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Abstract

The (combinatorial) graph Laplacian is a fundamental object in the analysis of, and optimization
on, graphs. Via a topological view, this operator can be extended to a simplicial complex K and
therefore o�ers a way to perform “signal processing" on p-(co)chains of K. Recently, the concept of
persistent Laplacian was proposed and studied for a pair of simplicial complexes K Òæ L connected
by an inclusion relation, further broadening the use of Laplace-based operators.

In this paper, we significantly expand the scope of the persistent Laplacian by generalizing
it to a pair of weighted simplicial complexes connected by a weight preserving simplicial map
f : K æ L. Such a simplicial map setting arises frequently, e.g., when relating a coarsened simplicial
representation with an original representation, or the case when the two simplicial complexes are
spanned by di�erent point sets, i.e. cases in which it does not hold that K µ L. However, the
simplicial map setting is much more challenging than the inclusion setting since the underlying
algebraic structure is much more complicated.

We present a natural generalization of the persistent Laplacian to the simplicial setting. To shed
insight on the structure behind it, as well as to develop an algorithm to compute it, we exploit the
relationship between the persistent Laplacian and the Schur complement of a matrix. A critical step
is to view the Schur complement as a functorial way of restricting a self-adjoint positive semi-definite
operator to a given subspace. As a consequence of this relation, we prove that the qth persistent Betti
number of the simplicial map f : K æ L equals the nullity of the qth persistent Laplacian �K,L

q .
We then propose an algorithm for finding the matrix representation of �K,L

q which in turn yields a
fundamentally di�erent algorithm for computing the qth persistent Betti number of a simplicial map.
Finally, we study the persistent Laplacian on simplicial towers under weight-preserving simplicial
maps and establish monotonicity results for their eigenvalues.
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39:2 A Generalization of the Persistent Laplacian to Simplicial Maps

1 Introduction

The graph Laplacian is an operator on the space of functions defined on the vertex set of
a graph. It is one of the main tools in the analysis of and optimization on graphs. For
example, the spectral properties of the graph Laplacian are extensively used in spectral
clustering and other applications [3, 22, 15, 21, 25] and for e�ciently solving systems of
equations [14, 19, 23, 24].

As opposed to the traditional way of defining the graph Laplacian as the di�erence of the
degree matrix and the adjacency matrix, it can also be defined from an algebraic topology
perspective by considering the boundary operators and specific inner products defined on
simplicial chain groups [3]. This point of view permits extending the graph Laplacian to
operators on higher dimensional chain groups. Namely, this leads to the qth combinatorial
Laplacian �K

q
on the qth chain group of a given simplicial complex K, in which the case

q = 0 corresponds to the standard graph Laplacian [7, 6, 9, 11]. One fundamental property
of the qth combinatorial Laplacian is that the qth Betti number of K equals the nullity of
�K

q
.

By adopting the algebraic topology view, the qth persistent Laplacian �K,L

q
was inde-

pendently introduced in [17, 26] for a pair of simplicial complexes K Òæ L connected by
an inclusion. The theoretical properties of �K,L

q
and algorithms to compute it have been

extensively studied in [20]. One of these properties is that the nullity of �K,L

q
equals the per-

sistent Betti number of the inclusion K Òæ L, which is a generalization of the corresponding
property of the combinatorial Laplacian mentioned above.

Figure 1 The 1-dimensional simplicial complex, i.e. graph, K is coarsened to produce the one on
the right K̃. Vertices of the same color are “collapsed" to a “supernode" in K̃. This vertex map
induces a simplicial map at the simplicial complex level.

Although the persistent Laplacian for a pair K Òæ L has been used in some applications [2,
10, 12], the requirement that the complexes should be connected by an inclusion is restrictive
and limits its applicability. Consider the scenario when we have two simplicial complexes
K

ÿ

Òæ L related by an inclusion so that their sizes are prohibitively large. Instead of tackling
the direct computation of the persistent Betti numbers induced by the simplicial inclusion ÿ,
practical needs may suggest that instead one sparsifies the complexes K and L to obtain
(smaller) complexes and in the process one obtains a simplicial map connecting them (see
Figure 1 for an illustration of the coarsening procedure in the case of graphs). This is the
scenario described for example in [5, 4] and can be expressed through the following diagram
where vertical arrows indicate the sparsification process:
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K L

K̃ L̃

ÿ

Ïÿ

This therefore motivates the study of persistent Laplacian for the setting where our
input spaces (simplicial complexes) are connected by more general maps beyond inclusion, in
particular, simplicial maps. This is the setting that we will study in this paper.

Contributions

We introduce a generalized version of the persistent Laplacian for weight preserving simplicial
maps f : K æ L between two weighted simplicial complexes K and L. Our work utilizes
ideas from several di�erent disciplines, including operator theory, spectral graph theory, and
persistent homology. In more detail:

In Section 2, we provide two equivalent definitions of the (up and down) persistent
Laplacian for a weight preserving simplicial map f : K æ L. While one definition is more
useful when proving some properties of the persistent Laplacian, the other definition
provides a cleaner interpretation of the matrix representation of the persistent Laplacian.
We also present one of the main properties of the persistent Laplacian, Theorem 7,
which establishes that the nullity of �f :KæL

q
equals the persistent Betti number of

the (arbitrary) simplicial map f : K æ L, analogous to the nonpersistent and the
inclusion-based persistent cases.
In Section 3, we show that the Schur complement of a principal submatrix in a matrix
can be viewed as a (Schur) restriction of a self-adjoint positive semi-definite operator
to a subspace. In order to accomplish this, we find it useful to utilize some concepts
and language from category theory. Viewing the set of self-adjoint positive semi-definite
operators as the poset category of the Loewner order1, we prove that Schur restriction is
a right adjoint to the functor that extends an operator on a subspace to the whole space
by composing with projection onto that subspace. We present our core observation about
the Schur restriction, Theorem 11, which states that up and down persistent Laplacians
can be obtained via Schur restrictions of the combinatorial up and down Laplacians.
In Section 4, we present an algorithm to find a matrix representation of the persistent
Laplacian for simplicial maps by the relation between up/down persistent Laplacians and
the Schur restriction. We also analyze its complexity.
In Section 5, we study the eigenvalues of up and down persistent Laplacians and prove
monotonicity of these eigenvalues under the composition of simplicial maps.

2 Persistent Laplacian for simplicial maps

2.1 Basics

Simplicial complexes and chain groups An (abstract) simplicial complex K over a finite
ordered vertex set V is a non-empty collection of non-empty subsets of V with the property
that for every ‡ œ K, if · ™ ‡, then · œ K. An element ‡ œ K is called a q-simplex if the
cardinality of ‡ is q + 1. We denote the set of q-simplices by SK

q
.

1 For two self-adjoint positive semi-definite operators L1 and L2, the Loewner order is given by: L1 ≤ L2
if and only if L1 ≠ L2 is positive semi-definite.

SoCG 2023



39:4 A Generalization of the Persistent Laplacian to Simplicial Maps

An oriented simplex, denoted [‡], is a simplex ‡ œ K whose vertices are ordered. As we
start with an ordered vertex set, we always assume that the orientation on the simplices are
inherited from the order on the vertex set. Let SK

q
:= {[‡] : ‡ œ K}.

The qth chain group CK

q
:= Cq(K,R) of K is the vector space over R with basis SK

q
. Let

nK

q
:= |SK

q
| = dimR(CK

q
).

The boundary operator ˆK

q
: CK

q
æ CK

q≠1 is defined by

ˆK

q
([v0, ..., vq]) :=

qÿ

i=0
(≠1)i[v0, ..., v̂i, ..., vq] (1)

for every q-simplex ‡ = [v0, ..., vq] œ SK

q
, where [v0, ..., v̂i, ..., vq] denotes the omission of the

ith vertex, and extended linearly to CK

q
.

A weight function on a simplicial complex K is any positive function wK : K æ (0, Œ).
A simplicial complex is called weighted if it is endowed with a weight function. For every
q œ N, let wK

q
:= wK |SK

q
, the restriction of wK onto SK

q
. We define an inner product È·, ·ÍwK

q

on CK

q
as follows:

È[‡], [‡Õ]ÍwK
q

:= ”‡‡Õ · (wK

q
(‡))≠1 (2)

for all ‡, ‡Õ œ SK

q
, where ”‡‡Õ is the Kronecker delta.

Cochain groups as dual of chain groups For clarification of some of our results/notations
later, we also introduce certain concepts related to cochain groups. The cochain group Cq

K

of K is the linear space consisting of all linear maps defined on CK

q
, i.e., Cq

K
:= hom(CK

q
,R).

The cochain group Cq

K
also possesses a natural basis Sq

K
:= {‰[‡] | [‡] œ SK

q
}, where ‰[‡] is

the linear map such that ‰[‡]([· ]) = ”[‡],[· ] for any [· ] œ SK

q
. We define an inner product

ÈÈ·, ·ÍÍ
wK

q
on Cq

K
as follows: for any ‰[‡], ‰[‡Õ] œ Sq

K
,

ÈÈ‰[‡], ‰[‡Õ]ÍÍwK
q

:= ”‡‡Õ · wK

q
(‡). (3)

Then, the map jK

q
: CK

q
æ Cq

K
sending a chain c to the linear map Èc, ·ÍwK

q
is an isometry

w.r.t. the inner products of the two spaces. Moreover, the following diagram commutes:

CK

q
CK

q+1

Cq

K
Cq+1

K

(ˆ
K
q+1)ú

j
K
q

j
K
q+1

”
q
K

In this way, the adjoint (ˆK

q+1)ú of the boundary map ˆK

q+1 can be identified with the
coboundary map ”q

K
. Similarly, (”q

K
)ú can be identified with ˆK

q+1. In the paper, we adopt
the notation Lú to denote the adjoint of a linear map L between two inner product spaces.

