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Abstract: Artificial intelligence (Al) is becoming ubiquitous in our daily lives. In more
and more fields, Al systems are transforming how knowledge is constructed,
discoveries are realized, and how solutions are developed and tested. These changes
have profound implications for the future workforce and citizenry. Yet, learning Al
remains a niche subject largely reserved for advanced post-secondary educational
contexts. While there is growing attention to broadening Al educational opportunities
and, especially, to providing learning experiences for younger students, relatively little
is currently known about how to most effectively provide Al education to K-12
(kindergarten through 12th grade) students. In this paper, we discuss the design and
present findings from an implementation study of an educational game for high-school
Al education called ARIN-561. Drawing on an integrated analysis of gameplay log data,
pre/post knowledge, and disposition surveys for nearly 1,000 high school students, we
present findings on the efficacy of the educational game and its constituent activities in
advancing Al learning goals. We explore possible interactions between learning
outcomes, incoming math knowledge, prior gaming experience, and other factors that
can inform future learning design and shed light on what can position youth for success
in game-based Al learning experiences.
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1. Introduction

Artificial Intelligence (Al) is a foundational technology permeating every aspect of our daily
lives. Rapid advances in the design and implementation of Al systems have led to the ever-
expanding role for Al in society. It is also profoundly transforming our workforce around the
globe. While some of today’s youth will become the future Al workforce and a majority of
them will join a workforce that utilizes Al, all will become end-users, such as consumers of Al
(Gardner-McCune et al., 2019). It is critical, therefore, to prepare future generations with
basic knowledge of Al, not just through higher education, but beginning with childhood
learning.

While Al's impact on society is deepening and expanding in myriad ways, and innovative
educational opportunities are being rapidly developed, there has been little research into
how students, especially pre-college students, construct an understanding of and gain
practice with core ideas in the field. As a result, there is yet little possibility of grounding the
design of learning experiences in evidence-based accounts of how youth learn Al concepts,
how understanding progresses across concepts, or what concepts are most appropriate for
what age-levels. Al is built on a foundation of philosophy, psychology, and mathematics, and
it centers around using algorithms to solve real-world problems (Russell and Norvig, 2016).
This provides a theoretical foundation to connect Al learning to existing Science,
Technology, Engineering, and Mathematics (STEM) subjects in K-12 classrooms. Given the
packed schedule of existing courses of K-12 students, it becomes a more realistic approach



to embed Al education in K-12 classrooms. Such an approach to Al instruction offers a rich
context to learn scientific and mathematical concepts already taught in K-12 (Wang and
Johnson, 2019) and to apply them to problem-solving.

One technology-based approach to bring Al to the K12 classroom that has shown promise in
other STEM disciplines is digital game-based learning. Decades of research evidence point
to the efficacy of game-based learning in promoting student learning (Plass et al., 2020).
However, there is little research into using game-based learning for Al education for youth
(Lee et al., 2021), given that the research field of K-12 Al education is still in its infancy. In
this paper, we will discuss the design and initial implementation study of an educational
game, called ARIN-561, for teaching high-school students about Al. We conducted an
evaluation study at high schools in the United States. Results indicate the potential of ARIN-
561 to build Al knowledge, especially for students who have background knowledge with the
relevant mathematical concepts typically taught at the high school level.

2. Related Work

Al education has long been absent from K-12 classrooms. Recent efforts are beginning to
investigate the integration of Al into K-12 schools, including defining Al literacy (Long and
Magerko, 2020) and developing curricula and guidelines (Gardner-McCune et al., 2019; MIT
Al Education Initiative, 2021). Researchers in youth Al education have been experimenting
with teaching Al, including machine learning (Rodriguez-Garcia et al., 2021; Zhou et al.,
2021) and ethics (Forsyth et al., 2021), within the context of computational thinking (Ritter et
al., 2019) through conversational agents (Lin et al., 2020), dance (Payne et al., 2021), and
game-based learning (Lee et al., 2021). Discussions on youth Al education are heating up in
Europe (Kandlhofer et al., 2019; Al+, 2021), China (Peterson et al., 2021), Israel (Shamir
and Levin, 2020), and around the world (Youjun et al., 2018; Yukun and Tang, 2018). For
example, researchers in Thailand have designed an agricultural-based Al challenge to foster
middle-school students’ learning of the machine learning process in the form of a game
(Sakulkueakulsuk et al., 2018), where students build machine learning models to classify
ripe or unripe mangoes. In Australia, researchers have designed and implemented
classroom activities for teaching fundamental concepts of Al to Year 6 students to demystify
Al through activities such as an unplugged activity on facial recognition and a simple robotic
exercise that introduces the concept of machine learning (Ho et al., 2019).

