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ABSTRACT

Predicting the pose of objects from a single image is an important but difficult
computer vision problem. Methods that predict a single point estimate do not
predict the pose of objects with symmetries well and cannot represent uncertainty.
Alternatively, some works predict a distribution over orientations in SO(3). How-
ever, training such models can be computation- and sample-inefficient. Instead,
we propose a novel mapping of features from the image domain to the 3D rotation
manifold. Our method then leverages SO(3) equivariant layers, which are more
sample efficient, and outputs a distribution over rotations that can be sampled at
arbitrary resolution. We demonstrate the effectiveness of our method at object
orientation prediction, and achieve state-of-the-art performance on the popular
PASCAL3D+ dataset. Moreover, we show that our method can model complex
object symmetries, without any modifications to the parameters or loss function.
Code is available at https://dmklee.github.io/image2sphere.

1 INTRODUCTION

Determining the pose of an object from an image is a challenging problem with important applications
in artificial reality, robotics, and autonomous vehicles. Traditionally, pose estimation has been
approached as a point regression problem, minimizing the error to a single ground truth 3D rotation.
In this way, object symmetries are manually disambiguated using domain knowledge (Xiang et al.,
2018) and uncertainty is not accounted for. This approach to pose estimation cannot scale to the
open-world setting where we wish to reason about uncertainty from sensor noise or occlusions and
model novel objects with unknown symmetries.

Recent work has instead attempted to learn a distribution over poses. Single rotation labels can be
modeled as random samples from the distribution over object symmetries, which removes the need
for injecting domain knowledge. For instance, a table with front-back symmetry presents a challenge
for single pose regression methods, but can be effectively modeled with a bimodal distribution. The
drawback to learning distributions over the large space of 3D rotations is that it requires lots of data,
especially when modeling hundreds of instances across multiple object categories.

This poor data efficiency can be improved by constraining the weights to encode symmetries present
in the problem (Cohen & Welling, 2016). The pose prediction problem exhibits 3D rotational
symmetry, e.g. the SO(3) abstract group. That is, if we change the canonical reference frame of an
object, the predictions of our model should transform correspondingly. For certain input modalities,
such as point clouds or 3D camera images, the symmetry group acts directly on the input data via 3D
rotation matrices. Thus, many networks exploit the symmetry with end-to-end SO(3) equivariance to
achieve sample efficient pose estimation. However, achieving 3D rotation equivariance in a network
trained on 2D images is less explored.

Thus, we present Image2Sphere, I2S, a novel method that learns SO(3)-equivariant features to
represent distributions over 3D rotations. Features extracted by a convolutional network are projected
from image space onto the half 2-sphere. Then, spherical convolution is performed on the features with
a learned filter over the entire 2-sphere, resulting in a signal that is equivariant to 3D rotations. A final
SO(3) group convolution operation produces a probability distribution over SO(3) parameterized in
the Fourier domain. Our method can be trained to accurately predict object orientation and correctly
express ambiguous orientations for objects with symmetries not specified at training time.
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I2S achieves state-of-the-art performance on the PASCAL3D+ pose estimation dataset, and outper-
forms all baselines on the ModelNet10-SO(3) dataset. We demonstrate that our proposed architecture
for learning SO(3) equivariant features from images empirically outperforms a variety of sensible,
alternative approaches. In addition, we use the diagnostic SYMSOL datasets to show that our ap-
proach is more expressive than methods using parametric families of multi-modal distributions at
representing complex object symmetries.

Contributions:

• We propose a novel hybrid architecture that uses non-equivariant layers to learn SO(3)-
equivariant features which are further processed by equivariant layers.

• Our method uses the Fourier basis of SO(3) to more efficiently represent detailed distribu-
tions over pose than other methods.

• We empirically demonstrate our method is able to describe ambiguities in pose due to partial
observability or object symmmetry unlike point estimate methods.

• I2S achieves SOTA performance on PASCAL3D+, a challenging pose estimation benchmark
using real-world images.

