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Abstract

We study model-free reinforcement learning (RL)
algorithms in episodic non-stationary constrained
Markov Decision Processes (CMDPs), in which
an agent aims to maximize the expected cumula-
tive reward subject to a cumulative constraint on
the expected utility (cost). In the non-stationary
environment, reward, utility functions, and tran-
sition kernels can vary arbitrarily over time as
long as the cumulative variations do not exceed
certain variation budgets. We propose the first
model-free, simulator-free RL algorithms with
sublinear regret and zero constraint violation for
non-stationary CMDPs in both tabular and lin-
ear function approximation settings with provable
performance guarantees. Our results on regret
bound and constraint violation for the tabular case
match the corresponding best results for station-
ary CMDPs when the total budget is known. Ad-
ditionally, we present a general framework for
addressing the well-known challenges associated
with analyzing non-stationary CMDPs, without
requiring prior knowledge of the variation budget.
We apply the approach for both tabular and linear
approximation settings.

1 INTRODUCTION

Safe reinforcement learning (RL) studies how to apply RL
algorithms in real-world applications (Amodei et al., 2016;
Garcıa and Fernández, 2015; Brunke et al., 2022) that can
operate under safety-related constraints. A standard ap-
proach for modeling applications with safety constraints is
Constrained Markov Decision Processes (CMDPs) (Altman,
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1999), where an agent seeks to learn a policy that maxi-
mizes the expected total reward under safety constraints on
the expected total utility. In classical safe-RL and CMDPs
problems, an agent is assumed to interact with a stationary
environment. However, stationary models cannot capture
the time-varying real-world applications where safety is
critical such that the transition functions and reward/utility
functions are non-stationary. For example, in autonomous
driving (Kiran et al., 2021), collisions must be avoided while
modeling and tracking time-varying environments such as
traffic conditions; in an automated medical system (Coro-
nato et al., 2020), it is essential to guarantee patient safety
under varying patients’ behavior.

Learning in a stationary CMDP is a long-standing topic
and has been heavily studied recently, including using both
model-based and model-free approaches (Brantley et al.,
2020; Efroni et al., 2020; Wei et al., 2022b,a; Liu et al.,
2021; Bura et al., 2021; Singh et al., 2020; Ding et al., 2021;
Chen et al., 2022). RL in non-stationary CMDPs is more
challenging since the rewards/utilities and dynamics are
time-varying and probably unknown a priori. On the one
hand, an agent has to handle the non-stationarity properly to
guarantee a sublinear regret and a small or zero constraint
violation. On the other hand, the agent also needs to forget
the past data samples since they become less useful due to
the dynamic of the system. The only existing work of which
we are aware that studies non-stationary CMDPs is Ding
and Lavaei (2022), via a model-based approach assuming
a priori knowledge of the total variation budgets, which is
far less computationally efficient compared with model-free
approaches and where knowing the variation budgets is less
desirable in practice.

In this work, we manage to overcome these challenges
and focus on designing model-free algorithms with sub-
linear regret and zero constraint violation guarantees for
non-stationary CMDPs, especially for the scenario when the
total variation budget is unknown. Our contributions are as
follows:

• Our work contributes to the theoretical understanding of
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Table 1: Dynamic regret and constraint violations comparisons for RL in non-stationary CMDPs. S and A are the number
of states and actions, H is the horizon of each episode, K is the total number of episodes and B is the variation budgets. d
is the dimension of the feature in linear CMDP. Algorithms 1,2 are for tabular setting, Ding and Lavaei (2022) is for Linear
kernel CMDP setting, and Algorithm 3 is for linear CMDP setting. (∗ : zero constraint holds holds when K is large enough,
† : we can further the regret order to Õ(K3/4), see section 7. )

Algorithm Model-Free? Regret Constraint Violation Known Budget?
Ding and Lavaei (2022) ✗ Õ(S 2

3A
1
3H

5
3K

3
4B

1
3 ) Õ(S 2

3A
1
3H

5
3K

3
4B

1
3 ) ✓

Algorithm 1 ✓ Õ
(
H4S

1
2A

1
2K

4
5B

1
3

)
0∗ ✓

Algorithm 2 ✓ Õ
(
H4S

1
2A

1
2K

8
9B

1
3

)
0∗ ✗

Algorithm 3 ✓ Õ
(
K3/4H9/4d5/4B1/4

)
0∗ ✓

Algorithm 4 ✓ Õ
(
K7/8H9/4d5/4B1/4

)†
0∗ ✗

non-stationary episodic CMDPs. We develop different
type of model-free algorithms for non-stationary CMDP
settings– one is tailored for tabular CMDPs and has low
memory and computational complexity, another one is
computationally more intensive, however, can be applied
to linear function approximation for large, possibly infi-
nite, state and action spaces.

• For the tabular setting, our algorithm adopts a periodic
restart strategy and utilizes an extra optimism bonus term
to counteract the non-stationarity of the CMDP that an
over estimate of the combined objective is guaranteed
during learning and exploration. For the case when the
budget variation is known, our theoretical result Õ(K4/5)
matches the best existing result for stationary CMDPs
in terms of the total number of episodes K, and non-
stationary MDPs in term of the variation budget B. For lin-
ear CMDP, we propose the first model-free, value-based
algorithm which obtains Õ(K3/4) regret and zero con-
straint violation using the same strategy. Our result in
fact improves the dependency with respect to the budget
variation and the episode length H compared to Ding and
Lavaei (2022).

• We develop, for the first time, a general double restart
method for non-stationary CMDPs based on the “bandit
over bandit” idea. This method can be used for other
non-stationary constrained learning problems which aims
to achieve zero constraint violation. The method removes
the need to have a priori knowledge of the variation bud-
get, an open-problem raised in Ding and Lavaei (2022)
for non-stationary CMDPs. While the “bandit over ban-
dit” has been widely used and studied for unconstrained
MDPs, adopting it for CMDPs is nontrivial due to multi-
ple challenges that do not exist in unconstrained setting.
For example, one needs to account for the constraints. We
overcome these difficulties by a new design of the bandit
reward function for each arm. We show that the approach
can be used in conjunction with the algorithms for the
tabular and linear function approximation cases.

Our results are summarized in Table 1.

2 RELATED WORK

Non-stationary MDP. Non-stationary unconstrained MDPs
have been mostly studied recently (Auer et al., 2008; Che-
ung et al., 2020; Domingues et al., 2021; Fei et al., 2020;
Ortner et al., 2020; Touati and Vincent, 2020; Wei and Luo,
2021; Zhong et al., 2021; Zhou et al., 2020; Mao et al.,
2020). Auer et al. (2008) consider a setting where the MDP
is allowed to change for fixed number of times. When the
variation budget is known a priori, Fei et al. (2020) propose a
policy-based algorithm in the setting where they assume sta-
tionary transitions and adversarial full-information rewards.
Zhong et al. (2021); Mao et al. (2020); Touati and Vincent
(2020); Zhou et al. (2020) consider a more general setting
that both transitions and rewards are time-varying. A more
recent work Wei and Luo (2021) introduce a procedure that
can be used to convert any upper-confidence-bound-type
stationary RL problem to a non-stationary RL algorithm to
relax the assumption of having a priori knowledge on the
variation budget.

CMDP. Stationary CMDPs with provable guarantees have
been heavily studied in recent years. In particular, Brantley
et al. (2020); Efroni et al. (2020); Singh et al. (2020) propose
model-based approaches for tabular CMDPS. Ghosh et al.
(2022); Ding et al. (2021) extend the results to the linear and
linear kernel CMDPs. Liu et al. (2021); Bura et al. (2021)
also provide efficient algorithms with a zero constraint viola-
tion guarantee. Besides using an estimated model, Ding et al.
(2020); Chen et al. (2021) leverage a simulator for policy
evaluation to achieve provable regret guarantees. More-
over, Wei et al. (2022b,a) propose the first model-free and
simulator-free algorithms for CMDPs with sublinear regret
and zero constraint violation. However, the studies on non-
stationary CMDPs are limited. For non-stationary CMDPs,
Qiu et al. (2020) consider CMDPs that assume that only
the rewards vary over episodes. A concurrent work (Ding
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and Lavaei, 2022), which is most related to ours, focuses on
the same setting where the transitions and rewards/utilities
vary over episodes under a linear kernel CMDP assumption.
They also assume that the budget is known a priori. The
method proposed is a model-based approach, but we instead
consider a more challenge setting where the algorithm is
model-free and the budget is not known. Fortunately, we
answer the open-problem affirmatively raised in Ding and
Lavaei (2022).

3 PROBLEM FORMULATION

We consider an episodic CMDP where an agent inter-
acts with a non-stationary system for K episodes. The
CMDP is denoted by (S,A, H,P, r, g), where S is the
state space with |S| = S, A is the action space with
|A| = A, H is the fixed length of each episode, P =
{Pk,h}k∈[K],h∈[H] is a collection of transition kernels, and
r = {rk,h}k∈[K],h∈[H](g = {gk,h}k∈[K],h∈[H]) is the set
of reward (utility) functions. In Section 7, we extend our
analysis to potentially infinite state-space.

At the beginning of an episode k, an initial state xk,1 is sam-
pled from the distribution µ0. Then at step h, the agent takes
action ak,h ∈ A after observing state xk,h ∈ S. Then the
agent receives a reward rk,h(xk,h, ak,h) and incurs a utility
gk,h(xk,h, ak,h). The environment transitions to a new state
xk,h+1 following from the distribution Pk,h(·|xk,h, ak,h).
It is worth emphasizing that the transition kernels, re-
ward functions, and utility functions all depend on the
episode index k and time h, and hence the system is non-
stationary. For simplicity of notation, we assume that
rk,h(x, a)(gk,h(x, a)) : S × A → [0, 1], are deterministic
for convenience. Our results generalize to the setting where
the reward and utility functions are random. Given a policy
π, which is a collection of H functions π : [H]× S → A,
where [H] represents the set {1, 2, . . . ,H}. Define the re-
ward value function V π

k,h(x) : S → R+ at episode k and
step h to be the expected cumulative rewards from step h to
the end under the policy π :

V π
k,h(x) = E

[
H∑
i=h

rk,i(xk,i, π(xk,i))

∣∣∣∣∣xk,h = x

]
. (1)

The (reward) Q-function Qπ
k,h(x, a) : S ×A → R+ is the

expected cumulative reward when an agent starts from a
state-action pair (x, a) at episode k and step h following the
policy π :

Qπ
k,h(x, a) = rk,h(x, a)+

E

[
H∑

i=h+1

rk,i(xk,i, π(xk,i))

∣∣∣∣∣xk,h = x, ak,h = a

]
. (2)

Similarly, we use Wπ
k,h(x) : S → R+ to denote the utility

value function

Wπ
k,h(x) = E

[
H∑
i=h

gk,i(xk,i, π(xk,i))

∣∣∣∣∣xk,h = x

]
, (3)

and we use Cπ
k,h(x, a) : S ×A → R+ to denote the utility

Q-function at episode k, step h:

Cπ
k,h(x, a) = gk,h(x, a)+

E

[
H∑

i=h+1

gk,i(xk,i, π(xk,i))

∣∣∣∣∣xk,h = x, ak,h = a

]
. (4)

For simplicity, we adopt the following notations:

Pk,hV
π
k,h+1(x, a) =Ex′∼Pk,h(·|x,a)V

π
k,h+1(x

′), (5)

Pk,hW
π
h+1(x, a) =Ex′∼Pk,h(·|x,a)W

π
k,h+1(x

′). (6)

We also denote the empirical counterparts as

P̂k,hV
π
k,h+1(x, a) =V π

k,h+1(xk+1,h), (7)

P̂k,hW
π
k,h+1(x, a) =Wπ

k,h+1(xk+1,h), (8)

and is only defined for (x, a) = (xk,h, ak,h). Given the
model defined above, the objective of the episode k is to
find a policy that maximizes the expected cumulative reward
subject to a constraint on the expected utility:

max
πk∈Π

E
[
V πk

k,1(x1)
]

subject to: E
[
Wπk

k,1(x1)
]
≥ ρ, (9)

where we assume ρ ∈ [0, H] to avoid triviality, and the
expectation is taken with respect to the initial distribution
and the randomness of π. Let π∗

k denote the optimal solution
to the CMDP problem defined in (9) for episode k. We
evaluate our model-free RL algorithms using dynamic regret
R(K) and constraint violation V(K) defined below:

R(K) = E

[
K∑

k=1

(
V

π∗
k

k,1(xk,1)− V πk

k,1(xk,1)
)]

, (10)

V(K) = E

[
K∑

k=1

(
ρ−Wπk

k,1(xk,1)
)]

, (11)

where πk is the policy used in episode k. Note that here we
use dynamic regret concept as the optimal policy may be
different. We further make the following standard assump-
tion (Efroni et al., 2020; Ding et al., 2021; Qiu et al., 2020;
Wei et al., 2022b).
Assumption 1. (Slater’s Condition). Given initial distribu-
tion µ0, for any episode k ∈ [K], there exist δ > 0 and at

least a policy π such that E
[
Wπ

k,1(xk,1)
]
− ρ ≥ δ.

Variation: The non-stationary of the CMDP is measured
according to the variation budgets in the reward/utility func-
tions and the transition kernels:

Br :=

K−1∑
k=1

H∑
h=1

max
x,a
|rk,h(x, a)− rk+1,h(x, a)|



Provably Efficient Model-Free Algorithms for Non-stationary CMDPs

Bg :=

K−1∑
k=1

H∑
h=1

max
x,a
|gk,h(x, a)− gk+1,h(x, a)|

Bp :=

K−1∑
k=1

H∑
h=1

max
x,a
∥Pk,h(·|x, a)− Pk+1,h(·|x, a)∥1.

We further let B = Br+Bg+Bp to represent the total vari-
ation. To bound the regret, we consider the following offline
optimization problem at episode k as our regret baseline:

max
qk,h

∑
h,x,a

qk,h(x, a)rk,h(x, a) (12)

s.t.:
∑
h,x,a

qk,h(x, a)gk,h(x, a) ≥ ρ (13)

∑
a

qk,h(x, a) =
∑
x′,a′

Pk,h−1(x|x′, a′)qk,h−1(x
′, a′)

(14)∑
x,a

qk,h(x, a) = 1, ∀h ∈ [H] (15)

∑
a

qk,1(x, a) = µ0(x) (16)

qk,h(x, a) ≥ 0, ∀x ∈ S, ∀a ∈ A, ∀h ∈ [H]. (17)

To analyze the performance, we need to consider a tightened
version of the LP, which is defined below:

max
qk,h

∑
h,x,a

qk,h(x, a)rk,h(x, a) (18)

s.t.:
∑
h,x,a

qk,h(x, a)gk,h(x, a) ≥ ρ+ ϵ, and (14)− (17),

where ϵ > 0 is called a tightness constant. When ϵ ≤ δ,
this problem has a feasible solution due to Slater’s condi-
tion. We use superscript ∗ to denote the optimal value/policy
related to the original CMDP (9) or the solution to the corre-
sponding LP (12) and superscript ϵ,∗ to denote the optimal
value/policy related to the ϵ-tightened version of CMDP.

4 ALGORITHM FOR TABULAR CMDPs

Next we will start with presenting our algorithm Non-
stationary Triple-Q in Algorithm 1 for the scenario when
the variation budget is known. Our algorithm uses a restart
strategy that divides the total episode K into frames, which
is commonly used in both non-stationary bandits and RL to
address non-stationarity. We remark that in unconstrained
RL, this restarting often results in a worse regret, for ex-
ample, the regret bound is Õ(

√
K) (Jin et al., 2018) in the

stationary setting but becomes Õ(K 2
3 ) (Mao et al., 2020)

when the system is non-stationary. However, the order of re-
gret achieved by our Algorithm 1 matches the best existing
result in stationary CMDPs obtained by the model-free al-
gorithm Triple-Q (Wei et al., 2022b) under the same setting.

That is because Triple-Q itself is built on top of a two-time-
scale scheme for balancing the estimation error and tracking
the constraint violation, which shares the same insights as
the restart strategy for dealing with non-stationarity. There-
fore, by appropriately designing the frame size (restarting
period), Algorithm 1 can achieve the same order as that in
unconstrained CDMPs as well as the optimal order in terms
of variation budget.

We first divide the total K episodes into frames, where each
frame contains Kα/Bc episodes. Define B

(T )
r , B

(T )
g , B

(T )
p

to be the local variation budget of the reward functions,
utility functions and transition kernels within the T th frame,
let NT denote the set of all the episodes in frame T, then

B(T )
r :=

∑
k∈NT

H∑
h=1

max
x,a
|rk,h(x, a)− rk+1,h(x, a)|

B(T )
g :=

∑
k∈NT

H∑
h=1

max
x,a
|gk,h(x, a)− gk+1,h(x, a)|

B(T )
p :=

∑
k∈NT

H∑
h=1

max
x,a
∥Pk,h(·|s, a)− Pk+1,h(·|x, a)∥1.

Let the total local variation budget B(T ) = B
(T )
r +B

(T )
g +

B
(T )
p , then by definition we have

∑K1−αBc

T=1 B(T ) ≤ B. Our
algorithm uses two bonus terms bt and b̃ to update Q values
(Line 10 − 11 in Algorithm 1), where bt is the standard
Hoeffding-based bonus in upper confidence bounds, and b̃
is the extra bonus to take into account the non-stationarity
of the environment. We assume that b̃ is a uniform upper
bound on the total local variation budget BT for any T, and
satisfies K1−αBcb̃ ≤ B which is an assumption commonly
seen in the literature on non-stationary RL (Ortner et al.,
2020; Mao et al., 2020; Zhou et al., 2020).