Combinatorial Laplacian for simplicial complexes Given a weighted simplicial complex K,
one defines the qth combinatorial Laplacian �K

q
as follows:

�K

q
:= ˆK

q+1 ¶ (ˆK

q+1)ú + (ˆK

q
)ú ¶ ˆK

q
: CK

q
æ CK

q
,

where �K

q,up := ˆK

q+1 ¶ (ˆK

q+1)ú is called the qth up Laplacian and �K

q,down := (ˆK

q
)ú ¶ ˆK

q

is called the qth down Laplacian. Thanks to the renowned theorem by Eckmann [7], the
combinatorial Laplacian is able to capture topological information of underlying simplicial
complexes: the nullity of �K

q
agrees with the qth Betti number of K.
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Simplicial maps A simplicial map from a simplicial complex K into a simplicial complex L
is a function from the vertex set of K to vertex set of L, f : SK

0 æ SL

0 , such that for every
‡ œ K, we have that f(‡) œ L. For every q œ N, a simplicial map f : K æ L induces a linear
map fq : CK

q
æ CL

q
by the formula

fq([v0, ..., vq]) =
I

[f(v0), ..., f(vq)] if f(v0), ..., f(vq) are distinct
0 otherwise

(4)

for every oriented q-simplex [v0, ..., vq] œ SK

q
. The linear map fq does not have to preserve

the orientation. That is, we could have that fq([‡]) = ≠[· ] for some [‡] œ SK

q
and [· ] œ SL

q
.

In this case, we write sgn
fq

(‡) = ≠1. We write sgn
fq

(‡) = 1 if fq([‡]) = [· ].

I Definition 1. A simplicial map f : K æ L between two weighted simplicial complexes is
called weight preserving if for every [· ] œ Im(fq) we have that

wL

q
(·) =

ÿ

‡œS
K
q ,

fq([‡])=±[· ]

wK

q
(‡). (5)

2.2 The Persistent Laplacian for simplicial maps

The persistent Laplacian, whose definition we now recall, was initially defined only for
inclusion maps. Given an inclusion map ÿ : K Òæ L between two simplicial complexes, we
have the following commutative diagram

CK

q
CK

q≠1

CL,K

q+1

CL

q+1 CL

q

ˆ
K
q

(ˆ
L,K
q+1 )ú

(ˆ
K
q )ú

ˆ
L,K
q+1

ˆ
L
q+1

Here, CL,K

q+1 denotes the subspace CL,K

q+1 := {c œ CL

q+1 | ˆL

q+1(c) œ CK

q
} of CL

q+1, and ˆL,K

q+1
denotes the restriction of ˆL

q+1 to CL,K

q+1 , i.e., ˆL,K

q+1 := ˆL

q+1|
C

L,K
q+1

: CL,K

q+1 æ CK

q
. Then, the

qth up persistent Laplacian is defined as �K,L

q,up := ˆL,K

q+1 ¶ (ˆL,K

q+1 )ú, the qth down Laplacian is
�K

q,down = (ˆK

q
)ú ¶ ˆK

q
, and the qth persistent Laplacian is defined as

�K,L

q
:= �K,L

q,up + �K

q,down : CK

q
æ CK

q
. (6)

Similarly to the case of the combinatorial Laplacian, the nullity of �K,L

q
recovers the persistent

Betti number of the inclusion map ÿ : K Òæ L (cf. [20, Theorem 2.7]).

Re-examination of the persistent Laplacian for inclusion maps Notice that (a) the defin-
ition of CL,K

q+1 seems to depend on the fact that the map ÿ is an inclusion and (b) the down
Laplacian part �K

q,down does, a priori, not exhibit any dependence on L. However, the
apparent dependence/independence mentioned in (a) and (b), respectively, are illusory. We
now re-examine the definition above in order to motivate our extension of the notion of
persistent Laplacian for simplicial maps.

SoCG 2023



39:6 A Generalization of the Persistent Laplacian to Simplicial Maps

First of all, we note that the expression ˆL

q+1(c) œ CK

q
in the definition of CL,K

q+1 above is
somewhat misleading. In fact, we are implicitly identifying CK

q
with its image ÿq(CK

q
) under

the the inclusion map ÿq : CK

q
æ CL

q
induced by ÿ. With this consideration, we rewrite CL,K

q+1
in a more precise way:

CL,K

q+1 =
)

c œ CL

q+1 | ˆL

q+1(c) œ ÿq(CK

q
)
*

. (7)

Expression (7) makes it clear that a certain set ÿq(CK

q
) is used in order to define the

up Laplacian in the case of inclusions. This motivates us to consider the following dual
construction which can be used to re-define the down Laplacian also in the case of inclusions

CK,L

q≠1 :=
)

c œ CK

q≠1 | (ˆK

q
)ú(c) œ (ÿq)ú(CL

q
)
*

. (8)

As ÿq is injective, (ÿq)ú(CL

q
) = CK

q
, and thus CK,L

q≠1 = CK

q≠1. In this way, we see that using
inclusion maps leads to concealing certain “persistence-like” structure inherent to the down
part of the persistent Laplacian. An advantage of the formulation of the persistent Laplacian
for general simplicial maps is that it will explicitly reveal this hidden structure.

Finally, we observe that for any c œ CL,K

q+1 , in fact, ˆL

q+1(c) œ ÿq(ker(ˆK

q
)) ™ ÿq(CK

q
). This

is simply due to the fact that ˆK

q
¶ ˆL

q+1(c) = ˆL

q
¶ ˆL

q+1(c) = 0. Here, we implicitly identify
ˆL

q+1(c) with ÿ≠1
q

(ˆL

q+1(c)) where ÿ≠1
q

is the inverse of ÿq on its image. Hence, we have the
following more refined expression for CL,K

q+1 :

CL,K

q+1 =
)

c œ CL

q+1 | ˆL

q+1(c) œ ÿq(ker(ˆK

q
))

*
. (9)

Integrating all these observations leads to our definition for the persistent Laplacian for
general simplicial maps which we describe next.

Persistent Laplacian for simplicial maps Suppose that we have a weight preserving sim-
plicial map f : K æ L and let q œ N. Consider the subspaces

CLΩK

q+1 :=
)

c œ CL

q+1 | ˆL

q+1(c) œ fq(ker(ˆK

q
))

*
,

CKæL

q≠1 :=
)

c œ CK

q≠1 | (ˆK

q
)ú(c) œ ker(fq)‹*

.

Note that CLΩK

q+1 ™ CL

q+1 and CKæL

q≠1 ™ CK

q≠1. Moreover, these spaces are natural gen-
eralizations of CL,K

q+1 and CK,L

q≠1 , respectively (cf. Equation (7) and Equation (8)), as
ker(ÿq)‹ = CK

q
= (ÿq)ú(CL

q
).

Let ˆL,K

q+1 denote2 the restriction of ˆL

q+1 to CLΩK

q+1 . Let ”K,L

q≠1 denote3 the restriction of
(ˆK

q
)ú to CKæL

q≠1 . Furthermore, we let f̂q : ker(fq)‹ æ Im(fq) denote the restriction of fq

onto ker(fq)‹. Before we proceed, we comment on some properties of f̂q and ker(fq)‹. We
note that ker(fq)‹ possesses a canonical basis as follows. For every [· ] œ Im(fq), we define

c·,f

q
:=

ÿ

‡œS
K
q ,

fq([‡])=±[· ]

sgn
fq

(‡) wK

q
(‡) [‡] œ CK

q
.

When the map f is clear from the content, we will simply write c·

q
. We let J := {c·

q
| [· ] œ

Im(fq)}.

2 The notation ˆL,K
q+1 has been used before as the restriction of ˆL

q+1 to CL,K
q+1 . As CLΩK

q+1 generalizes the
space CL,K

q+1 , we stick to the same notation ˆL,K
q+1 to denote the restriction of ˆL

q+1 to CLΩK
q+1

3 Recall that (ˆK
q )ú can be identified with the coboundary map ”q≠1

K in a sense specified in Subsection 2.1,
hence we use ”K,L

q≠1 to denote this restriction.
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I Lemma 2. The set J is an orthogonal basis for ker(fq)‹. Moreover, the map f̂q :
ker(fq)‹ æ Im(fq) is an isometry between inner product spaces.

Now, we consider the following diagram which contains all the notations we defined above:

CK

q
CK

q≠1

ker(fq)‹ CKæL

q≠1

CLΩK

q+1 Im(fq)

CL

q+1 CL

q

f̂q

(”
K,L
q≠1 )ú

”
K,L
q≠1

ˆ
L,K
q+1

(f̂q)≠1

(ˆ
L,K
q+1 )ú

We define up and down persistent Laplacian respectively as:

�K
fæL

q,up :=ˆL,K

q+1 ¶ (ˆL,K

q+1 )ú : Im(fq) æ Im(fq), (10)

�K
fæL

q,down :=f̂q ¶ ”K,L

q≠1 ¶ (”K,L

q≠1 )ú ¶ f̂≠1
q

: Im(fq) æ Im(fq). (11)

As f̂q preserves inner product, we have that f̂≠1
q

= f̂ú
q

. Thus, both up and down persistent
Laplacians are self-adjoint and non-negative operators on Im(fq). We then define the q-th
persistent Laplacian �K

fæL

q
: Im(fq) æ Im(fq) by:

�K
fæL

q
:= �K

fæL

q,down + �K
fæL

q,up . (12)

When the map f : K æ L is clear, we will write �K,L

q
for the persistent Laplacian.

I Remark 3. By slightly abuse of notation, we also let f denote the simplicial map f :
K æ Im (f). Then, it follows from the definition of the down persistent Laplacian that

�K
fæL

q,down = �K
fæIm (f)

q,down .