2 RELATED WORK

6D Pose Estimation Predicting the 6D pose (e.g. 3D position and orientation) of objects in
an image has important applications in fields like robotics (Tremblay et al., 2018), autonomous
vehicles (Geiger et al., 2012), and microscopy (Levy et al., 2022). Most popular methods use deep
convolutional networks, which are robust to occlusions and can handle multi-object scenes with a
segmentation module (He et al., 2017). Convolutional networks have been trained using a variety of
output formulations. Xiang et al. (2018) regresses the 3D bounding box of the object in pixel space,
while He et al. (2020) predicts 3D keypoints on the object with which the pose can be extracted.
Another line of work (Wang et al., 2019; Li et al., 2019; Zakharov et al., 2019) outputs a dense
representation of the object’s coordinate space. Most of these methods are benchmarked on datasets
with limited number of object instances (Hinterstoisser et al., 2011; Xiang et al., 2018). In contrast,
our method is evaluated on datasets that have hundreds of object instances or novel instances in the
test set. Moreover, our method makes minimal assumptions about the labels, requiring only a 3D
rotation matrix per image regardless of underlying object symmetry.

Rotation Equivariance Symmetries present in data can be preserved using equivariant neural
networks to improve performance and sample efficiency. For the symmetry group of 3D rotations,
SO(3), a number of equivariant models have been proposed. Chen et al. (2021) and Fuchs et al.
(2020) introduce networks to process point cloud data with equivariance to the discrete icosahedral
group and continuous SO(3) group, respectively. Esteves et al. (2019b) combines images from
structured viewpoints and then performs discrete group convolution to classify shapes. Cohen et al.
(2018a) introduces spherical convolution to process signals that live on the sphere, such as images
from 3D cameras. However, these methods are restricted to cases where the SO(3) group acts on
the input space, which prevents their use on 2D images. Falorsi et al. (2018) and Park et al. (2022)
extract 3D rotational equivariant features from images to model object orientation, but were limited
to simplistic datasets with a single object. Similar to our work, Esteves et al. (2019a) learns SO(3)
equivariant embeddings from image input for object pose prediction; however, they use a supervised
loss to replicate the embeddings of a spherical convolutional network pretrained on 3D images. In
contrast, our method incorporates a novel architecture for achieving SO(3) equivariance from image
inputs that can be trained end-to-end on the challenging pose prediction tasks.

Uncertainty over SO(3) Due to object symmetry or occlusion, there may be a set of equivalent
rotations that result in the same object appearance, which makes pose prediction challenging. Most
early works into object pose prediction have avoided this issue by either breaking the symmetry when
labelling the data (Xiang et al., 2014) or applying loss functions to handle to known symmetries
(Xiang et al., 2018; Wang et al., 2019). However, this approach requires knowing what symmetries
are present in the data, and does not work for objects that have ambiguous orientations due to
occlusion (e.g. coffee mug when the handle is not visible). Several works have proposed models
to reason about orientation uncertainty by predicting the parameters of von Mises (Prokudin et al.,
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in terms of the spherical harmonics Y l
k and for signals over SO(3) in terms of Wigner D-matrix

coefficients Dl
mn. Writing f : SO(3) → R in terms of the Dl

mn and then truncating to a certain

frequency l ≤ L we obtain an approximate representation f(g) ≈
∑L

l=0

∑2l+1

m=0

∑2l+1

n=0
clmnD

l
mn(g).

SO(3) group convolution (2) can be efficiently computed in the Fourier domain using the convolution
theorem1. Namely, the convolution of two functions is calculated as the element-wise product of the
functions in the Fourier domain. For functions over SO(3), the Fourier domain is described by the
Wigner D-matrix coefficients, corresponding to a block diagonal matrix with a (2l + 1)× (2l + 1)
block for each l (Knapp, 1996). A functions over S2 in the Fourier domain is described by a vector
of coefficients of spherical harmonics and convolution is performed using an outer product (Cohen
et al., 2018a). This generates the same block diagonal matrix output as SO(3) convolution (e.g. both
S2 and SO(3) convolution generate signals that live on SO(3)). See Geiger et al. (2022) for efficient
implementation of Fourier and inverse Fourier transforms of S2 and SO(3) signals.