The work presented here aims to uncover how to design an educational game to meet the
challenges of teaching Al to K-12 students. This work builds upon explorations into how K-12
students approach Al concepts, what obstacles they face, and how to guide them through
obstacles (Greenwald et al., 2021). This work also draws upon previous investigations into
linking Al to the K-12 math curriculum to identify Al concepts suitable for high school
students (Wang and Johnson, 2019), as well as work investigating the learning of
computational thinking (Lee et al., 2011) and seminal research into comprehension of
mathematical representations (e.g., Curcio, 1987; Friel et al., 2001).

3. ARIN-561 Game-Based Learning Environment

ARIN-561 is a 3D role-playing game designed to teach high-school students Al concepts,
prompt them to apply their math knowledge, and develop their Al problem-solving skills. In
the game, students play as a space-faring scientist who has crash landed on an alien planet,
named ARIN-561 (Figure 1). In order to safely return home, the scientist begins exploring
the planet to gather resources needed to repair the broken ship while uncovering the
mystery of the planet. The activities for survival and for exploration form the basis for the
tasks the students carry out in the game. The game currently covers three classical search
algorithms: breadth-first search (BFS), depth-first search (DFS), and greedy search. Each
topic consists of two modules: a tutorial module (e.g., Figure 1 bottom left) and a transfer
module (e.g., Figure 1 bottom right). Embedded in all the tutorial and transfer modules are



quizzes that help students pause and self-assess (Figure 1 top right). In-game challenges,
such as searching for missing spaceship parts or cracking passwords, serve as natural
opportunities for the introduction of search as a topic. The essential concepts such as space
and time complexity also lend opportunities to connect math knowledge familiar to high
school students and these Al concepts that are usually taught in higher education. The
integrated educational content in ARIN-561 leverages this opportunity by supporting the
students’ application of math knowledge to the evaluation of each algorithm as they progress
through the game. In additional to the learning modules, students can also explore the game
environment for “off-task” activities (Sabourin et al., 2011), such as gathering minerals
around the planet.
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Figure 1. Screen capture from ARIN-561. Top-left: The player crash landed on a
foreign planet. Top-right: student is presented with a quiz question about
estimating the complexity of search algorithms. Bottom left: student think-alouds
through the greedy search algorithm. Bottom-right: the student solves an 8-puzzle
using one of the search algorithm to fix their companion robot’s circuit board.

3.1 Learning Experience Design in ARIN-561

The design of ARIN-561 is guided by lessons learned from pilot studies on student Al
problem-solving (Greenwald et al., 2021). We also developed additional design principles
based on our observations of the characteristics unique to Al learning, and how lessons
learned from related fields, such as computer science education (Lee et al., 2011), could be
used to inform the design here.

Facilitate Abstraction In a cognitive interview study, researchers explored how K-12
students, particularly those in high school, approach Al concepts, what obstacles they face,
and how to guide them through obstacles (Greenwald et al., 2021). In the study, students
were presented a set of Al problems in a wide range of topics, such as various machine
learning algorithms. Students’ think-alouds as they attempted to solve the Al problems

(using paper and pencil) shed light on the critical step most students struggled with —
problem formulation, or the Abstraction phase in computational thinking, i.e., Abstraction,
Automation, and Analysis (Lee et al., 2011). This is an initial step where students formulate a
problem described in natural language (e.g., find the shortest path) into one that can be
solved by a computer, such as creating variables (e.g., distance), determining end conditions



(e.g., search ends when distance can’t be minimized). Strategies employed by the expert
interviewer provided a basis for pedagogical design in ARIN-561.