I Remark 4. When considering an inclusion ÿ : K æ L, one can see that CKæL

q≠1 = CK,L

q≠1 = CK

q
,

CLΩK

q+1 = CL,K

q+1 and ÿq : CK

q
Òæ CL

q
is an isometric embedding. Thus, our definition of

persistent Laplacian generalizes the inclusion-based persistent Laplacian

I Remark 5 (An alternative definition of the persistent Laplacian). The weight preserving
property of the simplicial map guarantees that ker(fq)‹ and Im(fq) are isometric, see Lemma 2.
Thus, we could have, equivalently, defined the (up and down) persistent Laplacian as an
operator on ker(fq)‹ instead of Im(fq) as follows:

�K
fæL

q,up :=f̂≠1
q

¶ ˆL,K

q+1 ¶ (ˆL,K

q+1 )ú ¶ f̂q : ker(fq)‹ æ ker(fq)‹,

�K
fæL

q,down :=”K,L

q≠1 ¶ (”K,L

q≠1 )ú : ker(fq)‹ æ ker(fq)‹.

Note that when we have an inclusion ÿ : K Òæ L, the (up/down) persistent Laplacian
in [17, 20, 26] is defined on CK

q
, which is the same as ker(ÿq)‹ and isometrically isomorphic

to Im(ÿq).

SoCG 2023



39:8 A Generalization of the Persistent Laplacian to Simplicial Maps

The two di�erent definitions have their own advantages. Seeing the persistent Laplacian
as an operator on Im(fq) increases the interpretability of this operator as the matrix
representation can be computed using the canonical basis of Im(fq). On the other hand,
seeing the persistent Laplacian on ker(fq)‹ helps us understanding some of its properties
more easily. For example, see proof of Theorem 21.
I Remark 6 (Cochain formulation of the persistent Laplacian). Our generalization of the
persistent Laplacian reveals a way to define a persistent Laplacian using the cochain spaces
via dualization. If f : K æ L is a simplicial map, then it induces a linear map in the cochain
spaces fq : Cq

L
æ Cq

K
, where Cq

K
= hom(CK

q
,R). Then, one can use the following subspaces

in order to define a persistent Laplacian using cochains:

Cq+1
LΩK

:= {c œ Cq+1
L

| (”L

q
)ú(c) œ (fq)ú(ker(”K

q≠1)ú)},

Cq≠1
KæL

:= {c œ Cq≠1
K

| ”K

q≠1(c) œ ker((fq)ú)‹}.

It turns out that the operator defined via these spaces are the same as the persistent Laplacian
defined using chains; see Subsection A.1 for more details.

Let —K
fæL

q
denote the rank of the linear map Hq(K) æ Hq(L) induced by f . —K

fæL

q
is

called the persistent Betti number of the map f : K æ L. When the map f : K æ L is clear
from the content, we simply write —K,L

q
. With the machinery developed above together with

several key observations that relates the (up and down) persistent Laplacians and Schur
restriction of an operator, we have the following result.

I Theorem 7 (Persistent Laplacians recover persistent Betti numbers). Let f : K æ L be a
simplicial map and q œ N. Then, —K,L

q
= nullity(�K,L

q
).

I Remark 8. As the persistent Betti number does not depend on the weights on the simplicial
complexes, weights can be assigned to K and L such that the simplicial map f : K æ L is
weight preserving. Then, one can use the persistent Laplacian to compute the persistent
Betti number of f .

3 Schur Restriction and the Persistent Laplacian

One of the main contributions in [20] is a characterization of the up persistent Laplacian for
inclusion maps via the so-called Schur complement. In this section, we establish that this
characterization also holds in our setting of simplicial maps.

Let M œ Rn◊n be a block matrix M =
3

A B
C D

4
where A œ R(n≠d)◊(n≠d) and D œ Rd◊d.

The (generalized) Schur complement of D in M is M/D := A ≠ BD†C, where D† is the
Moore-Penrose generalized inverse of D.

A linear operator L : V æ V on a finite dimensional real inner product space V is called
positive semi-definite if ÈL(v), vÍ Ø 0 for all v œ V , and it is called self-adjoint if Lú = L.
The Schur complement, more generally, can be seen as a way of restricting a self-adjoint
positive semi-definite operator on a real inner product space onto a subspace as follows.
Assume that L : V æ V is a self-adjoint positive semi-definite opeator on V , where V is a
finite dimensional (dimR V = n) real inner product space. Let W ™ V be a d-dimensional
subspace and let W ‹ be its orthogonal complement. By choosing bases for W and W ‹, we

can represent L as a block matrix, say [L] =
3

A B
C D

4
where A œ Rd◊d, D œ R(n≠d)◊(n≠d).

Then, [L]/D = A ≠ BD†C can be interpreted as the restriction of L onto W, represented by
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the already chosen basis. We will see that the resulting operator represented by [L]/D is
independent of choice of basis (i.e. it is well-defined) and we call this operator the Schur
restriction of L onto W , and denote it by Sch(L, W ).

I Proposition 9 (The Schur restriction is well-defined). Let L : V æ V be a self-adjoint
positive semi-definite operator and let W ™ V be a subspace. Then, Sch(L, W ) is independent
of choice of bases of W and W ‹. More explicitly, if B1 and C1 are ordered bases for W and
B2 and C2 are ordered bases for W ‹, then the matrix representations of Sch(L, W ) obtained
from the ordered bases B1 fi B2 and C1 fi C2 are similar matrices via the change of basis matrix
from B1 to C1.

As Proposition 9 guarantees that the Schur restriction of a self-adjoint positive semi-
definite operator onto a subspace is well-defined, the next proposition reveals the recipe to
acquire the Schur restriction and also justifies the name, “Schur restriction”.

I Proposition 10. Let f : V̂ æ V be a linear map between two finite dimensional real
inner product spaces and let L = f ¶ fú : V æ V . Let W ™ V be a subspace. Let
fW : f≠1(W ) æ W be the restriction of f on f≠1(W ) and the codomain is also restricted to
W . Then, Sch(L, W ) = fW ¶ fú

W
.

The proof we present for Proposition 10 in Appendix B heavily depends on the extremal
characterization of Schur restrictions, Corollary 31, which essentially, in the language of
category theory, states that Schur restriction, as a functor, is a right adjoint. See Remark 32
for details. One of the most significant applications of Proposition 10 is the following theorem
that establishes a relation between persistent Laplacians and the Schur restriction.

I Theorem 11 (Up and down persistent Laplacians as Schur restrictions). For a weight-
preserving simplicial map f : K æ L, we have that

�K,L

q,down = f̂q ¶ Sch(�K

q,down, ker(fq)‹) ¶ f̂≠1
q

and
�K,L

q,up = ÿIm(fq) ¶ Sch(�L

q,up, fq(ker(ˆK

q
))) ¶ proj

fq(ker(ˆK
q )),

where ÿIm(fq) : fq(ker(ˆK

q
)) Òæ Im(fq) is the inclusion map and proj

fq(ker(ˆK
q ) : Im(fq) æ

fq(ker(ˆK

q
)) is the projection map.

4 Matrix Representation of Persistent Laplacian and an Algorithm

Based on the Schur restriction characterization of persistent Laplacians, i.e. Theorem 11, in
the previous section, we now derive an algorithm for computing the matrix representation of
persistent Laplacians.

4.1 Matrix Representation of Persistent Laplacian

Let f : K æ L be a weight preserving simplicial map. Recall that for every oriented q-simplex
[· ] œ Im(fq), we defined the K q-chain

c·

q
:=

ÿ

‡œS
K
q ,

f([‡])=±[· ]

sgn
fq

(‡)wK

q
(‡)[‡] œ CK

q
.

By Lemma 2, the set J = {c·

q
| · œ Im(fq)} forms a orthogonal basis for ker(fq)‹.

Assume that {[·1], ..., [·n]} ™ Im(fq) is the set of all oriented q-simplices in L that are hit by
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fq. Assume that for every [·i], {[‡i

1], ...., [‡i

di
]} ™ SK

q
is the set of all oriented q-simplices in

K that are mapped to ±[·i]. Define

‡i,k := sgn
fq

(‡i

1)[‡i

1] ≠ sgn
fq

(‡i

k
)[‡i

k
]

for i = 1, ..., n and k = 2, ..., di for di Ø 2. Then, the set

B = {‡i,k | 1 Æ i Æ n , 2 Æ k Æ di} fi {[‡] œ SK

q
| fq([‡]) = 0}

forms a basis for ker(fq). Thus J fi B forms a basis for Cq(K). Writing coordinates of basis
elements of J fi B using the canonical basis SK

q
as column vectors, we obtain the change of

basis matrix MJ fiBæSK
q

.

Matrix representation of down persistent Laplacian.

Let [�K

q,down] be the matrix representation of �K

q,down with respect to the canonical basis SK

q
.

Then, N := (MJ fiBæSK
q

)≠1[�K

q,down]MJ fiBæSK
q

is the matrix representation of �K

q,down with
respect to J fi B. Given an integer m, let [m] denote the set [m] = {1, 2, . . . , m}. The matrix
N has dimension nK

q
◊ nK

q
where nK

q
= |SK

q
|. Let n := |J | = dim(Im(fq)) = dim(ker(fq)‹)

and let

X = N([n], [n]), Y = N([n], [nK

q
]≠[n]), Z = N([nK

q
]≠[n], [n]), T = N([nK

q
]≠[n], [nK

q
]≠[n]).

(13)

Then, we can write N as a block matrix N =
3

X Y
Z T

4
. Let WIm(fq) denote the diagonal

matrix WIm(fq) = diag(w(·1), w(·2), ..., w(·n)). Then, we are now ready to write the matrix
representation of �K,L

q,down with respect to the canonical basis {[·1], ..., [·n]} of Im(fq).