3.4 SO(3) DISTRIBUTIONS WITH THE FOURIER BASIS

The output of the above group convolution is a signal f : SO(3) → R defined as a linear combination
of Wigner D-matrices. While this signal is useful for efficient group convolution, it cannot be directly
normalized to produce a probability distribution. Instead, the signal can be queried at discrete points in
SO(3) and then normalized using a softmax. To reduce errors introduced by the discretization, points
should be taken from an equivolumetric grid. Equivolumetric grids over SO(3) can be generated
using an extension of the HEALPix method developed by Yershova et al. (2010). The HEALPix
method (Gorski et al., 2005) starts with 12 ‘pixels’ that cover the sphere, and recursively divides
each pixel into four sections. The latitude and longitude of each pixel describe two Euler angles of a
rotation. The extension to SO(3) specifies the final Euler angle in a way that the grid is equally-spaced
in SO(3). The resolution of the final grid can be controlled by the number of recursions.

4 METHOD

Our method, Image2Sphere (I2S), is designed to predict object pose from images under minimal
assumptions. Much previous work assumes objects with either no symmetry or known symmetry,
and thus it is sufficient to output a single point estimate of the pose. Our method, in contrast, outputs
a distribution over poses, which allows us to represent uncertainty due to partial observability and the
inherent ambiguity in pose resulting from object symmetries. Recent work using distribution learning
has suffered from difficulty in training multi-modal distributions and high data requirements. I2S
circumvents these challenges by reasoning about uncertainty in the Fourier basis of SO(3), which is
simple to train over and allows us to leverage equivariant layers for better data efficiency.

The I2S network consists of an encoder, a projection step, and a 2-layer spherical pose predictor (see
Figure 1). I2S generates SO(3) equivariant features from traditional convolutional network encoders.
Our method then maps features from image space to the 2-sphere using an orthographic projection
operation. Then, we perform two spherical convolution operations. Importantly, the output of the
spherical convolution is a signal over the Fourier basis of SO(3), which can be queried in the spatial
domain to create highly expressive distributions over the space of 3D rotations.

4.1 MAPPING FROM IMAGE TO SPHERE

We use orthographic projection to map the output image feature map f : R2 → R
h from the ResNet to

a spherical signal Ψ: S2 → R
h. Orthographic projection P : S2 → R

2 defined P (x, y, z) = (x, y)
maps a hemisphere onto the unit disk. By positioning the feature map f around the unit disk before
projecting, we get a localized signal Ψ(x) = f(P (x)) supported over one hemisphere. The advantage
of this method is that it preserves the spatial information of features in the original image. Practically,
to compute Ψ, a HEALPix grid is generated over a hemisphere {xi} ⊂ S2 and mapped to positions
{P (xi)} in the image feature map. The value of Ψ(xi) is interpolated from the value of f at pixels
near position P (xi). This process is illustrated in Figure 2.

1See Cohen et al. (2018a) for explanation and visuals describing efficient SO(3) group convolution.
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5 EXPERIMENTS

5.1 DATASETS

To demonstrate the strengths of our method, we evaluate it on several challenging object orientation
estimation datasets. Additional details can be found in Appendix B.2.

The first dataset, ModelNet10-SO(3) (Liao et al., 2019), is composed of rendered images of synthetic,
untextured objects from ModelNet10 (Wu et al., 2015). The dataset includes 4,899 object instances
over 10 categories, with novel camera viewpoints in the test set. Each image is labelled with a single
3D rotation matrix, even though some categories, such as desks and bathtubs, can have an ambiguous
pose due to symmetry. For this reason, the dataset presents a challenge to methods that cannot reason
about uncertainty over orientation.

