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Abstract

Within machine learning, active learning studies
the gains in performance made possible by adap-
tively selecting data points to label. In this work,
we show through upper and lower bounds, that for
a simple benign setting of well-specified logistic
regression on a uniform distribution over a sphere,
the expected excess error of both active learning
and random sampling have the same inverse pro-
portional dependence on the number of samples.
Importantly, due to the nature of lower bounds,
any more general setting does not allow a better
dependence on the number of samples. Addition-
ally, we show a variant of uncertainty sampling
can achieve a faster rate of convergence than ran-
dom sampling by a factor of the Bayes error, a
recent empirical observation made by other work.
Qualitatively, this work is pessimistic with respect
to the asymptotic dependence on the number of
samples, but optimistic with respect to finding
performance gains in the constants.

1. Introduction

Given samples of input-label pairs, machine learning algo-
rithms return decision rules that will predict future labels
given inputs. Active learning studies the possible reduction
in error if the samples are adaptively chosen by the machine
learning system rather than randomly sampled. Active learn-
ing algorithms have been demonstrated to reduce error in a
variety of both theoretical and empirical settings.

Theoretically, there are a variety of cases where the excess
error of active learning has a better dependence (polyno-
mially or even exponentially) on the number of samples,
n, than the excess error of random sampling (Balcan et al.,
2007; Balcan & Long, 2013; Wang & Singh, 2016). In
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Table 1. A table with our lower bounds (impossibility results) and
our upper bounds (algorithm analysis) for both random sampling
and adaptive sampling (active learning) in our setting. ¢ and ¢’ are
universal constants and err™ is the Bayes error.

Sampling Result type Exp. Excess Error
Adaptive Impossibility >c err*%
Adaptive | Alg. Analysis | < cerr* <
Random Impossibility >c %

Random | Alg. Analysis | < ¢ ‘“‘;’Lgd

this work, we show that for a simple benign setting of well-
specified logistic regression on a uniform distribution over
a sphere, the expected excess error of both active learning
and random sampling have the same inverse proportional
dependence on n: the expected excess error decreases as

o(1/n).

On a more optimistic note, we show that active learning can
reduce the expected excess error by a distribution-dependent
factor, the Bayes error, which we denote err*. As our setting
employs well-specified logistic regression as the label distri-
bution, this result matches existing empirical observations
for logistic regression (Mussmann & Liang, 2018a).

A list of the results is shown in Table 1. Note that all results
require the dimension to be larger than a constant and the
number of samples to be sufficiently large in terms of the
specification of the setting (the dimension d, the radius of
the input distribution sphere r, and the norm of the true
parameters M). Finally, both upper bounds require the
Bayes error, err*, to be smaller than a constant. Importantly,
because of the simplicity of our setting, the lower bounds
are quite strong while the upper bounds are quite weak and
only show the (almost) tightness of the lower bounds.

The two lower bounds are proved using a variant of Fano’s
inequality (Duchi & Wainwright, 2013; Scarlett & Cevher,
2019) and a carefully designed set of possible logistic re-
gression weights. The proofs use very similar arguments
that differ in the bound on the mutual information. The
random sampling upper bound is shown for the maximum
likelihood estimator (MLE). While the MLE has been ana-
lyzed many times (Van der Vaart, 2000; Lehmann & Casella,
2006; Frostig et al., 2015), our result differs in that we prove
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the upper bound in terms of the excess zero-one loss, not
the excess logistic loss, a non-trivial difference. Finally,
the adaptive algorithm analyzed for the upper bound is a
two-step algorithm where the first half of the queries are
randomly sampled and the second half of the queries are
collected by uncertainty sampling, and used for gradient
updates; that is, instead of optimizing the logistic loss on all
labels thus far, we only take a gradient step at the most re-
cently labeled point. For the analysis, we use the insight that
uncertainty sampling is roughly stochastic gradient descent
on the zero-one loss (Mussmann & Liang, 2018b) and then
adapt a standard stochastic gradient descent convergence
argument (Rakhlin et al., 2012). Finally, we present illus-
trative synthetic experimental results for our upper bounds,
demonstrating the effect of the problem dependent parame-
ters in our setting.

In summary, our contributions are threefold:

* Presentation of four results suggesting that the advan-
tage of active learning is often not in the dependence on
the number of samples but in the constants, particularly
the Bayes error.

* Complete, self-contained proofs of all results from
basic principles with the exception of Fano’s inequality
and a few concentration results from other works.

» Synthetic experiments for the logistic regression uni-
form sphere setting to illustrate our two upper bounds.

The paper is organized as follows: we first review related
work in Section 2 before introducing our notation and setting
in Section 3. We then proceed with our results in Section 4,
present synthetic experiments in Section 5, discuss some
implications in Section 6, and conclude with Section 7.

2. Related work

The problem of learning homogeneous linear separators
over data drawn from the uniform distribution on a sphere
has been a fruitful setting for active learning (Dasgupta
et al., 2005; Dasgupta, 2005; Balcan et al., 2007; 2009;
Wang & Singh, 2016). In the realizable case, also known as
the noiseless case, it is known that active learning enables
dramatic performance gains. While random sampling meth-
ods require ©(1/¢) samples to achieve ¢ error, a variety
of active learning methods achieve a sample complexity of
©(In(1/e)). This improvement is referred to as exponential
because the error rate goes from O(1/n) to exp(—O(n)).

In the presence of general noise, exponential gains are not
possible (Kédridinen, 2006; Beygelzimer et al., 2009). In
particular, the sample complexity for general active learning
grows as O(1/e?) (the excess error is ©(1/y/n)) which
is the same dependence on ¢ as general passive learning.

Interestingly, the sample complexity lower bounds between
passive and active learning differ by a factor of the minimal
error (Hanneke, 2014), a quantity similar to err*.

The Tsybakov noise condition (see assumption (A1) in Tsy-
bakov (2004)) is an important quantity for characterizing
sample complexities. Intuitively, the Tsybakov noise condi-
tion relates how the excess error of a classifier scales with
the disagreement between the classifier and the optimal clas-
sifier. Using the notation of Tsybakov (2004), this scaling
is measured by a variable x > 1 which is a function of the
true data distribution and a set of classifiers F:

Je, ¢’ > 0 such that Vf, f/ € F :

Pr(f() £ J'(2) < ¢ =
E,[1[f(2) # J' @) Pr(Y = 1]z) = Pr(Y = 0}a)]
> ¢ Pr(f(x) £ f(2))"

Perhaps the two most common cases are x = 1 and kK = 2.
x = 1 implies noise that is easier to handle; examples in-
clude noiseless (deterministic) label distributions and cases
where the conditional label distribution is bounded away
from 1/2 (Massart noise (Massart & Nédélec, 2006)). x = 2
involves more noise near the decision boundary. For exam-
ple, if the conditional label distribution behaves linearly
with non-zero slope across the decision boundary, as is the
case with logistic regression, then Kk = 2.

The Tsybakov noise condition importantly separates expo-
nential and polynomial error rates, and for polynomial rates,
determines the polynomial exponent. For example, Balcan
et al. (2007) provide an analysis of an uncertainty sampling
variant (known as margin sampling) for homogeneous linear
classifiers on the uniform distribution over a sphere and
show a key dependence on the Tsybakov noise condition.
In the notation of Balcan et al. (2007), « = 1 — 1/k. In
particular, if o = 0 (k = 1), the excess error drops exponen-
tially fast in the number of samples. However, for & € (0,1)
(k > 1), the rate is significantly slower, the excess error
decays polynomially in the number of samples. In particu-
lar, for oo = 1/2 (k = 2), the excess error goes as O(1/n),
approximately (up to log terms) the error rate we find for
logistic regression. Balcan & Long (2013) gives similar
results for log-concave distributions.

The most similar lower bounds to ours in the literature are
in terms of the Tsybakov noise condition. Castro & Nowak
(2007) shows that for distributions where the decision bound-
ary is smooth and k = 2, the active learning excess error
rate is (1/n). Hanneke & Yang (2015) shows the same
for distributions where x = 2 in terms of constants such
as those from the definition of the Tsybakov noise condi-
tion. Most recently, Wang & Singh (2016) gave a lower
bound of Q2(1/n) with a construction of a label distribution
with Tsybakov noise condition x = 2 and the input distribu-
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tion uniform on a sphere. In contrast to the previous lower
bounds, we incorporate the following two aspects:

* We prove a stronger lower bound: rather than showing
there is a hard-to-learn family of distributions within all
distributions with a Tsybakov noise condition of kK = 2
(with an input distribution uniform on a sphere), we
show that there is a hard-to-learn family of distributions
within the strictly smaller set of well-specified logistic
regression label distributions and inputs uniform on a
sphere.

* We work out all constants in terms of intuitive problem
setting quantities (dimension, Bayes error, radius of
sphere, etc) and hide nothing in asymptotic notation
to importantly bring light to the gains possible in the
constants, rather than the dependence on the number
of samples.

Interestingly, while general random sampling lower bounds
for Tsybakov noise condition x = 2 yield a Q(1/n%/3)
rate, we show that a random sampling algorithm yields the
standard O(1/n) error rate for logistic regression.

3. Setting

We study a binary classification setting with an input set
X and a label set ). In particular, we set X C R< and
|| = 2. The goal is to identify a measurable f : X — )
that achieves low error, where the error is defined as

err(f) = Pr(f(z) # y) (D

In this work, we analyze the case that the input data distribu-
tion is uniform on a radius r sphere: X = S9! = {z €
R : ||z|| = 7}. Throughout the paper, we require d > 5,
and for the lower bounds we require d > 24.

We further assume the true label distribution is well-
specified logistic regression with parameters w* of norm M.
Specifically,

Pr(ylz) = oy - w") @)

where |[w*|| = M,y € {—1,1}, and o is the standard
sigmoid function: o(u) = 1/(1 + exp(—u)).

Because the Bayes-optimal classifier is linear for well-
specified logistic regression, we are especially interested in
linear classifiers:

f(w;w)={_1 wew <0 3)

We define the error of weights w as

err(w) = Pr(f(z;w) # y) “)

and the Bayes error as

err™ = err(w*) (5)

Note that by spherical symmetry, err* only depends on the
norm of w*, that is M, and not on the direction of w*.

We can think of three variables defining the setting: the
norm of the true parameters M, the radius r of the sphere
from which points are drawn, and the dimension d of the
input space. Although it appears there are three variables,
there are effectively only two. Note that since the true label
distribution depends only on = - w*, if we double M and
halve 7, the structure of the setting stays the same. There-
fore, we can think of the product Mr and the dimension d
as the two defining variables.

Furthermore, given a fixed d, there is a bijection between
Mr € [0,00) and err* € (0,1/2]. So we can also think of
parametrizing settings by err* and d.

We consider two methods of data collection: adaptive sam-
pling and random sampling. A random sampling algorithm
is given n points sampled from the data distribution (inputs
uniform on X with labels according to well-specified logis-
tic regression) and returns a classifier f . An adaptive sam-
pling algorithm iteratively selects a point in X and receives
a label drawn from the true conditional data distribution.
After this process is repeated n times (n labels have been
observed), the algorithm returns a classifier f . Importantly,
an adaptive sampling algorithm’s selection of a point can
depend on previously observed labels.

4. Results

In this work, we show four results: upper and lower bounds
for the adaptive and random sampling settings. We begin
by presenting a few lemmas that provide intuition for the
setting.

4.1. Bayes’ error

First, we analyze the Bayes error and show that it is linearly

related to ¥ ]@;1. Intuitively, for large d, any component of
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Figure 1. A graphical representation of the two bounds on the
Bayes error err™ in terms of the quantity \/]\?. Each setting of
M, r, and d corresponds to a point that must lie in the gray shaded
region. Trivially, the Bayes error is below 1/2. The upper blue
line corresponds to Lemma 4.2 while the lower truncated blue line
corresponds to Lemma 4.1. The dashed blue line is a consequence

of the monotonicity of the Bayes error as a function of M.

a random point on a sphere will be approximately a nor-
mal distribution with variance ©(r?/d) and thus standard
deviation ©(r/+/d). Since w* has norm M, w* - z will be
approximately normal with standard deviation ©(Mr//d).
The Bayes optimal classifier is unlikely to err when |w™* - x|
is large, but when w* - x is zero, the Bayes optimal classifier
errs with probability 1/2. Roughly speaking, the probability
that w* - = (normally distributed) is close to zero is inversely
proportional to the standard deviation, © (M7 /+/d). Thus,
we might expect that the Bayes error scales as ©(v/d/Mr).
In fact, this is the case as seen in the following two lemmas.

