
44err∗

1
16

√
d−1

Mr
√
n

. Then, by the assumption on n, nerr∗ ≥ 6 ln(2), 2Mr
√
d− 1ε ≤ 1, and 4(d− 1)ε2 ≤ 1

Then

I(f̂ , π∗|{Xi = xi}ni=1) ≤ 44err∗nM2 1

256

d− 1

M2r2n

1

44err∗
r2 exp

(
2
√
d− 1ϵMr

)
(283)

≤ d− 1

64

e

4
(284)

≤ d− 1

64
(285)

Thus, the conditions of Lemma B.8 are satisfied:

E[err(f̂)]− err∗ ≥ 1

808
Mr

√
d− 1

1

256

d− 1

M2r2n

1

44err∗
(286)

=
1

9101312err∗

√
d− 1

Mr

d− 1

n
(287)

Finally, using Lemma 4.2,

E[err(f̂)]− err∗ ≥ 1

9101312err∗
7

8
err∗

d− 1

d

d

n
(288)

≥ 1

11000000

d

n
(289)

Thus, with probability 1/2 over randomly drawn x, the expected excess loss is lower bounded. Since the excess loss is

non-negative, the expectation (including the randomization over x) is lower bounded as,

E[err(f̂)]− err∗ ≥ 1

22000000

d

n
(290)

Finally, since the expectation includes the draw of w∗, the worst-case w∗ has at least as much excess error.
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E. Random sampling upper bounds

The proof idea in this section is inspired by the proof of Theorem 5.1 in Frostig et al. (2015).

Let L̂n(w) be the empirical logistic loss on n data points at parameter value w. Likewise, define L(w) as the population

logistic loss (with respect to a uniform distribution over a radius r sphere) at parameter value w.

For this section, define Q = ∇2L(w∗) (a form of the Fisher information (Lehmann & Casella, 2006)) and ψ(u) =
σ(u)σ(−u). Q will be featured prominently in this analysis, so first we find and bound it.

E.1. Calculation and bounds on Q

Without loss of generality, let w∗ =Me1. Let ξ be the first component of d-dimensional vector drawn uniformly from a

sphere centered at the origin of radius Mr.

Lemma E.1. Q is a diagonal matrix with

Q1,1 =
1

M2
E[ψ(ξ)ξ2] (291)

and for any i > 1,

Qi,i =
1

M2

(
M2r2

d− 1
E[ψ(ξ)]− 1

d− 1
E[ψ(ξ)ξ2]

)
(292)

Proof. Note that

Q = E[ψ(w∗ · x)xxT ] (293)

Qi,j = E[ψ(Mx1)xixj ] (294)

(295)

For the sphere, because of symmetry about the origin, note that E[xj |xi] = 0 for i ̸= j and any value of xi. Therefore, by

the law of total expectation, Qi,j = 0 for i ̸= j and thus Q is diagonal.

Q1,1 = E[ψ(Mx1)x
2
1] (296)

=
1

M2
E[ψ(Mx1)(Mx1)

2] (297)

=
1

M2
E[ψ(ξ)ξ2] (298)

Additionally, for i > 1

Qi,i = E[ψ(Mx1)x
2
i ] (299)

= E[ψ(Mx1)E[x
2
i |x1]] (300)

Note that after conditioning on x1, the vector x2: is drawn uniformly from a (d− 1)-dimensional sphere centered at the

origin of radius r2 − x21. Therefore, conditioning on a value of x1,
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∑

i>1

x2i = r2 − x21 (301)

∑

i>1

E[x2i |x1] = r2 − x21 (302)

(d− 1)E[x2i |x1] = r2 − x21 (303)

Therefore,

Qi,i = E

(
ψ(Mx1)

r2 − x21
d− 1

)
(304)

=
r2

d− 1
E[ψ(Mx1)]−

1

d− 1
E[ψ(Mx1)x

2
1] (305)

=
1

M2

(
M2r2

d− 1
E[ψ(ξ)]− 1

d− 1
E[ψ(ξ)ξ2]

)
(306)

This lemma motivates the definition of Q1 = Q1,1 and Q2 = Qi,i for i > 1.

E.1.1. BOUNDS ON EXPECTATIONS

Lemma E.2. If d ≥ 5 and
√
d−1
Mr ≤ 1

6 ,

E[ψ(ξ)ξ2] ≥ 1

32

√
d− 1

Mr
(307)

Proof. By assumption,
(d−3)62

2M2r2 ≤ 1
2 . Then, by Lemma A.2, for α ≤ 6,

1

5

√
d− 1

α

Mr
≤ Pr(|ξ| ≤ α) ≤ 8

7

√
d− 1

α

Mr
(308)

Note that for any ξ,

ψ(ξ)ξ2 ≥ 1

20
1[1/2 ≤ |ξ| ≤ 6] (309)

So,

E[ψ(ξ)ξ2] ≥ 1

20
E[1[1/2 ≤ |ξ| ≤ 6]] (310)

=
1

20
(Pr(|ξ| ≤ 6)− Pr(|ξ| ≤ 1/2)) (311)