One of the design decisions made to facilitate Abstraction was to display the real-world
problems and the abstract representations side-by-side and to update both synchronously
(e.g., the lower-left screen in Figure 1). In an ARIN-561 route-planning problem where
students are tasked to use search algorithms to plan a route to a waterfall, a map is placed
on one side of the screen while a search tree is displayed over and next to the map. As
students direct the algorithm by exploring locations, connected via roads, on the map, the
search tree updates accordingly step-by-step and illustrates how locations are represented
as nodes and roads are represented as edges in a tree data structure, and how route-
planning on a physical map is computationally solved as the expansion of a search tree.
When a goal node is reached in the search tree, it is highlighted both on the search tree as a
path across edges from root to the goal node, and on the map as a route reaching the
waterfall connected via roads.

Learning Transfer In education, transfer of learning occurs when learning in one context
enhances or undermines a related performance in another context (Perkins et al., 1992).
During learning transfer, students apply learning in one discipline across multiple situations.
Transfer of learning is particularly important for Al education, as Al can be considered as a
discipline of using algorithms to solve real-world problems. When students learn how an Al
algorithm can be used to solve illustrative problems in one domain, it is critical to also guide
them through problems from a different context to help them build the connection — the
abstract representation of the algorithm that can be applied to formulate solutions to
seemingly different and unrelated problems.

For each algorithm covered in ARIN-561, we developed a tutorial problem and a transfer
problem. The two sets of problems are different enough to arguably be considered as far
transfers (instead of near transfers) (Perkins et al., 1992). Tutorial problems are chosen from
domains familiar to the students, such as finding a route from point A to B on a map. In a
typical tutorial module, students are scaffolded through the abstraction, automation, and
analysis processes (Lee et al., 2011) through the player character’s think-aloud and their
dialogue with the companion robot. In the abstraction phase, the students are guided to
create an abstract representation of the practical problem. After students demonstrate their
understanding by correctly expanding the tree for several levels, they are provided with the
option to automate the process. In the automation phase, students can watch the search
tree continue to expand automatically, on the same interface — physical map and abstract
search tree placed side-by-side. Students can also pause and step through the tree
expansion one step at a time to examine the process closely. The automated expansion
animation helps illustrate the characteristics of the search algorithms, e.g., expanding in a
breadth-first or depth-first fashion. In the analysis phase, students are guided by the game
narrative to examine the solution (e.g., the route found) and to evaluate the process through
which the solution was generated (e.g., time and space complexity of the search algorithm).
The subsequent transfer problem module presented students with a different problem, such
as cracking a password or solving an 8- puzzle. Students were guided by similar but much
abbreviated scaffolds through the Abstraction, Automation, and Analysis processes in the
transfer phase.

Comparative Explanation Al is human ideas represented mathematically and realized
computationally. From Classical Search to Local Search, from Propositional to First-Order
Logic, from Decision Trees to Genetic Algorithms, Al algorithms build on each other: a new
algorithm is often created by modifying an existing one, to solve problems that the existing
one was not suited or able to solve. This insight creates both challenges and opportunities
for Al education. The evolutionary characteristics of Al algorithms provide a basis for
pedagogy that leverages students’ prior knowledge (of an algorithm they are already familiar
with) while constructing the new ones. By directly comparing the new and old algorithms, for



example, students not only learn the new, but also reinforce the learning of the old. Such
comparisons are not just algorithmic, but also the contextual in terms of application.
Understanding the pros of the new and cons of the old in what problems they are or are not
suited to address is a key to using Al for problem solving. The approach of prior knowledge
activation is not new (Alvermann et al., 1985), nor is the issue of activating inaccurate prior
knowledge (van Loon et al., 2013). The explicit and direct comparison between the new and
old, when discussing the new, may offer an opportunity for students to reexamine their
misconceptions of the old.