Lemma 4.1. Suppose d > 5. If —V]\‘j;l < 1, then,

1 vd-1

k > _
T =50 My ©
Lemma 4.2. Suppose d > 5.
8vd—1
S 7
err’ < - (7

Proofs for these two lemmas can be found in Appendix A.

The implications of these two lemmas are shown graphically

in Figure 1. We see that if err* is sufficiently small (less
Vd—1

Mr °

than 1/20), err* scales linearly with

4.2. Excess error and angle

We now relate the excess error of an estimated hypothesis
w to the angle between w and w*: Z(w,w™*). Note that
the error of a decision rule defined by weights w does not

depend on the norm ||w||, but only on the direction of w, and
by spherical symmetry, only depends on the angle Z(w, w*).
In our settings, the angular estimation error is proportional
to the disagreement between the decision rules defined by w
and w*. Thus, the scaling of the excess error as a function of
the angle is closely related to the Tsybakov noise condition.
We find that the excess error scales as the square of the angle
as shown in the following lemma, yielding a Tsybakov noise
condition of k = 2 for our setting.

Lemma 4.3. Suppose d > 5.
Z(w,w*) < 7,

For any w such that

1 Mr
5v/d—-1

Z(w, w*)? (8)

err(w) — err(w™) <

Furthermore, for any w such that MrZ(w,w*) < 1 and
Z(w,w*) < F,

i Mr
25+d—-1

err(w) — err(w®) >

A proof for this lemma can be found in Appendix A. To
gain intuition for this quadratic dependence, see Figure 2.

4.3. Fano’s inequality and mutual information tools

We now discuss some concepts used in the proofs of our
lower bounds. We wish to show that the expected excess
error is bounded below.

Fano’s inequality (Fano, 1961) is an information-theoretic
tool often used for proving impossibility results (Scarlett
& Cevher, 2019). In this work, we make use of Fano’s
inequality to prove our two lower bounds (see Section 4.4).
Here, we summarize some of the tools that can be found in
the survey Scarlett & Cevher (2019).

The setup of the standard Fano’s inequality is the following:
there is an unknown random variable of interest, V*, which
is drawn uniformly at random from a finite set  and an
estimate of V* known as V also in the finite set V.

Fano’s inequality is a mathematical identity used to upper
bound the probability that the estimator is correct based on
the mutual information between V' and V*:

. I(V* V) + log2

P =V*< 10
r(V=V"< Tog V] (10)

Thus, if we can upper bound the mutual information be-
tween V and V* for any estimator V, we can upper bound
the accuracy of the estimator. However, because V can take
many forms, how do we bound the mutual information?
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Figure 2. A diagram for intuition of the quadratic scaling of the
excess error with the angle. This diagram shows the related setting
of threshold logistic regression. The x-axis is the input dimension

while the y-axis is the probability of observing a positive label.

The blue curve is a logistic curve. In the top pane, we see the
threshold decision rule w™ represented by the vertical green line.
The area of the orange shaded region corresponds to the error of
w™. In the middle pane we see an estimate w and the error of w as
the area of the orange shaded region. Finally, in the bottom pane,
we see a diagram of the excess error taken by subtracting the top
pane from the middle pane. A rearrangement yields that the excess
error corresponds to the area of a triangle with width and height
determined by the difference between w* and . Thus, we see
that the excess error scales as the square of the difference between
w™ and Ww. A similar, but harder to visualize, scenario occurs for
logistic regression on the sphere.

An important tool is the data processing inequality (Cover
& Thomas, 1999). A common situation in machine learn-
ing includes the following three random variables: the true
parameters V*, some data {(X;, Y;)}" ;, and the estimate
V. Here, we assume that V and V* are conditionally inde-
pendent given the data {(X;,Y;)}” ,; in other words, the
estimate V' doesn’t depend on the true parameters V* except
through the data generated by V*. Under this condition,

IV5V) < IV (X Ya) b)) (11)

Intuitively, this means we can not create information by
post-processing: the estimate V can’t be more informative
than the raw data {(X;,Y;)}" ;. However, we still need a
technique to bound the mutual information between the raw
observations and the true parameters.

In the adaptive setting, there is a complex dependency be-
tween the data points. Specifically, we generate X; based
on past observations {(X;,Y;) ;;11 then we observe Y;
based on the true parameters V' * and X;. Fortunately, a tool
known as tensorization (Scarlett & Cevher, 2019), based
on the chain rule for mutual information (Cover & Thomas,
1999), yields the following,

I(V5{(X, Y)ho) < D I(VHYilX) (1)
=1

Altogether, we can upper bound the probability that any
estimator is correct if we can upper bound the sum of the
information “leaked” by each of the observations.

4.4. Lower bounds

Both lower bounds are proved using a construction of
29=1 hard-to-distinguish label distributions parametrized
by € > 0. Intutively, € corresponds to the amount of separa-
tion between the distributions. Define

M
W= (1,+e, +e,. ..

VI+(d—T1)2

Note that all elements of VW have the same norm of M.
We define a set of 297! conditional label distributions
II = {my : w € W} where 7, is the conditional
label probability for logistic regression with weights w:
mw(z) =Pr(Y = 1|1X = 2;w) = o(yx - w). We let the
true conditional label distribution 7* be drawn uniformly
from II, or equivalently, w* is drawn uniformly from W. If
we can bound the mutual information between 7* and Y;

+e)  (13)
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conditioned on X;, we can use Fano’s inequality, the data
processing inequality, and tensorization to show it is impos-
sible for an estimator in II to estimate 7* well with high
probability. However, what about decision rules? Maybe
we can do better if we return a decision rule that isn’t even
linear?

We can handle these concerns via a reduction. Let p(f, 7) =
Pry yn()(y # f(x)), in other words, the error of the
decision rule f under the conditional label distribution 7.
For any estimated decision rule f , define

# = argmin p(f, ) (14)
well

The proof becomes somewhat technical at this point, but one
can note that if f has sufficiently low error, then 7 = 7*.
We can additionally use the data processing inequality a
second time:

I(m*;7) < (7™ f) (15)

This discussion of the lower bounds has left out a quite
important detail: our proofs use an approximate recovery
form of Fano’s inequality. Instead of upper bounding the
probability that 7 = 7*, we define an appropriate similarity
relation so that we can upper bound the probability that 7
and 7* are similar (Duchi & Wainwright, 2013; Scarlett &
Cevher, 2019). Without this detail, we would lose the factor
of d in our lower bounds.

Theorem 4.4. Fix d > 24, M > 0, r > 0. For sufficiently
large n (in terms of M, r, d, and err*), for any data collec-
tion strategy for n data points and estimator f depending on
those data points (and conditionally independent of the true
label distribution given the data), there exists a norm-M
w* such that,

P * 1 * d
Elerr(f)] — err™ > 550000 (16)
Theorem 4.5. Fixd > 24, M > 0, r > 0. For sufficiently
large n (in terms of M, r, d, and err*), for any estimator
f computed from n random samples (and conditionally
independent of the true label distribution given the data),
there exists a norm-M w* such that:

1 d

E Al —err*> ———.
lerr(F)] = er™ 2 oo000000 7

A7)

The proofs for these theorems are in Appendix C and Ap-
pendix D, respectively. The lemmas for the two arguments
are very similar and can be found in Appendix B. We have

hidden how large n must be in both theorems, but full con-
ditions on n can be found in the statements of the theorems
in the appendix.

Note that we have not hidden any constants. The universal
constants in the front are rather small. Note that we did not
optimize the universal constants and they are most likely
very loose.

4.5. Algorithms for upper bounds

In this section, we define the random sampling and adaptive
sampling algorithms used for our upper bounds. Briefly,
the random sampling algorithm is simply logistic regression
maximum likelihood estimation and the adaptive algorithm
is an uncertainty sampling variant: random sample with half
of the budget n to initialize the weights, then use the other
half of the budget to iteratively take uncertainty sampling
gradient steps with a decaying step size.

4.5.1. RANDOM SAMPLING

Given n random samples {(z;,y;)}";, the random sam-
pling estimate is the weights that maximize the probability
of observing the labels:

w=argmax Pr(Vi : Y; = y;|w,Vi: X; =z;) (18)

= argmaxH o(yiz; - w) (19)
woi=1
1 n
— argmin — Y —log o (i - 20
argqf}mn - Z ogo(y;x; - w) (20)

i=1

21

This motivates us to define the loss function ¢(x, y, w) as the
negative log-likelihood: ¢(z,y, w) = —log o (y;x; - w) and
the empirical loss L, (w) = LS U@y, y;, w) yielding
W = argmin,, L, (w).

Intuitively, if we define L(w) = E[{(x, y,w)], then w* =
argmin,, L(w) and L,(w) —p L(w) as n — 0o, so we
might hope w = w* for large n.

4.5.2. ADAPTIVE SAMPLING

For adaptive sampling, we begin with random sampling
for the first n/2 samples. Then, an estimate of the true
weights is calculated by minimizing the logistic loss, or
equivalently maximizing the likelihood. We then rescale the
estimate to produce ws; this is done to ensure ||wy] < M
with high probability. A constraint set VV is constructed as
the intersection of a origin-centered sphere of radius ||w ||
and a cone around w;. In the next phase, we proceed by
iterations of uncertainty sampling gradient updates with an
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L2 orthogonal projection onto WW.

For each iteration, we randomly draw x; from the decision
boundary defined by the current weight iterate wy;: {x €
X : w-x = 0}. After querying the label of x; as v,
we compute the gradient g; = V,, (x4, y¢, we) on the new
point. Finally, we update w;+1 = Iy (w; — n:g:) wWhere
N = % and A\ = %d’% After n/2 iterations, we have
exhausted the label budget, and we return the last iterate.
This entire process is shown as Algorithm 1. Note that the

algorithm does not require knowledge of M or err*.

Algorithm 1 Active learning algorithm

2

Set convexity parameter A = m
Randomly sample and label n/2 points as Biandom
Compute Wendom = argmin,, Z( )€ Brangom Lz, y,w)

for {(z,y,w) = —logo(yx - w)
Set w1 = 2Wrandom/3

1 T 2
Set Gmax =3 min (5, W

Set W= {w : [Jw|| < [lwi], £(w, w1) < Omax}
fort=1,...,n/2do
Sample z; uniformly from {x : ||z|| = r,z - w; = 0}
Label z; to get y;
Compute g; = Vo l(z¢, ye, wy) = _%ytwt
Compute wy11 = Iy (wy — n:9:) where n; = 5
end for
Return: @ = wy, /241

4.6. Upper bounds

In this section, we present the guarantees for the random
sampling and adaptive sampling algorithms. The random
sampling guarantee follows from a second-order Taylor ex-
pansion along with several geometric lemmas. The adaptive
sampling guarantee uses the random sampling guarantee for
the initialization, then proceeds with a standard stochastic
gradient descent analysis (Rakhlin et al., 2012; Nemirovski
et al., 2009). The choice of this type of analysis is inspired
by the observation that uncertainty sampling roughly corre-
sponds to stochastic gradient descent steps on the zero-one
loss (Mussmann & Liang, 2018b).

Theorem 4.6. Fixd > 5, M > 0, r > 0 such that ‘/AT <
1/12. For sufficiently large n (in terms of M, r, d, and
err®), for w as the logistic MLE estimator from n randomly
sampled points,

Elerr()] — err(w™®) < 240000d10Tg(d).

(22)

Theorem 4.7. Fixd > 5, M > 0, 7 > 0 such that Yi=* <

1/12. For sufficiently large n (in terms of M, r, d, and err*),

for the estimator W returned from Algorithm 1,

d
Elerr(w)] — err(w™*) < 26001err™—. (23)
n
The proofs for these Theorems are in Appendix E and Ap-
pendix F, respectively. As with the lower bounds, full con-
ditions on n can be found in the statements of the theorems
in the appendix.