≥ 1

20

(
1

5

√
d− 1

6

Mr
− 8

7

√
d− 1

1/2

Mr

)
(312)

=
1

20

(
1

5
6− 8

7

1

2

) √
d− 1

Mr
(313)

≥ 1

32

√
d− 1

Mr
(314)
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Lemma E.3. If d ≥ 4,

E[ψ(ξ)ξ2] ≤ 12

√
d− 1

Mr
(315)

Proof. Let us examine the following ratio:

ψ(ξ)ξ2

σ(−|ξ|/2) =
(1 + exp(|ξ|/2))|ξ|2

(1 + exp(|ξ|))(1 + exp(−|ξ|) (316)

≤ 2 exp(|ξ|/2)
exp(|ξ|) |ξ|2 (317)

= 2 exp(−|ξ|/2 + 2 ln(|ξ|)) (318)

The expression −|ξ|/2 + 2 ln(|ξ|) is maximized at |ξ| = 4, so

2 exp(−|ξ|/2 + 2 ln(ξ)) ≤ 32

e2
≤ 5 (319)

Therefore, for all ξ,

ψ(ξ)ξ2 ≤ 5σ(−|ξ|/2) (320)

Since ξ and Mx1 have the same distribution:

E[ψ(ξ)ξ2] ≤ 5E[σ(−|ξ|/2)] (321)

= 5E[σ(−M |x1|/2)] (322)

= 5err∗(M/2) (323)

where err∗(M/2) is the error for parameters of norm M/2. From Lemma 4.2,

err∗(M/2) ≤ 8

7

√
d− 1

(M/2)r
(324)

Putting these together, we get the result.

Lemma E.4. If d ≥ 5 and
√
d−1
MR ≤ 1,

1

60

√
d− 1

Mr
≤ E[ψ(ξ)] ≤ 8

7

√
d− 1

Mr
(325)

Proof. Note that for any ξ,

1

2
σ(−|ξ|) ≤ ψ(ξ) ≤ σ(−|ξ|) (326)
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Therefore, since ξ and Mx1 have the same distribution:

1

2
E[σ(−M |x1|)] ≤ E[ψ(ξ)] ≤ E[σ(−M |x1|)] (327)

Thus,

1

2
err∗ ≤ E[ψ(ξ)] ≤ err∗ (328)

Using the assumption
√
d−1
MR ≤ 1, Lemma 4.1, and Lemma 4.2.

1

40

√
d− 1

Mr
≤ E[ψ(ξ)] ≤ 8

7

√
d− 1

Mr
(329)

E.1.2. BOUNDS ON Q

Lemma E.5. If d ≥ 5 and
√
d−1
Mr ≤ 1

12 ,

Q1 ≥ 1

32

1

M2

√
d− 1

Mr
(330)

Q2 ≥ 1

240

1

M2

Mr√
d− 1

(331)

λmin(Q) ≥ 1

32

1

M2

√
d− 1

Mr
(332)

Proof. From Lemma E.1 and Lemma E.2,

Q1 ≥ 1

32

1

M2

√
d− 1

Mr
(333)

From Lemma E.1, Lemma E.3, and Lemma E.4,

Q2 ≥ 1

M2

(
M2r2

d− 1

1

40

√
d− 1

Mr
− 1

d− 1
12

√
d− 1

Mr

)
(334)

=
1

M2

Mr√
d− 1

(
1

40
− 12

d− 1

d− 1

M2r2

)
(335)

Using the assumptions on
√
d−1
Mr and d

Q2 ≥ 1

M2

Mr√
d− 1

(
1

40
− 12

4

1

144

)
(336)

=
1

240

1

M2

Mr√
d− 1

(337)
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Finally,

λmin(Q) = min(Q1, Q2) (338)

≥ 1

32

1

M2

√
d− 1

Mr
(339)

Where the last line follows from
√
d− 1/Mr being small so the lower bound on Q1 is lower than the lower bound on Q2.

E.2. Geometric arguments

We define four regions around w∗ with size defined by q: an ellipsoid, a ball, a cylinder, and a cone. Without loss of

generality, assume w∗ =Me1. Let w2: denote the vector w without the first component.

REllipsoid =
{
w : (w − w∗)TQ(w − w∗) ≤ q2

}
(340)

RBall =

{
w : ∥w − w∗∥ ≤ q√

λmin(Q)

}
(341)

RCylinder =

{
w :

M

2
≤ w1 ≤ 3M

2
, ∥w2:∥ ≤ q√

Q2

}
(342)

RCone =

{
w : ∠(w,w∗) ≤ q

2

M
√
Q2

}
(343)

We show that REllipsoid ⊂ RBall and that, under some conditions, REllipsoid ⊂ RCylinder ⊂ RCone.

Lemma E.6.