5 RESULTS OF TABULAR CMDPs

We now present our main results of the Non-stationary
Triple-Q.

Theorem 1. Assume K ≥ max

{(
16

√
SAH6ι3

δ

)5
, e

1
δ

}
,

where ι = 128 log(
√
2SAHK). Algorithm 1 achieves the

following regret and constraint violation bounds:

R(K) = Õ(H4S
1
2A

1
2B

1
3K

4
5 ) V(K) = 0

Due to the page limit, we only outline some of the key intu-
itions behind Theorem 1. The detailed proofs are deferred
to Section E in the supplementary materials.

5.1 Dynamic Regret

As shown in Algorithm 1, let Qk,h(x, a), Ck,h(x, a) denote
the estimate Q values at the beginning of the k−th episode.
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Algorithm 1: Non-stationary Triple-Q

1 Input: Total Budget B;

2 Choose α = 0.6, η = K
1
5B

1
3 , χ = K

1
5 , c = 2

3 , ϵ =
8
√
SAH6ι3B1/3

K0.2 , and ι = 128 log(
√
2SAHK) ;

3 Initialize Qh(x, a) = Ch(x, a)← H and Z = C̄ = Nh(x, a) = VH+1(x) = WH+1(x)← 0 for all
(x, a, h) ∈ S ×A× [H];

4 for episode k = 1, . . . ,K do
5 Sample the initial state for episode k : xk,1 ∼ µ0;
6 for step h = 1, . . . ,H do
7 Take action ah ← argmaxa

(
Qh(xk,h, a) +

Z
η Ch(xk,h, a)

)
;

8 Observe rk,h(xk,h, ak,h), gk,h(xk,h, ak,h), and xk,h+1, Nh(xk,h, ak,h)← Nh(xk,h, ak,h) + 1;

9 Set t = Nh(xk,h, ak,h), bt =
1
4

√
H2ι(χ+1)

χ+t , αt =
χ+1
χ+t ;

10 Qh(xk,h, ak,h)← (1− αt)Qh(xk,h, ak,h) + αt

(
rk,h(xk,h, ak,h) + Vh+1(xk,h+1) + bt + 2Hb̃

)
;

11 Ch(xk,h, ak,h)← (1− αt)Ch(xk,h, ak,h) + αt

(
gk,h(xk,h, ak,h) +Wh+1(xk,h+1) + bt + 2Hb̃

)
;

12 a′ = argmaxa

(
Qh(xk,h, a) +

Z
η Ch(xk,h, a)

)
, Vh(xk,h)← Qh(xk,h, a

′) Wh(xk,h)← Ch(xk,h, a
′) ;

13 if h = 1 then
14 C̄ ← C̄ + C1(xk,1, ak,1)

15 if k mod (Kα/Bc) = 0 ; // reset visit counts and Q-functions

16 then

17 Nh(x, a)← 0, Qh(x, a) = Ch(x, a) = Qh(x, a) = Ch(x, a)← H, Z ←
(
Z + ρ+ ϵ− C̄·Bc

Kα

)+
, C̄ ← 0

The dynamic regret can be decoupled as:

R(K) = E

[
K∑

k=1

(∑
a

{
Q∗

k,1q
∗
k,1 −Qϵ,∗

k,1q
ϵ,∗
k,1

}
(xk,1, a)

)]
+

(19)

E

[
K∑

k=1

(∑
a

{
Qϵ,∗

k,1q
ϵ,∗
k,1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]
+

(20)

E

[
K∑

k=1

{
Qk,1 −Qπk

k,1

}
(xk,1, ak,1)

]
, (21)

here we use the shorthand notation {f − g}(x) = f(x)−
g(x). Before bounding each term, we first show that for any
triple (x, a, h), the difference of two different reward/utility
Q-value functions within the same frame are bounded by
the local variation bound in that frame.

Lemma 1. Given any frame T, for any (x, a, h), and (T −
1)Kα/Bc ≤ k1 ≤ k2 ≤ TKα/Bc, we have

|Qπ
k1,h(x, a)−Qπ′

k2,h(x, a)| ≤ Hb̃ (22)

|Cπ
k1,h(x, a)− Cπ′

k2,h(x, a)| ≤ Hb̃ (23)

Then we show that in Lemma 9 in supplementary materi-
als the first term (19) can be bounded by comparing the
original LP associated with the tightened LP such that
(19) ≤ KHϵ

δ . The term (21) is the estimation error be-
tween Qk,h and the true Q value under policy πk at episode

k. This estimation error can be bounded by our choice of
the learning rate (Line 8 in Algorithm 1) and the added
bonus. Then (21) ≤ H2SAK1−αBc + 2(H3√ι+2H2b̃)K

χ +√
H4SAιK2−α(χ+ 1)Bc + 2b̃H2K.

For the remaining term (20), we need to add and subtract
additional terms to construct an difference between the op-
timal combined Q value {Q∗

k,h + Z
η }C

∗
k,h(x, a) and the

estimated counterpart {Qk,h+
Z
η Ck,h}(x, a). We will show

in Lemma 7 that the estimation is always an overestima-
tion for all (x, a, h, k) due to the added bonus when the
virtual “queue” ZT is fixed with high probability, which
implies that the difference is negative with high proba-
bility. Then in Lemma 10 we leverage Lyapunov-drift
method and consider Lyapunov function LT = 1

2Z
2
T to

show that the redundant term can also be bounded. Com-
bining the bounds on the estimation and the redundant term
we can obtain (20) ≤ K(2H4ι+4H2b̃2+ϵ2)

η + (η+K1−α)H2Bc

ηK .
Then combining inequalities (19),(20),(21) above we can

obtain for K ≥
(

16
√
SAH6ι3B1/3

δ

)5
, applying the condi-

tion K1−αBcb̃ ≤ B, along with our choices of parameters
(Line 2 in Algorithm 1) for balancing each terms, we con-
clude thatR(K) = Õ(H4S

1
2A

1
2B

1
3K

4
5 ).
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5.2 Constraint Violation

According to the virtual-Queue update, we have

ZT+1 =

(
ZT + ρ+ ϵ− C̄TB

c

Kα

)+

≥ZT + ρ+ ϵ− C̄TB
c

Kα
, (24)

which implies that for (T − 1)Kα/Bc ≤ k ≤ TKα/Bc,∑
k

(
−Cπk

k,1(xk,1, ak,1) + ρ
)
≤ Kα

Bc
(ZT+1 − ZT )

+
∑
k

({
Ck,1 − Cπk

k,1

}
(xk,1, ak,1)− ϵ

)
.

Summing the inequality above over all frames and taking
expectation on both sides, we obtain the following upper
bound on the constraint violation:

E

[
K∑

k=1

ρ− Cπk

k,1(xk,1, ak,1)

]
≤ −Kϵ+

Kα

Bc
E [ZK1−αBc+1]

+ E

[
K∑

k=1

{
Ck,1 − Cπk

k,1

}
(xk,1, ak,1)

]
, (25)

where the inequality is true due to the fact Z1 = 0.
In Lemma 8, we will establish an upper bound on the
estimation error of E

[∑K
k=1 {Ck,1 − Cπk

1 } (xk,1, ak,1)
]
.

Next, we study the moment generating function of ZT , i.e.
E
[
erZT

]
for some r > 0. In Lemma 11, based on a Lya-

punov drift analysis of this moment generating function and
Jensen’s inequality, we will establish the following upper
bound on ZT that holds for any 1 ≤ T ≤ K1−αBc,

E[ZT ] ≤
100(H4ι+ b̃2H2)

δ
log

(
16(H2

√
ι+ b̃H)

δ

)

+
4H2Bc

Kδ
+

4H2Bc

ηKαδ
+

4η(
√
H2ι+ 2H2b̃)

δ
. (26)

Substituting the results from Lemma 8 and (26) into (25),
using the choice that ϵ = 8

√
SAH6ι3B1/3

K0.2 , we can easily

verify that when K ≥ max

{(
16

√
SAH6ι3B1/3

δ

)5
, e

1
δ

}
,

we have

V(K) ≤100(H4ι+ b̃2H2)K0.6

δB2/3
log

16(H2
√
ι+Hb̃)

δ

−
√
SAH6ι3K0.8B

1
3 ≤ 0. (27)

6 UNKNOWN VARIATION BUDGETS

The design of the Algorithm 1 relies on the knowledge
of the total variation budget B to set the frame size to be

Kα/Bc. When an upper bound on the total variation budget
is not given, we propose the Algorithm 2 that adaptively
learns the variation budget B based on the “Bandit over
Bandit” algorithm (Cheung et al., 2022). Algorithm 2 uses
an outer loop “bandit algorithm” as a master to learn the
true value B, and use the inner loop Algorithm 1 to learn
the optimal policy. We first need to divide total K episodes
into K

W epochs, which contain W = Kζ episodes. Each
epoch contains multiple frames. In each epoch, we run an
instance of Algorithm 1. Given a candidate set J of the
total budget B, we choose “arms” (estimated budget) using
the bandit adversarial bandit algorithm Exp3 (Auer et al.,
2003). If the optimal “arm” from the candidate J can be
learned efficiently, we expect that the cumulative reward and
utility collected under that arm should be close to the per-
formance of using the best-fixed candidate (closest to true
Budget) from J in hindsight. We remark that although the
“Bandit over Bandit” approach is well studied in both uncon-
strained non-stationary bandit and RL, however, adopting it
in CMDPs is nontrivial and new. We now describe the main
challenge in adapting the idea to the constrained scenario
and how we overcome the challenge.

In particular, given a choice of arm Bi in the unconstrained
version, one considers the cumulative reward Ri(Bi) over
the epoch W to guide the EXP-3 algorithm towards select-
ing the optimal arm. The cumulative reward proves to be
enough for the unconstrained case, as the optimal arm would
correspond to close to the true budget. This can be reflected
as the following regret decomposition,

R(K) =E

 K∑
k=1

V
π∗
k

k,1(xk,1)−
K/W∑
i=1

Ri(B̂)

 (28)

+E

K/W∑
i=1

Ri(B̂)−
K/W∑
i=1

Ri(Bi)

 , (29)

where B̂ is the optimal candidate from J (i.e., the true
budget). We can show that the term (28) can be bounded
since this corresponds to regret when the true budget is
known (which we have already bounded). However, the
problem becomes that how to bound the term (29). In the
unconstrained case, one can employ the result of the EXP-3
algorithm to bound that. The main challenge in extending
the above approach to the CMDP is that considering only
the reward may lead to a larger violation, since we need
to balance both the reward and utility. Thus, one needs to
judiciously select the reward based on the total observed
reward and utility corresponding to a drawn arm so that
the EXP-3 algorithm can choose the arm closest to the
optimal one. The natural idea is to set the reward to zero
if the observed utility over the epoch does not satisfy the
constraint, i.e., if Gi(Bi) is the cumulative utility received
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Algorithm 2: Double Restart Non-stationary Triple-Q

1 Choose W = K5/9,J defined in Eq. (32) , γ0 = min
{
1,
√

(K/W ) log (K/W )
(e−1)KH

}
, λ = 1/9 ;

2 Initialize weights of the bandit arms s1(j) = 1, ∀j = 0, 1, . . . , J ;
3 for epoch i = 1, . . . , K

W do
4 Update pi(j)← (1− γ0)

si(j)∑J
j′=0

si(j′)
+ γ0

J+1 , ∀j = 0, 1, . . . , J ;

5 Draw an arm Ai ∈ [J ] randomly according to the probabilities pi(0), . . . , pi(J) ;

6 Set the estimated budget Bi ← K1/3W
Ai
J

∆3/2W
;

7 Run a new instance of Algorithm 1 for W episodes with parameter value B ← Bi, b̃ = B1−c
i Kα−1;

8 Observe the cumulative reward Ri and utility Gi.;
9 for arm j=0,1,. . . ,J do

10 R̂i(j) =

{
(Gi/K

λ)I{j=Ai}/(WH(1 + 1/Kλ)pi(j)) if Gi < Wρ

(Ri +Gi/K
λ)I{j=Ai}/(WH(1 + 1/Kλ)pi(j)) if Gi ≥Wρ

; // normalization

11 si+1 ← si(j) exp(γ0R̂i(j)/(J + 1));

after selecting the arm Bi, then one can set{
R̂i(Bi) = 0 if Gi(Bi) < Wρ

R̂i(Bi) = Ri(Bi) if Gi(Bi) ≥Wρ.
(30)

Even though it is intuitive, it is not sufficient as it does not
distinguish between small and large violation. Thus, we
consider the following bandit reward function

R̂i(Bi) =
Gi(Bi)

Kλ
if Gi(Bi) < Wρ

R̂i(Bi) = Ri(Bi) +
Gi(Bi)

Kλ
if Gi(Bi) ≥Wρ.

(31)

If Gi(Bi) < Wρ, then choosing the arm Bi may lead
to violating the constraint, hence, we penalize such arm.
On the other hand, if Gi(Bi) ≥ Wρ, the arm may lead
to a feasible policy. We thus consider the reward as
Ri(Bi) + Gi(Bi)/K

λ, i.e., the reward is dominated by
the accumulated reward. However, the accumulated utility
is also considered (albeit with a weight 1/Kλ). Note that
since λ > 0, the weight factor is small as the main focus
is to maximize the reward when the constraint is satisfied.
Later, we show that how we select λ to balance the regret
and the violation. Hence, the weight factor is critical in
obtaining sub-linear regret and zero violation.

Next we present a lemma to show the upper bound of the
bandit algorithm using our designing of the bandit reward
function (31). The proofs can be found in the supplementary
materials (Section D).
Lemma 2. Let Ri(Bi)(Gi(Bi)) be the cumulative re-
ward(utility) collected in epoch i by any learning algo-
rithm after running for W episodes with the estimate value
Bi chosen using the Exp3 bandit algorithm. If we have
E[Gi(B̂)] ≥Wρ then we can obtain

E

K/W∑
i=1

(Ri(B̂)−Ri(Bi))

 =Õ(H
√
KW +HK1−λ)

E

K/W∑
i=1

Gi(B̂)−Gi(Bi)

 =Õ(HKλ
√
KW ).

Note that the above lemma bounds (29). Further, it also
bounds the utilities for the choice of B̂ and Bi which will
be useful to obtain violation.

Next, we will formally define the set J . Subsequently, we
will present the results of using “bandit over bandit” with
our designing bandit reward function on the Algorithm 1 for
the tabular setting. Then we will discuss how to apply it to
the linear function approximation setting. We define set J
as

J =

{
K1/3

∆3/2W
,
K1/3W

1
J

∆3/2W
, . . . ,

K1/3W

∆3/2W

}
, (32)

as the candidate value for B and we can see that |J | =
log(W ) + 1 = J + 1, where ∆ =

(
40

√
SAH6ι3

δ

)2
. Af-

ter an estimated budget Bi for each epoch i is selected.
Then we run a new instance of Algorithm 1 for consecu-
tive W = Kζ episodes. Each epoch contains WBc

i /K
αζ

frames. We remark here that when using the Algorithm 1
we need a local budget information, but under assumption
K1−αBcb̃ ≤ B, we can simply choose b̃ = B1−c

i Kα−1

with an estimated Bi. The following Theorem states that the
Algorithm 2 achieves a sublinear regret and zero constraint
violation without the knowledge of the total variation budget
B. Detailed proofs are deferred to supplementary materials
(Section F).

Theorem 2. Algorithm 2 achieves the following regret
and constraint violation bounds with no prior knowl-
edge of the total variation budget B when K =

Ω
(
( 40

√
SAH6ι3B1/3

δ )9
)
, and K ≥ e

1
δ :

R(K) = Õ(H4S
1
2A

1
2B

1
3K8/9) V(K) = 0
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7 LINEAR CMDPs

In this section, we consider linear CMDP which can poten-
tially model infinite state space. In particular, we consider
reward, utility, and transition probability can be modeled
as linear in known feature space Ghosh et al. (2022). The
formal definition is given below

Definition 1. The CMDP is a linear MDP with feature map
ϕ : S ×A → Rd, if for any h and k, there exists d unknown
signed measures µk,h = {µ1

k,h, . . . , µ
d
k,h} over S such that

any (x, a, x′) ∈ S ×A× S ,

Pk,h(x
′|x, a) = ⟨ϕ(x, a), µk,h(x

′)⟩ (33)

and there exists (unknown) vectors θk,r,h, θk,g,h ∈ Rd such
that for any (x, a) ∈ S ×A,

rk,h(x, a) =⟨ϕ(x, a), θk,r,h⟩,
gk,h(x, a) =⟨ϕ(x, a), θk,g,h⟩

Without loss of generality, we assume ||ϕ(x, a)||2 ≤ 1,
max{||µk,h||2, ||θk,r,h||2, ||θk,g,h||2} ≤

√
d.

We adapt the stationary version of the linear CMDP in the
non-stationary setup by considering time-varying µk,h, and
θk,j,h. It extends the non-stationary unconstrained linear
MDP Zhou et al. (2020) to the constrained case. We remark
that despite being linear, Pk,h(·|x, a) can still have infinite
degrees of freedom since µk,h(·) is unknown. Note that
Ding et al. (2021); Ding and Lavaei (2022) studied another
related concept known as linear kernel MDP. In general,
linear MDP and linear kernel MDPs are two different classes
of MDP Zhou et al. (2021).

Similar to budget variations in the tabular case, we define
the total (global) variations on µk,h and θk,j,h for j = r, g
and the total variations as

Bj =

K∑
k=2

H∑
h=1

||θk,j,h − θk−1,j,h||2, (34)

Bp =

K∑
k=2

H∑
h=1

||µk,h − µk−1,h||F , (35)

and B = Br +Bg +Bp is the global budget variation.