I Proposition 12. With the notations above, the matrix representation of �K,L

q,down with
respect to the canonical basis {[·1], ..., [·n]} of Im(fq) is given by

WIm(fq)(X ≠ Y T †Z)W ≠1
Im(fq).

Figure 2 A weight preserving simplicial map f : K æ L between two weighted simplicial
complexes K and L. K has all the weights equal to 1. In L, the edge xy and the vertex y has
weights 2 and the rest of the simplicies have weight 1. The map f is given by a ‘æ x, b ‘æ y, c ‘æ z,
d ‘æ b. And, ordering on the vertices are given by a < b < c < d and x < y < z

I Example 13. We will compute the matrix representation of the 1st down persistent
Laplacian of the weight preserving simplicial map depicted in Figure 2. The 1st combinatorial
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down Laplacian of K is given by

[�K

1,down] =

Q

cccca

2 ≠1 1 1 ≠1
≠1 2 1 0 1
1 1 2 1 0
1 0 1 2 1
1 1 0 1 2

R

ddddb
.

with respect to the canonical (ordered) basis SK

1 = {[ab], [bc], [ac], [ad], [bd]}. Following the
notation described above, we have that J = {[ab] + [ad], [bc], [ac]} and B = {[ab] ≠ [ad], [bd]}.
Thus, we have the change of basis matrix as

MJ fiBæSK
1

=

Q

cccca

1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 ≠1 0
0 0 0 0 1

R

ddddb
.

Then, we compute

N = (MJ fiBæSK
1

)≠1[�K

1,down]MJ fiBæSK
1

=

Q

cccca

3 ≠ 1
2 1 0 0

≠1 2 1 ≠1 1
2 1 2 0 0
0 ≠ 1

2 0 1 ≠1
0 1 0 ≠2 2

R

ddddb
.

Now, by extracting X, Y, Z, and T as described above in Equation (13), and realizing
that WIm(f1) = diag(2, 1, 1), we write the matrix representation of the 1st down persistent
Laplacian �K,L

1,down with respect to the basis {[xy], [yz], [xz]} as follows

[�K,L

1,down] = WIm(fq)(X ≠ Y T †Z)W ≠1
Im(fq) =

Q

a
3 ≠1 2

≠ 1
2

3
2 1

1 1 2

R

b .

Matrix representation of up persistent Laplacian.

In order to write the matrix representation of up persistent Laplacian we need to choose bases
B1 and B2 for fq(ker(ˆK

q
)) and fq(ker(ˆK

q
))‹ ™ Im(fq) respectively, where fq(ker(ˆK

q
))‹

denotes the orthogonal complement of fq(ker(ˆK

q
)) inside the ambient space Im(fq). Let

D = {[·n+1], ..., [·n+l]} = SL

q
≠ fq(±SK

q
). Then, B1 fi B2 fi D is basis for Cq(L). Writing the

coordinates of this new basis elements with respect to the canonical basis SL

q
as column

vectors, we obtain the change of basis matrix

MB1fiB2fiDæSL
q

=
3

R1 R2 0n◊l

0l◊rkR1 0l◊rkR2 Il

4

where R :=
!
R1 R2

"
is the n ◊ n change of basis matrix from B1 fi B2 to the canonical basis

of Im(fq), and Il is the l ◊ l identity matrix.
Let [�L

q,up] be the matrix representation of �L

q,up with respect to the canonical basis of
Cq(L). Then, Q = (MB1fiB2fiDæSL

q
)≠1[�L

q,up]MB1fiB2fiDæSL
q

is the matrix representation of
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�L

q,up with respect to B1 fiB2 fiD. Let np = dim(fq(ker(ˆK

q
))) and let E = Q([np], [np]).Thus

we can write Q as a block matrix

Q =
3

E F
G H

4

where F, G, H are chosen appropriately to E. We are now ready to write the matrix
representation of �K,L

q,up with respect to the canonical basis of Im(fq).

I Proposition 14. With the notations above, the matrix representation of �K,L

q,up with respect
to the canonical basis of Im(fq) is given by

!
R1 R2

" 3
E ≠ FH†G 0np◊(n≠np)
0(n≠np)◊np

0(n≠np)◊(n≠np)

4 !
R1 R2

"≠1
. (14)

I Example 15. We will compute the matrix representation of the 1st up persistent Laplacian
of the weight preserving simplicial map depicted in Figure 2. We will stick to the notation used
above. We start by choosing bases B1 and B2 for fq(ker(ˆK

q
)) and fq(ker(ˆK

q
))‹ ™ Im(fq)

respectively. Observe that fq(ker(ˆK

q
)) is spanned by [xy] + [yz] ≠ [xz]. So, we can choose

B1 = {[xy] + [yz] ≠ [xz]} and B2 = {2[xy] ≠ [yz], [yz] + [xz]}. As f1 : CK

q
æ CL

1 is surjective,
we see that D = ÿ. Thus, B1 fi B2 is a basis for CL

1 . Then, we have the change of basis
matrix as

MB1fiB2fiDæSL
q

= MB1fiB2æSL
q

=

Q

a
1 2 0
1 ≠1 1

≠1 0 1

R

b

where SL

1 = {[xy], [yz], [xz]} is the canonical (ordered) basis of CL

1 . Moreover, we get that!
R1 R2

"
= MB1fiB2 = MB1fiB2fiDæSL

q
. With respect to SL

1 , the matrix representation of
1st combinatorial up Laplacian of L is given by

[�K,L

1,up] =

Q

a
1
2 1 ≠1
1
2 1 ≠1

≠ 1
2 ≠1 1

R

b .

Now, we compute

Q = (MB1fiB2fiDæSL
q

)≠1[�L

q,up]MB1fiB2fiDæSL
q

=

Q

a
5
2 0 0
0 0 0
0 0 0

R

b

and, we extract E =
! 5

2
"
, F =

!
0 0

"
, G =

3
0
0

4
and H =

3
0 0
0 0

4
. Thus, E ≠ FH†G =

! 5
2
"
.

Thus, the matrix representation of �K,L

1,up with respect to the basis SL

1 = {[xy], [yz], [xz]} is
given by

[�K,L

1,up] =
!
R1 R2

"
Q

a
E ≠ FH†G 0 0

0 0 0
0 0 0

R

b !
R1 R2

"≠1 =

Q

a
1
2 1 ≠1
1
2 1 ≠1

≠ 1
2 ≠1 1

R

b .

I Remark 16. By combining Example 13 and Example 15, we can see that the matrix
representation of the 1st persistent Laplacian �K,L

1 is given by

[�K,L

1 ] = [�K,L

1,down] + [�K,L

1,up] =

Q

a
7
2 0 1
0 5

2 0
1/2 0 3

R

b .
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Then, we can justify Theorem 7 by observing that det([�K,L

1 ]) = 25 ”= 0. That is,
dim(ker(�K,L

1 )) = 0 = —K,L

1 .

Figure 3 A weight preserving simplicial map f Õ : KÕ æ LÕ between two weighted simplicial
complexes KÕ and LÕ. KÕ has all the weights equal to 1. In LÕ, the edge xy and the vertex y has
weights 2 and the rest of the simplicies have weight 1. The map f Õ is given by a ‘æ x, b ‘æ y, c ‘æ z,
d ‘æ b. And, ordering on the vertices are given by a < b < c < d and x < y < z

I Example 17. Computing the matrix representation of the 1st persistent Laplacian of the
map f Õ : K Õ æ LÕ depicted in Figure 3 is similar to what we did for f : K æ L in Example 13
and Example 15. Actually, [�K

Õ
,L

Õ

1,down] = [�K,L

1,down] as CK

1 = CK
Õ

1 , CL

1 = CL
Õ

1 , and f1 = f Õ
1 And,

[�K
Õ
,L

Õ

1,up ] = 03◊3 as CL

2 = {0}. Thus,

[�K
Õ
,L

Õ

1 ] = [�K
Õ
,L

Õ

1,down] + [�K
Õ
,L

Õ

1,up ] = [�K,L

1,down] + 03◊3 =

Q

a
3 ≠1 2

≠ 1
2

3
2 1

1 1 2

R

b .

Then, observe that dim(ker(�K
Õ
,L

Õ

1 )) = 1 = —K
Õ
,L

Õ

1 . Actually, the kernel of the matrix [�K
Õ
,L

Õ

1 ]
is generated by the vector

!
1 1 ≠1

"T, which corresponds to the cycle [xy] + [yz] ≠ [xz]
that can be seen as the image of the homology class that persists through the map f Õ.

4.2 An Algorithm for Computing the Persistent Laplacian

By Proposition 12 and Proposition 14, we have the matrix representations of up and down
persistent Laplacians with respect to the canonical basis of Im (fq). So, simply adding them
up, gives us the matrix representation of the persistent Laplacian �K,L

q
with respect to the

canonical basis. In the process for finding these matrices, we use explicit bases SK

q
, SL

q
,

B fi J and B1 fi B2 fi D. However, we do not have an explicit basis for fq(ker(ˆK

q
)). Yet, we

do not need to compute ker(ˆK

q
) in order to compute fq(ker(ˆK

q
)) by the following lemma.

I Lemma 18. fq(ker(ˆK

q
)) = ker(�K,L

q,down).

4.2.1 Complexity

With the data we started in the Algorithm 1, we multiply matrices of dimension nK

q
and

take Schur complement in a matrix of dimension nK

q
in order to compute [�K,L

q,down]. Thus,
it takes O((nK

q
)3) time to compute [�K,L

q,down]. To compute [�K,L

q,up], we compute kernel of a
matrix of dimension n < nL

q
, take Schur complement in a matrix of dimension nL

q
, multiply

matrices of dimension nL

q
and of dimension n. Hence, it takes O((nL

q
)3) time to compute

[�K,L

q,up]. Therefore, it takes O((nK

q
)3) + (nL

q
)3) time to compute [�K,L

q
] in total.