The universal constants in the front are rather large, though

they they are most likely very loose from a lack of optimiza-
tion. We can interpret the condition ¥ ]‘Li{;l < 1/12 with the
lemmas from Section 4.1. For example, if err* < 1/240,

the condition is satisfied.

5. Experiments

In this section, we run experiments in our synthetic setting:
well-specified logistic regression with a uniform distribution
over a radius r sphere. We compare random sampling and
our adaptive algorithm (Algorithm 1) for varying n (Fig-
ure 3), M (Figure 4), and d (Figure 5). We fix r = 1 in all
cases since learning behavior only depends on the product
Mr. We make one small change to the algorithm and set
Omax = 7§ instead of Opma = min(m/4,1/(3[Jwy]|r)). We
found experimentally that the latter would require a larger
n. All experiments are run with 100 replicates with error
bars as 95% confidence intervals using a Gaussian approxi-
mation.

The test excess error of both random sampling and our
adaptive algorithm appear to have an empirical inverse linear
dependency on n (as predicted by our theory). Furthermore,
while the test excess error of random sampling appears
nearly independent of the limiting error, err*, the test excess
error for our adaptive algorithm seems to scale linearly with
err*. The dependence of random sampling’s test excess
error on the dimensionality d is less clear: it could be super-
linear (as predicted by the upper bound) or it could be linear

(matching the lower bound).

6. Discussion

Mussmann & Liang (2018a) show both experimentally and
theoretically that the data efficiency of uncertainty sampling
is inversely proportional to the limiting error, which is the
same as the Bayes error for well-specified logistic regres-
sion. In that work, the data efficiency (of an active learning
algorithm relative to random sampling) is defined as the
ratio of the sample complexities, or the factor reduction in
data samples required for an algorithm to match the per-
formance of random sampling. Our four results allow us
to compare lower and upper bounds on the expected ex-
cess error to compute both a lower and upper bound on the
data efficiency. In particular, the data efficiency is at least
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Figure 3. A plot comparing the test excess error of random sam-
pling and our adaptive algorithm (Algorithm 1) for a varying num-
ber of samples n. The gray curves are of the form a/n to show
the inverse dependence on n. We fix r = 1, d = 10, and M = 20,
yielding between 7% and 8% limiting error.
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Figure 4. A plot comparing the test excess error of random sam-
pling and our adaptive algorithm (Algorithm 1) for setups with
varying the norm of the true parameters M (which changes the
limiting error err™). We fix r = 1, d = 10, and n = 1000 while
varying M € {5, 10,20, 50,100}. We note that while random
sampling’s test excess error remains approximately constant, adap-
tive sample’s excess error grows linearly with the limiting error as
our bounds show.
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Figure 5. A plot showing the test excess error of the MLE perfor-
mance of random sampling for various dimensionalities d. We
setr = 1, M = 20, and n = 100 - d. Note that although d/n
remains constant, the test excess error seems to not be constant as
a function of d, hinting that there may be an additional dependence
on d, such as log(d). We did not run adaptive sampling for varying
d because changing d affects the limiting error, err™.

Q(1/err*) and is at most O(log(d) /err™).

One may wonder what is the correct data efficiency for our
setting. In the proof of the upper bound for random sam-
pling, where the log d appears, we use two concentration
inequalities: a Bernstein inequality applied dimension-by-
dimension and a Matrix Chernoff inequality (Tropp, 2015).
The union bound associated with the Bernstein inequality
over d dimensions incurs a possibly unnecessary factor of
log d. Although Tropp (2015) show that their Matrix Cher-
noff bound is tight for the assumptions they make (see the
coupon-collector discussion in Tropp (2015)), it seems that
our setting is easier and so we may be able to shave off
a logd. In particular, the rank one matrices which com-
pose the Hessian of the empirical loss will be nearly uni-
formly distributed in all directions, unlike the harder coupon-
collector example. Thus, from a theoretical perspective, the
log d is perhaps loose. However, the synthetic experiment
may hint that the log d factor is necessary and perhaps the
lower bound is loose. We note the possibility that random
sampling with MLE includes log d while another estimator
does not.

In this work we considered the adaptive sampling and ran-
dom sampling settings. There are other important settings
in between adaptive and random sampling. In particular, we
note that the techniques in this work are insufficient to give
(non-trivial) results for non-adaptive experimental design
and batched adaptive sampling. Non-adaptive experimen-
tal design is the setting where the points to be labelled are
chosen by the algorithm, similar to adaptive sampling, but
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all labels are revealed at the same time so that adaptivity
is not possible. Batched adaptive sampling is the setting
where an algorithm makes queries in the form of b points
to be labelled at the same time where a batch can be cho-
sen based on the labels of previous batches. Note that the
batched adaptive sampling setting is a generalization of
adaptive sampling (with b = 1) and non-adaptive experi-
mental design (with b = n). These settings form a nested
hierarchy where random sampling is the most restrictive
setting and adaptive sampling is the most powerful setting.
A possible analysis strategy for batched adaptive sampling
is an stochastic gradient descent convergence argument that
makes use of the covariance of the gradient which decays as
the batch size b grows; perhaps contributing a /b factor to
the expected excess error. A possible analysis strategy for
non-adaptive experimental design is to dramatically expand
W, the set of possible w*, or to apply some clever symmetry
argument. We conjecture that the expected excess error rate
of non-adaptive experimental design is the same as random
sampling for our setting.

7. Conclusion

In summary, we analyzed upper and lower bounds on the
expected excess error for both adaptive sampling and ran-
dom sampling for a simple benign setting of well-specified
logistic regression on inputs drawn uniformly at random
from a sphere. Most importantly, all bounds had the same
dependence on the number of samples. Because of the sim-
plicity and naturalness of the construction for the lower
bounds, this paper contributes evidence that in most prac-
tical cases, the advantage of active learning does not lie
in a improved dependence on the number of samples, but
rather in the problem dependent constants. As a result, we
might abandon hope that active learning can provide gains
for all problems, but instead search for problems where the
constants are advantageous to active learning.
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Appendix

The appendix is organized as follows: general lemmas regarding geometric properties of the sphere are stated and proved in
Section A, lemmas necessary for showing both lower bounds are stated and proved in Section B, the adaptive and random
sampling lower bounds are given in Sections C and D, and the random sampling and adaptive upper bounds are given in
Sections E and F.

A. General sphere lemmas
A.1. Sine integral bounds

Lemma A.1. For integral n > 2,

7 T 5
—< sin” (6)df < 24
4v/n + _/0 (©) T vn—+1 24

Proof. We first note that, by a standard recursive integration by parts,
™ o1
. 2k -

3 0)do = 25
/0 sin“"(6) ﬂ'g % (25)
(26)

For both the upper and lower bounds, we first prove the result for even n, then use montonicity to derive a bound for odd n.

Suppose n is even and let n = 2k.

m k91
in2*(0)do = _ 27
/0 sin“" () 7r£[1 % 27

: 1
1 (1~ ) 28)

=1
In (/OTr sin2k(9)d9) =In(m) + zk;ln (1 - 211> (29)
k
<In(r) + ; 5 (30)
— In(r) - ;f:i (31)
i=1
< In(m) — %ln(k +1) (32)

<in(25) 63

4 2 5
/o sin™(0) “VEk+1 Vn+2 7 Vn+2 4

For odd n, letn = 2k + 1,
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/ sin?*1(9)df < / sin®* (0)df

0 0

< s _ 77\/5 < 5
VE+1 V¥l = Vn+1

So in either case,

i ™2 5
sin (0)df < <
/0 sin”(6) T vn+17 yn+1

Now for lower bounds, and for even n, let n = 2k,

In (/OW sm%(a)de) = In(7) + Zln(l - %)

21 21
=1
k k
1ol 1en1
> _ - _Z —
In(r) 222 42#
1 172
> _Z _ -
> In(r) - 5 (1+ (k) = 7 %
1 1 72
> In(r) — = In(k) — = — —
n(m) 2n(k) 5~ o1
/Tr sin?*(0)dg > T exp Lo 77—2
0 =k 2 2
PN (R ol W' S A S
S P\ T T ) T e P T2 ) T am

So in either case,

(35)

(36)

(37

(38)

(39)

(40)

(41)

(42)

(43)
(44)

(45)

(46)

47

(48)

(49)
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A.2. Spherical Coordinates

We now introduce spherical coordinates which will be used to compute spherical integrals.

z1 = rsin(fy) sin(fz) . . .sin(04_2) sin(fg—1) (50
2o = rsin(fy)sin(6s) . . .sin(04_2) cos(64_1) (51)
x3 = rsin(f1)sin(fs) . .. cos(04—2) (52)
. (53)
xq_1 = rsin(f) cos(0s) (54)
xq = rcos(f) (55)

where all angles are in [0,7m] except 64—; which is in [0,27] and where the Jacobian determinant is
4= 1sin?=2(9;) sin? 3 (6,) . . . sin(G4_s).

A.3. Bounds on CDF of absolute value of coordinate drawn from sphere

Lemma A.2. Let x be drawn from a d-dimensional sphere of radius p, where d > 5. Then, for 0 < a < p,

a2
2 d_l(l_(d?))o‘)jgprqxﬂga)givd— % (56)

Proof. Using symmetry and spherical coordinates,

Pr(Jz1] < a) = Pr(Jzq4] < ) (57)
= Pr(Jpcos(61)| < ) (58)
=E {1 [| cos(t1)] < i” (59)

Since we are drawing uniformly from the sphere:

IE[ |:|COS 61)| <a]
p

. [lcos< i
fHTH p

fow' o fo "1 [ COS(91)| < Q} p~tsin®=2(0) .. sin(04-2)d0a—1 ... db:

] (60)
<

%} (61)

(62)
f fO d 1 smd 2(91) sin(Gd_g)de_l N d91
p?t 51 [ cos(f) < p} sin®=2(6)do [ sin®*(0)do- - - [; sin(0)do f027r do )
pd=1 [T sin?=2(6)d6 [T sin?>(8)dd- - - [ sin(B)dd [ db
Jo1 [| cos(6)] < ﬂ] sin?=2(0)db
- (64)

fo sin?=2(6)d#

From Lemma A.1, we know that the denominator is bounded as
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5
d—1

7 i
— < 0)do <
4?—1_/08111 (0)do <

To bound the numerator, we use a change of variables of u = cos(6):

/07T 1 {I cos(f)] < ﬂ sin?~2(0)df = /1 1 [|u| < ﬂ (1 — u2)(d=3/2gy,

-1

a/p
= / (1-— uz)(d*B)/Qdu
—a/p

To bound the numerator above, we note that the integrand is less than 1:

o/
/ ’ (1 —u?) =32y, < 2%
—a/p P

(65)

(66)

(67)

(68)

To bound the numerator below, we note that (1 — a)® > 1 —ab fora € [0,1] and b > 1 (raise both sides to - then note

(1 — z)'/* is monotonically decreasing). Then, because d > 5, (d — 3)/2 > 1 and we have

/a/” (1= u?) =972y > /a/p (1—u2(d—3)/2)

—a/p —a/p

a/p
> / (1— (a/p)*(d - 3)/2)

Putting together the bound on the denominator and the numerator, we arrive at the result.

A.4. Lower bound for Bayes error
Lemma 4.1. Suppose d > 5,

If V;é;l < 1, then,

Proof. Note that

err™ = err(w™)
=Ejg)=lo(w” - 2)1[w" -z < 0] + o(—w" - 2)1[w" - > 0]]
= Ejzj=r[o(=[w" - z])]

Without loss of generality, assume w* = Me;.