Algorithm: Ghosh et al. (2022) proposed an algorithm for
the stationary setup. It is a primal-dual adaptation of the
unconstrained version Ding and Lavaei (2022) . However,
there are some key differences with respect to the uncon-
strained case. For example, instead of greedy policy with
respect to the combined state-action value function one
needs the soft-max policy. We adapt the algorithm in the
non-stationary case (Algorithm 3 in the supplementary ma-
terials G). In particular, we employ the restart strategy to
adapt to the non-stationary environment. We divide the total
episodes K in K/D frames where each frame consists of

D episodes. We employ the algorithm proposed in Ghosh
et al. (2022) at each frame. Note that such type of restart
strategy is already proposed for the unconstrained version
as well (Zhou et al., 2020). However, the algorithm for
the constrained linear MDP differs from the unconstrained
version, thus, the analysis also differs.

Tabular v.s. Linear Approximation: We remark that al-
though linear CMDPs include tabular CMDPs as a special
case (Jin et al., 2018). Directly applying the algorithm to a
tabular CMDP will result in higher memory and computa-
tional complexity than Nonstationary Triple-Q.

We now flesh out Algorithm 3 for the tabular case which
will clarify the memory and computational requirement. We
can revert back to the tabular case by setting ϕ(s, a) = es,a
where es,a is a d-dimensional (here d = |S||A|) vector
where es,a = 1 for state-action pair (s, a) and zero for other
values of state and action. The wr,h vector update becomes
as the following

wk
r,h(x, a)

=
1

(nk
h(x, a) + λ)

nk
h(x,a)∑
τ=1

(rh(x
τ
h, a

τ
h) + V k

r,h+1(x
τ
h+1))

where nk
h(x, a) is the number of times the state-action pair

(x, a) has been encountered at step h till episode k. The
Qk

r,h update will be

Qk
r,h(x, a) =

min{⟨wk
r,h(x, a), ϕ(x, a)⟩+ β

√
1/(nk

h(x, a) + λ), H}.

In a similar manner, we can update Qk
g,h. Note that we need

to update this table for every state-action pair at each step
and use all the samples generated so far. Using this, one can
update V k

r,h, and V k
g,h using the soft-max policy.

We further remark that if we maintain nk
h(x, a, x̃) to be

the number of times the state-action-next state (x, a, x̃) has
been encountered at step h till episode k. Then

wk
r,h(x, a) =

1

(nk
h(x, a) + λ)

·

(
nk
h(x, a)rh(x, a) +

∑
x̃

nk
h(x, a, x̃)V

k
r,h+1(x̃)

)
.

In this case, we do not need to go through all samples at
each iteration and do not even need to store the old sam-
ples. The memory complexity of maintaining the counts
{nh(x, a, x̃)} is O

(
H|S|2|A|

)
, which is higher than the

memory complexity and computational complexity of non-
stationary Triple-Q, which are O (H|S||A|) , but matches
model-based algorithms for tabular settings.
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7.1 Main Results

Theorem 3. With D = B−1/2d1/2K1/2H−1/2, Algorithm
3 achieves the following regret and constraint violation
bounds:

R(K) = O(1 + δ

δ
K3/4H9/4d5/4B1/4ι)

V(K) =
2(1 + ξ)

ξ
O(K3/4H9/4d5/4B1/4ι)

where ι = log(2 log(|A|)dT/p), and ξ = 2H/δ.

Our algorithm provides a regret guarantee of
Õ(d5/4K3/4H9/4B1/4) and the same order on viola-
tion. ξ arises since we truncate the dual variable at ξ in
Algorithm 3. Note that regret and violation only scale with
d rather than the cardinality of the state space.

Compared to Ding and Lavaei (2022), which also considers
linear function approximation (however, it considers linear
kernel CMDP rather linear CMDP), we improve their result
by a factor of H

1
4 . We also improve the dependence on B

and d. Further, we do not need to know the total variations in
the optimal solution (B∗), unlike in Ding and Lavaei (2022).
The algorithm proposed in Ding and Lavaei (2022) is a
model-based policy-based algorithm; ours is a model-free
value-based algorithm. Thus, our algorithm enjoys an easy
implementation and improved computation efficiency since
it does not estimate the next step expected value function
as in Ding and Lavaei (2022), which requires an integration
oracle to compute a d-dimensional integration at every step.

Zero Violation: Similar to the tabular setup, we obtain zero
violation by considering a tighter optimization problem. In
particular, if we consider ϵ-tighter constraint where ϵ =

min{2(1 + ξ)

ξ
Õ(d5/4B1/4H9/4K3/4)/K, δ/2}, the viola-

tion is 0. Thus, if K1/4 ≥ 4(1 + ξ)

ξδ
Õ(d5/4B1/4H9/4),

we could obtain zero violation while maintaining the same
order of regret with respect to K.

Remark 1. Our algorithm 3 doesn’t require the information
of the local budget. In the unconstrained version Zhou et al.
(2020) achieves Õ(T 2/3) regret if local budget variation is
known. We can also achieve Õ(T 2/3) regret and Õ(T 2/3)
violation if we assume local budget variation is known.

7.2 Without knowing the variation budget

Our idea of designing the “bandit over bandit” algorithm
can still be applied to the linear CMDPs, We propose an
algorithm (see Algorithm 4 in supplementary materials),
which can achieve the following result. Details proofs can
be found in supplementary materials (Section H).

Theorem 4. Let D = B−1/2d1/2K1/2H−1/2,W =
√
K,

Algorithm 4 achieves the following regret and constraint

violation bounds:

R(K) = O(1 + δ

δ
K7/8H9/4d5/4B1/4ι)

V(K) =
2(1 + ξ)

ξ
O(1 + δ

δ
K7/8H9/4d5/4B1/4ι)

We can further achieve zero constraint viola-

tion by choosing ϵ = min{3(1 + ξ)

ξ
Õ((1 +

1/δ)d5/4B̂1/4H9/4K1−ζ/4)/K, δ/2}, when K8 ≥
6(1 + ξ)

ξδ
Õ(d5/4B1/4H9/4).

We also provide an approach based on convex optimization
to further reduce the order from Õ(K7/8) to Õ(K3/4), for
both regret and violation see Section I in the supplementary
materials for details.

8 SIMULATION

We compare Algorithm 1 with two baseline algorithms: an
algorithm (Mao et al., 2020) for non-stationary MDPs, and
an algorithm (Wei et al., 2022b) for stationary constrained
MDPs for a grid-world environment. From the simulation
results, we observe that our Algorithm 1 can quickly learn a
well-performed policy while satisfying the safety constraint
even when the MDP varies, while other methods all fail
to satisfy the constraints. All the details can be found in
supplementary materials (Section J).

9 CONCLUSION

We have studied model-free reinforcement learning algo-
rithms in non-stationary episodic CMDPs. In particular, we
consider two settings – one is computationally less inten-
sive for the tabular setting, and another one is computation-
ally more intensive but can be applied to a more general
linear approximation setup. We have further presented a
general framework for applying any algorithms with zero
constraint violation to a more practical scenario where the
total variation budget is unknown. Whether we can tighten
the bounds for model-free algorithms remains an important
future research direction. Whether we can design an ap-
proach for using any learning algorithms for CMDPs in a
non-stationary environment without the knowledge of the
budget also constitutes a future research direction.
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A NOTATION TABLE

The notations used throughout this paper are summarized in Table 2.

Table 2: Notation Table

Notation Definition

K total number of episodes
S number of states
A number of actions
H length of each episode
B total variation budget
W number of episodes in one epoch.
D number of episodes in one frame.
Bi arm selected by the bandit algorithm.
αt learning rate

Ri(Bi)(Gi(Bi)) reward/utility collected at the epoch i under selected estimate value Bi

Qk,h(x, a)(Ck,h(x, a)) estimated reward (utility) Q-function at step h in episode k
Qπ

k,h(x, a)(C
π
k,h(x, a)) reward (utility) Q-function at step h in episode k under policy π.

Vk,h(x)(Wk,h(x)) estimated reward (utility) value-function at step h in episode k
V π
k,h(x)(W

π
k,h(x)) reward (utility) value-function at step h in episode k under policy π

Fk,h(x, a) Fk,h(x, a) = Qk,h(x, a) +
Zk

η Ck,h(x, a).

Uk,h(x) Uk,h(x) = Vk,h(x) +
Zk

η Wk,h(x).

rk,h(x, a)(gk,h(x, a)) reward (utility) of (state, action) pair (x, a) at step h in episode k
Nk,h(x, a) number of visits to (x, a) when at step h in episode k (not including k)

Zk dual estimation (virtual queue) in episode k.
q∗k,h The optimal solution to the LP (12) in episode k

qϵ,∗k,h optimal solution to the tightened LP (18) in episode k

π∗
k optimal policy in episode k
δ Slater’s constant.
d dimension of the feature vector.
bt the UCB bonus for given t
I(·) indicator function
Pk,h transition kernel at step h in episode k

P̂k,h empirical transition kernel at step h in episode k
Br, Bg, Bp variation budget for reward, utility, and transition

B
(T )
r , B

(T )
g , B

(T )
p variation budget for reward, utility, and transition in frame T

ϕ(x, a) feature map for the linear MDP
θk,r,h, θk,g,h, µk,h underlying parameters for the linear MDP

B AUXILIARY LEMMAS

In this section, we state several lemmas that used in our analysis. The first lemma establishes some key properties of the
learning rates used in Non-stationary Triple-Q. The proof closely follows the proof of Lemma 4.1 in Jin et al. (2018).

Lemma 3. Recall that the learning rate used in Triple-Q is αt =
χ+1
χ+t , and

α0
t =

t∏
j=1

(1− αj) and αi
t = αi

t∏
j=i+1

(1− αj). (36)

The following properties hold for αi
t :
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(a) α0
t = 0 for t ≥ 1, α0

t = 1 for t = 0.

(b)
∑t

i=1 α
i
t = 1 for t ≥ 1,

∑t
i=1 α

i
t = 0 for t = 0.

(c) 1√
χ+t
≤
∑t

i=1
αi

t√
χ+i
≤ 2√

χ+t
.

(d)
∑∞

t=i α
i
t = 1 + 1

χ for every i ≥ 1.

(e)
∑t

i=1(α
i
t)

2 ≤ χ+1
χ+t for every t ≥ 1.

□

Proof. The proof of (a) and (b) are straightforward by using the definition of αi
t. The proof of (d) is the same as that in Jin

et al. (2018).

(c): We next prove (c) by induction.

For t = 1, we have
∑t

i=1
αi

t√
χ+i

=
α1

1√
χ+1

= 1√
χ+1

, so (c) holds for t = 1.

Now suppose that (c) holds for t− 1 for t ≥ 2, i.e.

1√
χ+ t− 1

≤
t−1∑
i=1

αi
t√

χ+ i− 1
≤ 2√

χ+ t− 1
.

From the relationship αi
t = (1− αt)α

i
t−1 for i = 1, 2, . . . , t− 1, we have

t∑
i=1

αi
t√

χ+ i
=

αt√
χ+ t

+ (1− αt)

t−1∑
i=1

αi
t−1√
χ+ i

.

Now we apply the induction assumption. To prove the lower bound in (c), we have

αt√
χ+ t

+ (1− αt)

t−1∑
i=1

αi
t−1√
χ+ i

≥ αt√
χ+ t

+
1− αt√
χ+ t− 1

≥ αt√
χ+ t

+
1− αt√
χ+ t

≥ 1√
χ+ t

.

To prove the upper bound in (c), we have

αt√
χ+ t

+ (1− αt)
t−1∑
i=1

αi
t−1√
χ+ i

≤ αt√
χ+ t

+
2(1− αt)√
χ+ t− 1

=
χ+ 1

(χ+ t)
√
χ+ t

+
2(t− 1)

(χ+ t)
√
χ+ t− 1

,

=
1− χ− 2t

(χ+ t)
√
χ+ t

+
2(t− 1)

(χ+ t)
√
χ+ t− 1

+
2√
χ+ t

≤ −χ− 1

(χ+ t)
√
χ+ t− 1

+
2√
χ+ t

≤ 2√
χ+ t

. (37)

(e) According to its definition, we have

αi
t =

χ+ 1

i+ χ
·
(

i

i+ 1 + χ

i+ 1

i+ 2 + χ
· · · t− 1

t+ χ

)
=
χ+ 1

t+ χ
·
(

i

i+ χ

i+ 1

i+ 1 + χ
· · · t− 1

t− 1 + χ

)
≤ χ+ 1

χ+ t
. (38)

Therefore, we have
t∑

i=1

(αi
t)

2 ≤ [max
i∈[t]

αi
t] ·

t∑
i=1

αi
t ≤

χ+ 1

χ+ t
,

because
∑t

i=1 α
i
t = 1.
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Lemma 4. For any (x, a, h, k) ∈ S ×A× [H]× [K], we have the following bounds on Qk,h(x, a) and Ck,h(x, a) :

0 ≤ Qk,h(x, a) ≤ H2(
√
ι+ 2b̃)

0 ≤ Ck,h(x, a) ≤ H2(
√
ι+ 2b̃).

Proof. We first consider the last step of an episode, i.e. h = H. Recall that Vk,H+1(x) = 0 for any k and x by its definition
and Q0,H = H ≤ H(

√
ι+ 2b̃). Suppose Qk′,H(x, a) ≤ H(

√
ι+ 2b̃) for any k′ ≤ k − 1 and any (x, a). Then,

Qk,H(x, a) = (1− αt)Qkt,H(x, a) + αt

(
rk,H(x, a) + bt + 2Hb̃

)
(39)

≤ max

{
H
√
ι+ 2b̃H, 1 +

H
√
ι

4
+ 2Hb̃

}
≤ H
√
ι+ 2b̃H, (40)

where t = Nk,H(x, a) is the number of visits to state-action pair (x, a) when in step H by episode k (but not include
episode k) and kt is the index of the episode of the most recent visit. Therefore, the upper bound holds for h = H. Note
that Q0,h = H ≤ H(H − h+ 1)(

√
ι+ 2b̃). Now suppose the upper bound holds for h+ 1, and also holds for k′ ≤ k − 1.

Consider step h in episode k :

Qk,h(x, a) =(1− αt)Qkt,h(x, a) + αt

(
rk,h(x, a) + Vkt,h+1(xkt,h+1) + bt + 2b̃H

)
,

where t = Nk,h(x, a) is the number of visits to state-action pair (x, a) when in step h by episode k (but not include
episode k) and kt is the index of the episode of the most recent visit. We also note that Vk,h+1(x) ≤ maxa Qk,h+1(x, a) ≤
H(H − h)(

√
ι+ 2b̃). Therefore, we obtain

Qk,h(x, a) ≤max

{
H(H − h+ 1)(

√
ι+ 2b̃), 1 +H(H − h)(

√
ι+ 2b̃) +

H
√
ι

4
+ 2b̃H

}
≤H(H − h+ 1)(

√
ι+ 2b̃).

Therefore, we can conclude that Qk,h(x, a) ≤ H2(
√
ι+2b̃) for any k, h and (x, a). The proof for Ck,h(x, a) is identical.

Lemma 5. Consider any frame T, any episode k′. Let t=Nk,h(x, a) be the number of visits to (x, a) at step h before episode
k in the current frame and let k1, . . . , kt < k be the indices of these episodes. Under any policy π, with probability at least
1− 1

K3 , the following inequalities hold simultaneously for all (x, a, h, k) ∈ S ×A× [H]× [K],∣∣∣∣∣
t∑

i=1

αi
t

{
(P̂ki,h − Pki,h)V

π
k,h+1

}
(x, a)

∣∣∣∣∣ ≤1

4

√
H2ι(χ+ 1)

(χ+ t)
,∣∣∣∣∣

t∑
i=1

αi
t

{
(P̂ki,h − Pki,h)W

π
k,h+1

}
(x, a)

∣∣∣∣∣ ≤1

4

√
H2ι(χ+ 1)

(χ+ t)
.

Proof. Without loss of generality, we consider T = 1. Fix any (x, a, h) ∈ S × A × H, a fixed episode k, and any
n ∈ [Kα/Bc], define

X(n) =

n∑
i=1

αi
τ · I{ki≤K}

{
(P̂ki,h − Pki,h)V

π
k,h+1

}
(x, a).

Let Fi be the σ−algebra generated by all the random variables until step h in episode ki. Then

E[X(n+ 1)|Fn] = X(n) + E
[
αn+1
τ I{kn+1≤K}

{
(P̂kn+1,h − Pkn+1,h)V

π
k,h+1

}
(x, a)|Fn

]
= X(n),

which shows that X(n) is a martingale. We also have for 1 ≤ m ≤ n,

|X(m)−X(m− 1)| ≤ αm
τ

∣∣∣{(P̂km,h − Pkm,h)V
π
k,h+1

}
(x, a)

∣∣∣ ≤ αm
τ H
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Let ki = K + 1 if it is taken for fewer than i times, and let σ =

√
8 log

(√
2SAHK

)∑τ
i=1(α

i
τH)2. Then by applying

the Azuma-Hoeffding inequality, we have with probability at least 1− 2 exp
(
− σ2

2
∑τ

i=1(α
i
τH)2

)
≥ 1− 1

2S2A2H2K4 ,

|X(τ)| ≤

√√√√8 log
(√

2SAHK
) τ∑

i=1

(αi
τH)2 ≤

√√√√ ι

16
H2

τ∑
i=1

(αi
τ )

2 ≤ 1

4

√
H2ι(χ+ 1)

χ+ τ
,

Because this inequality holds for any τ ∈ [K], it also holds for τ = t = Nk,h(x, a) ≤ K. Applying the union bound,
we obtain that with probability at least 1 − 1

2SAHK3 the following inequality holds simultaneously for all (x, a, h, k) ∈
S ×A× [H]× [K],: ∣∣∣∣∣

t∑
i=1

αi
t

{
(P̂ki,h − Pki,h)V

π
k,h+1

}
(x, a)

∣∣∣∣∣ ≤ 1

4

√
H2ι(χ+ 1)

(χ+ t)
.