SoCG 2023



39:14 A Generalization of the Persistent Laplacian to Simplicial Maps

Algorithm 1 An algorithm for matrix representation of persistent Laplacian

1: Data: MJ fiBæSK
q

, [�K

q,down], [�L

q,up] and WIm(fq)
2: Result: [�K,L

q
]

3: N := M≠1
J fiBæSK

q
[�K

q,down]MJ fiBæSK
q

4: n := dim(WIm(fq))
5: [�K,L

q,down] := WIm(fq)(N/N([nK

q
] ≠ [n], [nK

q
] ≠ [n]))W ≠1

Im(fq)
6: Form R =

!
R1 R2

"
by computing ker([�K,L

q,down])
7: Expand matrix R with the identity matrix to form (nL

q
◊ nL

q
) matrix MB1fiB2fiDæSL

q

8: Q := M≠1
B1fiB2fiDæSL

q
[�L

q,down]MB1fiB2fiDæSL
q

9: np := the number of columns of R1
10: SchQ := Q/Q([nL

q
] ≠ [np], [nL

q
] ≠ [np])

11: Form the n ◊ n matrix PadSchQ by zero padding to SchQ
12: [�K,L

q,up] = R≠1PadSchQ R
13:
14: return [�K,L

q,down] + [�K,L

q,up]

It is important to note that the data we started in the Algorithm 1 also takes time to
compute. Starting with boundary matrices and weight matrices, it takes O((nK

q
)2) time

to compute [�K

q,down] and it takes O(nL

q+1) to compute [�L

q,up] as discussed in [20]. Thus,
starting from scratch, Algorithm 1 computes [�K,L

q
] in O((nK

q
)3 + (nL

q
)3 + nL

q+1) time.
Note that by Theorem 7, as a by-product, the above algorithm can also output the

persistent Betti number for a simplicial map f : K æ L in the same time complexity. This
provides an alternative way to compute persistent Betti numbers for f : K æ L that is
di�erent from the existing algorithm by Dey et al. [4] already in the literature.

5 Monotonicity of (up/down) persistent eigenvalues

For a simplicial map f : K æ L, the up and down persistent Laplacians are self-adjoint
positive semi-definite operators. Therefore, they have non-negative eigenvalues. We denote
them by 0 Æ ⁄K,L

q,up,1 Æ ⁄K,L

q,up,2 . . . Æ ⁄K,L

q,up,n
, and 0 Æ ⁄K,L

q,down,1 Æ ⁄K,L

q,down,2 . . . Æ ⁄K,L

q,down,n
,

allowing repetition, where n = dim(Im (fq)). And, we call them the up persistent eigenvalues
and the down persistent eigenvalues.

When the simplicial maps involved are inclusions, we have the following known monoton-
icity result for the up persistent Laplacian.

I Theorem 19 ([20, Theorem 5.3]). Let f : K Òæ L and g : L Òæ M be inclusion maps for
simplicial complexes K, L and M . Then, for any q œ N and k = 1, 2, . . . , nK

q
,

⁄K,M

q,up,k
Ø ⁄L,M

q,up,k
and ⁄K,M

q,up,k
Ø ⁄K,L

q,up,k
.

In Theorem 19, the monotonicity result of up persistent eigenvalues ⁄K,M

q,up,k
Ø ⁄K,L

q,up,k

follows from the fact that �K,M

q,up ≤ �K,L

q,up. In the case of surjective maps, we present an
analogous statement for the down persistent Laplacians as follows.

I Proposition 20. Let f : K ⇣ L and g : L ⇣ M be weight preserving surjective simplicial
maps. Then, �K,M

q,down ≤ �L,M

q,down.

When the surjectivity assumption is removed, it is no longer guaranteed that the com-
position of two weight preserving maps is weight preserving, see Example 36. However,
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under the assumption that two maps and their composition are weight preserving, we get
the monotonicity of the down persistent eigenvalues.

I Theorem 21. Let f : K æ L and g : L æ M be weight preserving simplicial maps
and assume that g ¶ f : K æ M is also weight preserving. Then, for any q œ N and
k = 1, 2, . . . , dim(Im (gq ¶ fq)),

⁄K,M

q,down,k
Ø ⁄L,M

q,down,k
and ⁄K,M

q,down,k
Ø ⁄K,L

q,down,k
.

However, this type of monotonicity does not hold in general for up persistent eigenvalues
even if we require weight preserving conditions for the involved simplicial maps as we did in
Theorem 21. See the counterexample as follows.

Figure 4 Composition of two weight preserving simplicial maps f : K æ L and g : L æ M ,
where f is given by collapsing the vertices h and c to the same vertex z. And, g is given by the
identity map on the vertices.

I Example 22 (Up persistent eigenvalues are not monotonic). Considering the simplicial
complexes K, L, M and the simplicial maps f , g depicted in Figure 4, we compute spectra
of �K,M

1,up and �L,M

1,up . It turns out that �K,M

1,up has eigenvalues 0 Æ 0 Æ 0 Æ 0 Æ 0 Æ 3 and
�L,M

1,up has eigenvalues 0 Æ 0 Æ 0 Æ 0 Æ 3 Æ 3. So, 0 = ⁄K,M

1,up,5 ⇤ ⁄L,M

1,up,5 = 3.

Recall from Theorem 11 that �K,L

q,up = ÿIm (fq) ¶ Sch(�L

q,up, fq(ker(ˆK

q
))) ¶ proj

fq(ker(ˆK
q )).

This formulation reveals that the up persistent Laplacian is obtained by extending the operator
Sch(�L

q,up, fq(ker(ˆK

q
))) defined on fq(ker(ˆK

q
)) to its superspace Im (fq) by “padding zeros”.

This extension naturally introduces inevitable 0 eigenvalues to the up persistent Laplacian
and we call them inevitable 0 eigenvalues. Considering again Example 22, we see that
g1(f1(ker(ˆK

1 ))) has dimension 1 and codimension 5 inside Im (g1 ¶ f1). Thus, �K,M

1,up has 5
inevitable 0 eigenvalues. Similarly, �L,M

1,up has 4 inevitable 0 eigenvalues as the codimension
of g1(ker(ˆL

1 )) inside Im (g1) is 4. Disregarding these inevitable 0 eigenvalues from their
spectra, we see that �K,M

1up essentially has {3} as its spectrum, while �L,M

1,up essentially has
{3, 3} as its spectrum. Then, it seems that if we disregard inevitable 0 eigenvalues, we will
obtain monotonicity for the eigenvalues of up persistent Laplacians. This is indeed the case:

We call Sch(�L

q,up, fq(ker(ˆK

q
))) the essential up persistent Laplacian, whose spectrum is

the same as the spectrum of �K,L

q,up up to a di�erence in the multiplicity of the 0 eigenvalue.
Then, we establish monotonicity of the eigenvalues of the essential up persistent Laplacian,
which are denoted by ⁄K,L,ess

q,up,k
, and are called essential up persistent eigenvalues.
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I Theorem 23. Let f : K æ L and g : L æ M be weight preserving simplicial maps. Then,
for any q œ N and k = 1, 2, . . . , dim(gq(fq(ker(ˆK

q
)))), we have ⁄K,M,ess

q,up,k
Ø ⁄L,M,ess

q,up,k
.

This monotonicity result on essential up persistent eigenvalues is stronger than the
monotonicity result for inclusion maps (cf. Theorem 19) in that the latter is a direct
consequence of the former.

6 Discussion

Once an invariant is associated to a simplicial filtration/tower, one of the most natural
questions would be about its stability. So, it is highly desirable to explore the stability of the
(up/down) persistent eigenvalues/eigenspaces that could potentially generalize the stability
of up persistent eigenvalues in the inclusion-based persistent Laplacian [20, Theorem 5.10].

The persistent diagram of a Rips complex can be approximated by using simplicial towers
obtained from the Rips complex such as sparsified Rips complex or graph induced complex as
described in [5, 4]. Therefore, one might consider if the spectrum of the (up/down) persistent
Laplacian can also be approximated via a similar sparsification process.
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A Details for Section 2

Proof of Lemma 2. Let T f

q
be the subspace of CK

q
generated by J . Observe that ker(fq) is

generated by

{sgn
fq

(‡)[‡] ≠ sgn
fq

(‡Õ)[‡Õ] | fq([‡]) = fq([‡Õ]) ”= 0} fi {[‡] œ SK

q
| fq([‡]) = 0}.

Therefore, if [· ] œ Im(fq) is a q-simplex in L and fq([‡]) = fq([‡Õ]) = [· ] for some ‡, ‡Õ œ SK

q
,

then

Èc·

q
, sgn

fq
(‡)[‡] ≠ sgn

fq
(‡Õ)[‡Õ]Í = wK

q
(‡)È[‡], [‡]Í ≠ wK

q
(‡Õ)È[‡Õ], [‡Õ]Í = 1 ≠ 1 = 0.

Similarly, we get 0 as the result of inner product of c·

q
with other generators of the space

ker(fq). It then follows that T f

q
™ ker(fq)‹.

I Observation 24. J = {c·

q
| [· ] œ Im(fq)} is an orthogonal basis for T f

q
, and fq(J ) =

{fq(c·

q
) | [· ] œ Im(fq)} is an orthogonal basis for Im(fq)

Proof. Let [·1], [·2] œ Im(fq). If fq([‡1]) = [·1] ”= [·2] = fq([‡2]), then ‡1 ”= ‡2. Thus,
È[‡1], [‡2]ÍwK

q
= 0. Thus, Èc·1

q
, c·2

q
ÍwK

q
= 0. Thus, {c·

q
| [· ] œ Im(fq)} is an orthogonal basis

for T f

q
. And we have that fq(c·

q
) = wL

q
(·)[· ]. Thus, {fq(c·

q
) | [· ] œ Im(fq)} is a scaling of

the canonical basis of Im(fq). Therefore, it is a orthogonal basis for Im(fq) J
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By the Observation 24, we have that fq restricted to T f

q
is a linear isomorphism fq|

T
f
q

:
T f

q
æ Im(fq). This implies that dim(T f

q
) = dim(Im (fq)) = dim(ker(fq)‹). Hence we have

that T f

q
= ker(fq)‹. Thus J is an orthogonal basis for ker(fq)‹.