REllipsoid ⊂ RBall (344)

Proof. For any point w ∈ REllipsoid,

(w − w∗)TQ(w − w∗) ≤ q2 (345)

and thus

λmin(Q)∥w − w∗∥2 ≤ q2 (346)

∥w − w∗∥ ≤ q
1√

λmin(Q)
(347)

and thus w ∈ RBall.

Lemma E.7. If q ≤M
√
Q1/2,

REllipsoid ⊂ RCylinder (348)
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Proof.

REllipsoid = {w : (w − w∗)TQ(w − w∗) ≤ q2} (349)

= {w : (w1 −M)2Q1 +
∑

i>1

w2
iQi ≤ q2} (350)

= {w : Q1(w1 −M)2 +Q2∥w2:∥2 ≤ q2} (351)

Since Q1 and Q2 are positive, any point within REllipsoid satisfies

Q1(w1 −M)2 ≤ q2 (352)

Q2∥w2:∥2 ≤ q2 (353)

Furthermore, if q ≤M
√
Q1/2,

(w1 −M)2 ≤
(
M

2

)2

(354)

so

M

2
≤ w1 ≤ 3M

2
(355)

Lemma E.8.

RCylinder ⊂ RCone (356)

Proof. Suppose that w ∈ RCylinder.

Note that

∥w2:∥ = | tan(∠(w, e1))|w1 (357)

∥w2:∥2 = tan2(∠(w,w∗))w2
1 (358)

using the properties of the definition of RCylinder, ∥w2:∥2 ≤ q2/Q2 and w1 ≥M/2,

q2

Q2
≥ tan2(∠(w,w∗))

M2

4
(359)

Noting that tan2(u) ≥ u2 for u ≤ π/2 (also note ∠(w,w∗) ≤ π/2 since w1 ≥M/2 > 0),

q2

Q2
≥ ∠(w,w∗)2

M2

4
(360)

∠(w,w∗) ≤ q
2

M
√
Q2

(361)

and thus w ∈ RCone.
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E.3. Hessian bounds

Lemma E.9. If n ≥ ln(d/δ) 2r2

λmin(Q) , then with probability 1− δ

2∇2L̂n(w
∗) ⪰ ∇2L(w∗) (362)

Proof. Note that

∇2L̂n(w
∗) =

1

n

n∑

i=1

∇2ℓ(xi, yi, w
∗) (363)

n∇2L̂n(w
∗) =

n∑

i=1

∇2ℓ(xi, yi, w
∗) (364)

In the notation of Theorem 5.1.1 of Tropp (2015) (a matrix Chernoff bound),

Let Y be defined as,

Y = nQ−1/2∇2L̂n(w
∗)Q−1/2 (365)

=
n∑

i=1

Q−1/2∇2ℓ(xi, yi, w
∗)Q−1/2 (366)

By convexity,

λmin

(
Q−1/2∇2ℓ(xi, yi, w

∗)Q−1/2
)
≥ 0 (367)

Furthermore, since ∇2ℓ(xi, yi, w
∗) = ψ(w∗ · xi)xixTi and since ψ(u) is bounded by 1/4,

λmax

(
Q−1/2∇2ℓ(xi, yi, w

∗)Q−1/2
)
≤ r2

4

1

λmin(Q)
= L (368)

Finally, E[Y ] = nId. Thus, with ε = 1/2 and Theorem 5.1.1 of Tropp (2015),

Pr(λmin(Y ) ≤ n/2) ≤ d

[
e−1/2

√
1/2

]n/L
(369)

≤ d exp

(
−1

8

)n/L

(370)

≤ d exp

(
−λmin(Q)n

2r2

)
(371)

So, if n ≥ ln(d/δ) 2r2

λmin(Q) with probability at least 1− δ,

λmin(Q
−1/2∇2L̂n(w

∗)Q−1/2) ≥ 1

2
(372)

Q−1/2∇2L̂n(w
∗)Q−1/2 ⪰ 1

2
Id (373)

∇2L̂n(w
∗) ⪰ 1

2
Q (374)

2∇2L̂n(w
∗) ⪰ ∇2L(w∗) (375)
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Lemma E.10. If q ≤ 10
4r3 (λmin(Q))

3/2
and 2∇2L̂n(w

∗) ⪰ ∇2L(w∗), then for w ∈ RBall,

2∇2L̂n(w) ⪰ ∇2L̂n(w
∗) (376)

Proof. First, note that |ψ′(u)| ≤ 1/10. Fix any w ∈ RBall.

We will now show ∥∇2L̂n(w)−∇2L̂n(w
∗)∥ ≤ qr3/10.

∥∇2L̂n(w)−∇2L̂n(w
∗)∥ =

∥∥∥∥∥
1

n

n∑

i=1

ψ(w∗ · xi)xixTi − 1

n

n∑

i=1

ψ(w · xi)xixTi

∥∥∥∥∥ (377)

≤ max
∥x∥=r

∥∥[ψ(w∗ · x)− ψ(w · x)]xxT
∥∥ (378)

= max
∥x∥=r,∥v∥=1

vT
[
[ψ(w∗ · x)− ψ(w · x)]xxT

]
v (379)

= max
∥x∥=r,∥v∥=1

ψ′(w̃ · x)xT (w∗ − w)(v · x)2 (380)

≤ r3

10
∥w − w∗∥ (381)

where w̃ in the second-to-last line is some point between w∗ and w.