Following a similar analysis, we also have that with probability at least 1 − 1
2SAHK3 the following inequality holds

simultaneously for all (x, a, h, k) ∈ S ×A× [H]× [K],:∣∣∣∣∣
t∑

i=1

αi
t

{
(P̂ki,h − Pki,h)W

π
k,h+1

}
(x, a)

∣∣∣∣∣ ≤ 1

4

√
H2ι(χ+ 1)

(χ+ t)
.

Therefore applying a union bound on the two events we finish proving the lemma.

C PROOFS OF THE TECHNICAL LEMMAS

Lemma 6. For any frame T, any x, a, h and any (T − 1)Kα/Bc ≤ k1 ≤ k2 ≤ TKα/Bc, we have

|Qπ
k1,h(x, a)−Qπ′

k2,h(x, a)| ≤ Hb̃

|Cπ
k1,h(x, a)− Cπ′

k2,h(x, a)| ≤ Hb̃

Proof. First define Br
h, B

g
h, B

p
h to be the variation of reward, utility functions and transitions at step h within frame T.

Br
h =

TKα/Bc∑
k=(T−1)Kα/Bc+1

sup
x,a
|rk,h(x, a)− rk+1,h(x, a)| (41)

Bg
h =

TKα/Bc∑
k=(T−1)Kα/Bc+1

sup
x,a
|gk,h(x, a)− gk+1,h(x, a)| (42)

Bp
h =

TKα/Bc∑
k=(T−1)Kα/Bc+1

sup
x,a
∥Pk,h(·|x, a)− Pk+1,h(·|x, a)∥1 (43)

We will prove the following statement by induction.

|Qπ
k1,h(x, a)−Qπ′

k2,h(x, a)| ≤
H∑

h′=h

Br
h′ +H

H∑
h′=h

Bp
h′

For step H, the statement holds because for any (x, a),

|Qπ
k1,H(x, a)−Qπ′

k2,H(x, a)| =|rk1,H(x, a)− rk2,H(x, a)|

≤
k2−1∑
k=k1

|rk,H(x, a)− rk+1,H(x, a)| ≤ Br
H
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Now suppose the statement holds for h+ 1, then

Qπ
k1,h(x, a)−Qπ′

k2,h(x, a)

=Pk1,hV
π
k1,h+1(x, a)− Pk2,hV

π′

k2,h+1(x, a) + rk1,h(x, a)− rk2,h(x, a)

≤Pk1,hV
π
k1,h+1(x, a)− Pk2,hV

π′

k2,h+1(x, a) +Br
h

=
∑
x′

Pk1,h(x
′|x, a)V π

k1,h+1(x
′)−

∑
x′

Pk2,h(x
′|x, a)V π′

k2,h+1(x
′) +Br

h

=
∑
x′

Pk1,h(x
′|x, a)Qπ

k1,h+1(x
′, πh+1(x

′))−
∑
x′

Pk2,h(x
′|x, a)Qπ′

k2,h+1(x
′, π′

h+1(x
′)) +Br

h

According to the hypothesis on h+ 1, we have

Qπ
k1,h+1(x

′, πh+1(x
′)) ≤ Qπ′

k2,h+1(x
′, π′

h+1(x
′)) +

H∑
h′=h+1

Br
h′ +H

H∑
h′=h+1

Bp
h′ (44)

Therefore

Qπ
k1,h(x, a)−Qπ′

k2,h(x, a)

≤
∑
x′

(Pk1,h(x
′|x, a)− Pk2,h(x

′|x, a))Qπ′

k2,h+1(x
′, πh+1(x

′)) +

H∑
h′=h

Br
h′ +H

H∑
h′=h+1

Bp
h′

≤∥Pk1,h(·|x, a)− Pk2,h(·|x, a)∥1 ·H +

H∑
h′=h

Br
h′ +H

H∑
h′=h+1

Bp
h′

≤Bp
hH +

H∑
h′=h

Br
h′ +H

H∑
h′=h+1

Bp
h′

≤
H∑

h′=h

Br
h′ +H

H∑
h′=h

Bp
h′

where the last inequality comes from the assumption on b̃. The same analysis can be applied to |Cπ
k1,h

(x, a)− Cπ
k2,h

(x, a)|.
We finish the proof by using the fact that

∑H
h′=h B

r
h′ +H

∑H
h′=h B

p
h′ ≤ Hb̃.

Lemma 7. With probability at least 1− 1
K3 , the following inequality holds simultaneously for all (x, a, h, k) ∈ S ×A×

[H]× [K] : {
Fk,h − Fπ

k,h

}
(x, a) ≥ 0, (45)

Let π be a joint policy such that π is the optimal policy for the ϵ-tight problem at episode k, whose reward (utility) Q value
functions at step h are denoted by Qϵ,∗

k,h(C
ϵ,∗
k,h). Then we can further obtain

E

[
K∑

k=1

∑
a

{(
F ϵ,∗
k,1 − Fk,1

)
qϵ,∗k,1

}
(xk,1, a)

]
≤ (η +K1−α)H2Bc

ηK
. (46)

The function F will be defined in Eq.(47).

Proof. Consider frame T and episodes in frame T. Define Z = Z(T−1)Kα/Bc+1 because the value of the virtual queue does
not change during each frame. We further define/recall the following notations:

Fk,h(x, a) = Qk,h(x, a) +
Z

η
Ck,h(x, a), Uk,h(x) = Vk,h(x) +

Z

η
Wk,h(x)

Fπ
k,h(x, a) = Qπ

k,h(x, a) +
Z

η
Cπ

k,h(x, a), Uπ
k,h(x) = V π

k,h(x) +
Z

η
Wπ

k,h(x).

(47)

From the updating rule of Q functions, we first know that

{Qk,h −Qπ
k,h}(x, a) =α0

t {Q(T−1)Kα/Bc+1,h −Qπ
k,h}(x, a)
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+

t∑
i=1

αi
t

(
{Vki,h+1 − V π

k,h+1}(xki,h+1) + {(P̂ki

k,h − Pk,h)V
π
k,h+1}(x, a) + bi + 2Hb̃

)
(48)

Then we have with probability at least 1− 1
k3

{Fk,h − Fπ
k,h}(x, a)

=α0
t

{
F(T−1)Kα/Bc+1,h − Fπ

k,h

}
(x, a)

+

t∑
i=1

αi
t

({
Uki,h+1 − Uπ

k,h+1

}
(xki,h+1) + {(P̂ki

k,h − Pk,h)U
π
k,h+1}(x, a) +

(
1 +

Z

η

)
(bi + 2Hb̃)

)

=α0
t

{
F(T−1)Kα/Bc+1,h − Fπ

k,h

}
(x, a) +

t∑
i=1

αi
t

(
{(P̂ki

k,h − Pki,h)U
π
k,h+1}

)
+

t∑
i=1

αi
t

({
Uki,h+1 − Uπ

k,h+1

}
(xki,h+1) + {(Pki,h − Pk,h)U

π
k,h+1}(x, a) +

(
1 +

Z

η

)
(bi + 2Hb̃)

)
≥(a)α

0
t

{
F(T−1)Kα/Bc+1,h − Fπ

k,h

}
(x, a)

+

t∑
i=1

αi
t

({
Uki,h+1 − Uπ

k,h+1

}
(xki,h+1) + {(Pki,h − Pk,h)U

π
k,h+1}(x, a) +

(
1 +

Z

η

)
(bi +Hb̃)

)

≥(b)α
0
t

{
F(T−1)Kα/Bc+1,h − Fπ

k,h

}
(x, a) +

t∑
i=1

αi
t

({
Uki,h+1 − Uπ

k,h+1

}
(xki,h+1) +

(
1 +

Z

η

)
Hb̃

)

=α0
t

{
F(T−1)Kα/Bc+1,h − Fπ

k,h

}
(x, a) +

t∑
i=1

αi
t

{
Uki,h+1 − Uπ

ki,h+1

}
(xki,h+1)

+

t∑
i=1

αi
t

{
Uπ
ki,h+1 − Uπ

k,h+1

}
(xki,h+1) +

(
1 +

Z

η

)
Hb̃

=(c)α
0
t

{
F(T−1)Kα/Bc+1,h − Fπ

k,h

}
(x, a) +

t∑
i=1

αi
t

(
max

a
Fki,h+1(xki,h+1, a)− Fπ

ki,h+1(xki,h+1, π(xki,h+1))
)

+

t∑
i=1

αi
t

{
Uπ
ki,h+1 − Uπ

k,h+1

}
(xki,h+1) +

(
1 +

Z

η

)
Hb̃

≥(d)α
0
t

{
F(T−1)Kα/Bc+1,h − Fπ

k,h

}
(x, a) +

t∑
i=1

αi
t

(
max

a
Fki,h+1(xki,h+1, a)− Fπ

ki,h+1(xki,h+1, π(xki,h+1))
)

−
t∑

i=1

αi
t|(1 +

Z

η
)Hb̃|+ (1 +

Z

η
)Hb̃

≥α0
t

{
F(T−1)Kα/Bc+1,h − Fπ

ki,h

}
(x, a) +

t∑
i=1

αi
t

{
Fki,h+1 − Fπ

ki,h+1

}
(xki,h+1, π(xki,h+1)), (49)

where inequality (a) holds because that∣∣∣∣∣
t∑

i=1

αi
t

{
(Pki,h − Pk,h)V

π
k,h+1

}
(x, a)

∣∣∣∣∣ =
∣∣∣∣∣∣

t∑
i=1

k−1∑
j=ki

αi
t

{
(Pj,h − Pj+1,h)V

π
k,h+1

}
(x, a)

∣∣∣∣∣∣ ≤ b̃H,

and the same analysis can be applied to
∣∣∣∑t

i=1 α
i
t

{
(Pki,h − Pk,h)W

π
k,h+1

}
(x, a)

∣∣∣ . The inequality (b) is true due to the
concentration result in Lemma 5 and

t∑
i=1

αi
t(1 +

Z

η
)bi =

1

4

t∑
i=1

αi
t(1 +

Z

η
)

√
H2ι(χ+ 1)

χ+ t
≥ η + Z

4η

√
H2ι(χ+ 1)

χ+ t
.
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Equality (c) holds because our algorithm selects the action that maximizes Fki,h+1(xki,h+1, a) so Uki,h+1(xki,h+1) =
maxa Fki,h+1(xki,h+1, a), and inequality (c) is obtained by using Lemma 6 and the property (d) of the learning rate.

The inequality above suggests that we can prove {Fk,h − Fπ
k,h}(x, a) for any (x, a) if (i){

F(T−1)Kα/Bc+1,h − Fπ
k,h

}
(x, a) ≥ 0,

i.e. the result holds at the beginning of the frame and (ii){
Fk′,h+1 − Fπ

k′,h+1

}
(x, a) ≥ 0 for any k′ ≤ k

and (x, a), i.e. the result holds for step h+ 1 in all the episodes in the same frame.

It is straightforward to see that (i) holds because all reward and cost Q-functions are set to H at the beginning of each frame.

We now prove condition (ii) using induction, and consider the first frame, i.e. T = 1. The proof is identical for other frames.

Consider h = H i.e. the last step. In this case, inequality (49) becomes

{Fk,H − Fπ
k,H}(x, a) ≥ α0

t

{
H +

Z1

η
H − Fπ

k,H

}
(x, a) ≥ 0, (50)

i.e. condition (ii) holds for any k in the first frame and h = H. By applying induction on h, we conclude that

{Fk,h − Fπ
k,h}(x, a) ≥ 0. (51)

holds for any k, h, and (x, a), which completes the proof of (45). Since Eq. (45) can only be applied to a single policy, in
order to have a bound on

∑K
k=1

∑
a

{(
F ϵ,∗
k,1 − Fk,1

)
qϵ,∗k,1

}
(xk,1, a), we first need to substitute Fπ

k,1 with F ϵ,∗
k,1 in Eq. (45),

and use a union bound over all the episodes, which means with probability at least 1 − 1
K2 that Fk,1 − F ϵ,∗

k,1 ≥ 0. Let E
denote such event that Fk,h − F ϵ,∗

k,h ≥ 0 holds for all k, h and (x, a). Then we conclude that

E

[
K∑

k=1

∑
a

{(
F ϵ,∗
k,1 − Fk,1

)
qϵ,∗k,1

}
(xk,1, a)

]

=E

[
K∑

k=1

∑
a

{(
F ϵ,∗
k,1 − Fk,1

)
qϵ,∗k,1

}
(xk,1, a)

∣∣∣∣∣ E
]
Pr(E) + E

[
K∑

k=1

∑
a

{(
F ϵ,∗
k,1 − Fk,1

)
qϵ,∗k,1

}
(xk,1, a)

∣∣∣∣∣ Ec
]
Pr(Ec)

≤KH

(
1 +

K1−αBcH

η

)
1

K2
≤ (η +K1−α)H2Bc

ηK
. (52)

Lemma 8. Under our algorithm, we have for any T ∈ [K1−α ·Bc],

E

 TKα/Bc∑
k=(T−1)Kα/Bc+1

{
Qk,1 −Qπk

k,1

}
(xk,1, ak,1)


≤H2SA+

2(H3
√
ι+ 2H3b̃)Kα

Bcχ
+

√
H4SAιKα(χ+ 1)

Bc
+

2KαH2b̃

Bc

E

 TKα/Bc∑
k=(T−1)Kα/Bc+1

{
Ck,1 − Cπk

k,1

}
(xk,1, ak,1)


≤H2SA+

2(H3
√
ι+ 2H3b̃)Kα

Bcχ
+

√
H4SAιKα(χ+ 1)

Bc
+

2KαH2b̃

Bc
.

Proof. We prove this lemma for the first frame such that 1 ≤ k ≤ kα/Bc. By using the update rule recursively, we have

Qk,h(x, a) ≤α0
tH +

t∑
i=1

αi
t

(
rki,h(x, a) + Vki,h+1(xki,h+1) + bi + 2Hb̃

)
, (53)
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where α0
t =

∏t
j=1(1− αj) and αi

t = αi

∏t
j=i+1(1− αj). From the inequality above, we further obtain

Kα/Bc∑
k=1

Qk,h(x, a) ≤
Kα/Bc∑
k=1

α0
tH +

Kα/Bc∑
k=1

Nk,h(x,a)∑
i=1

αi
Nk,h

(
rki,h(x, a) + Vki,h+1(xki,h+1) + bi + 2Hb̃

)
. (54)

We simplify our notation in this proof and use the following notations:

Nk,h = Nk,h(xk,h, ak,h), k
(k,h)
i = ki(xk,h, ak,h),

where k
(k,h)
i is the index of the episode in which the agent visits state-action pair (xk,h, ak,h) for the ith time. Since in a

given sample path, (k, h) can uniquely determine (xk,h, ak,h), this notation introduces no ambiguity. We note that

Kα/Bc∑
k=1

Nk,h∑
i=1

αi
Nk,h

V
k
(k,h)
i ,h+1

(
x
k
(k,h)
i ,h+1

)
≤

Kα/Bc∑
k=1

Vk,h+1(xk,h+1)

∞∑
t=Nk,h

α
Nk,h

t ≤
(
1 +

1

χ

)∑
k

Vk,h+1(xk,h+1),

(55)
Then we obtain

Kα/Bc∑
k=1

Qk,h(xk,h, ak,h)

≤
Kα/Bc∑
k=1

α0
tH + (1 +

1

χ
)

Kα/Bc∑
k=1

(rk,h(xk,h, ak,h) + Vk,h+1(xk,h+1)) +

Kα/Bc∑
k=1

Nk,h∑
i=1

αi
Nk,h

bi +Kαb̃/Bc

≤
Kα/Bc∑
k=1

(rk,h(xk,h, ak,h) + Vk,h+1(xk,h+1)) +HSA+
2(H2

√
ι+ 2H2b̃)Kα

Bcχ

+
1

2

√
H2SAιKα(χ+ 1)/Bc + 2KαHb̃/Bc,

where the last inequality holds because (i) we have

Kα/Bc∑
k=1

α0
Nk,h

H =
∑
k

HI{Nk,h=0} ≤ HSA,

(ii) Vk,h+1(xk,h+1) ≤ (H2
√
ι+ b̃), rk,h(xk,h, ak,h) ≤ 1, and (iii) we know that

Kα/Bc∑
k=1

Nk,h∑
i=1

αi
Nk,h

bi =
1

4

Kα/Bc∑
k=1

Nk,h∑
i=1

αi
Nk,h

√
H2ι(χ+ 1)

χ+ i
≤ 1

2

Kα/Bc∑
k=1

√
H2ι(χ+ 1)

χ+Nk,h

=
1

2

∑
x,a

NKα/Bc,h(x,a)∑
n=1

√
H2ι(χ+ 1)

χ+ n
≤ 1

2

∑
x,a

NKα/Bc,h(x,a)∑
n=1

√
H2ι(χ+ 1)

n

(1)

≤
√

H2SAιKα(χ+ 1)/Bc,

where the last inequality above holds because the left hand side of (1) is the summation of Kα/Bc terms and
√

H2ι(χ+1)
χ+n is

a decreasing function of n.