(69)

(70)

(71)

(72)

(73)
(74)
(75)
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Ejoj=rlo(=w" - z])] = Ejg)=r[o(=[M=z1])] (76)
= Ejjg)=pmr[0(—|21])] 77
1
> EHIH:Mr[ileﬂ <1]] (78)
1
(80)

. . . Jd=1
Using Lemma A.2 and using the assumption *5-= <1,

inHP;erHxl‘ <1z %% d-1 <1 B (26]1\4_232)) Mir (81)
2 15V oas ®
1 vVd-1
2 5550 &)
[

A.5. Expression for error

We now derive the error of parameters w given that the true parameters are w*. Without loss of generality, let w* = Me;.

err(w) = /| - p(z)[P(y = 1|z)1[x - w < 0] + Pp(y = 0|z)1[z - w > 0]]dx (84)
- flda:/| \| [o(w* - 2)1[z-w < 0] + o(—z - w*)1[z - w > 0]]dz (85)
lall=r 4% Jjzll=r
= f”|1d$/| _ 20(w* - )1z - w < 0]dz (86)
2 *
R /,Tiw<o,|m|—ra(w o ®n

This derivation will be used in the next two lemmas.

A.6. Upper bound for Bayes error
Lemma 4.2. Suppose d > 5.

(88)

Proof. By definition,

err” = err(w™) (89)
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From equation 87 and assuming (without loss of generality) w* = —Me,.

2
err(w*) = 7/ o(w* - x)dx
fuxnzrdl‘ zw* <0, ||z||=r
2

=— o(—=Mzg)dx
meH:r dzx /1'd>07||$|—7’

Changing the denominator integral to spherical coordinates:

2m
/ dm—/ / / / “2(01)sin?™3(6) .. .sin(0g_2)dBg_1 . .. dp,
ll=ll=r
g 2
:Td—l/ sin? dg/ sin® / sin(6)d6 dao
0 0

Changing the numerator integral to spherical coordinates:

/ o(—Muxg)dx
za>0,[|z||=r

/W/Q/ //%eXp =M -7 cos(61))r “2(01) sin?3(62) . . . sin(0g—2)dfg—1 . .. b

2m

= / o(—Mr cos(8)) sin? dﬁ/ sin? / sin(0)do do
0 0 0

Taking the ratio and using a change of variables (u = cos(#)), we find,

err(w*) = i / _ Mrcos(8)) sin®~2(6)do

bln

/ MTU 2)(d—3)/2du
" sin? d0

Note that (v) < exp(—v) and (1 — u?)@=3)/2 < 1,
So

1
err(w*) < z exp(eru)du
=
8v/d 1
=— M — (1 — exp(—Mr))
<8vd-l

— 7 Mr

(90)

oD

92)

93)

(94)

95)

(96)

o7

(98)

99)

(100)

(101)
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A.7. Bounding excess error in terms of angle
Lemma 4.3. Suppose d > 5.

For any w such that /(w,w*) < 7,

err(w) — err(w™) < 1 Mr Z(w, w*)? (102)
5vd—1
If MrZ(w,w*) < 1and Z(w,w*) <5
1 M
err(w) — err(w*) > — ! Z(w,w*)? (103)

25

i

Proof. With the expression for error from equation 87, we can find the excess error:

—err(w*) = (104)

(/ o(w* - x)dx —/ o(w* x)dw) (105)
Siati=r 8% \Jowco o= ww* <0, Jal=r

(/ o(w* - z)dx —/ o(w* x)dm) (106)
Hw\l—r iy o z-w<0,z-w*>0, |[z|=r zw>0,z-w* <0,||z||=r

(/ o(w* - z)dx f/ o(w* - (:v))dx) (107)
HwH_T dl’ z-w<0,z-w*>0,||z||=r —z-w>0,—z-w* <0, ||z|=r

(/ o(w" - x)dxr — / (1—-o(w* x))dz) (108)
uwu—r Jiotzr 8% \Jz-wso,zwe0, ol =r Tw<0,zw* >0, |z =r

(20(w* - x) — 1)dx (109)

szH:r dx /1~w<0,z~w *>0,||z||l=r

Our next strategy is to upper and lower bound the integrand with a linear approximation. This strategy is motivated by the
following lemma:

Lemma A.3.
2

fum“:r dx /38"w<0,x~'w*>0,|x|=r

cMr
2

c(w* - x)dx =

(1 = cos(L(w,w™))) /07r sin?~1(0)db (110)

Proof. Let us use spherical coordinates and without loss of generality we assume w* = Me; and w is in the plane spanned
by e; and es. Without loss of generality, since the misclassification error does not depend on the norm of w, assume w is a
unit vector, so w = cos(Z(w,w*))ey + sin(ZL(w, w*))es.

Note that the integral is over the set of points x on the r-radius sphere where

z-w >0ANz-w<0 (111)
x1 > 0 A cos(L(w, w*))z1 + sin(L(w, w*))ze <0 (112)
sin(f4—1) > 0 A cos(ZL(w,w™)) sin(f4—1) + sin(ZL(w, w*)) cos(64-1) < 0 (113)
sin(f4—1) > 0 Asin(04-1 — Z(w,w*)) <0 (114)

04—1 € [0, Z(w, w")] (115)
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Thus,

=)
_— c(w* - x)dx =
fHa:H:r dx z-w<0,z-w*>0,||z||=r ( )
S [m) ot )rd=t sin®2(6y) sin? 3 (0,) . . sin(04_2)db4_1 ... d6y
fOﬂ fo fo rd—1gin? (01) sin?=3(0y) .. .sin(0g_2)d0g_1 . .. db;

Note that w* - &z = Mx; = Mrsin(6;) sin(fs) . . .sin(f4—1)

)
 —— c(w* - x)dx =
fl\wl\zr A2 J o w<0,2w >0, o=

fo fo A(w w’) Mr sin?=1(0) sin?"2(6s) . . .sin?(0g_2) sin(fg_1)dbq_1 . .. dby

fo fo T pd=1gin=2(0y ) sin? () . .. sin(0g_2)d04_1 . . . dOy
f sin?~ 1(0) ...foﬂ sin2 (9)d9 foé(uuw Sin(@)d@
[T sin®=2(0)do - - - [ sin(0)do [ d6
— 9eMr foﬂ sin?1(0)dA(1 — cos(£L(w,w*)))

227
= Cé\;{_r(l - cos(é(w,w*)))/ sin?=1(6)db
0

= 2cMr

We now return to the proof of Lemma 4.3.

Bounding it above:

Note that 20 (u) — 1 < u/2 (for u > 0). Note that since Z(w, w*) < T w* -z > 0. Thus,
* 2 .
err(w) —err(w*) = ———~ (20(w* - 2) — 1)dz
fHa:H:r dx z-w<0,z-w*>0,||z||=r
2 1
= 7/ —(w* - z)dz
f\le:r Ax v <0,0-0* >0, |al|=r 2
1 Mr

1 Mr Z(w,w*)? 5
22 2
<1 Mr
ToVd—-1

*
s

(w, w

Bounding it below:

Note that 20(u) — 1 > 5u/11 for u € [0, 1].

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

By assumption, Mr/(w,w*) < 1. Then, w* - & = Mrsin(61) sin(0s) .. .sin(04—1) < Mrsin(0i-1) < MrZ(w,w*) <

1. Further, since Z(w,w*) < %, w* -z > 0. Sow* -z € [0,1].
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2
err(w) - err(w*) - 7/ (20’(10* T) - 1)d$ (129)
f\le:r AT Jgw<0,0w >0, o) =r
2 / 5
2T o —(w* - x)dz (130)
Jjal=r 4% Jaw<0,0 0, al|=r 11
5 Mr ™
= (1—- / * d—1 131
11 277( cos(Z(w,w )))/0 sin®~"(6)do (131)
*\2
> 5 My Z(w,w)” 7 )
11 27 3 4/d
1 Mr
= m gt ) 133
Z g1 ) (133)
O

B. Lower bound setup and lemmas

Let F be the set of (measurable) decision rules f : X — ) = {0, 1}. Note we use J) = {0, 1} here for notational simplicity,
but the same results hold for Y = {—1,1}.

Suppose we have a finite set of conditional distributions II, where 7 : X — [0, 1].

We can define a dissimilarity between decision rules f € F and distributions 7 € II as following:

p(f,m) = E[f(z)(1 = 7(2)) + (1 = f(z))7(2)] (134)

Intuitively, p(f, 7) is the zero-one loss or misclassification error if we predict f(z) and the probability of y = 1 is 7 (z).

We study a setup where there is a true label distribution 77* (which generates data) and an estimated classifier f (computed
from data).

Motivated by this observation, let err(f) = p(f,7*), and err* = inf yc 7 p(f, 7).

Define the closest distribution to f as 7.

# = argmin p(f, 7) (135)
mell

We proceed with a general lemma that the error of a hypothesis on a mixture of distributions is the mixture of the error on
the distributions.

LemmaB.1. If)", o; = 1, then

p (f, Zam) =Y aip(f,m) (136)
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Proof.

p <f, Zm> =E [f(x) (1 - Z am(x)> + (1 — f(x)) (Z am(x)ﬂ (137)
=F lf(x) (Z a; (1 — 771(33))> + (11— f(x)) (Z omrdx))] (138)

= ZaiE[f(x)(l —mi(2)) + (1 = f(z))m(2)] (139)
= Zaip(f, i) (140)
O

B.1. Excess error difference

Define ,, be the conditional label distribution corresponding to logistic regression with weights w: m,(z) = Pr(y =
llz) = o(w - z).

Lemma B.2. Let d > 5. Suppose wy,ws € RY such that ||w1 || = ||wz| = M, MrZ(wy,ws) < 2, and £ (w1, ws) < T.
Let x be drawn uniformly from a radius r sphere in d dimensions. If m1 = T, and Ty = Ty,

inf inf 1 M
h}fp( WIJFM)_lnfp(f’m)ﬂnfp(f’”?) r (141)

_— / 2
f—3 2 > To1 =g 2w we)

Proof. Define the decision rule f,,(z) = 1[w -z > 0]. Note that the infima inf ; p(f, m1) and inf ; p(f, 72) are attained at
fi = fu, and f2 = fu,.

Define 7 = T572.

For 7, the infimum is attained at ?:

f@%ﬂ{ﬂ@zi} (142)
o(wy-x)+o(ws - x 1

:1[( )2 ( )22} (143)

=1[o(wy-2) >1—0o(ws - x)] (144)

=1[o(wy - z) > o(—ws - x)] (145)

=1w; - > —wy - ] (146)

=1[(w1 +ws) -z > 0] (147)

Let W = w1 + wa, 80 f = fa.

Thus,

_ o(f.7) — p(f1,m1) ;p(fwrz)

_ p(f,m) ;FP(?JQ) _ p(f1,m) ;rp(fz,m) (149)

([p(f,m) = p(fr,m1)] + [p(f, m2) — p(f2,72)]) (150)

inf r p(f, m1) +inf; p(f, m2)
2

irflfp(f,ﬁ) - (148)

DO | =
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Note that the terms in the square brackets are the excess error of 7 if m; were the true distribution. Furthermore, 7; is a

logistic conditional label distribution and 7 is a linear classifier, so we can use Lemma 4.3.
Note that by symmetry, Z(w, w;) = Z(w, ws).

Furthermore,

cos(2Z (W, w)) = 2 cos(Z (W, w;))* — 1

::2(10'w1>2-—1

|| [| w1 |

—9 (lwi[* + wy - w2)? 1
(w2 + 2w1 - w2 + [Jwa|?) lw: |2

(M2 + wq - w2)2

= -1
(M2+w1-w2)M2
M2+w1-w2

=7 !
w1 - W2

= e

= cos(Z (w1, ws))

(151)

(152)

(153)

(154)

(155)

(156)
(157)

Thus, 2£(W, w;1) = Z(wy,ws). Since MrZ(wy,w2) < 2, MrZ(w,w;) = MrZ(w,ws) < 1 and since Z(wy,ws) < m,

Z(w,wy) = Z(w,wy) < . Thus, we meet the conditions of Lemma 4.3.

Using Lemma 4.3,

3 (.m0 = )] + [p(F.7m0) = )]} 2 5 (5 s L) 4 g
1 Mr 9
=10 v 14(w17w2)
1 Mr 9
(wy, ws)

— =
T 01 Va1

B.2. Excess error and distribution similarity

Recall I1 is a set of conditional label distributions. Let S C II x II be a set of “similar” pairs of distributions.