As the set J = {c·

q
| · œ Im(fq)} is an orthogonal basis for T f

q
= ker(fq)‹ and

{fq(c·

q
) | · œ Im(fq)} is an orthogonal basis for Im(fq), in order to see that f̂q preserves inner

product, it is enough that check that Èc·

q
, c·

q
ÍwK

q
= Èfq(c·

q
), fq(c·

q
)ÍwL

q
for every [· ] œ Im(fq).

Let c·

q
=

q
l

i=1 sgn
fq

(‡i)wK

q
(‡i)[‡i] for some [· ] œ Im(fq). By the assumption that f is

weight preserving, we have that
q

l

i=1 wK

q
(‡i) = wL

q
(·) and fq(c·

q
) = wL

q
(·)[· ]. Then, it

follows that

Èc·

q
, c·

q
ÍwK

q
=

lÿ

i=1
wK

q
(‡i) = wL

q
(·) = ÈwL

q
(·)[· ], wL

q
(·)[· ]ÍwL

q
= Èfq(c·

q
), fq(c·

q
)ÍwL

q
.

This completes the proof. J

A.1 A cochain formulation of the persistent Laplacian

Recall from Remark 6 that

Cq+1
LΩK

:= {c œ Cq+1
L

| (”L

q
)ú(c) œ (fq)ú(ker((”K

q≠1)ú))},

Cq≠1
KæL

:= {c œ Cq≠1
K

| ”K

q≠1(c) œ ker((fq)ú)‹}.

Similarly as in Lemma 2, the restriction of fq onto ker(fq)‹ gives rise to an isometry
f̂q : ker(fq)‹ æ Im(fq).

Let ”q≠1
K,L

denote the restriction of ”q≠1
K

to Cq≠1
KæL

. Let ˆq+1
L,K

denote the restriction of (”L

q
)ú

to Cq+1
LΩK

.
We then draw the following diagram dual to the one on page 7.

Cq

K
Cq≠1

K

Im(fq) Cq≠1
KæL

Cq+1
LΩK

ker(fq)‹

Cq+1
L

Cq

L

(f̂
q)≠1

(”
q≠1
K,L)ú

”
q≠1
K,L

ˆ
q+1
L,K

f̂
q

(ˆ
q+1
L,K)ú

Then, based on this diagram, we define as follows certain operators like our (up/down)
persistent Laplacians defined in Subsection 2.2.

�q,up
K

fæL

:=ˆq+1
L,K

¶ (ˆq+1
L,K

)ú : ker(fq)‹ æ ker(fq)‹,

�q,down
K

fæL

:=(f̂q)≠1 ¶ ”q≠1
K,L

¶ (”q≠1
K,L

)ú ¶ f̂q : ker(fq)‹ æ ker(fq)‹,

�q

K
fæL

:=�q,up
K

fæL

+ �q,down
K

fæL

: ker(fq)‹ æ ker(fq)‹.

It turns out that the operators defined above are the same as (up/down) persistent
Laplacians up to certain isometry. We specify this point more rigorously as follows.

Recall the isometry jK

q
: CK

q
æ Cq

K
between the chain group and the cochain group.
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I Lemma 25. The restriction of jK

q
onto ker(fq)‹ gives rise to an isometry ĵK

q
: ker(fq)‹ æ

Im(fq). Similarly, the restriction of jL

q
onto Im(fq) gives rise to an isometry ĵL

q
: Im(fq) æ

ker(fq)‹. Moreover, the following diagram commutes

Im(fq) ker(fq)‹

ker(fq)‹ Im(fq)

(f̂q)ú

ĵ
L
q ĵ

K
q

f̂
q

.

Proof. This simply follows from the fact that the following diagram commutes

CK

q
CL

q

Cq

K
Cq

L

j
K
q

(fq)ú

j
L
q

f
q

.

and that ker(fq)‹ = Im((fq)ú) and Im(fq) = ker((fq)ú)‹. J

Then, we have the following result which basically states that (up/down) persistent
Laplacians can be constructed either via chains or via cochains and the two types of
constructions are dual with each other.

I Theorem 26. For any q œ N, we have that

ĵL

q
¶ �K

fæL

q,up = �q,up
K

fæL

¶ ĵL

q
, ĵL

q
¶ �K

fæL

q,down = �q,down
K

fæL

¶ ĵL

q
and ĵL

q
¶ �K

fæL

q
= �q

K
fæL

¶ ĵL

q

Proof. We note that the following diagram commutes with all vertical arrows being isometries.

CL

q+1 CL

q
CK

q
CK

q≠1

Cq+1
L

Cq

L
Cq

K
Cq≠1

K

ˆ
L
q+1

j
L
q+1 j

L
q

fq

j
K
q

(ˆ
K
q≠1)ú

j
K
q≠1

(”
q
L)ú (f

q)ú
”

q≠1
K

.

By slight abuse of notation, this commutative diagram immediately gives rise to two isometries

ĵK

q≠1 : CKæL

q≠1 æ Cq≠1
KæL

and ĵL

q+1 : CLΩK

q+1 æ Cq+1
LΩK

.

Furthermore, the following diagram commutes:

CLΩK

q+1 Im(fq) ker(fq)‹ CKæL

q≠1

Cq+1
LΩK

ker(fq)‹ Im(fq) Cq≠1
KæL

ˆ
L,K
q+1

ĵ
L
q+1 ĵ

L
q

(f̂q)ú

ĵ
K
q

”
K,L
q≠1

ĵ
K
q≠1

ˆ
q+1
L,K f̂

q
”

q≠1
K,L

.

Then, by taking adjoints of horizontal arrows of the diagram above, one still obtains a
commutative diagram. Then, simply by following the definitions, we conclude the proof. J
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B Details for Section 3

I Lemma 27. Let R œ Rn◊n be an invertible matrix and E œ Rn◊m be any matrix. Then,

ETR(R≠1EETR)†R≠1E = ET(EET)†E = E†E.

Proof. To prove the equalities, we need the following fact

B Claim 28 ( [1, Proposition 3.3]). Let H œ Rn◊m. Then, HH† = fiIm(H) = In ≠ fiker(HT),
where In is the n ◊ n identity matrix and for any subspace W ™ Rn, fiW œ Rn◊n is the
orthogonal projector onto W . Similarly, H†H = fiIm(HT) = Im ≠ fiker(H).

Using Claim 28, we get

ETR(R≠1EETR)†R≠1E =fiIm(ET)E
TR(R≠1EETR)†R≠1E

=E†EETR(R≠1EETR)†R≠1E

=E†R(R≠1EETR)(R≠1EETR)†R≠1E

=E†R(In ≠ fiker(RTEET(R≠1)T))R≠1E

=E†R(In ≠ fiker(ET(R≠1)T))R≠1E

=E†R(In ≠ fiker((R≠1E)T))R≠1E

=E†R(In ≠ fiIm((R≠1E))‹)R≠1E

=E†RR≠1E

=E†E.

And, by taking R = In, we also get ET(EET)†E = E†E. J

Proof of Proposition 9. Let B1 and B2 be ordered bases for W and W ‹ respectively and
let n = dim(V ), d = dim(W ). Writing L with respect to the ordered basis B1 fi B2 in which
the order is given by extending the orders on B1 and B2 by asserting that B1 < B2, we get
the block matrix representation

[L]B1fiB2 =
3

A B
C D

4

where A is d ◊ d and D is (n ≠ d) ◊ (n ≠ d) square matrices.
Let C1 and C2 be any orthonormal bases for W and W ‹ respectively. Let P and R be

the change of basis matrices from B1 to C1 and from B2 to C2 respectively. Since [L]C1fiC2 is
a positive semi-definite matrix, we have that

3
P ≠1 0

0 R≠1

4 3
A B
C D

4 3
P 0
0 R

4
= [L]C1fiC2 = EET

for some E œ Rn◊n. Writing E =
3

E1
E2

4
as a block matrix where E1 œ Rd◊n and E2 œ

R(n≠d)◊n. Thus, to show that the Schur restriction is independent of choice of basis, we need
to show that:

P ≠1(A ≠ BD†C)P = E1ET
1 ≠ E1ET

2 (E2ET
2 )†E2ET

1 .

By computing the left-hand side, we get that

P ≠1(A ≠ BD†C)P =E1ET
1 ≠ E1ET

2 R≠1(RE2ET
2 R≠1)†RE2ET

1

=E1ET
1 ≠ E1ET

2 (E2ET
2 )†E2ET

1

where the last equality follows from Lemma 27 and this finishes the proof. J
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Now, we provide the following lemma that will be useful in the proof of Proposition 10.

I Lemma 29. Let V be a finite dimensional inner product space and let L : V æ V be
a self-adjoint positive semi-definite operator. Let W ™ V be a subspace. Then, for every
w œ W , there is an element w‹ œ W ‹ such that L(w + w‹) œ W .