Therefore, it is maximized when NKα/Bc,h = Kα/BcSA for all x, a. Thus we can obtain

Kα/Bc∑
k=1

Qk,h(xk,h, ak,h)−
∑
k

Qπk

k,h(xk,h, ak,h)

≤
Kα/Bc∑
k=1

(
Vk,h+1(xk,h+1)− Pk,hV

πk

k,h+1(xk,h, ak,h)
)
+HSA+

2(H2
√
ι+ 2H2b̃)Kα

Bcχ

+
√
H2SAιKα(χ+ 1)/Bc +

2KαHb̃

Bc



Provably Efficient Model-Free Algorithms for Non-stationary CMDPs

≤
Kα/Bc∑
k=1

(
Vk,h+1(xk,h+1)− Pk,hV

πk

h+1(xk,h, ak,h) + V πk

k,h+1(xk,h+1)− V πk

k,h+1(xk,h+1)
)

+HSA+
2(H2

√
ι+ 2H2b̃)Kα

Bcχ
+
√
H2SAιKα(χ+ 1)/Bc + 2KαHb̃/Bc

=

Kα/Bc∑
k=1

(
Vk,h+1(xk,h+1))− V πk

k,h+1(xk,h+1)− Pk,hV
πk

k,h+1(xk,h, ak,h) + P̂k,hV
πk

k,h+1(xk,h, ak,h)
)

+HSA+
2(H2

√
ι+ 2H2b̃)Kα

Bcχ
+
√
H2SAιKα(χ+ 1)/Bc + 2KαHb̃/Bc

=

Kα/Bc∑
k=1

(
Qk,h+1(xk,h+1, ak,h+1)−Qπk

k,h+1(xk,h+1, ak,h+1)− PhV
πk

k,h+1(xk,h, ak,h) + P̂k,hV
πk

k,h+1(xk,h, ak,h

)
+HSA+

2(H2
√
ι+ 2H2b̃)Kα

Bcχ

+
√
H2SAιKα(χ+ 1)/Bc + 2KαHb̃/Bc.

Taking the expectation on both sides yields

E

Kα/Bc∑
k=1

Qk,h(xk,h, ak,h)−
∑
k

Qπk

k,h(xk,h, ak,h)


≤E

Kα/Bc∑
k=1

(
Qk,h+1(xk,h+1, ak,h+1)−Qπk

k,h+1(xk,h+1, ak,h+1)
)

+HSA+
2(H2

√
ι+ 2H2b̃)Kα

Bcχ
+
√
H2SAιKα(χ+ 1)/Bc + 2KαHb̃/Bc.

Then by using the inequality repeatably, we obtain for any h ∈ [H],

E

Kα/Bc∑
k=1

(
Qk,h(xk,h, ak,h)−Qπk

k,h(xk,h, ak,h)
)

≤H2SA+
2(H3

√
ι+ 2H3b̃)Kα

Bcχ
+
√
H4SAιKα(χ+ 1)/Bc + 2KαH2b̃/Bc.

We finish the proof.

Lemma 9. Given ϵ ≤ δ, we have

E

[∑
a

{
Q∗

k,1q
∗
k,1 −Qϵ,∗

k,1q
ϵ,∗
k,1

}
(xk,1, a)

]
≤ Hϵ

δ
.

□

Proof. Given q∗k,h(x, a) is the optimal solution for episode k, we have∑
h,x,a

q∗k,h(x, a)gk,h(x, a) ≥ ρ.

Under Assumption 1, we know that there exists a feasible solution {qξ1k,h(x, a)}Hh=1 such that∑
h,x,a

qξ1k,h(x, a)gk,h(x, a) ≥ ρ+ δ.
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We construct qξ2k,h(x, a) = (1− ϵ
δ )q

∗
k,h(x, a) +

ϵ
δ q

ξ1
k,h(x, a), which satisfies that∑

h,x,a

qξ2k,h(x, a)gk,h(x, a) =
∑
h,x,a

(
(1− ϵ

δ
)q∗k,h(x, a) +

ϵ

δ
qξ1k,h(x, a)

)
gk,h(x, a) ≥ ρ+ ϵ,

∑
h,x,a

qξ2k,h(x, a) =
∑
x′,a′

Pk,h−1(x|x′, a′)qξ2k,h−1(x
′, a′),

∑
h,x,a

qξ2k,h(x, a) = 1.

Also we have qξ2k,h(x, a) ≥ 0 for all (h, x, a). Thus {qξ2k,h(x, a)}Hh=1 is a feasible solution to the ϵ-tightened optimization
problem (18). Then given {qϵ,∗k,h(x, a)}Hh=1 is the optimal solution to the ϵ-tightened optimization problem, we have∑

h,x,a

(
q∗k,h(x, a)− qϵ,∗k,h(x, a)

)
rk,h(x, a)

≤
∑
h,x,a

(
q∗k,h(x, a)− qξ2k,h(x, a)

)
rk,h(x, a)

≤
∑
h,x,a

(
q∗k,h(x, a)−

(
1− ϵ

δ

)
q∗k,h(x, a)−

ϵ

δ
qξ1k,h(x, a)

)
rk,h(x, a)

≤
∑
h,x,a

(
q∗k,h(x, a)−

(
1− ϵ

δ

)
q∗k,h(x, a)

)
rk,h(x, a)

≤ ϵ

δ

∑
h,x,a

q∗k,h(x, a)rk,h(x, a) ≤
Hϵ

δ
,

where the last inequality holds because 0 ≤ rk,h(x, a) ≤ 1 under our assumption. Therefore the result follows because∑
a

Q∗
k,1(xk,1, a)q

∗
k,1(xk,1, a) =

∑
h,x,a

q∗k,h(x, a)rk,h(x, a)∑
a

Qϵ,∗
k,1(xk,1, a)q

ϵ,∗
k,1(xk,1, a) =

∑
h,x,a

qϵ,∗k,h(x, a)rk,h(x, a).

Lemma 10. Assume ϵ ≤ δ. The expected Lyapunov drift satisfies

E [LT+1 − LT |ZT = z]

≤ Bc

Kα

TKα∑
k=(T−1)Kα+1

(
−ηE

[∑
a

{
Q̂k,1q

ϵ,∗
1

}
(xk,1, a)− Q̂k,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]

+zE

[∑
a

{(
Cϵ,∗

k,1 − Ck,1

)
qϵ,∗k,1

}
(xk,1, a)

∣∣∣∣∣ZT = z

])
+ 2H4ι+ 4H4b̃+ ϵ2. (56)

Proof. Assume ϵ ≤ δ. The expected Lyapunov drift satisfies

E [LT+1 − LT |ZT = z]

≤ Bc

Kα

TKα∑
k=(T−1)Kα+1

(
−ηE

[∑
a

{
Q̂k,1q

ϵ,∗
1

}
(xk,1, a)− Q̂k,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]

+zE

[∑
a

{(
Cϵ,∗

k,1 − Ck,1

)
qϵ,∗k,1

}
(xk,1, a)

∣∣∣∣∣ZT = z

])
+ 2H4ι+ 4H4b̃+ ϵ2. (57)

Based on the definition of LT = 1
2Z

2
T , the Lyapunov drift is

LT+1 − LT ≤ZT

(
ρ+ ϵ− C̄TB

c

Kα

)
+

(
C̄TBc

Kα + ϵ− ρ
)2

2
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≤ZT

(
ρ+ ϵ− C̄TB

c

Kα

)
+ 2H4ι+ 4H4b̃+ ϵ2

≤ZTB
c

Kα

(T+1)Kα/Bc∑
k=TKα/Bc+1

(
ρ+ ϵ− Ĉk,1(xk,1, ak,1)

)
+ 2H4ι+ 4H4b̃+ ϵ2

where the first inequality is because the upper bound on |Ĉk,1(xk,1, ak,1)| is H2(
√
ι+ 2b̃) from Lemma 4. Let {qϵk,h}Hh=1

be a feasible solution to the tightened LP (18) at episode k. Then the expected Lyapunov drift conditioned on ZT = z is

E [LT+1 − LT |ZT = z]

≤ Bc

Kα

TKα/Bc∑
k=(T−1)Kα+1

(
E
[
z
(
ρ+ ϵ− Ĉk,1(xk,1, ak,1)

)
− ηQ̂k,1(xk,1, ak,1)

∣∣∣ZT = z
]
+ ηE

[
Q̂k,1(xk,1, ak,1)

∣∣∣ZT = z
])

+ 2H4ι+ 4H4b̃+ ϵ2. (58)

Now we focus on the term inside the summation and obtain that(
E
[
z
(
ρ+ ϵ− Ĉk,1(xk,1, ak,1)

)
− ηQ̂k,1(xk,1, ak,1)

∣∣∣ZT = z
]
+ ηE

[
Q̂k,1(xk,1, ak,1)

∣∣∣ZT = z
])

≤(a)z(ρ+ ϵ)− E

[
η

(∑
a

{
z

η
Ĉk,1q

ϵ
k,1 + Q̂k,1q

ϵ
k,1

}
(xk,1, a)

)∣∣∣∣∣ZT = z

]
+ ηE

[
Q̂k,1(xk,1, ak,1)

∣∣∣ZT = z
]

=E

[
z

(
ρ+ ϵ−

∑
a

Ĉk,1(xk,1, a)q
ϵ
k,1(xk,1, a)

)∣∣∣∣∣ZT = z

]

− E

[
η
∑
a

Q̂k,1(xk,1, a)q
ϵ
k,1(xk,1, a)− ηQ̂k,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]

=E

[
z

(
ρ+ ϵ−

∑
a

Cϵ
k,1(xk,1, a)q

ϵ
k,1(xk,1, a)

)∣∣∣∣∣ZT = z

]

− E

[
η
∑
a

Q̂k,1(xk,1, a)q
ϵ
k,1(xk,1, a)− ηQ̂k,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]
+ E

[
z
∑
a

{
(Cϵ

k,1 − Ĉk,1)q
ϵ
k,1

}
(xk,1, a)

∣∣∣∣∣ZT = z

]

≤− ηE

[∑
a

Q̂k,1(xk,1, a)q
ϵ
k,1(xk,1, a)− Q̂k,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]
+ E

[
z
∑
a

{
(Cϵ

k,1 − Ĉk,1)q
ϵ
k,1

}
(xk,1, a)

∣∣∣∣∣ZT = z

]
,

where inequality (a) holds because ak,h is chosen to maximize Q̂k,h(xk,h, a) +
ZT

η Ĉk,h(xk,h, a). and the last equality
holds due to that {qϵk,h(x, a)}Hh=1 is a feasible solution to the optimization problem (18), so(

ρ+ ϵ−
∑
a

Cϵ
k,1(xk,1, a)q

ϵ
k,1(xk,1, a)

)
=

ρ+ ϵ−
∑
h,x,a

gk,h(x, a)q
ϵ
k,h(x, a)

 ≤ 0.

Therefore, we can conclude the lemma by substituting qϵk,h(x, a) with the optimal solution qϵ,∗k,h(x, a).

Lemma 11. Assuming ϵ ≤ δ
2 , we have for any 1 ≤ T ≤ K1−α ·Bc

E[ZT ] ≤
100(H4ι+ b̃2H2)

δ
log

(
16(H2

√
ι+ b̃H2)

δ

)
+

4H2Bc

Kδ
+

4H2Bc

ηδKα
+

4η(
√
H2ι+ 2H2b̃)

δ
. (59)

The proof will also use the following lemma from (Neely, 2016).

Lemma 12. Let St be the state of a Markov chain, Lt be a Lyapunov function with L0 = l0, and its drift ∆t = Lt+1 − Lt.
Given the constant δ and v with 0 < δ ≤ v, suppose that the expected drift E[∆t|St = s] satisfies the following conditions:

(1) There exists constant γ > 0 and θt > 0 such that E[∆t|St = s] ≤ −γ when Lt ≥ θt.
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(2) |Lt+1 − Lt| ≤ v holds with probability one.

Then we have

E[erLt ] ≤ erl0 +
2er(v+θt)

rγ
,

where r = γ
v2+vγ/3 . □

Proof of Lemma 11. We apply Lemma 12 to a new Lyapunov function:

L̄T = ZT .

To verify condition (1) in Lemma 12, consider

L̄T = ZT ≥ θT =
4( (η+K1−α)H2Bc

ηK + η(
√
H2ι+ 2H2b̃) +H4ι+ ϵ2 + 2H4b̃2)

δ

and 2ϵ ≤ δ. The conditional expected drift of

E [ZT+1 − ZT |ZT = z]

=E
[√

Z2
T+1 −

√
z2
∣∣∣ZT = z

]
≤ 1

2z
E
[
Z2
T+1 − z2

∣∣ZT = z
]

≤(a) −
δ

2
+

4( (η+K1−α)H2Bc

ηK + η(
√
H2ι+ 2H2b̃) +H4ι+ ϵ2 + 2H4b̃2)

z

≤ −δ

2
+

4( (η+K1−α)H2Bc

ηK + η(
√
H2ι+ 2H2b̃) +H4ι+ ϵ2 + 2H4b̃2

θT

= −δ

4
,

where inequality (a) is obtained according to Lemma 13; and the last inequality holds given z ≥ θT .

To verify condition (2) in Lemma 12, we have

ZT+1 − ZT ≤ |ZT+1 − ZT | ≤
∣∣ρ+ ϵ− C̄T

∣∣ ≤ (H +H2
√
ι+ 2b̃H2) + ϵ ≤ 2(H2

√
ι+ b̃H2),

where the last inequality holds because 2ϵ ≤ δ ≤ 1.

Now choose γ = δ
4 and v = 2(

√
H4ι+ b̃H2). From Lemma 12, we obtain

E
[
erZT

]
≤ erZ1 +

2er(v+θT )

rγ
, where r =

γ

v2 + vγ/3
. (60)

By Jensen’s inequality, we have
erE[ZT ] ≤ E

[
erZT

]
,

which implies that

E[ZT ] ≤
1

r
log

(
1 +

2er(v+θT )

rγ

)
=
1

r
log

(
1 +

6v2 + 2vγ

3γ2
er(v+θT )

)
≤1

r
log

(
1 +

8v2

3γ2
er(v+θT )

)
≤1

r
log

(
11v2

3γ2
er(v+θT )

)
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≤4v2

3γ
log

(
11v2

3γ2
er(v+θT )

)
≤3v2

γ
log

(
2v

γ

)
+ v + θT

≤3v2

γ
log

(
2v

γ

)
+ v

+
4( (η+K1−α)H2Bc

ηK + η(
√
H2ι+ 2H2b̃) +H4ι+ ϵ2 + 2H4b̃2)

δ

=
96(H4ι+ b̃2H2)

δ
log

(
16(H2

√
ι+ b̃H2)

δ

)
+ 2(H2

√
ι+ b̃H2)

+
4( (η+K1−α)H2Bc

ηK + η(
√
H2ι+ 2H2b̃) +H4ι+ ϵ2 + 2H4b̃2)

δ

≤100(H4ι+ b̃2H2)

δ
log

(
16(H2

√
ι+ b̃H2)

δ

)
+

4H2Bc

Kδ
+

4H2Bc

ηδKα
+

4η(
√
H2ι+ 2H2b̃)

δ
, (61)

which completes the proof of Lemma 11.

Lemma 13. Given δ ≥ 2ϵ, under our algorithmsl, the conditional expected drift is

E [LT+1 − LT |ZT = z] ≤ −δ

2
z +

(η +K1−α)H2Bc

ηK
+ η(
√
H2ι+ 2H2b̃) +H4ι+ ϵ2 + 2H4b̃2 (62)

Proof. Recall that LT = 1
2Z

2
T , and the virtual queue is updated by using

ZT+1 =

(
ZT + ρ+ ϵ− C̄TB

c

Kα

)+

.

From inequality (58), we have

E [LT+1 − LT |ZT = z]

≤ Bc

Kα

TKα/Bc∑
k=(T−1)Kα/Bc+1

E [ZT (ρ+ ϵ− Ck,1(xk,1, ak,1))− ηQk,1(xk,1, ak,1)

+ηQk,1(xk,1, ak,1)|ZT = z] +H4ι+ 2H4b̃2 + ϵ2

≤(a)
Bc

Kα

TKα/Bc∑
k=(T−1)Kα/Bc+1

E

[
ZT

(
ρ+ ϵ−

∑
a

{
Ck,1q

π
k,1

}
(xk,1, a)

)

−η
∑
a

{Qk,1q
π
k,1}(xk,1, a) + ηQk,1(xk,1, ak,1)|ZT = z

]
+ ϵ2 +H4ι+ 2H4b̃2

≤ Bc

Kα

TKα/Bc∑
k=(T−1)/BcKα+1

E

[
ZT

(
ρ+ ϵ−

∑
a

{
Cπ

k,1q
π
k,1

}
(xk,1, a)

)

−η
∑
a

{Qk,1q
π
k,1}(xk,1, a) + ηQk,1(xk,1, ak,1)|ZT = z

]

+
Bc

Kα

TKα/Bc∑
k=(T−1)Kα/Bc+1

E

[
ZT

∑
a

{
Cπ

k,1q
π
k,1

}
(xk,1, a)− ZT

∑
a

{
Ck,1q

π
k,1

}
(xk,1, a)|ZT = z

]
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+
Bc

Kα

TKα/Bc∑
k=(T−1)Kα/Bc+1

E

[
η
∑
a

{
Qπ

k,1q
π
k,1

}
(xk,1, a)− η

∑
a

{
Qπ

k,1q
π
k,1

}
(xk,1, a)|ZT = z

]
+H4ι+ ϵ2 + 2H4b̃2

≤(b) −
δ

2
z +

Bc

Kα

TKα/Bc∑
k=(T−1)Kα/Bc+1

E

[
η
∑
a

{
(Fπ

k,1 − Fk,1)q
π
k,1

}
(xk,1, a) + ηQk,1(xk,1, ak,1)

∣∣∣∣∣ZT = z

]
+H4ι+ ϵ2 + 2H4b̃2

≤(c) −
δ

2
z +

(η +K1−α)H2Bc

ηK
+ η(
√
H2ι+ 2H2b̃) +H4ι+ ϵ2 + 2H4b̃2.