Next, PASCAL3D+, (Xiang et al., 2014), is a popular benchmark for pose estimation that includes
real images of objects from 12 categories. The dataset labels symmetric object categories in a
consistent manner (e.g. bottles are symmetric about the z-axis, so label zero rotation about the z-axis),
which simplifies the task. To improve accuracy, we follow the common practice of augmenting the
training data with synthetic renderings from Su et al. (2015). Nevertheless, PASCAL3D+ still serves
as a challenging benchmark due to the high variability of natural textures and presence of novel
instances in the test set.

Lastly, the SYMSOL dataset was recently introduced by Murphy et al. (2021) to evaluate the
expressivity of methods that model distributions over 3D rotations. It includes synthetic renderings
of objects split into two groups: geometric objects like the tetrahedron or cylinder with complex
symmetries (SYMSOL I), and simple objects with single identifying feature such that the pose is
ambiguous when the feature is occluded (SYMSOL II). The dataset provides the full set of equivalent
rotation labels for each image so methods can be evaluated on how well they capture the distribution.
Note that Murphy et al. (2021) generates results using 100k renderings per shape, which we report as
a baseline, but the publicly released dataset that we train on only includes 50k renderings per shape.

5.2 EVALUATION METRICS

The goal of pose prediction is to minimize the angular error between the predicted 3D rotation and
the ground truth 3D rotation. Two commonly used metrics are the median rotation error (MedErr)
and the accuracy within a rotation error threshold (e.g. Acc@15 is the fraction of predictions with
15 degrees or less rotation error). However, these metrics assume that there exists a single, ground
truth 3D rotation, which is not valid for symmetric objects or images with pose ambiguity. For
ModelNet10-SO(3) and PASCAL3D+, only a single rotation is provided so these metrics must be
used. However, when the full set of equivalent rotation labels are provided, like with SYMSOL, a
more informative measure is the average log likelihood, computed as the expected log likelihood
that the model, pθ, assigns to rotations sampled from the distribution of equivalent rotations pGT :
ER∼pGT

[log pθ(R|x)]. Achieving high log likelihood requires modelling all symmetries of an object.

5.3 NETWORK AND TRAINING DETAILS

I2S uses a residual network (He et al., 2016) with weights pretrained on ImageNet (Deng et al., 2009)
to extract dense feature maps from 2D images. We use a ResNet50 backbone for ModelNet10-SO(3)
and SYMSOL, and ResNet101 for PASCAL3D+. The orthographic projection uses a HEALPix grid
with recursion level of 2, out of which 20 points are randomly selected during each forward pass.
We parameterize the learned S2 filter in the Fourier domain, e.g. learn weights for each spherical
harmonic. The filter in the SO(3) convolutional layer is locally supported over rotations up to 22.5
degrees in magnitude. We query the signal in the spatial domain using SO(3) HEALPix grids with
36k points (7.5 degree spacing) during training and 2.4M (1.875 degree spacing) during evaluation.
We use the same maximum frequency (L = 6) on all datasets. Additional details on the architecture
can be found in Appendix B.1.

I2S is instantiated with PyTorch and the e3nn library (Geiger et al., 2022). It is trained using SGD
with Nesterov momentum of 0.9 for 40 epochs using a batch size of 64. The learning rate starts at
0.001 and decays by factor of 0.1 every 15 epochs.
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avg. plane bicycle boat bottle bus car chair table mbike sofa train tv

Zhou et al. (2019) 19.2 24.7 18.9 54.2 11.3 8.4 9.5 19.4 14.9 22.5 17.2 11.4 17.5

Brégier (2021) 20.0 27.5 22.6 49.2 11.9 8.5 9.9 16.8 27.9 21.7 12.6 10.2 20.6

Liao et al. (2019) 13.0 13.0 16.4 29.1 10.3 4.8 6.8 11.6 12.0 17.1 12.3 8.6 14.3

Mohlin et al. (2020) 11.5 10.1 15.6 24.3 7.8 3.3 5.3 13.5 12.5 12.9 13.8 7.4 11.7