Lemma B.3. Suppose inf; p(f, m) = inf; p(f,n’) for all 7,7’ € II. Fix a > 0.
If, for all m, w5 € 1] where (71, m2) € S,

>a

H}fp <f, T —;—7&) _ infy p(f,m1) —;—inffp(f,yrz)

then

err(f) —err* <a = (7,7") €S

Proof. For any f and for any 1, 75 such that (71, 7m5) € S,

(w, w2)2> (158)

(159)

(160)

O

(161)

(162)
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<f’ ™1 +7TQ) _ lnffp(faﬂ'l)+lnff p(f,Tf'Q) >a (163)
2 2
2 2
(otFm) =t otm0)) + (0,70 = it 7,70 ) > 20 (165)
Thus, if p(f,m) — inf ; p(f,m) < a, it must be the case that p(f,ma) — inf; p(f, m2) > a.
Therefore,
err(f) —err* <a = p(f,w*)—ir}fp(f,w*)ga (166)
— V' (ot 7)) &S, p(f, ) — ir}fp(f, ') >a (167)
— v’ (75, 7)) €8, p(f, ) < p(f,7) (168)
= V' (7", 1) ¢S, 7 £ 7 (169)
— (A7) eS8 (170)
Thus, if the “excess error” of f is low enough, then the estimated distribution 7 is similar to 7*.
err(f) —err* <a = (7,7") €S (171)
O

B.3. Fano’s inequality

Suppose we have a finite set of objects 1. Suppose we have a random variable V* € V uniformly at random drawn from V
that we attempt to estimate by a random variable V.

We are interested in upper bounding the probability that V and V* are “similar”. In other words, let S C V x V. Then we
wish to upper bound the probability that (V*, V') € S.

Define,

Nmax (8) = max 1[(v*,0) € S] (172)

Then,
Lemma B.4 (Theorem 2 from Scarlett & Cevher (2019)).
I(V;V*) +1n(2)

VI
Ninax (S)

Pr((V*,V)eS) < (173)

In

This lemma is proved in Duchi & Wainwright (2013).

B.4. Instantiation of IT and S

Given the previous lemmas, we are ready to instantiate [T =} and S.
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=M _ 9d—1 . .
Lete > 0. Let W = ey (1,4e,---+¢) beasetof W] =291 vectors of dimension d. Further note that for any
weW, |w| =M. LetV =11 = {m, : w e W}

Now, we prove a small lemma bounding the maximum angle between two vectors in W.

Lemma B.5.

max Z(w,er) < 24/(d —1)e? (174)

and thus, by triangle inequality
/ < 44/(d —1)e2 175
o x| Z(wy,wa) S 4y/(d— e (175)

Proof. Forany w € W,

w - ey
cos(Z(wy,er)) = 176
(o)) = et (170
1
= — (177)
14 (d—1)e?
2
1_ Z(wy,er) 1 (178)
5 14 (d—1)e?
1
Z(w,e1)? <51 - —— —— (179)
(e ( 1+<d_1>52>
< g(df 1)e? (180)
L(wy,e1) < 24/(d—1)e? (181)
The second to last line follows from noting that 1 — \/11% < % fora >0 O

LetS = {(Wu,l,ﬂ'wz) fwy,wy € W, Z(wy,we)? < %} C II x II.

Define the Hamming distance between two vectors to be the number of dimensions with different values: Hamm (w1, ws) =

Z?:l 1[(w1); # (wa);]. This allows for a lemma connecting the Hamming distance to the angle for vectors in W.

Lemma B.6. For any wy,ws € W

4Hamm(w1, w)e?

Lwnwz)* > = (d—1)e2

(182)
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Proof.
w1y - W2
‘ = T Mawall 183
cos(Z (w1, w)) Twr o] (183)
e (1+ ((d — 1) — Hamm( ))(€?) + (Hamm( )(=€%)  (184)
- M2 1—|—(d—1)52 + — 1) — Hamm(wi, w2 ))(€ amm(wy, w2))(—€
1
= (=) 0+ 02 2t ) (185)
_ 2Hamm (w1, wo >
S Sy (156)
 L(wi, wa)? _ 2Hamm(wy, wy)e?
1 5 = 11 (d—1)e2 (187)
o _ AHamm (w1, ws)e?
Z(wi,wp)” > 15 (d—1)e (188)
O

This Hamming distance lemma is important in proving the following Lemma:

Lemma B.7.
d—1
Ninax(S) < [W]exp BETE (189)
Proof.
_ [ 9 (d—1)e?
Nimax(S) = uI;Illeal)/(V 1| Z(wi,ws)” < m (190)
wa €W -
r 2 1)e2
< max 1 4Hfmm§w1’1w2,j€ < - (dd 1);: 2] (191)
wew L= | +(d-1)e +(d—1)
1-H ( )<d_1 (192)
= m P—
e, amin(uo, wz) < =
wa €W -
1 d—1
= |W|Pr (Binomial (d -1, 2) < 4) (193)
d—1
< - 194
< Wlew () (194
Where the last line follows from a Chernoff bound. O

B.5. Putting the parts together
L (

1+ (d—1)e2 1

Let 7* = m~ be drawn uniformly from II defined by W = +e,...,%e). Let f be a (random) estimated
decision rule that possibly depends on 7*.
Lemma B.8. Let d > 24. For any estimator f if there exists an & > 0 small enough so that 4(d—1)e? < 1, 2Mr/d — 1e <

1, and I(f;7*) < d=L then,

Elerr(f)] — err* > %Mm/d —1e? (195)

Proof. From Lemma B.5,
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max_ Z(wy,wz) < 4vVd — 1e

w1, wa €W

Therefore, Mr maxy, w,ew £(w1,ws) < Mr(dvd —1le) <2
Furthermore, maxy,, w,ew £(wi, ws) < 4v/d — 1e < 2

(196)

From Lemma B.2, for wy,wy € W and since Mr/Z(wy,ws) < 2 and Z(wq,ws) < 2 < 7, for mp = my,, and wg = 7y, ,

) T + 7o inff p(f,m1) +infs p(f, m2) 1 Mr 9
£ _
11} p (f, > 5 > 120 VI—1 Z(wy, wa)
By the definition of . if (1, m2) # S, £(wy,w2)? > 1470 and thus,

nf f7r1—|—7r2 _inffp(f,wl)+inffp(f,772)>i Mr (d—1)e?
P\ 2 101 Vd—11+(d—1)e2

Since all w € W have the same norm, inf ; p(f,my) are all equal. Therefore, by Lemma B.3,

1 Mr  (d—1)
101 /d— 11+ (d—1)e2

5 . 1 Mr  (d—1)&
Pr(err(f)—err gﬁ Tt -1

err(f) — < = (7,7") eS8

) < Pr((#,7%) €S)

Then, by Lemma B.4

I(7;7*) +1n2
Wi
Nmax(s)

<

) 1 Mr  (d—1)
( w(f) e S I i1+ (d —1)g2>

In

fim),

—~

By Lemma B.7 and noting that by the data processing inequality I (7;7*) < I

5 Mr  (d—1)&? I(f;7*) 4+ In2
P — <
(ot e < S T ) < e
Since (d — 1)e% <1,
5 1 I(;7*) +1n2
p —err* < ——MrVd—-1&% | < ————=
g <err(f) =00 c ) =T -1)/16
: In
Since d > 24, 18102 < 1.
By assumption, I(f; 7*) < -t mld(f’l’r*) <1
Pr (err(f) — err* < 1 Mrvd— 1£* <1+1 5
r - — Mrvd— -4+ -=-
202 —4 2 4

197)

(198)

(199)

(200)

(201)

(202)

(203)

(204)
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Looking at the complementary event,

. 1 1
Pr <err(f) —errt > 20—2M7"\/d - 152) > 1 (205)
By a Markov-style inequality,
A 1
Elerr(f)] — err* > @er/d —1¢? (206)
Finally, since the expectation includes the draw of w*, the worst-case w* has at least as much excess error. O

B.6. Mutual information lemmas

We now switch to the objective of bounding the mutual information between labels and the distributions that they are drawn
from.

Lemma B.9. Let P and () be Bernoulli random variables. Then,

(E[P] —E[Q))*
Drct(PIQ) < g —gron (207)
Proof.

D1 (P||Q) = Pr(P =1)In :Eg — 3 +Pr(P=0)ln :Eg — 8; (208)
= E[P]In Eq + (1 -E[P))1 1 _Eg (209)
< E[P] (Eg - ) + (1 -E[P)) G:Eg - 1) (210)

_ (E[P] - E[Q])*
~ EQI(1 - EQ] @b
O

Consider a parametrized family of conditional probability models {7, : w € YW} on input space X and binary label space

Y ={0,1}.

mw(z) = Pr(Y = 1lz; w) (212)
For a fixed z € X, consider the process:

e w~ UMW)

e YV ~ Bernoulli(ﬂ'w(af))

Define I.(Y;w) as the mutual information between Y and w.
Lemma B.10.

(Vi) < — Vre(pu(@)

= Eulpw()(1 = puw(2))] (213)
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Proof.

Ix(Y, UJ) =Ky [DKL(pY|w ||py)]

(E[Y]] - E[Y])?
=B | EyI0 —EY)
_ EJ[(E[Y]u] — E[Y])?]

E[Y](1—E[Y)

_ Ey[(pw(2) = By [pw(2)])?]
Eo[pw(2)](1 = Ey[pw (2)])
_ Var(pule)
Eu [pw(2)](1 — Ey[pw(z)])
< Vary, (pw (z))

= Eyu[pw(®)(1 — pu(z))]

where the last line follows from Jensen’s inequality.

B.6.1. SPECIALIZING FOR LOGISTIC REGRESSION

Specializing to the case of logistic regression:

(214)

(215)

(216)

217)

(218)

(219)

Lemma B.11. Let 3, be the covariance of w ~ U(W). Let C(W) be the convex hull of W and D(C(W)) be the diameter

of the convex hull of W. Then, if m,(x) = o(w - x),

I (Y;w) <4 [wglczgsv)w(w . x)} exp(D(COW))||z|) 2zt Sy

Proof.

3B (0(w-2) —o(w' - 2))?]
Eufo(w o)1 —o(w-o))]
SEuw (0" (0" - 2)a - (w — w))?]

mingew o(w - z)(1 — o(w - x))

I.(Y;w) <

IA

where w” is on the line between w and w’. Define C'(W) as the convex hull of W, then note that

maxyeow) o' (W - 2)* 3By w (2 (w = w'))?]
mingew o(w - z)(1 —o(w - x))

L(Y;w) <

Define ¢(u) = o(u)(1 — o(u)), and note that o’ (u) = ¥ (u).

IL(YV;w) < { max Y(w - x) 'Y,z

} max,,cow) Y(w - x)
weC (W)

minwEW ¢(w ' .’1?)

Next, note that ¢)(u) < 1 and I exp(—|u|) < 9 (u) < exp(—|ul) for all w.