Inequality (a) holds because of our algorithm. Inequality (b) holds because
∑

a

{
Qπ

k,1q
π
k,1

}
(xk,1, a) is non-negative, and

under Slater’s condition, we can find policy π such that

ϵ+ ρ− E

[∑
a

Cπ
k,1(xk,1, a)q

π
k,1(xk,1, a)

]
= ρ+ ϵ− E

∑
h,x,a

qπk,h(x, a)gk,h(x, a)

 ≤ −δ + ϵ ≤ −δ

2
.

Finally, inequality (c) is obtained due to the fact that Qk,1(xk,1, ak,1) is bounded by using Lemma 4, and the fact that

E

 TKα/Bc∑
k=(T−1)Kα/Bc+1

∑
a

{
(Fπ

k,1 − Fk,1)q
π
k,1

}
(xk,1, a)

∣∣∣∣∣∣ZT = z


can be bounded as (52) (note that the overestimation result and the concentration result in frame T hold regardless of the
value of ZT ).

D Proof of Lemma 2

Lemma 14. Let

fg(Gi) =

{
Gi/K

λ if Gi < Wρ

Gi/K
λ if Gi ≥Wρ

(63)

fr(Ri) =

{
0 if Gi < Wρ

Ri if Gi ≥Wρ
(64)

Let Ri(Bi)(Gi(Bi)) be the cumulative reward(utility) collected in epoch i by the given algorithm with the estimate value
Bi chosen using Exp3 Algorithm. Let B̂ be the optimal candidate from J that leads to the lowest regret while achieving
zero constraint violation. Then we have

E

K/W∑
i=1

(Ri(B̂)−Ri(Bi))

 =Õ(H
√
KW +HK1−λ)

E

K/W∑
i=1

Gi(B̂)−Gi(Bi)

 =Õ(HKλ
√
KW )

Proof. Apply the regret bound of the Exp3 algorithm, we have

E

K/W∑
i=1

(fr(Ri(B̂)) + fg(Gi(B̂))−
K/W∑
i=1

(fr(Ri(Bi)) + fg(Gi(Bi))

 (65)

≤2
√
e− 1WH(1 + 1/Kλ)

√
(K/W )(J + 1) ln(J + 1) = Õ(H

√
KW ), (66)
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Recall that E[Wρ−Gi(B̂)] ≤ 0. Then it is easy to obtain

E

K/W∑
i=1

(Ri(B̂)−Ri(Bi))

 ≤ E

K/W∑
i=1

(fr(Ri(B̂))− fr(Ri(Bi)))

 (67)

≤2
√
e− 1WH(1 + 1/Kλ)

√
(K/W )(J + 1) ln(J + 1) + E

K/W∑
i=1

(fg(Gi(Bi))− fg(Gi(B̂)))

 (68)

≤2
√
e− 1WH(1 + 1/Kλ)

√
(K/W )(J + 1) ln(J + 1) +

WH

Kλ
· K
W

(69)

=Õ(H
√
KW +HK1−λ), (70)

where the last inequality due to the fact that the term E
[∑K/W

i=1 (−fg(Gi(B̂)))
]

is always non-positive. Furthermore, we
have

E

K/W∑
i=1

Gi(B̂)−Gi(Bi)

 = KλE

K/W∑
i=1

Gi(B̂)−Gi(Bi)

Kλ

 (71)

=KλE

K/W∑
i=1

fg(Gi(B̂))− fg(Gi(Bi))

 (72)

≤Kλ

2
√
e− 1WH(1 + 1/Kλ)

√
(K/W )(J + 1) ln(J + 1) + E

K/W∑
i=1

(fr(Ri(Bi))− fr(Ri(B̂)))

 (73)

≤Kλ
(
2
√
e− 1WH(1 + 1/Kλ)

√
(K/W )(J + 1) ln(J + 1)

)
(74)

=Õ(HKλ
√
KW ), (75)

where the last inequality is true because the second term is always non-positive. The reason is that when E[Gi(Bi)] ≥Wρ,
E[fr(Ri(Bi))] ≤ E[fr(Ri(B̂))] because E[fr(Ri(B̂))] = E[Ri(B̂)] is the largest return, and when E[Gi(Bi)] < Wρ, we
have E[fr(Ri(Bi))] = 0.

E DETAILS PROOF OF THEOREM 1

E.1 Dynamic Regret

Recall that the regret can be decoupled as

Regret(K)

=E

[
K∑

k=1

(∑
a

{
Q∗

k,1q
∗
k,1 −Qϵ,∗

k,1q
ϵ,∗
k,1

}
(xk,1, a)

)]
+ (76)

E

[
K∑

k=1

(∑
a

{
Qϵ,∗

1 qϵ,∗1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]
+ (77)

E

[
K∑

k=1

{
Qk,1 −Qπk

k,1

}
(xk,1, ak,1)

]
. (78)

Firstly, in lemma 6 we show that the first term can be bounded by comparing the original LP associated with the tightened
LP such that

(76) ≤ KHϵ

δ
. (79)



Honghao Wei, Arnob Ghosh, Ness Shroff

By using Lemma 8, we can show that:

(78) ≤ H2SAK1−αBc +
2(H3

√
ι+ 2H4b̃)K

χ
+
√
H4SAιK2−α(χ+ 1)Bc + 2b̃H2K

For the last term 77, we first add and subtract additional terms to obtain

E

[
K∑

k=1

(∑
a

{
Qϵ,∗

k,1q
ϵ,∗
k,1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]

=E

[∑
k

∑
a

({
Qϵ,∗

k,1q
ϵ,∗
k,1 +

Zk

η
Cϵ,∗

k,1q
ϵ,∗
k,1

}
(xk,1, a)−

{
Qk,1q

ϵ,∗
k,1 +

Zk

η
Ck,1q

ϵ,∗
k,1

}
(xk,1, a)

)]
(80)

+ E

[∑
k

(∑
a

{
Qk,1q

ϵ,∗
k,1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]
+ E

[∑
k

Zk

η

∑
a

{(
Ck,1 − Cϵ,∗

k,1

)
qϵ,∗k,1

}
(xk,1, a)

]
.

(81)

We can see (80) is the difference of two combined Q functions. In Lemma 7 we show that
{
Qk,h + Zk

η Ck,h

}
(x, a) is an

overestimate of
{
Qϵ,∗

k,h + Zk

η Cϵ,∗
k,h

}
(x, a) (i.e. (80) ≤ 0) with high probability. To bound (81), we use the Lyapunov-drift

method and consider Lyapunov function LT = 1
2Z

2
T , where T is the frame index and ZT is the value of the virtual queue at

the beginning of the T th frame. We show that in Lemma 10 that the Lyapunov-drift satisfies

E[LT+1 − LT ] ≤ a negative drift + 2H4ι+ 4H4b̃2 + ϵ2 − ηBc

Kα

(T+1)Kα/Bc∑
k=TKα/Bc+1

Φk, (82)

where

Φk = E

[(∑
a

{
Qk,1q

ϵ,∗
k,1

}
(xk,1, a)−Qk,1(xk,1, ak,1)

)]
+ E

[
Zk

η

∑
a

{(
Ck,1 − Cϵ,∗

k,1

)
qϵ,∗k,1

}
(xk,1, a)

]
,

So we can bound (81) by applying the telescoping sum over the K1−α frames on the inequality above:

(81) =
∑
k

Φk ≤
KαBcE [L1 − LK1−α+1]

η
+

K(2H4ι+ 4H4b̃2 + ϵ2)

η
≤ K(2H4ι+ 4H4b̃2 + ϵ2)

η
, (83)

where the last inequality holds because L1 = 0 and LT ≥ 0 for all T. Now combining Lemma 7 and inequality (83), we
conclude that

(77) ≤ K(2H4ι+ 4H4b̃2 + ϵ2)

η
+

(η +K1−α)H2Bc

ηK
.

Further combining inequality above we can obtain for K ≥
(

16
√
SAH6ι3B1/3

δ

)5
,

Regret(K) ≤ KHϵ

δ
+H2SAK1−αBc +

2(H3
√
ι+ 2H4b̃)K

χ
+
√
H4SAιK2−α(χ+ 1)Bc + 2b̃H2K

+
K(2H4ι+ 4H4b̃2 + ϵ2)

η
+

(η +K1−α)H2Bc

ηK
.

We conclude that under our choices of ι = 128 log(
√
2SAHK), ϵ = 8

√
SAH6ι3B1/3

K0.2 and α = 0.6, η = K
1
5B

1
3 , χ =

K
1
5 , c = 2

3 , and K1−αBcb̃ ≤ B,

Regret(K) = Õ(H4S
1
2A

1
2B

1
3K

4
5 ).
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E.2 Constraint Violation

Again, we use ZT to denote the value of virtual-Queue in frame T. According to the virtual-Queue update, we have

ZT+1 =

(
ZT + ρ+ ϵ− C̄TB

c

Kα

)+

≥ ZT + ρ+ ϵ− C̄TB
c

Kα
,

which implies that

TKα/Bc∑
k=(T−1)Kα/Bc+1

(
−Cπk

k,1(xk,1, ak,1) + ρ
)
≤ Kα

Bc
(ZT+1 − ZT ) +

TKα/Bc∑
k=(T−1)Kα/Bc+1

({
Ck,1 − Cπk

k,1

}
(xk,1, ak,1)− ϵ

)
.

Summing the inequality above over all frames and taking expectation on both sides, we obtain the following upper bound on
the constraint violation:

E

[
K∑

k=1

ρ− Cπk

k,1(xk,1, ak,1)

]
≤ −Kϵ+

Kα

Bc
E [ZK1−αBc+1] + E

[
K∑

k=1

{
Ck,1 − Cπk

k,1

}
(xk,1, ak,1)

]
, (84)

where we used the fact Z1 = 0.

In Lemma 8, we established an upper bound on the estimation error of Ck,1 :

E

[
K∑

k=1

{Ck,1 − Cπk
1 } (xk,1, ak,1)

]

≤H2SAK1−αBc +
2(H3

√
ι+ 2H4b̃)K

χ
+
√
H4SAιK2−α(χ+ 1)Bc + 2b̃H2K. (85)

In Lemma 11, based on a Lyapunov drift analysis of this moment generating function and Jensen’s inequality, we establish
the following upper bound on ZT that holds for any 1 ≤ T ≤ K1−αBc + 1

E[ZT ] ≤
100(H4ι+ b̃2H2)

δ
log

(
16(H2

√
ι+ b̃H2)

δ

)
+

4H2Bc

Kδ
+

4H2Bc

ηδKα
+

4η(
√
H2ι+ 2H2b̃)

δ
. (86)

Substituting the results from Lemmas 8 and (86) into (84), under assumption K ≥
(

16
√
SAH6ι3B1/3

δ

)5
, which guarantees

ϵ ≤ δ
2 . Then by using the choice that ϵ = 8

√
SAH6ι3B1/3

K0.2 , we can easily verify that

Violation(K) ≤ 100(H4ι+ b̃2H2)K0.6

δB2/3
log

16(H2
√
ι+ b̃H2)

δ
+

4(H2
√
ι+ 2H2b̃)

δB1/3
K0.8 − 5

√
SAH6ι3K0.8B

1
3 .

If further we have K ≥ e
1
δ , we can obtain

Violation(K) ≤ 100(H4ι+ b̃2H2)K0.6

δB2/3
log

16(H2
√
ι+H2b̃)

δ
−
√
SAH6ι3K0.8B

1
3 = 0.

F PROOF OF THEOREM 2

Let B̂ be the optimal candidate value in J that leads to the lowest regret while achieving zero constraint violation. Let
Ri(Bi) be the expected cumulative reward received in epoch i with the estimated budget Bi. Then the regret can be
decomposed into:

Regret(K) =E

[
K∑

k=1

(
V

π∗
k

k,1(xk,1)− V πk

k,1(xk,1)
)]

=E

 K∑
k=1

V
π∗
k

k,1(xk,1)−
K/W∑
i=1

Ri(B̂)

+ E

K/W∑
i=1

Ri(B̂)−
K/W∑
i=1

Ri(Bi)

 .
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The first term is the regret of using the optimal candidate B̂ from J ; the second term is the difference between using B̂ and
Bi which is selected by Exp3 algorithm. Applying the analysis of the Exp3 algorithm, we know that by using Lemma 2 for
any choice of B̂, the second term is upper bounded:

E

K/W∑
i=1

Ri(B̂)−
K/W∑
i=1

Ri(Bi)

 ≤ Õ(H√KW +HK1−λ).

For the first term, according to the regret bound analysis of Algorithm 1, we have that

E

 K∑
k=1

V
π∗
k

k,1(xk,1)−
K/W∑
i=1

Ri(B̂)

 ≤ Õ(H4S
1
2A

1
2K1−0.2ζ

(
B̂
) 1

3

)
. (87)

We need to consider whether B is covered in the range of J to further obtain the bound of (87). First we assume that

K = Ω

((
40

√
SAH6ι3B1/3

δ

)9)
, which implies B ≤ K1/3W

∆3/2W
. Then we need to consider the following two cases:

• The first case is that B is covered in the range of J . Note that two consecutive values in J only differ from each other
by a factor of W

1
J , then there exists a value B̂ ∈ J such that B ≤ B̂ ≤W 1/JB. Therefore we can bound the RHS of

(87) by

Õ
(
H4S

1
2A

1
2K1−0.2ζ

(
B̂
) 1

3

)
≤Õ

(
H4S

1
2A

1
2K1−0.2ζ

(
BW 1/J

) 1
3

)
≤Õ

(
H4S

1
2A

1
2B

1
3K1−0.2ζ

)
,

where the last step comes from the fact W 1/J = W 1/(lnW+1) ≤ e.

• The second case is that B is not covered in the range of J , i.e., B < K1/3

∆3/2W
. The optimal candidate in J is the

smallest such that one B̂ = K1/3

∆3/2W
, then we can bound the RHS of (87) by

Õ
(
H4S

1
2A

1
2K1−0.2ζ

(
B̂
) 1

3

)
≤Õ

(
H4S

1
2A

1
2K1−0.2ζ

(
K1/3

∆3/2W

) 1
3

)

≤Õ
(
HK10/9−0.2ζ 1

Kζ/3

)
.

For the constraint violation, according to Lemma 2 we have

E

[
K∑

k=1

ρ− Cπk

k,1(xk,1, ak,1)

]
= E

K/W∑
i=1

(Wρ−Gi(Bi))


=E

K/W∑
i=1

(
Wρ−Gi(B̂)

)+ E

K/W∑
i=1

(
Gi(B̂)−Gi(Bi)

)
For the first term, according to Theorem 1, by selecting ϵ as ϵ = 20

√
SAH6ι3B̂1/3

K0.2ζ . we have

E

K/W∑
i=1

(
Wρ−Gi(B̂)

) ≤ 100(H4ι+ b̃2H2)K0.6ζ

δB̂2/3
log

16(H2
√
ι+H2b̃)

δ
− 13

√
SAH6ι3K1−0.2ζB̂

1
3 . (88)

For the second term, we are able to obtain an upper bound by using Lemma 2

E

K/W∑
i=1

(Gi(B̂)−Gi(Bi))

 ≤ 12KλH
√
K1+ζ(J + 1) ln(J + 1) (89)
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By balancing the terms Õ(K1−0.2ζ), Õ(Kλ+(1+ζ)/2) and K1−λ, the best selection are ζ = 5/9 and λ = 1/9. Therefore
we further obtain when K ≥ e

1
δ ,

Violation(K) ≤ 100(H4ι+ b̃2H2)K1/3

δB̂2/3
log

16(H2
√
ι+H2b̃)

δ
−
√
SAH6ι3K8/9B̂

1
3 ≤ 0. (90)

We finish the proof of Theorem 2.

Algorithm 3: Model Free Primal-Dual Algorithm for Linear Function Approximation for Non-stationary Setting

1 Initialization: Y1 = 0, wj,h = 0, α =
log(|A|)K

2(1 + ξ +H)
, η = ξ/

√
KH2, β = dH

√
log(2 log |A|dT/p),

D = B−1/2H−1/2d1/2K1/2.
2 for frames E = 1, . . . ,K/D do
3 for episodes k = 1, . . . , D do
4 Receive the initial state xk

1 .
5 for step h = H,H − 1, . . . , 1 do
6 Λk

h ←
∑k−1

τ=1 ϕ(x
τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

T + λI;
7 wk

r,h ← (Λk
h)

−1[
∑k−1

τ=1 ϕ(x
τ
h, a

τ
h)[rh(x

τ
h, a

τ
h) + V k

r,h+1(x
τ
h+1)]] ;

8 wk
g,h ← (Λk

h)
−1[
∑k−1

τ=1 ϕ(x
τ
h, a

τ
h)[gh(x

τ
h, a

τ
h) + V k

g,h+1(x
τ
h+1)]] ;

9 Qk
r,h(·, ·)← min{⟨wk

r,h, ϕ(·, ·)⟩+ β(ϕ(·, ·)T (Λk
h)

−1ϕ(·, ·))1/2, H} ;
10 Qk

g,h(·, ·)← min{⟨wk
g,h, ϕ(·, ·)⟩+ β(ϕ(·, ·)T (Λk

h)
−1ϕ(·, ·))1/2, H} ;

11 πh,k(a|·) =
exp(α(Qk

r,h(·, a) + YkQ
k
g,h(·, a)))∑

a exp(α(Q
k
r,h(·, a) + YkQk

g,h(·, a)))
;

12 V k
r,h(·) =

∑
a πh,k(a|·)Qk

r,h(·, a) ;
13 V k

g,h(·) =
∑

a πh,k(a|·)Qk
g,h(·, a) ;

14 for step h = 1, . . . ,H do
15 Compute Qk

r,h(x
k
h, a), Q

k
g,h(x

k
h, a), π(a|xk

h) for all a ;
16 Take action akh ∼ πh,k(·|xk

h) and observe xk
h+1 ;

17 Yk+1 = max{min{Yk + η(ρ− V k
g,1(x1)), ξ}, 0}

G DETAILS PROOF OF THEOREM 3

Notations: We describe the specific notations we have used in this section. With slight abuse of notations, in this section,
we denote V π

k,r,h as the value function at step h for policy π at episode k. We denote V π
k,g,h as the utility value function at

step h of episode k. We denote Qπ
k,j,h, j = r, g as the state-action value function at step j for policy π.