So, for w ∈ RBall, ∥∇2L̂n(w)−∇2L̂n(w
∗)∥ ≤ r3

10q
1√

λmin(Q)
≤ 1

4λmin(Q).

Therefore,

∇2L̂n(w)−∇2L̂n(w
∗) ⪰ −1

4
Q (382)

2∇2L̂n(w)− 2∇2L̂n(w
∗) ⪰ −1

2
Q (383)

2∇2L̂n(w)−∇2L̂n(w
∗) ⪰ ∇2L̂n(w

∗)− 1

2
Q (384)

⪰ 1

2

(
2∇2L̂n(w

∗)−Q
)

(385)

⪰ 0 (386)

E.4. High probability bound on gradient of empirical loss

Define Z = Q−1/2∇L̂n(w
∗).

Lemma E.11. If n ≥ 4
9

r2

λmin(Q) ln(2d/δ), then with probability 1− δ,

∥Z∥2 ≤ 4d ln(2d/δ)

n
(387)

Proof.

Z = Q−1/2∇L̂n(w
∗) (388)

=
1

n

n∑

i=1

Q−1/2∇ℓ(xi, yi, w∗) (389)
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Define Z(i) = Q−1/2∇ℓ(xi, yi, w∗)

Note that ∥Z(i)∥ ≤ ∥Q−1/2∥∥∇ℓ(xi, yi, w∗)∥ ≤ r√
λmin(Q)

and thus Z
(i)
j ≤ r√

λmin(Q)
.

Further note that

E[Z(i)] = 0 (390)

Cov(Z(i)) = Q−1/2
E[∇ℓ(x, y, w∗)∇ℓ(x, y, w∗)T ]Q−1/2 (391)

= Id (392)

The above follows from noting that E[σ(−yx · w∗)2xxT ] = E[ψ(x · w∗)xxT ] = Q, a standard identity for the Fisher

information.

By Bernstein’s inequality, for any dimension j,

Pr
(
|nZj | ≥

√
4n ln(2d/δ)

)
≤ 2 exp


−

1
24n ln(2d/δ)

n+ 1
3

r√
λmin(Q)

√
4n ln(2d/δ)


 (393)

Pr

(
Z2
j ≥ 4 ln(2d/δ)

n

)
≤ 2 exp


− 2 ln(2d/δ)

1 + 2
3

r√
λmin(Q)

√
ln(2d/δ)

n


 (394)

If n ≥ 4
9

r2

λmin(Q) ln(2d/δ), then

Pr

(
Z2
j ≥ 4 ln(2d/δ)

n

)
≤ 2 exp

(
−2 ln(2d/δ)

2

)
(395)

= δ/d (396)

Then, by a union bound over all dimensions, with probability 1− δ,

∀j : Z2
j ≤ 4 ln(2d/δ)

n
(397)

∥Z∥2 ≤ 4d ln(2d/δ)

n
(398)

E.5. Main argument

Theorem E.12. Suppose d ≥ 5 and
√
d−1
Mr ≤ 1/12. Let ŵ be the logistic MLE estimator from n randomly sampled points

on a radius r sphere. For any δ > 0, if n ≥ 64r3M3 ln(4d/δ)/
√
d− 1, n ≥ 1600000M9r9d ln(4d/δ)/(d − 1)3/2, and

n ≥ 18500d ln(4d/δ)Mr/
√
d− 1, then with probability 1− δ,

∠(ŵ, w∗)2 ≤ 300000

√
d− 1

Mr

d

n
ln(4d/δ) (399)

and
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M

2
≤ ∥ŵ∥ ≤ 3M

2
(400)

Proof. Set q = 17
√

d
n ln(4d/δ) so that q2 > 256 d

n ln(4d/δ).

By a Taylor expansion,

L̂n(w) = L̂n(w
∗) +

[
∇L̂n(w

∗)
]T

(w − w∗) +
1

2
(w − w∗)T

[
∇2L̂n(w̃)

]
(w − w∗) (401)

for some w̃ between w and w∗.

By assumption and by Lemma E.5, n ≥ 64r3M3 ln(4d/δ)/
√
d− 1 ≥ ln(4d/δ) 2r2

λmin(Q) .

Thus, by Lemma E.9, with probability at least 1− δ/2, ∇2L̂n(w
∗) ⪰ 1

2∇2L(w∗).