Prokudin et al. (2018) 12.2 9.7 15.5 45.6 5.4 2.9 4.5 13.1 12.6 11.8 9.1 4.3 12.0

Tulsiani & Malik (2015) 13.6 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4

Mahendran et al. (2018) 10.1 8.5 14.8 20.5 7.0 3.1 5.1 9.5 11.3 14.2 10.2 5.6 11.7

Murphy et al. (2021) 10.3 10.8 12.9 23.4 8.8 3.4 5.3 10.0 7.3 13.6 9.5 6.4 12.3

I2S (ours) 9.8 9.2 12.7 21.7 7.4 3.3 4.9 9.5 9.3 11.5 10.5 7.2 10.6

±0.4 ±0.4 ±0.7 ±1.3 ±0.7 ±0.1 ±0.1 ±0.8 ±3.4 ±0.8 ±0.8 ±0.5 ±0.6

Table 2: Median rotation error (◦) on PASCAL3D+. First column shows average median error over
all twelve classes. For some baselines, we report the corrected results by Murphy et al. (2021) (see
Appendix B.2 for details). For I2S, we report mean and standard deviation over six runs.

5.7 SYMSOL

One of the strengths of our method is the ability to represent distributions over 3D rotations. As
shown in the previous section, this formulation is beneficial when training on symmetric objects. In
this section, we quantitatively evaluate the ability to model uncertainty in two settings: SYMSOL
I which includes simple geometric objects with complex symmetries and SYMSOL II which has
objects marked with a single identifier such that self-occlusion creates pose ambiguity. Because most
images correspond to a set of equivalent rotation labels, we measure performance using average log
likelihood, reported in Table 3.

The results show that our method effectively represents complex distributions over SO(3). We
achieve higher log likelihood on all SYMSOL shapes than methods that map to a specific small
family of distributions such as von Mises or Bingham. This highlights the advantage of parametrizing
uncertainty in the Fourier basis of SO(3), which is a simpler approach that avoids training multi-
modal distributions. We note that Murphy et al. (2021) outperforms our method when trained on 100k
images per object; however, our method is better when trained on only 10k images per object. This
demonstrates an important distinction between the two approaches: our method explicitly encodes
the 3D rotation symmetry of the problem in the spherical convolutions, whereas Murphy et al. (2021)
must learn the symmetry from data. We argue that sample efficiency is important for real world
applications since it is not practical to collect 100k images of an single object to model its symmetry.
We want to highlight that we use the same maximum frequency L for all experiments in this work
which shows that I2S can be deployed without knowing if object symmetries are present in the task.

Table 3: Average log likelihood on SYMSOL datasets. SYMSOL I includes objects with complex
symmetries, while SYMSOL II includes objects whose poses can be ambiguous under self-occlusion.
The highest likelihood in each column is in bold, second-best is underlined.

num. training

images

SYMSOL I SYMSOL II
avg. cone cyl. tet. cube ico. avg. sphX cylO tetX

100k

Deng et al. (2022) -1.48 0.16 -0.95 0.27 -4.44 -2.45 2.57 1.12 2.99 3.61
Gilitschenski et al. (2019) -0.43 3.84 0.88 -2.29 -2.29 -2.29 3.70 3.32 4.88 2.90
Prokudin et al. (2018) -1.87 -3.34 -1.28 -1.86 -0.50 -2.39 0.48 -4.19 4.16 1.48
Murphy et al. (2021) 4.10 4.45 4.26 5.70 4.81 1.28 7.57 7.30 6.91 8.49
I2S (ours) 3.41 3.75 3.10 4.78 3.27 2.15 4.84 3.74 5.18 5.61