Throughout this section, we denote Qk
r,h, Q

k
g,h, w

k
r,h, w

k
g,h,Λ

k
h as the Q-value and the parameter values estimated at the

episode k. V k
j,h(·) = ⟨πh,k(·|·), Qk

j,h(·, ·)⟩A. πh,k(·|x) is the soft-max policy based on the composite Q-function at the k-th
episode as Qk

r,h + YkQ
k
g,h. To simplify the presentation, we denote ϕk

h = ϕ(xk
h, a

k
h).

G.1 Outline of Proof of Theorem 3

Step 1: The key to prove both the dynamic regret and violation is to show the following

Lemma 15. For any Y ∈ [0, ξ],

K∑
k=1

(V
π∗
k

k,r,1(x1)− V πk

k,r,1(x1)) + Y

K∑
k=1

(ρ− V πk

k,g,1(x1)) ≤
1

2η
Y 2 +

η

2
H2K+

K∑
k=1

(
V

π∗
k

k,r,1(x1) + YkV
π∗
k

k,g,1(x1)
)
−
(
V k
r,1(x1) + YkV

k
g,1(x1)

)
︸ ︷︷ ︸

T1

+
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K∑
k=1

(
V k
r,1(x1)− V πk

k,r,1(x1)
)
+ Y

K∑
k=1

(
V k
g,1(x1)− V πk

k,g,1(x1)
)

︸ ︷︷ ︸
T2

(91)

Note that when Y = 0, we recover the dynamic regret. The proof is in Appendix G.2.

Step-2: In order to bound T1, and T2, we use the following result

Lemma 16. With probability 1− 2p,

T1 ≤ H3(1 + 2/δ)BD3/2
√
d+

KH log(|A|)
α

T2 ≤ (1 + Y )(O(
√

H4d3K2ι2/D) +
√
dD3/2BH2) (92)

The proof is in Appendix G.3.

Step-3: The final result is obtained by combining all the pieces.

Proof of Theorem 3:

Note from Lemma 15 we have
K∑

k=1

(V
π∗
k

k,r,1(x1)− V πk

k,r,1(x1)) + Y (ρ− V πk

k,g,1(x1)) ≤
Y 2

2η
+

ηKH2

2
+ T1 + T2

From Lemma 16, we obtain

K∑
k=1

(V
π∗
k

k,r,1(x1)− V πk

k,r,1(x1)) + Y (ρ− V πk

k,g,1(x1)) ≤
Y 2

2η
+

ηKH2

2
+

HK log(|A|)
α

+H3(1 + 2/δ)BD3/2
√
d+ (1 + Y )(O(

√
H4d3K2ι2/D) +

√
dD3/2BH2) (93)

Since η =
ξ√
KH2

,α =
log(|A|)K

2(1 + ξ +H)
, D = B−1/2H−1/2d1/2K1/2, we obtain

K∑
k=1

(V
π∗
k

k,r,1(x1)− V πk

k,r,1(x1)) + Y (b− V πk

k,g,1(x1)) ≤ ξ
√
KH2

+H2(1 + ξ +H) +H9/4(1 + 2/δ)B1/4K3/4d5/4 + (Y + 1)(O(H9/4d5/4K3/4B1/4ι2) +H5/4d5/4K3/4) (94)

Since the above expression is true for any Y ∈ [0, ξ], thus, plugging Y = 0, we obtain

Regret(K) ≤ O(H9/4d5/4K3/4B1/4ι2) +O((1 + 1/δ)H9/4d5/4K3/4B1/4)

For the constraint violation bound, we use Lemma 27. Note that ξ ≥ 2maxk µ
k,∗. Thus, we replace Y = ξ in (94). Thus,

from (94) and Lemma 27, we obtain

K∑
k=1

(ρ− V π
k,g,1(x1)) ≤

2(1 + ξ)

ξ
(O(H9/4d5/4K3/4B1/4ι2) +O(H5/4d5/4K3/4B1/4)) (95)

Hence, the result follows.

G.2 Proof of Lemma 15

We first state and prove the following result which is similar to the one proved in Ghosh et al. (2022).

Lemma 17. For Y ∈ [0, ξ],

K∑
k=1

(Y − Yk)(ρ− V k
g,1(x1)) ≤

Y 2

2η
+

ηH2K

2
(96)
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Proof.

|Yk+1 − Y |2 = |Proj[0,ξ](Yk + η(ρ− V k
g,1(x1)))− Proj[0,ξ](Y )|2

≤ (Yk + η(ρ− V k
g,1(x1)))− Y )2

≤ (Yk − Y )2 + η2H2 + 2ηYk(ρ− V k
g,1(x1)) (97)

Summing over k, we obtain

0 ≤ |YK+1 − Y |2 ≤ |Y1 − Y |2 + 2η

K∑
k=1

(ρ− V k
g,1(x1))(Yk − Y ) + η2H2K

K∑
k=1

(Y − Yk)(ρ− V k
g,1(x1)) ≤

|Y1 − Y |2

2η
+

ηH2K

2
(98)

Since Y1 = 0, we have the result.

Now, we prove Lemma 15.

Proof. Note that

Y

K∑
k=1

(ρ− V πk

k,g,1(x1)) =
∑
k

(Y − Yk)(ρ− V k
g,1(x1)) + Yk(ρ− V k

g,1) + Y (V k
g,1(x1)− V πk

k,g,1(x1))

≤ 1

2η
Y 2 +

η

2
H2K +

K∑
k=1

(Ykρ− YkV
k
g,1(x1)) + Y (V k

g,1(x1)− V πk
g,1 (x1))

≤ 1

2η
Y 2 +

η

2
H2K +

K∑
k=1

(YkV
π∗
k

k,g,1(x1)− YkV
k
g,1(x1)) +

K∑
k=1

Y (V k
g,1(x1)− V πk

k,g,1(x1))

where the first inequality follows from Lemma 17, and the second inequality follows from the fact that V π∗
k

k,g,1(x1) ≥ ρ.
Hence, the result simply follows from the above inequality.

G.3 Proof of Lemma 16

We now move on to bound T1 and T2. First, we state and prove Lemmas 18, 19, 20, 21,22, and 23.

Lemma 18. There exists a constant C2 such that for any fixed p ∈ (0, 1), if we let E be the event that

∥
k−1∑
τ=1

ϕτ
j,h[V

k
j,h+1(x

τ
h+1)− Pk,hV

k
j,h+1(x

τ
h, a

τ
h)]∥(Λk

h)
−1 ≤ C2dH

√
χ (99)

for all j ∈ {r, g}, χ = log[2(C1 + 1) log(|A|)dT/p], for some constant C2, then Pr(E) = 1− 2p.

This result is similar to the concentration lemma, which is crucial in controlling the fluctuations in least-squares value
iteration as done in Jin et al. (2020). The proof relies on the uniform concentration lemma similar to Jin et al. (2020).
However, there is an additional log(|A|) in χ. This arises due to the fact that the policy (Algorithm 3) is soft-max unlike the
greedy policy in Jin et al. (2020). Ghosh et al. (2022) shows that greedy policy is unable to prove the uniform concentration
lemma. The proof is similar to Lemma 8 in Ghosh et al. (2022), thus, we remove it.

Now, we introduce some notations which we use throughout this paper.

For any k ∈ E ,i.e., any episode k within the frame E , we define the variation as the following

Bk
j,E =

k∑
τ=2

H∑
h=1

||θτ,j,h − θτ−1,j,h||, BE
j =

E∑
τ=2

H∑
h=1

||θτ,j,h − θτ−1,j,h||
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Bk
p,E =

k∑
τ=2

H∑
h=1

||µτ,h − µτ−1,h||, BE
p =

E∑
τ=2

H∑
h=1

||µτ,h − µτ−1,h||

These are local budget variation. Note that |E| = D.

Now, we are bound the difference between our estimated Qk
j,h and Qπ

k,j,h. Using the Lemma 18, we show the following

Lemma 19. There exists an absolute constant β = C1dH
√
ι, ι = log(log(|A|)2dT/p), and for any fixed policy π, on the

event E defined in Lemma 18, we have

⟨ϕ(x, a), wk
j,h⟩ −Qπ

k,j,h(x, a) =Pk,h(V
k
j,h+1 − V π

k,j,h+1)(x, a) + ∆k
h(x, a) + +BE

j

√
dD +HBE

p

√
dD (100)

for some ∆k
h(x, a) that satisfies |∆k

h(x, a)| ≤ β
√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a), for any k ∈ E .

Proof. We only prove for j = r, the proof for j = g is similar.

Note that Qπ
k,r,h(x, a) = ⟨ϕ(x, a), wπ

r,h⟩ = rk,h(x, a) + Pk,hV
π
k,r,h+1(x, a).

Hence, we have

wk
r,h − wπ

k,r,h = (Λk
h)

−1
k−1∑
τ=1

ϕτ
h[r

τ
h + V k

r,h+1(x
τ
h+1)]− wπ

k,r,h

= −λ(Λk
h)

−1(wπ
k,r,h) + (Λk

h)
−1

k−1∑
τ=1

ϕτ
h[rτ,h(x

τ
h, a

τ
h) + V k

r,h+1 − rk,h(x
τ
h, a

τ
h)− Pk,hV

π
k,r,h+1] (101)

In the above expression, the second term of the right hand-side can be written as

(Λk
h)

−1
k−1∑
τ=1

ϕτ
h[rτ,h(x

τ
h, a

τ
h) + V k

r,h+1 − rk,h(x
τ
h, a

τ
h)− Pk,hV

π
k,r,h+1]

= (Λk
h)

−1
k−1∑
τ=1

ϕτ
h[rτ,h(x

τ
h, a

τ
h) + V k

r,h+1 − rk,h(x
τ
h, a

τ
h)− Pk,hV

k
r,h+1] + (Λk

h)
−1

k−1∑
τ=1

ϕτ
h[Pk,hV

k
r,h+1 − Pk,hV

π
k,r,h+1]

= (Λk
h)

−1
k−1∑
τ=1

ϕτ
h[rτ,h(x

τ
h, a

τ
h)− rk,h(x

τ
h, a

τ
h)] + (Λk

h)
−1

k−1∑
τ=1

[V k
r,h+1 − Pτ,hV

k
r,h+1]

+ (Λk
h)

−1
k−1∑
τ=1

[Pτ,hV
k
r,h+1 − Pk,hV

k
r,h+1] + (Λk

h)
−1

k−1∑
τ=1

ϕτ
h[Pk,hV

k
r,h+1 − Pk,hV

π
k,r,h+1] (102)

By plugging in the above in (101) we obtain

wk
r,h − wπ

k,r,h

= −λ(Λk
h)

−1(wπ
k,r,h)︸ ︷︷ ︸

q1

+(Λk
h)

−1
k−1∑
τ=1

ϕτ
h[rτ,h(x

τ
h, a

τ
h)− rk,h(x

τ
h, a

τ
h)]︸ ︷︷ ︸

q2

+(Λk
h)

−1
k−1∑
τ=1

[V k
r,h+1 − Pτ,hV

k
r,h+1]︸ ︷︷ ︸

q3

+ (Λk
h)

−1
k−1∑
τ=1

[Pτ,hV
k
r,h+1 − Pk,hV

k
r,h+1]︸ ︷︷ ︸

q4

+(Λk
h)

−1
k−1∑
τ=1

ϕτ
h[Pk,hV

k
r,h+1 − Pk,hV

π
k,r,h+1]︸ ︷︷ ︸

q5

(103)

For the first term,

|⟨ϕ(x, a), q1⟩| ≤ ϕ(x, a)T (Λk
h)

−1λwπ
k,r,h ≤ ||wπ

k,r,h||||ϕ(x, a)||(Λk
h)

−1 (104)

For the second term we have

ϕ(x, a)T (Λk
h)

−1
k−1∑
τ=1

ϕτ
h[rτ,h(x

τ
h, a

τ
h)− rk,h(x

τ
h, a

τ
h)]
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≤ ϕ(x, a)T (Λk
h)

−1
k−1∑
τ=1

ϕτ
h||ϕτ

h||||θτ,r,h − θk,r,h||

≤ ϕ(x, a)T (Λk
h)

−1
k−1∑
τ=1

ϕτ
h||ϕτ

h||||
k−1∑
s=τ

θs,r,h − θs+1,r,h||

≤ Bk
r

√
dk||ϕ(x, a)||(Λk

h)
−1

The last inequality follows from Lemma C.4 in Jin et al. (2020). Since ||ϕ(x, a)||(Λk
h)

−1 ≤
√
1/λ and D ≥ k. We have

|⟨ϕ(x, a), q2⟩| ≤ BE
r

√
dD (105)

Similarly, we can bound

ϕ(x, a)T (Λk
h)

−1
k−1∑
τ=1

ϕτ
h[Pτ,hV

k
r,h+1 − Pk,hV

k
r,h+1] ≤ HBk

p

√
dk||ϕ(x, a)||(Λk

h)
−1 (106)

Again since D ≥ k, and ||ϕ(x, a)||(Λk
h)

−1 ≤
√
1/λ, we have

|⟨ϕ(x, a), q3⟩| ≤ HBE
p

√
dD (107)

From Lemma, the fourth term can be bounded as

|⟨ϕ(x, a), q4⟩| ≤ CdH
√
χ (108)

For the fifth term, note that

⟨ϕ(x, a), q5⟩ = ⟨ϕ(x, a), (Λk
h)

−1
k−1∑
τ=1

ϕτ
h[Ph(V

k
r,h+1 − V π

k,r,h+1)(x
τ
h, a

τ
h)]⟩

= ⟨ϕ(x, a), (Λk
h)

−1
k−1∑
τ=1

ϕτ
h(ϕ

τ
h)

T

∫
(V k

r,h+1 − V π
k,r,h+1)(x

′)dµk,h(x
′)⟩

= ⟨ϕ(x, a),
∫
(V k

r,h+1 − V π
k,r,h+1)(x

′)dµk,h(x
′)⟩ − ⟨ϕ(x, a), λ(Λk

h)
−1

∫
(V k

r,h+1 − V π
r,h+1)(x

′)dµk,h(x
′)⟩ (109)

The last term in (109) can be bounded as the following

|⟨ϕ(x, a), λ(Λk
h)

−1

∫
(V k

r,h+1 − V π
k,r,h+1)(x

′)dµk,h(x
′)⟩| ≤ 2H

√
dλ
√

ϕ(x, a)T (Λk
h)

−1ϕ(x, a) (110)

since ||
∫
(V k

r,h+1 − V π
r,h+1)(x

′)dµk,h(x
′)||2 ≤ 2H

√
d as ||µk,h(S)|| ≤

√
d. The first term in (109) is equal to

Pk,h(V
k
r,h+1 − V π

r,h+1)(x, a) (111)

Note that ⟨ϕ(x, a), wk
r,h⟩ −Qπ

k,r,h(x, a) = ⟨ϕ(x, a), wk
r,h − wπ

k,r,h⟩ = ⟨ϕ(x, a), q1 + q2 + q3 + q4 + q5⟩, we have

⟨ϕ(x, a), wk
j,h⟩ −Qπ

k,j,h =Pk,h(V
k
j,h+1 − V π

k,j,h+1)(x, a) + ∆k
h +BE

r

√
dD +HBE

p

√
dW (112)

where |∆k
h| ≤ β

√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a).

Using Lemma 19, we also bound the difference between the combined Q-function (estimated) and the actual Q-function.

Lemma 20. With probability 1− 2p,

Qπ
k,r,h + YkQ

π
k,g,h ≥Qk

r,h + YkQ
k
g,h + Pk,h(V

π
k,r,h+1 + YkV

π
k,g,h+1 − V k

r,h+1 − YkV
k
g,h+1)

+BE
r

√
dD + YkB

E
g

√
dD + (1 + Yk)HBE

p

√
dD (113)
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Proof. From Lemma 19, we have

Qπ
k,r,h ≤ ⟨ϕ(x, a), wk

r,h⟩+ Pk,h(V
π
k,r,h+1 − V k

r,h) + β||ϕ(x, a)||Λ−1
k,h

+BE
r

√
dD +HBE

p

√
dD (114)

From the definition of Qk
j,h, we have

Qπ
k,r,h ≤ Pk,h(V

π
k,r,h+1 − V k

r,h) +Qk
r,h +BE

r

√
dD +HBE

p

√
dD (115)

Similarly,

YkQ
π
k,g,h ≤ YkPk,h(V

π
k,g,h+1 − V k

g,h) + YkQ
k
g,h + YkB

E
g

√
dD + YkHBE

p

√
dD (116)

We now show that using the soft-max parameter α, one can bound the difference between the best estimated value function
and the one achieved using the soft-max policy.

Lemma 21. Then, V̄ k
h (x)− V k

h (x) ≤ log |A|
α

where

Definition 2. V̄ k
h (·) = maxa[Q

k
r,h(·, a) + YkQ

k
g,h(·, a)].