By assumption and Lemma E.5, n ≥ 1600000M9r9d ln(4d/δ)/(d− 1)3/2, so q ≤ 10
4r3 (λmin(Q))

3/2

By Lemma E.10, if ∇2L̂n(w) ⪰ 1
2∇2L̂n(w

∗) (which occurs with probability at least 1− δ/2), for any w ∈ RBall (and also

for w ∈ REllipsoid by Lemma E.6),

L̂n(w) ≥ L̂n(w
∗) +

[
∇L̂n(w

∗)
]T

(w − w∗) +
1

8
(w − w∗)T

[
∇2L(w∗)

]
(w − w∗) (402)

(403)

Then, for w on the boundary of REllipsoid, the following is true,

L̂n(w) ≥ L̂n(w
∗) +

(
Q−1/2∇L̂n(w

∗)
)T

Q1/2(w − w∗) +
1

8
q2 (404)

L̂n(w) ≥ L̂n(w
∗)− ∥Z∥q + 1

8
q2 (405)

By assumption and Lemma E.5, n ≥ 64r3M3 ln(4d/δ)/
√
d− 1 ≥ 4

9r
2 ln(4d/δ)/λmin(Q).

Thus, by Lemma E.11, with probability 1− δ/2, ∥Z∥ ≤
√

4d ln(4d/δ)
n < 1

8q, by the definition of q.

Then, with probability 1− δ (union bound over the two δ/2 events), for all w on the boundary of REllipsoid,

L̂n(w) > L̂n(w
∗) (406)

Then, by convexity of L̂n, REllipsoid must contain the minimizer of L̂n, which we refer to as ŵ.

By assumption and Lemma E.5, n ≥ 18500d ln(4d/δ)Mr/
√
d− 1 so q ≤M

√
Q1/2.

Therefore, by Lemmas E.7 and E.8, REllipsoid ⊂ RCylinder ⊂ RCone. And thus, ŵ ∈ RCone. (Also note that since ŵ ∈ RCylinder,

M/2 ≤ ∥ŵ∥ ≤ 3M/2.)

By the definition of RCone,
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∠(ŵ, w∗) ≤ q
2

M
√
Q2

(407)

∠(ŵ, w∗)2 ≤ q2
4

M2Q2
(408)

≤ 289
d

n
ln(4d/δ)

4

M2Q2
(409)

≤ 289
d

n
ln(4d/δ)

4 · 240
√
d− 1

Mr
(410)

≤ 300000

√
d− 1

Mr

d

n
ln(4d/δ) (411)

Lemma E.13. Let a and b be positive real numbers, and δmin ∈ [0, 1]. IfG ∈ [0, 1] is a random variable and for δ ∈ [δmin, 1]

Pr(G ≤ a+ b ln(1/δ)) ≥ 1− δ (412)

then

E[G] ≤ a+ b+ δmin (413)

Proof. Note that by assumption, for δ ∈ [δmin, 1],

Pr(G ≥ a+ b ln(1/δ)) ≤ δ (414)

Rearranging,

Pr(G ≥ g) ≤ exp

(
−g − a

b

)
(415)

We can use this bound up until g = a+ b ln (1/δmin). Call this upper limit U = a+ b ln (1/δmin).

Since G is a non-negative random variable,

E[G] =

∫ ∞

0

Pr(G ≥ g)dg (416)

We now look at two cases. Suppose U ≤ 1,

E[G] =

∫ a

0

Pr(G ≥ g)dg +

∫ U

a

Pr(G ≥ g)dg +

∫ 1

U

Pr(G ≥ g)dg +

∫ ∞

1

Pr(G ≥ g)dg (417)

For the first integral, note that probabilities of events are upper bounded by 1.

For the second integral, we use the assumed bound.
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For the third integral, we note that the inverse cdf of a random variable is decreasing.

For the fourth integral, we note that G is upper bounded by 1.

E[G] ≤
∫ a

0

1dg +

∫ U

a

exp

(
−g − a

b

)
dg + (1− U) Pr(G ≥ U) + 0 (418)

≤ a+

∫ ∞

a

exp

(
−g − a

b

)
dg + Pr(G ≥ U) (419)

For the second case, suppose U ≥ 1 and use a similar bounding strategy:

E[G] =

∫ a

0

Pr(G ≥ g)dg +

∫ 1

a

Pr(G ≥ g)dg +

∫ ∞

1

Pr(G ≥ g)dg (420)

≤
∫ a

0

1dg +

∫ 1

a

exp

(
−g − a

b

)
dg + 0 (421)

≤ a+

∫ ∞

a

exp

(
−g − a

b

)
dg (422)

So in either case,

E[G] ≤ a+

∫ ∞

a

exp

(
−g − a

b

)
dg + Pr(G ≥ U) (423)

≤ a+ b+ exp

(
−U − a

b

)
(424)

= a+ b+ δmin (425)

Theorem 4.6. Suppose d ≥ 5 and
√
d−1
Mr ≤ 1/12. Let ŵ be the logistic MLE estimator from n randomly sampled points on a

radius r sphere. If n ≥
(
64r3M3/

√
d− 1

)2
, n ≥

(
1600000M9r9d/(d− 1)3/2

)2
, and n ≥

(
18500dMr/

√
d− 1

)2
, then

E[err(ŵ)]− err(w∗) ≤ 240000
d ln(d)

n
(426)