Proof. Choose orthonormal bases for W , BW = {w1, ..., wd}, and for W ‹, BW ‹{vd+1, ..., vn},

to write a matrix representation of L. Namely, [L] =
3

A B
BT D

4
with respect to the

basis BW fi BW ‹ . Let w œ W and let c = [c1...cd]T œ Rd be its coordinates, i.e. w =
[w1...wd][c1...cd]T =

q
d

i=1 ciwi. Choose coordinates for w‹ to be ≠D†BTc œ Rn≠d. Then,

[L]
3

c
≠D†BTc

4
=

3
(A ≠ BD†BT)c
(I ≠ DD†)BTc

4
=

3
(A ≠ BD†BT)c

0

4

by [8, Theorem 16.1], which states that (I ≠ DD†)BT = 0 when [L] is positive semi-definite .
Thus, L(w + w‹) œ W . J

In order to prove Proposition 10, we will use the so-called extremal characterization of
Schur complement, which is given by:

I Theorem 30 ([16], Extremal characterization of Schur complement). Let M =
3

A B
BT D

4

be a positive semi-definite real matrix. Then,

A≠BD†BT = max
;

N : M ≠
3

N 0d◊(n≠d)
0(n≠d)◊d 0(n≠d)◊(n≠d)

4
≤ 0, N is d ◊ d positive semi-definite

<
.

This characterization is given by in terms of matrices. However we need it in terms
operators. Combining the extremal characterization of Schur complement in matrices, The-
orem 30 , and the basis invariance of Schur restriction on operators, Proposition 9 , we get
the following result.

I Corollary 31. Let V be finite dimensional real inner product space and let L : V æ V be a
self-adjoint positive semi-definite operator. Let W ™ V be a subspace. Then,

Sch(L, W ) = max{M : W æ W self-adjoint positive semi-definite | L ≤ ÿV ¶ M ¶ proj
W

}

where ÿV : W Òæ V is the inclusion map and proj
W

: V æ W is the projection map.

I Remark 32. Let PSD(V ) denote the Loewner poset of the self-adjoint positive semi-definite
operators on a finite dimensional real inner product space V . Consider a subspace W ™ V .
Then, there is an order preserving map E : PSD(W ) æ PSD(V ) given by M ‘æ ÿV ¶M ¶proj

W
,

where ÿV : W Òæ V is the inclusion and proj
W

: V æ W is the projection map. If we
consider the poset categories PSD(W ), and PSD(V ), Corollary 31 is essentially stating that
Sch(≠, W ) : PSD(V ) æ PSD(W ) is a right adjoint to E .

Proof of Proposition 10. Let

S = {M : W æ W self-adjoint positive semi-definite | f ¶ fú ≠ ÿV ¶ M ¶ proj
W

≤ 0}.

By Corollary 31, it is enough to show that fW ¶ fú
W

= max S. Observe that

ÿV ¶ fW¸ ˚˙ ˝
f̂W

¶ fú
W

¶ proj
W¸ ˚˙ ˝

f̂
ú
W

= f̂W ¶ f̂ú
W

,
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where f̂W : f≠1(W ) æ V is the restriction of f on f≠1(W ). Write V̂ = f≠1(W ) ü f≠1(W )‹.
Then, we have f = f̂W ü f̂‹

W
, where f̂‹

W
: f≠1(W )‹ æ V . Thus, we get that f ¶ fú =

f̂W ¶ f̂ú
W

+ f̂‹
W

¶ (f̂‹
W

)ú. Therefore, f ¶ fú ≠ f̂W ¶ f̂ú
W

= f̂‹
W

¶ (f̂‹
W

)ú is positive semi-definite.
As ÿV ¶ fW ¶ fú

W
¶ proj

W
= f̂W ¶ f̂ú

W
, we get that f ¶ fú ≠ ÿV ¶ fW ¶ fú

W
¶ proj

W
= f̂‹

W
¶ (f̂‹

W
)ú

is positive semi-definite. Thus, fW ¶ fú
W

œ S.
To show maximality, we choose any T œ S, i.e., f ¶ fú ≠ ÿV ¶ T ¶ proj

W
is positive semi-

definite. The assumption that f ¶ fú ≠ ÿV ¶ T ¶ proj
W

is positive semi-definite is equivalent
to

È(f ¶ fú ≠ ÿV ¶ T ¶ proj
W

)(w + w‹), w + w‹Í Ø 0, ’w œ W, w‹ œ W ‹. (15)

By bilinearity of the inner product, ’w œ W, w‹ œ W ‹, the above inequality can be
equivalently written as

Èf ¶ fú(w + w‹), w + w‹Í Ø ÈT (w), wÍ, (16)
≈∆Èfú(w + w‹), fú(w + w‹)Í Ø ÈT (w), wÍ, (17)
≈∆Èfú(w), fú(w)Í + 2Èfú(w), fú(w‹)Í + Èfú(w‹), fú(w‹)Í Ø ÈT (w), wÍ. (18)

Let B = {v̂1, ..., v̂l, v̂l+1, ..., v̂n} be an orthonormal basis for V̂ such that {v̂1, ..., v̂l} is a
basis for f≠1(W ) and {v̂l+1, ..., v̂n} is a basis for (f≠1(W ))‹. Then, we can write fú(v) =q

n

i=1Èv, f(v̂i)Ív̂i. Then, Equation (18) becomes
nÿ

i=1
Èw, f(v̂i)Í2 + 2

nÿ

i=l+1
Èw, f(v̂i)ÍÈw‹, f(v̂i)Í +

nÿ

i=l+1
Èw‹, f(v̂i)Í2 Ø ÈT (w), wÍ (19)

for all w œ W , w‹ œ W ‹. By Lemma 29, for each w œ W we pick an element w‹ œ W ‹ such
that f ¶ fú(w + w‹) œ W . Then, fú(w + w‹) œ f≠1(W ) and thus Equation (19) becomes,

lÿ

i=1
Èw, f(v̂i)Í2 Ø ÈTw, wÍ (20)

for all w œ W , which is equivalent to fW ¶ fú
W

≠ T being positive semi-definite by reversing
the procedure above. Thus, fW ¶ fú

W
= max S = Sch(f ¶ fú, W ). J

Proof of Theorem 11. By Proposition 10, ”K,L

q≠1 ¶ (”K,L

q≠1 )ú = Sch(�K

q,down, ker(fq)‹). Thus,
�K,L

q,down = f̂q ¶ ”K,L

q≠1 ¶ (”K,L

q≠1 )ú ¶ f̂≠1
q

= f̂q ¶ Sch(�K

q,down, ker(fq)‹) ¶ f̂≠1
q

.
Since Im (ˆL,K

q+1 ) ™ fq(ker(ˆK

q
)), we let ¯̂L,K

q+1 : CLΩK

q+1 æ fq(ker(ˆK

q
) be given by the same

formula as ˆL,K

q+1 . By Proposition 10, ¯̂L,K

q+1 ¶ ( ¯̂L,K

q+1 )ú = Sch(�L

q,up, fq(ker(ˆK

q
))). Then,

ÿIm(fq) ¶ Sch(�L

q,up, fq(ker(ˆK

q
))) ¶ proj

fq(ker(ˆK
q )) = ÿIm(fq) ¶ ¯̂L,K

q+1¸ ˚˙ ˝
ˆ

L,K
q+1

¶ ( ¯̂L,K

q+1 )ú ¶ proj
fq(ker(ˆK

q ))
¸ ˚˙ ˝

(ˆ
L,K
q+1 )ú

=ˆL,K

q+1 ¶ (ˆL,K

q+1 )ú = �K,L

q,up J

We now only require one more lemma before proving Theorem 7.

I Lemma 33. Let L : V æ V be self-adjoint positive semi-definite and let W ™ V be a
subspace. Then, ker(Sch(L, W )) = proj

W
(ker(L)).

Proof. It su�ces to prove this in a matrix representation by Proposition 9. Assume we have

[L] =
3

A B
BT D

4
for some orthonormal bases for W and W ‹. Assume

3
w

w‹

4
œ ker([L]).
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Then, we have that Aw + Bw‹ = 0 and BTw + Dw‹ = 0. From the second equality, one
can get that D†BTw = ≠D†Dw‹. Thus,

(A ≠ BD†BT)w = Aw ≠ B(D†BTw) = Aw + BD†Dw‹ = Aw + Bw‹ = 0

where the second last equality follows from [8, Theorem 16.1] by using the fact that (I ≠
DD†)BT = 0 and that (D†)T = D†. Thus, proj

W
(ker(L)) ™ ker(Sch(L, W )). For the other

containment, if w œ ker(Sch(L, W )), one can check that
3

w
≠D†BTw

4
œ ker(L) by using the

fact that (I ≠ DD†)BT = 0 again. J

Proof of Theorem 7. First, we need the following elementary linear algebra fact:

B Claim 34 ([18, Theorems 5.2 and 5.3]). Let X, Y and Z be finite dimensional inner product
spaces and let L1 : X æ Y and L2 : Y æ Z be linear maps. Assume that L2L1 = 0. Then,

ker(L1Lú
1 + Lú

2L2) = ker(Lú
1) fl ker(L2) ≥= ker(L2)/ Im(L1).

Let X = CLΩK

q+1 , Y = Im (fq), Z = CKæL

q≠1 , L1 = ˆL,K

q+1 and L2 = (”K,L

q≠1 )ú ¶ f̂≠1
q

. Observe that

ker((”K,L

q≠1 )ú) = ker(”K,L

q≠1 ¶ (”K,L

q≠1 )ú) = projker(fq)‹(ker(�K

q,down)),

where the last equality follows from Lemma 33, as we have that

”K,L

q≠1 ¶ (”K,L

q≠1 )ú = Sch(�K

q,down, ker(fq)‹)

from Proposition 10. Moreover, ker(�K

q,down) = ker((ˆK

q
)ú ¶ ˆK

q
) = ker(ˆK

q
). Thus,

fq(ker(ˆK

q
)) = fq(projker(fq)‹(ker(�K

q,down))) = fq(ker((”K,L

q≠1 )ú)) = f̂q(ker((”K,L

q≠1 )ú)).