(220)

(221)

(222)

(223)

(224)
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{ max P(w - x)} ma,Xwec(VY) eXp(_lw.xDxTEwa: (225)
wEC(W min,eyy 7 exp(—|w - z)
<4 x| — ' - z])aT S, 226
< wéncz%v)d)(w :E) mwr/rggc(w) exp(jw - z| — |w' - z|)x x (226)
<4 —w') - 2))z’S, 227
<4 | g, v 9|, el =)o (227)
<4| max P(w-z)|exp(D(CWV))|z|)zT T (228)
|l weC (W) ]
(229)
O
. . . M . .
Lemma B.12. Suppose w is drawn uniformly at random from VW = 7\/m(17 te,...,*¢) and x is on a radius r
sphere (||z|| = r)
I,(Y;w) <4 [ r%a(isv)w(w aj)] M?&*r? exp (2\/d - 15Mr) (230)
we
Proof. For the particular setting of W,
M2€2
Y= (Ig—ere] 231
v Ty@-pe e ad) (231
M
D(CW)) = ————=2Vd— 1¢ (232)
(COV) = s (VA= T
and thus, by Lemma B.11,
L(Y;w) <4 [ max  ¢(w )} Mze? |2 e M 2vd — 1e||| (233)
(Y w) < X . —_— _— —
weC (W) 14 (d—1)e? 1+ (d—1)e2
<4 [ max (w - x)} M?r2e? exp (2\/d - ers) (234)
weC (W)
O
C. Adaptive lower bound
* : _ M
Let 7* = my~ be drawn uniformly from II defined by W = 7\/@(1, +e,...,£e). Let there be a strategy to collect

(possibly adaptively) n data points {(X;, Y;)}" , where X; is on the surface of a radius r sphere and Y; is the associated
label generated under 7*. Let f be a decision rule based on the data, so that f is conditionally independent of w*

Theorem 4.4. Suppose d > 24. Furthermore, suppose n > 6(4 MQ) s andn > ( ) . For any data collection strategy for n

data points and estimator f depending on those data points (and conditionally lndependent of the true label distribution),
there exists a norm-M w* such that,

. 1 +d d
Elerr(f)] — err* > 250000 (235)
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Proof. Since v is bounded by 1/4 globally, from Lemma B.12:

I(Yi 7| X,) < M2E2r2 exp (2\/d - IGM’I“) (236)

From the data-processing inequality and adaptive mutual information tensorization,

I(f,7*) < T({(X5, Y)Yy 7°) (237)
< Z (Yi; 7| X5) (238)
< I (Y;w*) (239)
< nM?*e*r? exp (2\/d — 16M7”) (240)
Lete = - Avhﬁ By assumption, n is large enough so 4(d — 1)e? < 1 and 2Mr+/d — 1e < 1.
Then,

; 1 d—1
* 2
I(f,m) < nM? o rexp<2\/ leMr) (241)
d—1e
<« -z
<& =2 (242)
d—1
<t 243
<= (243)

Thus, the conditions of Lemma B.8 are satisfied, so,

N -1
E —errt > —M Vd 244
lerr()] —e” = o5 1556 M2r2 244
1 Vd—-1d-1
— (245)
206848 Mr n
Finally, using Lemma 4.2,
A 1 7 d—1d
E —errt > —err” — 246
lerr(F)] —er” = Ses18 8™ ~d n (246)
1 d
> err* — (247)
250000 n
Finally, since the expectation includes the draw of w*, the worst-case w* has at least as much excess error.
O

D. Random sampling lower bound

The setup here is the same as for the adaptive lower bound. We show that with constant probability, the randomly sampled
points have low information and then apply the key lemma.

Recall ¥ (u) = o(u)o(—u).

Define f(r) = max,ccow) ¥ (w - x).
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Lemma D.1. [f2Mr+/d — 1e < 1, for X drawn uniformly at random from a radius r sphere,

%err* < E[f(X)] < (2e)err” (248)
Proof. For the lower bound,
Elf(X)=E - X 249
[f(X)] Jax v(w: X) (249)
> E - X 250
> max [th(w - X)] (250)
= E[y(M X)) @D
1
2 §E[U(—M\X1|)] (252)
:%err* (253)
For the upper bound,
< . 254
f(ff)_wgé%%w(w z) (254)
< - 255
< mmax exp(~fw - ]) (255)
= exp(—|Me; - Mey - a| — w - 256
exp(—[Me; x\)wgd(%exp(l er- x| —fw- z[) (256)
<20(—M Mey - x| — |w- 257
< 20( |$1|)wérgjk>§v)exp(| ey - x| —|w- ) (257)
(258)

Next, note that if w € C(W) (and thus ||w| < M),

|[Mey - x| — |w- x| < |(Me; —w) - x| (259)
< [[Mey —wllf|z| (260)
< MrZ(ey,w) (261)
< 2Mrvd — 1e (262)
<1 (263)

The second to last line follow from Lemma B.5 and the last line follows by assumption.

Thus,

f(z) < 20(—M|x1]) exp(1) (264)
E[f(X)] < (2¢)E[o(—M|X1])] (265)
< (2e)err” (266)
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Lemma D.2. If2Mr\/d — 1 < 1 and nerr* > 61n(2), then, with probability at least + over a random sample of {X;}1,,

Z I(Yi; | X = x;) < dderr*nM?e*r? exp(2V/d — 1leMr) (267)
i=1
(268)
Proof. From Lemma B.12,
I(Yyn*| X =2) <4 [ néa();v)w(w z)} M?e*r? exp (2\/d - 16M’I"> (269)
we

So, for randomly sampled {x;}?_,,

ZI(Yi;ﬂ'*\Xi =ux;) < lz max (w - 1‘7,)‘| ~4AM?E*r? exp(2V/d — 1eMr) (270)
i=1

weC(W)

Note that 1)(u) € [0,1] so f(X) € [0, 1] and we can apply a Chernoff bound (over the random sample) and use D.1

i f(Xz-)D < exp (—;E

=1

Pr (Zn: (X)) = (4e)err*n> < exp (—;;err*n) (272)

Zf(Xi)D @71)

i=1

Then, if nerr* > 61n(2),

(Zf ) > (de)err n> < % (273)
(Z f(X;) < (4e)err n> > % (274)

Thus, with probability at least % over the random draw of the inputs,

Z I(Y;; ¥ X = x;) < (de)err™n - 4AM?e*r? exp(2v/d — 1eMr) (275)
i=1

(276)

O

_1)2 —1)2 .
Theorem 4.5. Suppose d > 24. Furthermore, suppose n. > o1 M(;iﬂli o 2 651‘%4 418)”_*, andn > 6;;(*2). For any estimator

f computed from n random samples (and conditionally independent of the true label distribution given the data), there
exists a norm-M w* such that:

1 d

Elerr(f)] = e = 53000000

277)
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Proof. By Lemma D.2, with probability at least 1/2 for a random draw of {x;}? ,,

S I(Yiiwt|Xi = @) < 4derr™nM?e*r? exp(2v/d — LeMr) (278)
=1

(279)

From the data-processing inequality and mutual information tensorization,

I(f, m [{Xi = 23 }ey) < T{(XG, Yo Yoy X = @i }iy) (280)
<Y IV X = @) (281)
i=1
< derr*nM?e*r? exp (2\/d — leMr) (282)
Lete = \/44271*16 £ Crljﬁ Then, by the assumption on n, nerr* > 61n(2), 2Mry/d — 1e < 1,and 4(d — 1)e? < 1
Then
[ (X = 2 ) < b2 4 =L 1 2 0 (2\/d - 1eMr) (283)
’ voohiEl = 256 M2r2n 44err*
d—1le
<~
S %I 1 (284)
d—1
< — 2
<6 (285)
Thus, the conditions of Lemma B.8 are satisfied:
A 1 1 d-1 1
E —err* > —Mrvd—1————— 286
ferr(f)] —er” = g Mr 256 M2r2n dderr* (286)
1 vd—1d—-1
= (287)
9101312err* Mr n
Finally, using Lemma 4.2,
a 1 7 d—1d
E et > et = C 2
ferr(F)] = e = S o319er 8™ d n (288)
1 d
> = 28
— 11000000 n (289)

Thus, with probability 1/2 over randomly drawn z, the expected excess loss is lower bounded. Since the excess loss is
non-negative, the expectation (including the randomization over x) is lower bounded as,

Elerr(f)] — err* > : d

S 2
= 22000000 n (290)

Finally, since the expectation includes the draw of w*, the worst-case w* has at least as much excess error.
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E. Random sampling upper bounds

The proof idea in this section is inspired by the proof of Theorem 5.1 in Frostig et al. (2015).

Let ﬁn(w) be the empirical logistic loss on n data points at parameter value w. Likewise, define L(w) as the population
logistic loss (with respect to a uniform distribution over a radius r sphere) at parameter value w.

For this section, define @ = VZL(w*) (a form of the Fisher information (Lehmann & Casella, 2006)) and v (u) =
o(u)o(—u). Q will be featured prominently in this analysis, so first we find and bound it.
E.1. Calculation and bounds on ()

Without loss of generality, let w* = Me;. Let £ be the first component of d-dimensional vector drawn uniformly from a
sphere centered at the origin of radius Mr.

Lemma E.1. Q is a diagonal matrix with

Q1= ﬁE[w(Oﬁ] 291)

and for any i > 1,
o 1 M27‘2E 1 o 9 200
@i = 37z (G EWO] - TEEROS) %)

Proof. Note that

Q =E[(w* - z)zzT) (293)
Qi,; = E[Yp(Mz1)zi2;] (294)
(295)

For the sphere, because of symmetry about the origin, note that E[x;|x;] = 0 for ¢ # j and any value of x;. Therefore, by
the law of total expectation, @; ; = 0 for 7 # j and thus @ is diagonal.

Q11 = E[p(Mxy)z?] (296)
= TR BlY(Ma)(Ma:)) o)
1
= E©O] (298)
Additionally, forz > 1
Qi = E[p(Ma1)a7] (299)
= EW(MSCl)E[fE?Wl]] (300)

Note that after conditioning on x1, the vector x5, is drawn uniformly from a (d — 1)-dimensional sphere centered at the
origin of radius r2 — :c% Therefore, conditioning on a value of 1,
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Therefore,

2 _ 2 2
E T, =r° — 2]

i>1
ZE[m?\ml] =r? g2
i>1
(d—DE[x?|z1] =7 — 22

Qii=E (wal)Td_fl)
== 1]E[1/)(MI1)] - HEW(MM):E%]
1 [ M?r? 1 2
— 1 (G B - BN O

This lemma motivates the definition of )1 = ()11 and Q2 = @; ; fori > 1.

E.1.1. BOUNDS ON EXPECTATIONS

Vd—1 1
LemmaE.2. Ifd > 5 and ~j = < g,

Proof. By assumption, 57575

Note that for any &,

So,

i

Elp(0)€”) > Yo

(d=3)6" 1 Thep by Lemma A.2, for o < 6,

1 « 8 a
— —1— < < < = —1—
E d 1MT_Pr(|§\_a)_7\/d 1M7"

YOE > 5511/2 <16 <6

=
=
~
=
W%

E[1[1/2 < [¢] < 6]]

(Pr(¢] < 6) — Pr(|¢] < 1/2))

IV

ro 7 Mr

Vd—1
Mr

gl— Sl 8= 8I=8|=

TN TN
(S
U
I
—
5

(S

[

\
~1l %
[N
~_

Y%
a
\
_

S

(301)

(302)

(303)

(304)

(305)

(306)

(307)

(308)

(309)

(310)
(311)

(312)

(313)

(314)
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O
Lemma E.3. Ifd > 4,
9 d—1
E[p(§)¢7] < 12 W (315)
Proof. Let us examine the following ratio:
WEOS _ (1+ex(lel/2)e? a16)
o(=1€l/2) (1 +exp(|€]))(1 + exp(—[¢])
2exp([€]/2) .12
< /=77 317
= 2exp(—[¢/2 + 2In([¢])) (318)
The expression —|¢|/2 + 21n(|¢]) is maximized at |£| = 4, so
32
2exp(—[€]/2+2In(¢)) < 5 <5 (319)
Therefore, for all &,
Y(§)€” < 5o(—[¢]/2) (320)
Since ¢ and M1 have the same distribution:
Ey(§)€%] < 5E[o(—[¢]/2)] (321)
— 5E[o(~M|r1]/2)] (322)
= berr* (M/2) (323)
where err* (M /2) is the error for parameters of norm M /2. From Lemma 4.2,
. 8vd—1
err*(M/2) < 7 (/)" (324)
Putting these together, we get the result. O
Lemma E4. Ifd > 5and Y1 < 1,
1 vd—-1 8vd—1
S <ERE) <2 (325)

Proof. Note that for any &,

So(-leD < () < o) (326)
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Therefore, since & and M x; have the same distribution:

SElo(~Mla])] < Ep(e)] < Elo(~ Mz ) (27)
Thus,
per” < E[(E)] < er (328)

Using the assumption Vﬁ; <1,Lemma4.1, and Lemma 4.2.