Proof. By Theorem E.12, for δ > 0 and n sufficiently large (in terms of δ), the following holds with 1− δ probability:

∠(ŵ, w∗)2 ≤ 300000

√
d− 1

Mr

d

n
ln(4d/δ) (427)

which implies, via Lemma 4.3, that

err(ŵ)− err∗ ≤ 60000
d

n
ln(4d/δ) (428)

We now apply Lemma E.13. Let G = err(ŵ)− err∗. Note that G ≥ 0 by optimality of err∗ and G ≤ 1 since err(w) ≤ 1 for

all w.
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Define a = 60000 d
n ln(4d) and b = 60000 d

n . Let δmin = 4d exp(−√
n), note for later that δmin ≤ b for n ≥ 1.

Noting that n ≥ 64r3M3
√
n/

√
d− 1 = 64r3M3 ln(4d/δmin)/

√
d− 1,

n ≥ 1600000M9r9d
√
n/(d− 1)3/2 = 1600000M9r9d ln(4d/δmin)/(d− 1)3/2,

and n ≥ 18500d
√
nMr/

√
d− 1 = 18500d ln(4d/δmin)Mr/

√
d− 1,

therefore, for δ ∈ [δmin, 1],

Pr(G ≥ a+ b ln(1/δ)) ≤ δ (429)

by Lemma E.13,

E[err(ŵ)]− err∗ ≤ a+ b+ δmin (430)

≤ a+ 2b (431)

= 60000
d

n
(ln(4d) + 2) (432)

≤ 240000
d ln(d)

n
(433)

the last line follows from noticing ln(4d) + 2 ≤ 4 ln(d) for d ≥ 5.

F. Adaptive upper bound

F.1. Algorithm

Recall that after randomly sampling with half the budget and using the logistic MLE to find wrandom we set w1 = 2
3wrandom.

Define M̂ = ∥w1∥. Then, W =
{
w : ∥w∥ ≤ M̂,∠(w,w1) ≤ 1

2 min
(

π
2 ,

2
M̂r

)}
. See Algorithm 1 for more details. Define

S(w) = {x : ∥x∥ = r, x · w = 0} as the decision boundary for weights w. We have the following iterates:

xt ∼ U({x : ∥x∥ = r, x · wt = 0}) = U(S(wt)) (434)

yt ∼ 2Bernoulli(σ(w∗ · xt))− 1 (435)

gt = ∇wℓ(xt, yt, wt) (436)

= −σ(xt · wt)ytxt (437)

= −1

2
ytxt (438)

wt+1 = ΠW(wt − ηtgt) (439)

F.2. Strong convexity

Note that
∥w∥
M w∗ is the re-scaled w∗ to have the same norm as w.

Lemma F.1. For all w where ∠(w,w∗) ≤ min
(
π
2 ,

2
Mr

)
. If x is sampled uniformly from S(w) and y is the corresponding

sampled label (according to w∗),

E[∇ℓ(x, y, w)] ·
(
w − ∥w∥

M
w∗
)

≥ 1

6

M

∥w∥
r2

d− 1

∥∥∥∥w − ∥w∥
M

w∗
∥∥∥∥
2

(440)
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Proof.

E[∇ℓ(x, y, w)] ·
(
w − ∥w∥

M
w∗
)

= E

[
−1

2
yx

]
·
(
w − ∥w∥

M
w∗
)

(441)

=
1

2
E

[
−yx · w + yx · ∥w∥

M
w∗
]

(442)

=
∥w∥
2M

E[yx · w∗] (443)

=
∥w∥
2M

E[(σ(x · w∗)− σ(−x · w∗))x · w∗] (444)

Define f(u) = (σ(u)− σ(−u))u

E[∇ℓ(x, y, w)] ·
(
w − ∥w∥

M
w∗
)

=
∥w∥
2M

Ex∼S(w)[f(x · w∗)] (445)

Note that since ∠(x,w) = π/2,

|w∗ · x| = ∥x∥∥w∗∥| cos(∠(x,w∗))| (446)

= rM | sin(∠(x,w)− ∠(x,w∗))| (447)

≤ rM |∠(x,w)− ∠(x,w∗)| (448)

≤ rM∠(w,w∗) (449)

where the last line follows from the reverse triangle inequality.

Further note that |u| ≤ 2 =⇒ f(u) ≥ u2

3

Therefore, if rM∠(w,w∗) ≤ 2,

E[∇ℓ(x, y, w)] ·
(
w − ∥w∥

M
w∗
)

≥ ∥w∥
2M

Ex∼S(w)

[
(x · w∗)2

3

]
(450)

=
∥w∥
6M

Ex∼S(w)[(x · w∗)2] (451)

Without loss of generality, assume w is in the same direction as ed, and w∗ =M cos(∠(w,w∗))ed +M sin(∠(w,w∗))e1

Ex∼S(w)

[
(x · w∗)2

]
= Ex∼U(rSd−2)[M

2 sin2(∠(w,w∗))x21] (452)

= r2M2 sin2(∠(w,w∗))Ex∼U(Sd−2)[x
2
1] (453)

By symmetry of the sphere Sd−2 ⊂ R
d−1, Ex∼U(Sd−2)[x

2
1] =

1
d−1 so

Ex∼S(w)

[
(x · w∗)2

]
=
r2M2

d− 1
sin2(∠(w,w∗)) (454)

Now, we need to connect sin(∠(w,w∗)) back to ∥w − w∗∥.