Therefore, Im(L1) ™ fq(ker(ˆK

q
)) = f̂q(ker((”K,L

q≠1 )ú)) = ker((”K,L

q≠1 )ú ¶ f̂≠1
q

) = ker(L2). Thus,
L2L1 = 0. Hence, by applying Claim 34, we get

ker(�K,L

q
) ≥= ker(L2)/ Im(L1)

= ker(�K,L

q,down)/ Im (ˆL,K

q+1 )

= ker(f̂q ¶ Sch(�K

q,down, ker(fq)‹) ¶ f̂≠1
q

)/ Im (ˆL,K

q+1 )
=fq(ker(Sch(�K

q,down, ker(fq)‹)))/(Im(ˆL

q+1) fl fq(ker(ˆK

q
)))

=fq(ker(ˆK

q
))/(Im(ˆL

q+1) fl fq(ker(ˆK

q
))).

where the last equality follows from Lemma 33. Let (fq)# : Hq(K) æ Hq(L) be the induced
map on the homology groups. Then,

Im((fq)#) =
!
fq(ker(ˆK

q
)) + Im(ˆL

q+1)
"
/ Im(ˆL

q+1)
≥=fq(ker(ˆK

q
))/(Im(ˆL

q+1) fl fq(ker(ˆK

q
)))

≥= ker(�K,L

q
).

Hence, —K,L

q
= nullity(�K,L

q
). J
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C Details for Section 4

Proof of Proposition 12. The matrix representation of the map fq : ker(fq)‹ æ Im(fq)
with respect to the bases C and the canonical basis of Im(fq) is given by WIm(fq). Therefore,
the matrix representation of �K,L

q,down = fq ¶ Sch(�K

q,down, ker(fq)‹) ¶ (fq)≠1 is given by
WIm(fq)(X ≠ Y T †Z)W ≠1

Im(fq). J

Proof of Proposition 14. By Proposition 10, �K,L

q,up = ÿIm(fq) ¶ Sch(�L

q,up, fq(ker(ˆK

q
))) ¶

proj
fq(ker(ˆK

q )), where ÿIm(fq) : fq(ker(ˆK

q
)) Òæ Im(fq) is the inclusion map and proj

fq(ker(ˆK
q )) :

Im(fq) æ proj
fq(ker(ˆK

q )) is the projection map. Thus, this explains the matrix in the middle
of Equation 14. The other two matrices in Equation 14 are for changing the basis back to
the canonical basis of Im(fq). J

Proof of Lemma 18. By Lemma 33 and the fact that ker(ˆK

q
) = ker(�K

q,down), we have

ker(�K,L

q,down) = ker(f̂q ¶ Sch(�K

q,down, ker(fq)‹) ¶ f̂≠1
q

)

=f̂q(ker(Sch(�K

q,down, ker(fq)‹)
=fq(projker(fq)‹(ker(�K

q,down))

=fq(projker(fq)‹(ker(ˆK

q
))

=fq(ker(ˆK

q
)). J

D Details for Section 5

To prove Proposition 20, we need the following lemma.

I Lemma 35. Let f : U æ V be a linear map between inner product spaces U and V .
Assume that U is a subspace of an inner product space Û and that f extends to a map
f̂ : Û æ V . Then, f̂ ¶ f̂ú ≤ f ¶ fú.

Proof. Let U‹ be the orthogonal complement of U inside Û . Then, f̂ = f ü f‹ where f‹

maps U‹ into V. Then, f̂ ¶f̂ú = f ¶fú+f‹¶(f‹)ú. Thus, f̂ ¶f̂ú≠f ¶fú = f‹¶(f‹)ú ≤ 0. J

Proof of Proposition 20. As f and g are surjective and weight preserving, we observe that
fq(c·,g¶f

q
) = c·,g

q
for every [· ] œ SM

q
. This implies that f̃q := (fq)|ker(gq¶fq)‹ : ker(gq ¶ fq)‹ æ

ker(gq)‹ is an isometric isomorphism and (f̃q)≠1 = (f̃q)ú = (fú
q

)|ker(gq)‹ .
Now, let c œ CLæM

q≠1 . Then, (ˆK

q
)ú(fq≠1)ú(c) = (fq)ú(ˆL

q≠1)ú(c) = (f̃1)≠1(ˆL

q≠1)ú(c) œ
ker(gq ¶ fq)‹. Thus, (fq≠1)ú(c) œ CKæM

q≠1 . Therefore, (fq≠1)ú|CLæM
q≠1

: CLæM

q≠1 Òæ CKæM

q≠1 is an
isometric embedding as (fq≠1)ú itself is an isometric embedding by surjectivity and weight
preserving property of f . Then, we have the following commutative diagram.

ker(gq ¶ fq)‹ CKæM

q≠1

ker(gq)‹ CLæM

q≠1

CM

q

f̃q

”
K,M
q≠1

f̃
≠1
q

ĝq

(f
ú
q )|

CLæM
q≠1

”
L,M
q≠1
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That is, ĝq ¶ ”L,M

q≠1 = ĝq ¶ f̃q ¶ ”K,M

q≠1 ¶ (fú
q
)|CLæM

q≠1
. In other words, ĝq ¶ ”L,M

q≠1 : CLæM

q≠1 æ CM

q

extends to ĝq ¶ f̃q ¶ ”K,M

q≠1 = \(g ¶ f)
q

¶ ”K,M

q≠1 : CKæM

q≠1 æ CM

q
. Then, by Lemma 35, we get

that �K,M

q,down ≤ �L,M

q,down. J

Proof of Theorem 21. Observe that �K,M

q,down = �K,Im(g¶f)
q,down ≤ �Im(f),Im(g¶f)

q,down by Remark 3
and Proposition 20. The assumption that f , g and g ¶ f are weight preserving guarantees
that if [· ] œ SL

q
, then gq([· ]) /œ Im(gq ¶ fq). This implies that the matrix representation of

�Im(f),Im(g¶f)
q,down will be a principal submatrix of �L,M

q,down
Thus, �Im(f),Im(g¶f)

q,down has larger eigenvalues than �L,M

q,down by Eigenvalue Interlacing The-
orem [13, Theorem 1]. Hence,

⁄K,M

q,down,k
= ⁄K,Im(g¶f)

q,down,k
Ø ⁄Im(f),Im(g¶f)

q,down,k
Ø ⁄L,M

q,down,k
.

To prove the other inequality, namely ⁄K,M

q,down,k
Ø ⁄K,L

q,down,k
, we will use the alternative

definition of down persistent Laplacian as described in Remark 5, namely ”K,M

q≠1 ¶ (”K,M

q≠1 )ú

and ”K,L

q≠1 ¶ (”K,L

q≠1 )ú, as they have the same spectrum as the originally defined �K,M

q,down and
�K,L

q,down respectively. By Proposition 10,

”K,M

q≠1 ¶ (”K,M

q≠1 )ú =Sch(�K

q,down, ker(gq ¶ fq)‹),

”K,L

q≠1 ¶ (”K,L

q≠1 )ú =Sch(�K

q,down, ker(fq)‹).

As ker(gq ¶ fq)‹ ™ ker(fq)‹, it follows that Sch(�K

q,down, ker(gq ¶ fq)‹) has larger eigen-
values than Sch(�K

q,down, ker(fq)‹) by Eigenvalue Interlacing Theorem for Schur comple-
ments [20, Lemma 4.5]. Hence, ⁄K,M

q,down,k
Ø ⁄K,L

q,down,k
. J

Proof of Theorem 23. The eigenvalues in the statement of the theorem correspond to the
operators Sch(�M

q,up, gq(fq(ker(ˆK

q
)))) and Sch(�M

q,up, gq(ker(ˆL

q
))). We then observe that

gq(fq(ker(ˆK

q
))) ™ gq(ker(ˆL

q
)). Thus, by eigenvalue interlacing property of Schur comple-

ment [20, Lemma 4.5], we obtain that Sch(�M

q,up, gq(fq(ker(ˆK

q
)))) has larger eigenvalues

than Sch(�M

q,up, gq(ker(ˆL

q
))). Thus, ⁄K,M,ess

q,up,k
Ø ⁄L,M,ess

q,up,k
. J

A direct proof of Theorem 19 via Theorem 23. Assume K Òæ L Òæ M are inclusions. We
will only prove that ⁄K,M

q,up,k
Ø ⁄L,M

q,up,k
. Assume that dim(ker(ˆK

q
)) = n. Let m = nL

q
≠ nK

q
.

Then, dim(ker(ˆL

q
)) Æ n + m. Then �K,M

q,up has nK

q
≠ n essential 0 eigenvalues, and �L,M

q,up
has nL

q
≠ dim(ker(ˆL

q
)). Then

nK

q
≠ n = nL

q
≠ n ≠ m Æ nL

q
≠ dim(ker(ˆL

q
))

Thus, �L,M

q,up has more essential 0 eigenvalues than �K,M

q,up . Combining this with Theorem 23,
we conclude that ⁄K,M

q,up,k
Ø ⁄L,M

q,up,k
. J

Figure 5 Example of two weight preserving simplicial where their composition is not. Weights
on K and L are all 1. The vertex x has weight 1, the edge xy and the vertex y have weight 2. f is
given by a ‘æ c, b ‘æ d. g is given by c ‘æ x, e ‘æ y, d ‘æ y

.
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I Example 36. For the simplicial maps f and g depicted in Figure 5, we have that f is
weight preserving as it is inclusion and the simplicial complexes K and L has weights all 1.
The map g is weight preserving because cd and ce both have weight 1 and they are mapped
to xy, which has weight 2. Similarly, the vertices e and d have weight 1 and they collapsed to
the vertex y which has weight 2. However, the composition g ¶ f is inclusion and it maps the
edge ab, which has weight 1, to the edge xy, which has weight 2. Thus, g ¶ f is not weight
preserving.
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