1 vd—-1 8vd—1
i < < Z
o a0 SEREI <o 5E (329)
O
E.1.2. BOUNDS ON ()
Lemma E.5. Ifd > 5 and V]\CZI < %
1 1 Vd-1
> - -
@5 (330)
1 1 Mr
> 331
@22 506002 Va1 G5
1 1 Vd-1
. > - -
Min(Q) 2 555 1 (332)
Proof. From Lemma E.1 and Lemma E.2,
1 1 Vd-1
—— 333
@z 553E a0 (333)
From Lemma E.1, Lemma E.3, and Lemma E .4,
1 (M?*2 1 Vd-1 1 d—1
Q> — (L — - 12 (334)
M2\ d—140 Mr d—1 Mr
1 M 1 12 d—1
S (. (335)
M?2.\/d—1\40 d—1DM?37?
Using the assumptions on ¥ Jgj;l and d
1 Mr 1 12 1
> = — 336
R VER (40 4 144) (336)
1 1 M
4 (337)

T 240 M? \Jd 1
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Finally,

)\min(Q) = min(Qla QZ) (338)
1 1 +vd-1
=300 My (339

Where the last line follows from v/d — 1/Mr being small so the lower bound on (); is lower than the lower bound on Q5.
O

E.2. Geometric arguments

We define four regions around w* with size defined by ¢: an ellipsoid, a ball, a cylinder, and a cone. Without loss of
generality, assume w* = Me;. Let ws, denote the vector w without the first component.

Retiipsoia = {w : (w — w*)"Q(w — w*) < ¢* } (340)
* q
Rear = 4w : |Jw —w*|| < ——L 341
ol {w I =l )\min(Q)} G4
M 3M
Reyilinger = {w f <w; < -0 [lwa: || < \/(éz} (342)
2
Rcone = {w L (w,w*) < qM\/@} (343)

‘We show that REllipsoid C Rgan and that, under some conditions, REllipsoid C RCylinder C Rcone-

Lemma E.6.

Renipsoia C Rpau (344)

Proof. For any point w € REiiipsoids
(w—w)"Qw—w") < ¢ (345)

and thus
Amin(Q)[lw — w*||* < ¢? (346)
1
lw—w*|| < g——s (347)
Amin(CQ)

and thus w € Rgy. O

LemmaE.7. Ifqg < M+\/Q:/2,

REIlipsoid - RC}'linder (348)
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Proof.
Rettipsoid = {w : (w — w*)TQ(w — w*) < ¢*} (349)
={w: (w1 — M)*Q1 + ) _wiQ; < ¢°} (350)
1>1
={w: Q1(wr — M)* + Qa|lwa.|* < ¢°} (351)

Since ()1 and ()2 are positive, any point within REjipsoia Satisfies

Q1(wy — M)? < ¢? (352)
Qallwa:|? < ¢ (353)
Furthermore, if ¢ < M+/Q1/2,
M\ 2
(w1 = M)? < (2) (354)
N
M M
Mo <3 (355)
2 2
O
Lemma E.S.
RCylinder C RCone (356)
Proof. Suppose that w € Rcylinder-
Note that
ez, = [ tan(£(w, e1)) s (357)
||’U)2;||2 = tan?(Z£(w, w*))wf (358)

using the properties of the definition of Reylinder, ||wa:]|? < ¢*/Q2 and wy > M/2,

2 2
q 2 * M
— > tan”(L(w,w™))— (359)
L > tan? (w0
Noting that tan?(u) > u? for u < 7/2 (also note Z(w, w*) < /2 since w1 > M/2 > 0),
7 2 §
— > L(w,w*)*— (360)
0 (w,w*)"—
2
Z(w,w*) < gq (361)
(w,w*) < q77 o5

and thus w € Rcope. O
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E.3. Hessian bounds

LemmaE.9. Ifn > ln(d/d)%, then with probability 1 — §
IV2 L, (w*) = V2L(w*)
Proof. Note that
. 1 <
2Ln ) 2£ i Ui *
V2L (w") n;v (i, i, w")
nV2L,(w*) = Z V20, yi, w*)
i=1

In the notation of Theorem 5.1.1 of Tropp (2015) (a matrix Chernoff bound),
Let Y be defined as,
Y = nQ71/2v2in(w*)Q71/2

=Y QA yi, w)Q T

i=1
By convexity,

Amin (Q7/2V2 (a1, i, w)Q7H2) 2 0

Furthermore, since V24(x;, y;, w*) = ¥ (w* - ;)x;z] and since ¢ (u) is bounded by 1/4,

—1/202 “\—1/2 .
Amax (Q Vl(zi,yi, w")Q ) < =L

Finally, E[Y] = nl4. Thus, with € = 1/2 and Theorem 5.1.1 of Tropp (2015),

n/L
e—1/2
Pr(Amn(Y) <n/2) <d|—
1/2
<de ! "
o (-1
S p 3
Amin(Q)n
S deXp (—2/’12
So, if n > In(d/6) 525 with probability at least 1 — 9,
Ain( QAT L (0@ ) >
Q71/2v2i—/n(w*)Qfl/2 - %Id
V2L, (w*) = %Q
2V2 L, (w*) = V2L(w*)

(362)

(363)

(364)

(365)

(366)

(367)

(368)

(369)

(370)

(371)

(372)
(373)

(374)
(375)
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Lemma E.10. If ¢ < % (Awin (Q))S/2 and 2V2 L, (w*) = V2L(w*), then for w € Rga,
V2L, (w) = V2L, (w*)

Proof. First, note that |¢)'(u)| < 1/10. Fix any w € Rpyy.
We will now show | V2L,,(w) — V2L,,(w*)|| < ¢r®/10.

IV2 L (w) = V2L (w?)]| =

1 & 1 &
- Z Y(w* - z)ziw] — - Z Y(w - xy)ziw)
=1 i=1

< max ||[Y(w* - z) — Y(w- a:)]xxTH

= lzll=r

=  max v [Y(w* 2)—Pw z)zz’]v

llzll=r,llvll=1

= max Y (@-2)z" (v —w)(v-2)

llzll=r,llvll=1

2

where w in the second-to-last line is some point between w* and w.

So, for w € Ry, | V2L, (w) — V2L, (w*)|| < ’{—qu < T Anin(Q).
Therefore,
V2L, (w) — V2L, (w*) = —%Q
V2L, (w) — 2V2 L, (w*) > —%Q
V2L (w) = V2L (w*) = V2 Ly (w*) — =Q
1 .
[ 2 *)
= 5 (2V2La(w) - Q)
=0

E.4. High probability bound on gradient of empirical loss
Define Z = Q~'/2V L, (w*).

2

Lemma E.11. Ifn > 55" In(2d/6), then with probability 1 — 4,

2 < 4dlnfd/6)

Proof.
Z = Q_l/QVﬁn(w*)

1 n
= E Z Q—l/Qvg(xh Yiy ’LU*)

i=1

(376)

(377)
(378)
(379)

(380)

(381)

(382)
(383)
(384)

(385)
(386)

(387)

(388)

(389)
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Define Z() = QY2 (x4, y;, w*)

i —-1/2 * r (@) r
Note that || Z@|| < |Q 2|V A(zs, yi, w*)|| < Wewnc) and thus Z; < ok

Further note that

E[Z"] =0 (390)
Cov(ZW) = Q'PE[V Lz, y, w* )Vl (z,y,w*)T]Q /2 (391)
=1 (392)

The above follows from noting that E[o(—yz - w*)%2x2”] = E[¢(x - w*)zxT] = Q, a standard identity for the Fisher
information.

By Bernstein’s inequality, for any dimension j,

Lanin(2d/5
fﬁ~0n2g|;z 4n1n(2dﬂn) <2ep |y Zal n( i;fn(Qd/é) (393)
3 vV Amin(Q)
Pr (ZJ2 > 41n(2d/5)) <2exp | — 2In(2d/9) (394)
n 142 r /1n(2d/$)
3 \/Amin(Q) n
Pr (ZJQ > 4ln(2d/6)) < 2exp (_21n(§d/5)) (395)
n
— 5/d (396)
Then, by a union bound over all dimensions, with probability 1 — 4,
41In(2
Vj: 22 < 449£5@1§2 (397)
|z < 24In(2d/0) (398)
n
O

E.5. Main argument

Theorem E.12. Suppose d > 5 and %@;1 < 1/12. Let w be the logistic MLE estimator from n randomly sampled points
on a radius v sphere. For any § > 0, if n. > 64r>M?In(4d/6)/v/d — 1, n > 1600000M°r°d1n(4d/s)/(d — 1)*/?, and
n > 18500d In(4d/6)Mr/+/d — 1, then with probability 1 — 0,

Z (i, w*)? < 300000

Vi—1d
T In(4d/) (399)

and
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M 3M
— <l < = 4
5 Sl <= (400)
Proof. Set q =17,/ % 1n(4d/5) so that ¢* > 2562 In(4d/J).
By a Taylor expansion,
5 S N o, L ST [o27 (= *
L) = Ln(w") + [VEn(@")] " (w=w") + 5w =0T [V2La(@)] (w —w) 01)

for some w between w and w*.

By assumption and by Lemma E.5, n > 64r3 M3 In(4d/§)/v/d — 1 > ln(4d/6)$§)@.
Thus, by Lemma E.9, with probability at least 1 — §/2, V2L, (w*) = AV2L(w*).
By assumption and Lemma E.5, n > 16000000 °rdIn(4d/5)/(d — 1)%/%,s0 ¢ < 1% ()\mm(Q))?’/2

By Lemma E.10, if V2L, (w) = %Vzﬁn (w*) (which occurs with probability at least 1 — §/2), for any w € Rp,y (and also
forw € REllipsoid by Lemma E.6),

L, (w) > ﬁn(w*) + {VLn(w*)}T (w—w")+ é(w —w*)T [VQL(w*)} (w — w*) (402)
(403)

Then, for w on the boundary of Reyipsoid, the following is true,

. N - T 1
Lo(w) > Lo(w") + (Q7Y/2VLa(w")) QY2 (w—w*) + 2¢* (404)
Eufw) 2 La(w®) = |Zlla + 5o (405)

By assumption and Lemma E.5, n > 6473 M3 In(4d/6) /v/d — 1 > §r* In(4d/6) /Amin(Q).

Thus, by Lemma E.11, with probability 1 — §/2, || Z|| < /212449 14 by the definition of g.

Then, with probability 1 — § (union bound over the two 0 /2 events), for all w on the boundary of REpipsoids

L, (w) > Ly(w*) (406)

Then, by convexity of ﬁn, REjiipsoid must contain the minimizer of ﬁn, which we refer to as w.
By assumption and Lemma E.5, n > 18500d In(4d/§)Mr/v/d — 1 s0o ¢ < M+/Q1/2.

Therefore, by Lemmas E.7 and E.8, REjiipsoid C Rcylinder C ficone- And thus, 1 € Rcgpe. (Also note that since w € Reyiinders
M/2 < ||w| <3M/2)

By the definition of Rcope,
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2
MV/Q,

4
i) < g M?2Q,

Z(w,w*) <gq

d 4
< 289—1n(4 _—
< 2897 In(4d/8) 33

d 4-240v/d —1
< 289—1In(4d/d) ——————
- n n(4d/o) Mr
vd—1d

Mr

< 300000 ~In(4d/9)

(407)

(408)

(409)

(410)

A11)

O

Lemma E.13. Ler a and b be positive real numbers, and 0y, € [0,1]. If G € [0, 1] is a random variable and for § € [Oyin, 1]

Pr(G<a+bln(l/é)>1-4¢

then

E[G] < a+ b+ pin

Proof. Note that by assumption, for § € [dmin, 1],

Pr(G > a+bln(1/0)) <o

Rearranging,

Pr(G > g) < exp (—g;a)

We can use this bound up until g = a + b1n (1/0my;n). Call this upper limit U = a + b1n (1/0min)-

Since G is a non-negative random variable,

We now look at two cases. Suppose U < 1,

1

E[G] = /0 "PH(G > g)dg + / " Pr(G > g)dg + /

Pr(G > g)dg +/ Pr(G > g)dyg
U 1

For the first integral, note that probabilities of events are upper bounded by 1.

For the second integral, we use the assumed bound.

(412)

(413)

414)

(415)

(416)

417)



Constants Matter: The Performance Gains of Active Learning

For the third integral, we note that the inverse cdf of a random variable is decreasing.