In ARIN-561, game modules are organized by learning topics, such as BFS and DFS. After
scaffolding students through the first Al algorithm (such as BFS), each new Al algorithm
(e.g., DFS) is introduced through an example problem that the previous algorithms fail to
solve (e.g., computer runs out of memory when using BFS for route planning). The students
are then guided through the Analysis phase to uncover why the previous algorithm failed
(e.g., storing too many nodes in computer memory) and how to modify it to address its
weakness (e.g., prioritizing expanding child nodes instead of sibling nodes in the search
tree). Such modification thus results in the birth of the new algorithm (e.g., DFS). The direct
comparisons are not only realized in the explanations through the game narrative, but also
illustrated on the user interfaces across the learning of different algorithms.

4. Methods
4.1 Recruitment

Twenty-three math, science, and computer science teachers from a school district in a major
metropolitan area in the United States participated in the study. 1274 high school-aged youth
from classes taught by participating teachers were recruited for the study.

4.2 Procedure

Participating teachers were provided an overview of the game, learning goals, and study
procedure a few months before the study began. A few weeks prior to the study, students
were given an online parental consent form and a youth assent form. Only students who
consented participated in the study. The study was carried out over 4 class sessions, each
lasting 45-55 minutes long, with at least 2 class sessions dedicated to individual gameplay
for students. During the first session, students were first assigned IDs to protect their identity
throughout the study, and then completed the pre-survey online. At the end of the first
session, students logged into the ARIN-561 game online via a web browser. Any technical
difficulties encountered were addressed during the first session, via support from the
research team. During the second and third sessions, students continued to interact with
ARIN-561 at their own pace. Game progression, play time, and answers to in-game
questions were recorded for each participant. During the fourth session, students completed
the post-survey online.

With restricted access to school campuses due to COVID-19, the study was carried out
entirely by the participating teachers. The research team did not participate in the data
collection. Additionally, because students were not required to answer all the questions on
the pre- and post-surveys, there are missing data at the item level for some students.

4.3 Measures

The pre-survey consisted of items about students’ demographic background, Al Use Type,
Interest in Al, Al Knowledge (15 questions), Math Self-efficacy [Liu and Koirala, 2009], and
Math Knowledge. All scales except the Math Self-efficacy were developed by the research
team. The Al Use Type included items such as “When | think about how I'd like to interact



with Al in the future, | expect that: | will use Al systems in my everyday life as a consumer,
and | expect to USE Al systems as a part of my job.” The Interest in Al scale included
questions such as “Outside of school | try to learn a lot about Al.” The assessment of Al
knowledge and math knowledge specifically focused on the content covered in ARIN-561, in
the format of multiple-choice questions. The Al questions were set in the context of solving
Al problems similar to those encountered in the game. The questions assessed students’
understanding of, for example, pros and cons of the search algorithms, search algorithms
most applicable to specific types of problems, etc. In the post-survey, the same items on
interest in Al and Al knowledge from the pre-survey were included. In addition to the
surveys, game logs from ARIN-561 were collected. The logs included the in-game click-
stream data and responses to in-game quizzes.

5. Results

Of the 1274 participating students, 1014 completed the post-survey. The research team was
able to match pre-, post- surveys, and game logs for 764 students. Other than normal
attrition (e.g., students absent at either pre, post administration, or game play class),
additional data loss was primarily due to errors in student ID entries on the survey platform,
which resulted in mismatches of student IDs between both surveys and game logs. We
conducted ANOVA analyses to ensure the final sample of 764 students was not significantly
different from the full participant sample in terms of background, such as gender,
race/ethnicity, and prior mathematical knowledge.

The participants’ average age was 16, with 18% 12th graders, 30% 11th graders, 23% 10th
graders, and 29% 9th graders. A total of 46% of the students identified as male, 48%
identified as female and 6% identified as other categories or preferred not to disclose. 27%
of the students speak English at home, 67% speak both English and a second language at
home, and 6% speak only a language other than English at home. Spanish is reported as
the non-English language for those students. Interestingly, even though ARIN-561 and the
surveys are offered in both English and Spanish, and the teachers were briefed about the
language choice prior to the study, all the students chose to use the English version of the
surveys and the game.