10k
Murphy et al. (2021) -7.94 -1.51 -2.92 -6.90 -10.04 -18.34 -0.73 -2.51 2.02 -1.70
I2S (ours) 2.98 3.51 2.88 3.62 2.94 1.94 3.61 3.12 3.87 3.84

5.8 COMPARISON OF ALTERNATIVE IMAGE TO SO(3) MAPPINGS

We argue that a main driver of our method’s pose accuracy is SO(3)-equivariant processing. While
many existing methods for end-to-end SO(3)-equivariance have been explored in the literature (Fuchs
et al., 2020; Deng et al., 2021; Cohen et al., 2018a), it is not well-understood how to combine
non-equivariant and equivariant layers in a network. In this section, we consider other sensible
approaches to map from features in the image plane to features that live on SO(3) or a discrete
subgroup of it. The approach taken by I2S is to perform orthographic projection to link features on
the sphere to the image plane (spatial projection), then convolve it with a filter that is parametrized
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REPRODUCIBILITY STATEMENT

The code to replicate the results of our method is available at https://github.com/dmklee/
image2sphere. All datasets used are publicly available and a thorough description of prepro-
cessing is provided in Appendix B.2. The model architecture and training protocol are discussed in
Section 5.3 and Appendix B.1. Information on the baselines and their reported results is provided in
Appendix B.3.
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A DETAILED RESULTS

A.1 MODELNET10-SO3 LIMITED TRAINING SET

We compare the sample efficiency of pose prediction methods by training on ModelNet10-SO(3)
with limited training views in Table 5. Specifically, we reduce the number of training views from
100 per instance to 20 per instance. Our method outperforms the baselines by a larger margin in
the low-data setting. This results highlights an important distinction between our method and the
baselines: our method explicitly encodes the 3D rotation symmetry present in the pose prediction
problem, whereas other methods must learn the symmetry from data.

Table 5: Comparison on ModelNet10-SO(3) with limited training views. Methods are trained on five
times fewer images than the experiment in Table 1.

Limited Training Set
Acc@15↑ Acc@30↑ MedErr↓

Zhou et al. (2019) 0.064 0.239 62.7
Brégier (2021) 0.129 0.359 51.5
Murphy et al. (2021) 0.515 0.533 59.5
I2S (ours) 0.623 0.640 46.3

A.2 MODELNET10-SO3 PER-CLASS BREAKDOWN

Table 6 reports the median rotation error for each object in ModelNet10-SO(3). These results
highlight the challenge of pose prediction with unknown symmetries. Note that the categories that
are hard to predict, e.g. bathtub, night stand and table, can have multiple correct reference frames due
to symmetry.

Table 6: Per-class median rotation error (◦) on ModelNet10-SO(3). Results for I2S are reported as
mean and standard deviation over six random seeds.

avg. bathtub bed chair desk dresser monitor n. stand sofa table toilet

Zhou et al. (2019) 41.1 103.3 18.1 18.3 51.5 32.2 19.7 48.4 17.0 88.2 13.8

Brégier (2021) 39.9 98.9 17.4 18.0 50.0 31.5 18.7 46.5 17.4 86.7 14.2

Liao et al. (2019) 36.5 113.3 13.3 13.7 39.2 26.9 16.4 44.2 12.0 74.8 10.9

Deng et al. (2022) 32.6 147.8 9.2 8.3 25.0 11.9 9.8 36.9 10.0 58.6 8.5

Mohlin et al. (2020) 17.1 89.1 4.4 5.2 13.0 6.3 5.8 13.5 4.0 25.8 4.0

Prokudin et al. (2018) 49.3 122.8 3.6 9.6 117.2 29.9 6.7 73.0 10.4 115.5 4.1

Murphy et al. (2021) 21.5 161.0 4.4 5.5 7.1 5.5 5.7 7.5 4.1 9.0 4.8

I2S (ours) 16.3 124.7 3.1 4.4 4.7 3.4 4.4 4.1 3.0 7.7 3.6
±2.9 ±28.1 ±0.0 ±0.0 ±0.1 ±0.1 ±0.1 ±0.1 ±0.0 ±1.0 ±0.1
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B IMPLEMENTATION DETAILS