For the fourth integral, we note that G is upper bounded by 1.

a U _
HGkS/ Mg+/)@®<—gba>dg+ﬂ—lﬂPdG>[U+0 (418)
0 a

<a +/ exp <g—ba> dg +Pr(G > U) (419)

For the second case, suppose U > 1 and use a similar bounding strategy:

a 1 [e%e)
qu/lwczm@+/1szm@+/ Pr(G > g)dg (420)
0 a 1
a 1 g—a
§/ 1dg+/ exp | — =5 — dg+0 (421)
0 a
§a+/ exp (—g;a) dg 422)
So in either case,
E[G] <a +/ exp <b> dg +Pr(G >U) (423)
ga+b+exp<—Ub‘“> (424)
=a+b+ dmn (425)
O
Vd—1

Theorem 4.6. Suppose d > 5 and
radius v sphere. If n. > (64T3M3/\/d — 1)2, n > (1600000M97“9d/(d — 1)3/2)2, andn > (18500er/\/d — 1)2, then

< 1/12. Let W be the logistic MLE estimator from n randomly sampled points on a

Elerr(w)] — err(w®) < 240000M (426)

Proof. By Theorem E.12, for § > 0 and n sufficiently large (in terms of §), the following holds with 1 — ¢ probability:

vVd—1d
Z (b, w*)? < 300000 —1In(4d/6 427
(0, w")” < Mrnn(/) (427)
which implies, via Lemma 4.3, that
N d
err(w) — err™ < 60000— In(4d/9) (428)
n

We now apply Lemma E.13. Let G = err(w) — err*. Note that G > 0 by optimality of err* and G < 1 since err(w) < 1 for
all w.
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Define a = 60000< In(4d) and b = 60000<. Let §yin = 4d exp(—+/n), note for later that G < b forn > 1.
Noting that n > 64r3 M?3\/n/v/d — 1 = 64r3 M3 In(4d/dmin) /V/d — 1,

n > 1600000M°7d\/n/(d — 1)3/2 = 1600000M°r°d In(4d/6min)/(d — 1)3/2,

and n > 18500dv/nMr/+/d — 1 = 18500d In(4d/6min) M7 /v/d — 1,

therefore, for 6 € [dmin, 1],

Pr(G > a+bln(1/6)) <46 (429)

by Lemma E.13,
Elerr(w)] — err™ < a+ b+ min (430)
<a+2b (431)

d
= 60000 (In(4d) + 2) 432)
< 210000 24) (433)
n

the last line follows from noticing In(4d) 4+ 2 < 41n(d) for d > 5. O

F. Adaptive upper bound
F.1. Algorithm

Recall that after randomly sampling with half the budget and using the logistic MLE to find w;andom We set w1 = %wrandom.

Define M = |Jwy||. Then, W = {w wl]| < M, Z(w,wy) < 3 min (g, ﬁ)} See Algorithm 1 for more details. Define
S(w) = {x: ||z|| = r,z - w = 0} as the decision boundary for weights w. We have the following iterates:

e ~U{{x: ||z|| =rz-ws =0}) = U(S(wy)) (434)
Yyt ~ 2Bernoulli(o(w* - z4)) — 1 (435)
gt = Val(xt, yr, wy) (436)
= —0o (- wi) Yz 437)
1
= _iytxt (438)
w1 = My (we — 1:9¢) (439)

F.2. Strong convexity

Note that %w* is the re-scaled w* to have the same norm as w.
Lemma F.1. For all w where Z(w,w*) < min (%, 1% ). If © is sampled uniformly from S(w) and y is the corresponding

sampled label (according to w*),

2

1M r?
] r H e w0,

E[V{(z,y,w)] - (w - M“’*> ZGTwld—1
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Proof.

E[V{(z,y,w)] - (w — Hj\u;'w*) =E {—;yx} . (w - ”w]\4|w*> (441)
N Ml
= §E [ yx - w+ yx Y ] (442)
_ wl .
— mE[yx S w”] (443)
_ Jwll ) — o w e
= QM]E[(O'(J) w*) —o(—z-w"))x - w (444)

Define f(u) = (o(u) — o(—u))u

[wll .\ _ lwl .
E[V@(l’,y, w)] ’ (w - Ww = mEwa(w)[f(‘r "W )] (445)
Note that since Z(x,w) = 7/2,
[w* x| = |lz|l[[w*[|] cos(£(x, w™))| (446)
=rM|sin(£(z,w) — Z(x,w"))| (447)
<rM|Z(z,w) — Z(z,w*)]| (448)
<rMZ(w,w*) (449)
where the last line follows from the reverse triangle inequality.
Further note that |u| < 2 = f(u) > “3—2
Therefore, if r M /(w, w*) < 2,
[wll .\ < lwl (z-w*)?
[[w]] 2
=-—FE . 451

Without loss of generality, assume w is in the same direction as ey, and w* = M cos(Z(w, w*))eq + M sin(Z£(w, w*))e;

Ewa(w) [(.’E . w*)2] = ExNU(rSdfz)[M2 SiHZ(l(U}, ’LU*)).CL'%] (452)
= r2 M2 Sin2(4(w,U)*))]ExNU(Sd—Z)[l'%] (453)

By symmetry of the sphere 5772 C R, B, py(gi-2)[2]] = 75 s0

r2M?

Epns(w) [(z-w)?] = 71 sin?(Z(w, w*)) (454)
Now, we need to connect sin(Z(w, w*)) back to ||jw — w*||.
By the equation for a chord on a circle (and noting ||w|| = H %w* )
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o el
M
us

In general, for acute angles 6 < 7, 2 — 2 cos(f) < 2 sinz(e). Therefore,

2
= ||lw||*(2 — 2 cos(Z(w,w*))) (455)

2

’M‘%ﬂm < 9lju | sin?(L(w, ")) (40

or, rearranging,

2

: 1 [[wl]
2 *
sin” (£ (w,w*)) > - wk (457)
2||w]|? M
Putting it all together, we arrive at:
[ 1M 2 [
E[VY : ——w | > - - —w" 458
O

F.3. Optimization argument

This argument is inspired by the proof of Lemma 1 in Rakhlin et al. (2012), which is from Nemirovski et al. (2009).

Lemma F.2. Suppose we have a convex set W, a reachable set R C W, an initialization w; € R and a random “stochastic
gradient” g(w) that is a function of w and has a bounded expectation: Yw € R : E[|lg(w)|]?] < G.

If there exists A > 0 and w € W such that E[g(w)] - (w — W) > M|w —w||? for all w € R, then, for a orthogonal projected
stochastic gradient update rule w11 = Ilyy (wt — % g(wt)), if the iterates wy always stay in R, then for any t > 3,

E w2 < = 459
(e - @2 < 5 (459)
Proof. Define 1y = % to be the step size.
Note that since W is convex, w € WV, and orthogonal projections onto convex sets contract distances,
E [[lwiyr —w[*] = E [|[Tw (w; — neg(w,)) — o] (460)
<E [[lwy — mg(we) — w|%] (461)
= E[|jw, — w]*] — 2n:Eg(wy) - (wy — )] + n7E[||g(we) ] (462)
= E[|lwe — 0] — 2E [E[g(w,)] - (we — )] + n7E[l|g(we)|1?] (463)
< El|lw; — 0% — 20 AE[||w; — w|]%] 4 77 G? (464)
= (1 =20, ME[||w; — w||*] + 77 G (465)

Plugging in the step size n; = 5
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2 2
Efluess - w7 < (1- ) Ellor - 0P+ 55 (466)

Then, from the above equation with £ = 2,

G2

Efllwess — @) <0+ 55 (467)
G2
PR 46
we proceed by induction for ¢ > 3,
o 2 oy G?
Ellwess — )% < (1= 2 ) Bllw, - 0% + 55 (469)
2\ G*  G?
< (1 B t) T e @70
G*(1 2 1
:)\Q(t_zf?+t2) “71)
G*t—1
=7 (472)
GQ
SNe+D 473)
And thus, the following is proven,
G2

Eflw: - w1 < 25 (474)
O

F.4. Connection between distance and angle

Lemma F.3. For any vectors u,v € R? — {0},

21

Z(u,v) < mllu—vll (475)

Proof. Without loss of generality, let v = ||v||e; and let u = aey + bes.
Next, we split into two cases,

Case 1: ||lu —v|| < HQL”

In this case, a > 1 ||v|| and thus, 1 < 255

Then,
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Case 2: ||lu — v|| > “;’—”

Let G% = % so that || g(w;)]|?

F.5. Putting it together

L(u,v) =

()
arctan | —
a

b
< |=
a

(0]
<) )
-y ()
<o (1) ()

2

<

=l (vl = a)* 4 b2
27
= WHU—U”
Llu,v) <
_ 2m ol
ol 2

2
< rllu =l
[[v]]

= 1llze]?* = G*

Theorem 4.7. Suppose d > 5 and Vf[rl < 1/12. If n > 4 is large enough so that

and

n > 64r3 M3 In(4n/err) /vVd — 1
n > 1600000M°r°dIn(4n/err*)/(d — 1)3/?
n > 18500d In(4n/err*)Mr/vd — 1

Vd—1d 1 T2 2
e NN < [ Zmin [ & 2
400 e nln(4n/err ) < (len (2, 3M7”)>

then, for the estimator w returned from Algorithm I,

(476)

477)

(478)

(479)

(480)

(481)

(482)

(483)

(484)

(485)

(486)

(487)
(488)
(489)

(490)
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Elerr(w)] — err(w™) < 260016‘77'*% (491)

Proof. Set d = err*d/n.
Recall M = ||w, |
By Theorem E.12, with probability 1 — 9,

M
? S ||wrandom|| S 3M/2 (492)
M N
5 SM=M (493)
and
d—1d
Z(wrandoma w*)2 < 400 \/Z;ﬁ 1H(4d/5) (494)
2
1 T 2
< | = mi P
= <2mm(2’3Mr>) (495)
SO
1 T 2 1 T 2
*\ < Zmi noe < Zmi n o
Z(Wrandom, w*) < 5 Win (2, 3Mr) < 5 min (2, 3Mr) (496)

Next, note that ||w,|| = M for any ¢, since ||w: || = M and each stochastic gradient g, = g(wy) is orthogonal to w; and then
the iterate is projected back onto W.

Thus, define the reachable set R = {w € W : ||w|| = M} which is the outer boundary of . Note R is not convex, but
always contains the iterates w.

Note that E[||g(w)]|?] = %. Set G = %, then the expected squared norm of the gradient is bounded by G*.
Define w = 4%w*. Then, since Z(Wrandom, w*) < 1 min (g, M%), wWER

For any w € R, Z(w, Wrandom) < lmin(7T 2 ) < 1min (%7L) Because Z(Wrandom, w*) < fmin(

2 27 3N 2
Z(w,w*) <min (%, 1%).

—

5 35 )

Therefore, by Lemma F.1, for any w € R

2 2
st (w ) |JI\2”"’> > T H“’ - (497)
2
Elglw)] - (w =) 2 édr— 7w -l (498)

2

Therefore, with A = -7, by Lemma F.2, for t > 3,
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G2

2
_ < —
B | lw: — o] < 35 (499)
r236(d—1)%1
_ - 500
4 ré t (500)
(d—1)?
=9 501
— (501)
Because w = Wn /2415 forn > 4,
. d—1)32
E|llo -] < 18 T2n> (502)
From Lemma 4.3 and Lemma F.3, and noting w and w* have the same direction
1 Mr
Elerr(w)] — - E [£(w,w*)? 503
ere(i)] — (") < £ =B [£(b, )] (503)
1 Mr (27r)2 2
< Z —
<o e Bl -] (504)
1 Mr (27r) (d—1)2
- 18 505
~5d (M/3) rn (505)
< 1300 506
< M d - (506)
<1300 - 20err*g (507)
n
= 26000err*g (508)
n

However, this argument was predicated on an event that occurs with probability 1 — §. Noting the excess error is bounded
by 1, we find,

Elerr(w)] — err(w™) < (1 — 5)26000err*g +4-1 (509)
n
< 26000err* g +9 (510)
n
< 26001err* g (511)
n