By the equation for a chord on a circle (and noting ∥w∥ =
∥∥∥∥w∥

M w∗
∥∥∥)
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∥∥∥∥w − ∥w∥
M

w∗
∥∥∥∥
2

= ∥w∥2(2− 2 cos(∠(w,w∗))) (455)

In general, for acute angles θ ≤ π
2 , 2− 2 cos(θ) ≤ 2 sin2(θ). Therefore,

∥∥∥∥w − ∥w∥
M

w∗
∥∥∥∥
2

≤ 2∥w∥2 sin2(∠(w,w∗)) (456)

or, rearranging,

sin2(∠(w,w∗)) ≥ 1

2∥w∥2
∥∥∥∥w − ∥w∥

M
w∗
∥∥∥∥
2

(457)

Putting it all together, we arrive at:

E[∇ℓ(x, y, w)] ·
(
w − ∥w∥

M
w∗
)

≥ 1

6

M

∥w∥
r2

d− 1

∥∥∥∥w − ∥w∥
M

w∗
∥∥∥∥
2

(458)

F.3. Optimization argument

This argument is inspired by the proof of Lemma 1 in Rakhlin et al. (2012), which is from Nemirovski et al. (2009).

Lemma F.2. Suppose we have a convex set W , a reachable set R ⊂ W , an initialization w1 ∈ R and a random ªstochastic

gradientº g(w) that is a function of w and has a bounded expectation: ∀w ∈ R : E[∥g(w)∥2] ≤ G.

If there exists λ > 0 and w ∈ W such that E[g(w)] · (w−w) ≥ λ∥w−w∥2 for all w ∈ R, then, for a orthogonal projected

stochastic gradient update rule wt+1 = ΠW
(
wt − 1

λtg(wt)
)
, if the iterates wt always stay in R, then for any t ≥ 3,

E[∥wt − w∥2] ≤ G2

λ2t
(459)

Proof. Define ηt =
1
λt to be the step size.

Note that since W is convex, w ∈ W , and orthogonal projections onto convex sets contract distances,

E
[
∥wt+1 − w∥2

]
= E

[
∥ΠW(wt − ηtg(wt))− w∥2

]
(460)

≤ E
[
∥wt − ηtg(wt)− w∥2

]
(461)

= E[∥wt − w∥2]− 2ηtE[g(wt) · (wt − w)] + η2tE[∥g(wt)∥2] (462)

= E[∥wt − w∥2]− 2ηtE [E[g(wt)] · (wt − w)] + η2tE[∥g(wt)∥2] (463)

≤ E[∥wt − w∥2]− 2ηtλE[∥wt − w∥2] + η2tG
2 (464)

= (1− 2ηtλ)E[∥wt − w∥2] + η2tG
2 (465)

Plugging in the step size ηt =
1
λt :
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E[∥wt+1 − w∥2] ≤
(
1− 2

t

)
E[∥wt − w∥2] + G2

λ2t2
(466)

Then, from the above equation with t = 2,

E[∥wt+1 − w∥2] ≤ 0 +
G2

4λ2
(467)

≤ G2

λ2(t+ 1)
(468)

we proceed by induction for t ≥ 3,

E[∥wt+1 − w∥2] ≤
(
1− 2

t

)
E[∥wt − w∥2] + G2

λ2t2
(469)

≤
(
1− 2

t

)
G2

λ2t
+

G2

λ2t2
(470)

=
G2

λ2

(
1

t
− 2

t2
+

1

t2

)
(471)

=
G2

λ2
t− 1

t2
(472)

≤ G2

λ2(t+ 1)
(473)

And thus, the following is proven,

E[∥wt − w∥2] ≤ G2

λ2t
(474)

F.4. Connection between distance and angle

Lemma F.3. For any vectors u, v ∈ R
d − {0},

∠(u, v) ≤ 2π

∥v∥∥u− v∥ (475)

Proof. Without loss of generality, let v = ∥v∥e1 and let u = ae1 + be2.

Next, we split into two cases,

Case 1: ∥u− v∥ ≤ ∥v∥
2

In this case, a ≥ 1
2∥v∥ and thus, 1 ≤ 2 a

∥v∥ .