B.1 ARCHITECTURE

We use a ResNet encoder with weights pretrained on ImageNet. With 224x224 images as input,
this generates a 7x7 featuremap with 2048 channels. The orthographic projection onto the sphere is
performed using a HEALPix grid of recursion level 2 restricted to half the sphere. With each forward
pass, 20 of these grid points are randomly sampled and used to generate the S2 signal. The S2

signal is converted to the Fourier domain with a maximum frequency of 6. A spherical convolution
operation is performed using a filter that is parametrized in the Fourier domain, which generates an
8-channel signal over SO(3). A non-linearity is applied by mapping the signal to the spatial domain,
applying a ReLU, then mapping back to Fourier domain. One final spherical convolution with a
locally supported filter is performed to generate a one-dimensional signal on SO(3). The signal is
queried using an SO(3) HEALPix grid (recursion level 3 during training, 5 during evaluation) and
then normalized using a softmax. The network is instantiated in PyTorch, and we use the e3nn2

library for the group convolution operations.

B.2 DATASET PREPARATION

ModelNet10-SO(3) is available for download at the Github3 associated with Liao et al. (2019). The
dataset has a standardized train and test split. It provides two training sets: one with 100 views per
object instance (we call this the Full Training Set), and one with 20 views per object instance (we call
this the Limited Training Set). The test set has 4 views per instance. Each image is labeled with a
single rotation label, and object symmetries were not broken during labeling. Based on the original
work, we do not perform any data augmentation with this dataset.

SYMSOL can be downloaded from the Github4 linked by Murphy et al. (2021). The dataset includes
renderings of 8 synthetic objects split into two categories: SYMSOL I includes tetrahedron, cube,
icosahedron, cone and cylinder, while SYMSOL II includes marked tetrahedron, marked cylinder,
and marked sphere. For each shape, there are 50k renderings in the training set and 5K renderings
in the test set. Each image is labeled with the set of valid rotations (for continuous symmetries like
the cylinder, it is provided at 1 degree increments). During training, the set of valid rotations is
randomly sampled to generate a single rotation label to compute the loss. In Table 3, we use results
originally reported by Murphy et al. (2021), and follow the approach of training a single model on all
objects from SYMSOL I but different models for each object in SYMSOL II. The results reported
by Murphy et al. (2021) were generated using 100k training renderings per shape, but the publicly
released dataset only has 50k. Thus, this strongly favors the baselines.

Pascal3D+ is available for download at the link5 provided in Xiang et al. (2014). The training data is
found in the ImageNet train, ImageNet val, and PASCALVOC train folders, and the test data is in
PASCALVOC val. Following Murphy et al. (2021), we discard any data that is labeled occluded,
difficult or truncated. We follow the data augmentation procedure from Mohlin et al. (2020) that
randomly performs horizontal flip and slight perspective transformation during training. Additionally,
we supplement the training data with synthetic images from RenderForCNN (Su et al., 2015) (this
requires free ImageNet account to download), such that three quarters of data is synthetic during
training. Including synthetic data is important to achieve high accuracy, and is also used by the
baselines. Where possible, we use the reported results of the baselines on PASCAL3D+; however, as
pointed out by Murphy et al. (2021), some of the baselines used incorrect evaluation functions or a
different evaluation set. In these cases, we report the performance from Murphy et al. (2021), since
they re-ran these baselines after correcting the issues.

2https://e3nn.org
3https://github.com/leoshine/Spherical_Regression
4https://github.com/google-research/google-research/tree/master/

implicit_pdf
5https://cvgl.stanford.edu/projects/pascal3d.html
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B.3 BASELINES

Here, we include details for baselines that we implemented ourselves. For information on other
baselines, refer directly to their work.