5.1 Al Learning Gain

We conducted a paired sample t-test on the Al knowledge scale from pre- and post- surveys
to examine if playing the game resulted in gains in Al knowledge. Table 1 summarizes the
pre/post changes in Al Knowledge and in sub-constructs directly relevant to modules in the
game (additional Al knowledge items covered in broader topics such as search tree
representations). Results show that students who participated in the study demonstrated
statistically significant gain in Al knowledge, with a mean difference of 0.37 on a 34-point
scale (p = .011). The Al knowledge scale include 3 sub-scales for each of the search
algorithms covered in the game (BFS, DFS, and Greedy search). Additional paired-sample t-
tests revealed a statistically significant gain for BFS learning (mean difference of .30* on an
11-point scale, p = .001), a smaller and not statistically significant change for DFS learning
(p = .088), and a nearly flat outcome for the items focused on the Greedy search algorithm.

Table 1. Paired-sample t-test results on Al learning gains (pre/post), breaking down by Overall
(all items in the scale), BFS, DFS, and Greedy Search learning sub-scales.

Metric | Pre-Test | Post-Test | Max-Score | T-statistics | p-value | Effect Size

Overall  14.16 14.53 34 2.54 0.011 0.105*
BFS 5.30 5.60 11 3.25 0.001 0.149*
DFS 4.36 4.50 9 1.71 0.088 | 0.081

Greedy | 2.09 2.06 3 -0.48 0.629 | -0.022



5.2 Student Background and Al Learning

In the pre-survey, we gathered data on students’ demographic background, such as gender,
grade level, language spoke at home, and video game experiences. ANOVA tests show that
pre/post Al learning gains did not differ significantly between students of different gender,
grade-level, and language spoken at home. Learning gains differed however between
students with different prior gaming experience (Figure 2). The participants reported a wide
range of gaming experiences. Given the detailed categorization of gaming experiences, we
grouped the students into two groups: those who don’t play video games or play 1-2 hours
per week (60% of the sample), and those who play 3 or more hours per week (40%).
Students who play video games less than 2 hours per week had significantly lower gain on
overall Al knowledge (M<zn = .0132, Ms3n = .8428, p = .006), including sub-scales on BFS
learning (M<zn = .0132, Ms3, = .8428, p = .003), Greedy learning (M<oh = —.18, Msah = .11, p =
.019) but not DFS learning (M<2n = .04, Ms3n = .29, p = .152), compared to students who play
video games 3 or more hours per week.

The pre-survey also includes items that measure Math Self-Efficacy, (relevant) Math
Knowledge, and Interest in Al. We conducted a series of regression analyses to investigate
these three student level factors that may be predictive of observed learning gains. We
found that the prior Math Knowledge (as demonstrated on the pre-survey item set) predicted
observed Al learning gains (R = .1, p = .006). This suggests that relevant math knowledge is
weakly but significantly related to higher Al knowledge gained through ARIN-561.
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Figure 2. Left: Percentage of students with different weekly gaming experience. Right:
Al Knowledge gain broken down by weekly gaming experience.

5.3 In-Game Progress and Al Learning

The pedagogical design of ARIN-561 is based on the hypothesis that Al algorithms build on
each other. Algorithms, such as DFS introduced later in the game are discussed in
comparison to previously introduced algorithms, such as BFS. While students can jump
through different modules by going through the menu selection screen in the game, overall,
students took a relatively linear path through the game, by going through BFS, DFS, then
Greedy game modules. Thus, as students progress through the game, mastering previously
discussed algorithm should help students’ learning of the new ones, while learning the new
algorithm helps student reinforce the learning of the older ones. We analyzed how reaching
milestones in the game, such as completing the DFS module (both tutorial and transfer
problem modules), impacts overall Al learning and the learning of individual algorithms.
Independent sample t-test shows there is no significant difference in Al knowledge gain be-
tween students who completed all modules of the game and students who did not (N1 = 556,
Ne = 208, T: completing, F: not completing, p = .642). Students who completed the BFS
module did not gain significantly more Al knowledge overall (F = 1.169, p = .28) or BFS
knowledge (F = .5, p = .48) than those who started but didn’t complete BFS modules.
However, completing BFS did help students gain more knowledge on DFS (F =4.545, p =
.033) and greedy search (F = 3.204, p = .074). Completing the DFS or greedy modules did



not have a significant impact on overall or individual Al algorithm learning. Given that all
students are given the same amount of time to play the game in the classroom, we did not
analyze how time in game impacted Al learning. Overall, students spent between 3 seconds
and 338 minutes in the game, with a mean/median gameplay time of 89/84 minutes. The
outlier of extremely long game-play time is likely due to students forgetting to log out of the
game at the end of the class.