Then,
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∠(u, v) =

∣∣∣∣arctan
(
b

a

)∣∣∣∣ (476)

≤
∣∣∣∣
b

a

∣∣∣∣ (477)

=

√(
b

a

)2

(478)

≤

√

4

(
a

∥v∥

)2(
b

a

)2

(479)

= 2

√(
b

∥v∥

)2

(480)

≤ 2π

√(
1− a

∥v∥

)2

+

(
b

∥v∥

)2

(481)

=
2π

∥v∥
√
(∥v∥ − a)2 + b2 (482)

=
2π

∥v∥∥v − u∥ (483)

Case 2: ∥u− v∥ ≥ ∥v∥
2

∠(u, v) ≤ π (484)

=
2π

∥v∥
∥v∥
2

(485)

≤ 2π

∥v∥∥u− v∥ (486)

Let G2 = r2

4 so that ∥g(wt)∥2 = 1
4∥xt∥2 = G2

F.5. Putting it together

Theorem 4.7. Suppose d ≥ 5 and
√
d−1
Mr ≤ 1/12. If n ≥ 4 is large enough so that

n ≥ 64r3M3 ln(4n/err∗)/
√
d− 1 (487)

n ≥ 1600000M9r9d ln(4n/err∗)/(d− 1)3/2 (488)

n ≥ 18500d ln(4n/err∗)Mr/
√
d− 1 (489)

and

400

√
d− 1

Mr

d

n
ln(4n/err∗) ≤

(
1

2
min

(
π

2
,

2

3Mr

))2

(490)

then, for the estimator ŵ returned from Algorithm 1,
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E[err(ŵ)]− err(w∗) ≤ 26001err∗
d

n
(491)

Proof. Set δ = err∗d/n.

Recall M̂ = ∥w1∥.

By Theorem E.12, with probability 1− δ,

M

2
≤ ∥wrandom∥ ≤ 3M/2 (492)

M

3
≤ M̂ ≤M (493)

and

∠(wrandom, w
∗)2 ≤ 400

√
d− 1

Mr

d

n
ln(4d/δ) (494)

≤
(
1

2
min

(
π

2
,

2

3Mr

))2

(495)

so

∠(wrandom, w
∗) ≤ 1

2
min

(
π

2
,

2

3Mr

)
≤ 1

2
min

(
π

2
,

2

3M̂r

)
(496)

Next, note that ∥wt∥ = M̂ for any t, since ∥w1∥ = M̂ and each stochastic gradient gt = g(wt) is orthogonal to wt and then

the iterate is projected back onto W .

Thus, define the reachable set R = {w ∈ W : ∥w∥ = M̂} which is the outer boundary of W . Note R is not convex, but

always contains the iterates wt.

Note that E[∥g(w)∥2] = r2

4 . Set G = r
2 , then the expected squared norm of the gradient is bounded by G2.

Define w = M̂
Mw∗. Then, since ∠(wrandom, w

∗) ≤ 1
2 min

(
π
2 ,

2
3M̂r

)
, w ∈ R

For any w ∈ R, ∠(w,wrandom) ≤ 1
2 min

(
π
2 ,

2
3M̂r

)
≤ 1

2 min
(
π
2 ,

2
Mr

)
. Because ∠(wrandom, w

∗) ≤ 1
2 min

(
π
2 ,

2
3Mr

)
,

∠(w,w∗) ≤ min
(
π
2 ,

2
Mr

)
.

Therefore, by Lemma F.1, for any w ∈ R

E[g(w)] ·
(
w − ∥w∥

M
w∗
)

≥ 1

6

M

M̂

r2

d− 1

∥∥∥∥w − ∥w∥
M

w∗
∥∥∥∥
2

(497)

E[g(w)] · (w − w) ≥ 1

6

r2

d− 1
∥w − w∥2 (498)

Therefore, with λ = 1
6

r2

d−1 , by Lemma F.2, for t ≥ 3,
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E

[
∥wt − w∥2

]
≤ G2

λ2t
(499)

=
r2

4

36(d− 1)2

r4
1

t
(500)

= 9
(d− 1)2

r2t
(501)

Because ŵ = wn/2+1, for n ≥ 4,

E

[
∥ŵ − w∥2

]
≤ 18

(d− 1)2

r2n
(502)

From Lemma 4.3 and Lemma F.3, and noting w and w∗ have the same direction,

E[err(ŵ)]− err(w∗) ≤ 1

5

Mr√
d− 1

E
[
∠(ŵ, w∗)2

]
(503)

≤ 1

5

Mr√
d− 1

(2π)2

M̂2
E

[
∥ŵ − w∥2

]
(504)

≤ 1

5

Mr√
d− 1

(2π)2

(M/3)2
18

(d− 1)2

r2n
(505)

≤ 1300

√
d− 1

Mr

d− 1

d

d

n
(506)

≤ 1300 · 20err∗
d

n
(507)

= 26000err∗
d

n
(508)

However, this argument was predicated on an event that occurs with probability 1− δ. Noting the excess error is bounded

by 1, we find,

E[err(ŵ)]− err(w∗) ≤ (1− δ)26000err∗
d

n
+ δ · 1 (509)

≤ 26000err∗
d

n
+ δ (510)

≤ 26001err∗
d

n
(511)