Zhou et al. (2019) proposes using the Gram-Schmidt process to convert a 6D vector into a valid,
3x3 rotation matrix. To implement this network, we used a ResNet architecture with spatial pooling
on the final feature map. The resulting vector was processed with two linear layers to generate the
6D vector. The model is trained with an L2 loss function using a ground truth rotation matrix. The
method is trained on all classes at once, but uses a separate linear layer to predict the rotation of each
class.

Brégier (2021) proposes using the Procrustes method to convert a 9D vector into a valid, 3x3 rotation
matrix. They provide an efficient implementation of the Procrustes method. The architecture and loss
function is the same as for Zhou et al. (2019), except the linear layer produces a 9D vector.

The original work of Liao et al. (2019) only showed results for PASCAL3D+, which used an incorrect
evaluation function as noted by Murphy et al. (2021). Thus, for PASCAL3D+, we used the results
reported by Murphy et al. (2021) with the corrected evaluation function. For ModelNet10-SO(3), we
ran their code using a pretrained ResNet50 as an encoder.

B.4 CREATING VISUALS

We follow the visualization code that was publicly released by Murphy et al. (2021) to represent
distributions over 3D rotations as a 2D plot. The probability associated with each rotation is
represented as a dot, with the size proportional the magnitude. The rotation is encoded by converting
to XYX euler angles, the first two angles correspond to latitude and longitude in a Mollweide
projection and the final angle is encoded as color using an HSV colormap. To make the visualizations
more interpretable, we do not plot any probabilities less than a given threshold. In our visualizations,
we generate probabilities associated with the SO(3) HEALPix grid used during model evaluation
(recursion level of 5; 2.4M points).

C ADDITIONAL EXPERIMENTS

C.1 EFFECT OF MAXIMUM FREQUENCY L

To efficiently perform SO(3) group convolutions, we must restrict our representations to in the
frequency domain. Learning with lower frequency signals can be more efficient and may generalize
better in some cases, while higher frequency signals may be better for encoding complex distributions
like those shown in Figure 4. In Table 7, we perform a small experiment showing the effects of
different maximum frequencies, L, on pose prediction accuracy. Note that we use L = 6 for all other
experiments in this work. Interestingly, we find that including higher frequencies in the representation,
e.g. L > 6 can actually reduce accuracy, despite the additional learnable parameters.

Table 7: Varying maximum frequency L in Fourier basis. Results are generated on ModelNet10-SO(3)
with limited training views. The same L is maintained through both spherical convolutions of our
method.

Acc@15↑ Acc@30↑ MedErr↓

L = 2 0.560 0.656 33.6
L = 4 0.626 0.646 46.6
L = 6 0.623 0.640 46.3
L = 8 0.605 0.621 43.7
L = 10 0.599 0.618 46.8
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C.2 EFFECT OF ADDITIONAL SO(3) CONVOLUTIONS

Table 8: Effect of SO(3) convolutional layers on ModelNet10-SO(3) pose prediction. I2S, as pro-
posed, includes one SO(3) convolution following the S2 convolution. We show performance without
the SO(3) convolution, and with an additional SO(3) convolution. Additional SO(3) convolutions
provide minimal benefit at the expense of compute.

Full Training Set Limited Training Set
Acc@15↑ Acc@30↑ MedErr↓ Acc@15↑ Acc@30↑ MedErr↓

I2S, no SO(3) conv 0.729 0.737 15.6 0.616 0.634 46.4
I2S, one SO(3) conv 0.729 0.737 14.4 0.623 0.640 46.3
I2S, two SO(3) conv 0.729 0.737 19.0 0.625 0.643 45.5

Our method performs one S2 convolution followed by one SO(3) convolution. In this section, we
look at the performance benefits of this final refinement layer and potential benefits of an additional
convolution. We find that the performing SO(3) convolution does lead to a marginal improvement,
with little to be gained by performing more. This suggests that most of the SO(3) reasoning occurs
within the first spherical convolution that uses a learned filter with global support.
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