6. Discussion

This study demonstrates that a relatively brief in-school exposure to Al learning experiences,
via an educational game, can result in learning gains for Al content with pre-college aged
youth. Examination of the subscale scores for the Al Knowledge assessment indicated that
the learning that took place was concentrated on the BFS algorithm, with smaller gains for
DFS, and no gains for Greedy. Drawing on the learning and assessment design concept of a
learning progression (Wilson, 2009; Duncan and Hmelo-Silver, 2009), our conjecture is that
the design of gameplay, in which students first encountered BFS then compared it to each of
the next two algorithms as the game progressed (DFS, then Greedy), led to consolidation of
understanding related to BFS and thus a deeper opportunity to learn that content. However,
we did not observe a statistically significant impact of completing the BFS, DFS, or Greedy
modules on BFS learning gains. Completing the BFS modules however, did contribute to
learning DFS and Greedy search. This suggests the efficacy of the progressive roll out of
content in our design, where each new content area is explicitly related to prior content.
Later design iterations will look to extend opportunities for students to connect and
consolidate their emerging understanding of content encountered later in the game, e.g.,
through additional integrative activities.

The significance of prior mathematical knowledge for predicting observed Al learning gains
suggests an educational game that is optimized for youth who already enter with a strong
mathematical foundation. This would challenge efforts at using the current iteration of the
game for a broad high-school population with a wide range of prior math competencies.
Future design iterations will look to support students with varying levels of prior mathematical
knowledge, either through focused tutorials for related math content and/or through im-
proved game design that better resonates with students who have not yet taken advanced
math courses.

We also see promise for this game-based instructional model in the feasibility of its
implementation. First, the youth who engaged with the game did so largely independently of
a teacher. The minimal need for outside expertise means that implementation is likely to be
less dependent on having educators with Al and computer science expertise, an important
consideration given widely reported shortages of high-school teachers with such expertise.
Also related to feasibility of implementation, completing the game took roughly 2 class
periods on average, which minimizes the time it may draw away from existing scope and
sequence. Thus, the educational game is well-positioned to be integrated into a wide range
of courses and instructional contexts. On the other hand, the Al knowledge growth was
relatively small (effect size =.105), indicating that spending 2 classes playing an Al-themed
video game is unlikely to contribute to learning gains that might be expected from a fuller
instructional sequence or dedicated course. Interestingly, during post-implementation
conversations, the participating teachers expressed strong interests to integrate classroom
discussions with game-based learning, and suggested dividing the classroom time into
independent gameplay and post-gameplay whole-class discussion, where teachers organize
discussions to help students reflect upon what'’s learned through the game. Such an
integrated approach has the potential to further enhance the efficacy of the educational
game.

The study was dependent on a researcher-developed measure of Al knowledge, with limited
evidence available of its validity with the population sampled. This speaks to the current



dearth of Al knowledge measures developed for precollege-aged youth, a challenge that our
research team, and others, are working to address through ongoing research and
measurement development. In this specific case, we note that the assessment was likely too
difficult for the sampled population (for example, the mean score on the post-intervention
administration was 14.53 out of a possible 34 points), limiting its potential for demonstrating
the learning of high-school-aged youth. Additionally, the measure included different numbers
of items for each of these subscales, with fewer items for DFS and Greedy compared with
BFS. This constricted the available range for movement on those constructs, potentially
impacting observability of changes that may have taken place. Our team is conducting
psychometric tests (classical and IRT methods) and triangulating that with in-game
opportunities to demonstrate understanding to inform revisions to our instrument for this
population.
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