V̄ k
h (·) is the value function corresponds to the greedy-policy with respect to the composite Q-function.

Proof. Note that

V k
h (x) =

∑
a

πh,k(a|x)[Qk
r,h(x, a) + YkQ

k
g,h(x, a)] (117)

where

πh,k(a|x) =
exp(α[Qk

r,h(x, a) + YkQ
k
g,h(x, a)])∑

a exp(α[Q
k
r,h(x, a) + YkQk

g,h(x, a)])
(118)

Denote ax = argmaxa[Q
k
r,h(x, a) + YkQ

k
g,h(x, a)]

Now, recall from Definition 2 that V̄ k
h (x) = [Qk

r,h(x, ax) + YkQ
k
g,h(x, ax)]. Then,

V̄ k
h (x)− V k

h (x) = [Qk
r,h(x, ax) + YkQ

k
g,h(x, ax)]

−
∑
a

πh,k(a|x)[Qk
r,h(x, a) + YkQ

k
g,h(x, a)]

≤

(
log(

∑
a exp(α(Q

k
r,h(x, a) + YkQ

k
g,h(x, a))))

α

)
−
∑
a

πh,k(a|x)[Qk
r,h(x, a) + YkQ

k
g,h(x, a)]

≤ log(|A|)
α

(119)

where the last inequality follows from Proposition 1 in Pan et al. (2021).

Using the above result, we bound the difference T1 (albeit for each episode).

Lemma 22. With probability 1− 2p,

(V
π∗
k

k,r,1(x1) + YkV
π∗
k

k,g,1(x1))− (V k
r,1(x1) + YkV

k
g,1(x1)) ≤

H log(|A|)
α

+H(BE
r

√
D + YkB

E
g

√
D + (1 + Yk)HBE

p

√
D)
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Proof. First, we prove for the step H .

Note that Qk
j,H+1 = 0 = Qπ

j,H+1.

Under the event in E as described in Lemma 18 and from Lemma 19, we have for j = r, g,

|⟨ϕ(x, a), wk
j,H(x, a)⟩ −Qπ

j,H(x, a)| ≤ β
√

ϕ(x, a)T (Λk
H)−1ϕ(x, a) +BE

j

√
dD +HBE

p

√
dD

Hence, for any (x, a),

Qπ
j,H(x, a) ≤ min{⟨ϕ(x, a), wk

j,H⟩+ β
√
ϕ(x, a)T (Λk

H)−1ϕ(x, a) +BE
j

√
dD +HBE

p

√
dD,H}

≤ Qk
j,H(x, a) +BE

j

√
dD +HBE

p

√
dD (120)

Hence, from the definition of V̄ k
h ,

V̄ k
H(x) = max

a
[Qk

r,H(x, a) + YkQ
k
g,h(x, a)]

≥
∑
a

π(a|x)[Qπ
r,H(x, a) + YkQ

π
g,H(x, a)]

− (BE
r

√
dD + YkB

E
g

√
dD + (1 + Yk)HBE

p

√
dD)

≥ V π,Yk

H (x)− (BE
r

√
dD + YkB

E
g

√
dD +H(1 + Yk)B

E
p

√
dD) (121)

for any policy π. Thus, it also holds for π∗
k, the optimal policy. Hence, from Lemma 21, we have

V
π∗
k,Yk

H (x)− V k
H(x) ≤ log(|A|)

α
+ (BE

r

√
dD + YkB

E
g

√
dD + (1 + Yk)HBE

p

√
dD)

Now, suppose that it is true till the step h+ 1 and consider the step h.

Since, it is true till step h+ 1, thus, for any policy π,

Pk,h(V
π,Yk

h+1 − V k
h+1)(x, a) ≤

(H − h) log(|A|)
α

+ (H − h)(BE
r

√
dW + YkB

E
g

√
dW + (1 + Yk)HBE

p

√
dW ) (122)

From Lemma 19 we have for any (x, a)

Qπ
k,r,h(x, a) + YkQ

π
k,g,h(x, a) ≤ Qk

r,h(x, a) + YkQ
k
g,h(x, a) +

(H − h) log(|A|)
α

+ (H − h+ 1)(BE
r

√
dD + YkB

E
g

√
dD + (1 + Yk)HBE

p

√
dD) (123)

Hence,

V π,Yk

h (x) ≤ V̄ k
h (x) +

(H − h) log(|A|)
α

+ (H − h+ 1)(BE
r

√
dW + YkB

E
g

√
dD + (1 + Yk)HBE

p

√
dD)

Now, again from Lemma 21, we have V̄ k
h (x)− V k

h (x) ≤ log(|A|)
α

. Thus,

V π,Yk

h (x)− V k
h (x) ≤ (H − h+ 1) log(|A|)

α
+ (H − h+ 1)(BE

r

√
dD + YkB

E
g

√
dD + (1 + Yk)HBE

p

√
dD) (124)

Now, since it is true for any policy π, it will be true for π∗
k. From the definition of V π,Yk , we have(

V π∗

r,h (x) + YkV
π∗

g,h(x)
)
−
(
V k
r,h(x) + YkV

k
g,h(x)

)
≤ (H − h+ 1) log(|A|)

α

+ (H − h+ 1)(BE
r

√
dD + YkB

E
g

√
dD + (1 + Yk)HBE

p

√
dD) (125)

Hence, the result follows by summing over K and considering h = 1.
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We now focus on bounding T2. First, we introduce some notations.

Let

Dk
j,h,1 = ⟨(Qk

j,h(x
k
h, ·)−Qπk

j,h(x
k
h, ·)), πh,k(·|xk

h)⟩ − (Qk
j,h(x

k
h, a

k
h)−Qπk

j,h(x
k
h, a

k
h))

Dk
j,h,2 = Pk,h(V

k
j,h+1 − V πk

j,h+1)(x
k
h, a

k
h)− [V k

j,h+1 − V πk

j,h+1](x
k
h+1) (126)

Lemma 23. On the event defined in E in Lemma 18, we have

V k
j,1(x1)− V πk

k,j,1 ≤
H∑

h=1

(Dk
j,h,1 +Dk

j,h,2) +

H∑
h=1

2β
√

ϕ(xk
h, a

k
h)

T (Λk
h)

−1ϕ(xk
h, a

k
h)

+H(BE
j

√
dD +HBE

p

√
dD) (127)

Proof. By Lemma 19, for any x, h, a, k

⟨wk
j,h(x, a), ϕ(x, a)⟩+ β

√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a)−Qπk

j,h

≤ Pk,h(V
k
j,h+1 − V πk

k,j,h+1)(x, a) + 2β
√

ϕ(x, a)T (Λk
h)

−1ϕ(x, a) +H(BE
j

√
dD +HBE

p

√
dD)

Thus,

Qk
j,h(x, a)−Qπk

j,h(x, a) ≤ Pk,h(V
k
j,h+1 − V πk

k,j,h+1)(x, a) + 2β
√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a)

+H(BE
r

√
dD +BE

g

√
dD +HBE

p

√
dD)

Pk,h(V
k
j,h+1 − V πk

k,j,h+1)(x, a) + 2β
√
ϕ(x, a)T (Λk

h)
−1ϕ(x, a)+

BE
j

√
dD +HBE

p

√
dD − (Qk

j,h(x, a)−Qπk

k,j,h(x, a)) ≥ 0 (128)

Since V k
j,h(x) =

∑
a πh,k(a|x)Qk

j,h(x, a) and V πk

k,j,h(x) =
∑

a πh,k(a|x)Qπk

k,j,h(x, a) where πh,k(a|·) =

SOFT-MAXa
α(Q

k
r,h + YkQ

k
g,h) ∀a.

Thus, from (128),

V k
j,h(x

k
h)− V πk

k,j,h(x
k
h) =

∑
a

πh,k(a|xk
h)[Q

k
j,h(x

k
h, a)−Qπk

k,j,h(x
k
h, a)]

≤
∑
a

πh,k(a|xk
h)[Q

k
j,h(x

k
h, a)−Qπk

k,j,h(x
k
h, a)] + (BE

j

√
dD +HBE

p

√
dD)

+ 2β
√

ϕ(xk
h, a

k
h)

T (Λk
h)

−1ϕ(xk
h, a

k
h) + Pk,h(V

k
j,h+1 − V πk

j,h+1)(x
k
h, a

k
h)− (Qk

j,h(x
k
h, a

k
h)−Qπk

k,j,h(x
k
h, a

k
h)) (129)

Thus, from (129), we have

V k
j,h(x

k
h)− V πk

j,h (x
k
h) ≤Dk

j,h,1 +Dk
j,h,2 + [V k

j,h+1 − V πk

j,h+1](x
k
h+1) + 2β

√
ϕ(xk

h, a
k
h)

T (Λk
h)

−1ϕ(xk
h, a

k
h)

+ (BE
j

√
dD +HBE

p

√
dD) (130)

Hence, by iterating recursively, we have

V k
j,1(x1)− V πk

j,1 ≤
H∑

h=1

(Dk
j,h,1 +Dk

j,h,2) +

H∑
h=1

2β
√
ϕ(xk

h, a
k
h)

T (Λk
h)

−1ϕ(xk
h, a

k
h) +H(BE

j

√
dD +HBE

p

√
dD) (131)

The result follows.

Now, we are ready to prove Lemma 16.

Proof of Lemma 16
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Proof. First, from Lemma 22,

(V
π∗
k

k,r,1(x1) + YkV
π∗
k

k,g,1(x1))− (V k
r,1(x1) + YkV

k
g,1(x1)) ≤

H log(|A|)
α

+H(BE
r

√
dD + YkB

E
g

√
dD + (1 + Yk)HBE

p

√
dD) (132)

Note that Yk = 2H/δ. Now, summing over k within frame E we obtain

D∑
k=1

(V
π∗
k

k,r,1(x1) + YkV
π∗
k

k,g,1(x1))− (V k
r,1(x1) + YkV

k
g,1(x1)) ≤

HD log(|A|)
α

+H
√
d(BE

r D
3/2 + 2H/δBE

gD
3/2 + (1 + 2H/δ)HBE

pD
3/2) (133)

Now, summing over the epochs E , we obtain

K/D∑
E=1

D∑
k=1

(V
π∗
k

k,r,1(x1) + YkV
π∗
k

k,g,1(x1))− (V k
r,1(x1) + YkV

k
g,1(x1)) ≤

HK log(|A|)
α

+

K/D∑
E=1

H
√
d(BE

r D
3/2 + 2H/δBE

gD
3/2 + (1 + 2H/δ)HBE

pD
3/2)

≤ HK log(|A|)
α

+H2(1 + 2H/δ)
√
dBD3/2 (134)

where we have used the fact that
∑

E(B
E
r + BE

g + BE
p ) = Br + Bg + Bp = B. This gives the bound for T1. Now, we

bound T2.

From Lemma 23,

D∑
k=1

(V k
j,1(x1)− V πk

j,1 (x1)) ≤
D∑

k=1

H∑
h=1

(Dk
j,h,1 +Dk

j,h,2) +

D∑
k=1

H∑
h=1

2β
√
ϕ(xk

h, a
k
h)

T (Λk
h)

−1ϕ(xk
h, a

k
h)

+

K/D∑
E=1

D∑
k=1

H(BE
j

√
dD +HBE

p

√
dD) (135)

We, now, bound the individual terms of the right-hand side in (135). First, we show that the first term corresponds to a
Martingale difference.

For any (k, h) ∈ [E ]× [H], we define Fk
h,1 as σ-algebra generated by the state-action sequences, reward, and constraint

values, {(xτ
i , a

τ
i )}(τ,i)∈[k−1]×[H] ∪ {(xk

i , a
k
i )}i∈[h].

Similarly, we define the Fk
h,2 as the σ-algebra generated by {(xτ

i , a
τ
i )}(τ,i)∈[k−1]×[H] ∪ {(xk

i , a
k
i )}i∈[h] ∪ {xk

h+1}. xk
H+1 is

a null state for any k ∈ [K].

A filtration is a sequence of σ-algebras {Fk
h,m}(k,h,m)∈[E]×[H]×[2] in terms of time index

t(k, h,m) = 2(k − 1)H + 2(h− 1) +m (136)

which holds that Fk
h,m ⊂ Fk′

h′,m′ for any t ≤ t′.

Note from the definitions in (126) that Dk
j,h,1 ∈ Fk

h,1 and Dk
j,h,2 ∈ Fk

h,2. Thus, for any (k, h) ∈ [K]× [H],

E[Dk
j,h,1|Fk

h−1,2] = 0, E[Dk
j,h,2|Fk

h,1] = 0 (137)

Notice that t(k, 0, 2) = t(k − 1, H, 2) = 2(H − 1)k. Clearly, Fk
0,2 = Fk−1

H,2 for any k ≥ 2. Let F1
0,2 be empty. We define a

Martingale sequence

Mk
j,h,m =

k−1∑
τ=1

H∑
i=1

(Dτ
j,i,1 +Dτ

j,i,2) +

h−1∑
i=1

(Dk
j,i,1 +Dk

j,i,2) +

m∑
l=1

Dk
j,h,l
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=
∑

(τ,i,l)∈[E]×[H]×[2],t(τ,i,l)≤t(k,h,m)

Dτ
j,i,l (138)

where t(k, h,m) = 2(k − 1)H + 2(h − 1) + m is the time index. Clearly, this martingale is adopted to the filtration
{Fk

h,m}(k,h,m)∈[D]×[H]×[2], and particularly

D∑
k=1

H∑
h=1

(Dk
j,h,1 +Dk

j,h,2) = MD
j,H,2 (139)

Thus, MK
j,H,2 is a Martingale difference satisfying |MD

j,H,2| ≤ 4H since |Dk
j,h,1|, |Dk

j,h,2| ≤ 2H From the Azuma-Hoeffding
inequality, we have

Pr(MD
j,H,2 > s) ≤ 2 exp(− s2

16DH2
) (140)

With probability 1− p/2 at least for any j = r, g,∑
k

∑
h

MD
j,H,2 ≤

√
16DH2 log(4/p) (141)

Now, we bound the second term of the right-hand side of (135). Note that the minimum eigen value of Λk
h is at least λ = 1

for all (k, h) ∈ [D]× [H]. By Lemma 26,
K∑

k=1

(ϕk
h)

T (Λk
h)

−1ϕk
h ≤ 2 log

[
det(Λk+1

h )

det(Λ1
h)

]
(142)

Moreover, note that ||Λk+1
h || = ||

∑k
τ=1 ϕ

k
h(ϕ

k
h)

T + λI|| ≤ λ+ k, hence,
D∑

k=1

(ϕk
h)

T (Λk
h)

−1ϕk
h ≤ 2d log

[
λ+ k

λ

]
≤ 2dι (143)

Now, by Cauchy-Schwartz inequality, we have
D∑

k=1

H∑
h=1

√
(ϕk

h)
T (Λk

h)
−1ϕk

h ≤
H∑

h=1

√
W [

K∑
k=1

(ϕk
h)

T (Λk
h)

−1ϕk
h]

1/2

≤ H
√
2dDι (144)

Note that β = C1dH
√
ι. Hence, the second term is bounded by

O(
√
H4d3Dι2) (145)

The third term of (135) is bounded by
D∑

k=1

H(BE
j

√
dD +HBE

p

√
dD) =

√
dD3/2H(BE

j +HBE
p ) (146)

Hence, summing (135) over the epochs we obtain
K/D∑
E=1

D∑
k=1

(V k
j,1(x1)− V πk

j,1 (x1)) ≤
K/D∑
E=1

O(
√
H4d3Dι2) +

K/D∑
E=1

√
dD3/2H(BE

j +HBE
p ) (147)

Replacing
∑

E B
E
j = Bj , and

∑
E B

E
p = Bp, we obtain

K/D∑
E=1

D∑
k=1

(V k
j,1(x1)− V πk

k,j,1(x1)) ≤ O(
√
H4d3K2ι2/D) +

√
dD3/2BH2 (148)

Thus,
K∑

k=1

(V k
r,1(x1)− V πk

k,r,1(x1)) + Y (V k
g,1(x1)− V πk

k,g,1(x1)) ≤ (1 + Y )(O(
√

H4d3K2ι2/D) +
√
dD3/2BH2) (149)

Hence, the result follows.
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G.4 Supporting Results

Lemma 24. Under Definition 1, for any fixed policy π, let wπ
k,j,h be the corresponding weights such that Qπ

k,j,h =
⟨ϕ(x, a), wπ

k,j,h⟩, for j ∈ {r, g}, then we have for all h ∈ [H] and k ∈ [K]

||wπ
k,j,h|| ≤ 2H

√
d (150)

Proof. From the linearity of the action-value function, we have

Qπ
k,j,h(x, a) = jk,h(x, a) + Pk,hV

π
k,j,h(x, a)

= ⟨ϕ(x, a), θj,h⟩+
∫
S
V π
k,j,h+1(x

′)⟨ϕ(x, a), dµk,h(x
′)⟩

= ⟨ϕ(x, a), wπ
k,j,h⟩ (151)

where wπ
j,h = θj,h +

∫
S V π

j,h+1(x
′)dµh(x

′).

Now, ||θj,h|| ≤
√
d, and ||

∫
S V π

j,h+1(x
′)dµh(x

′)|| ≤ H
√
d. Thus, the result follows.

Lemma 25. For any (k, h), the weight wk
j,h satisfies

||wk
j,h|| ≤ 2H

√
dk/λ (152)

Proof. For any vector v ∈ Rd we have

|vTwk
j,h| = |vT (Λk

h)
−1

k−1∑
τ=1

ϕτ
h(x

τ
h, a

τ
h)(jh(x

τ
h, a

τ
h) +

∑
a

πh+1,k(a|xτ
h+1)Q

k
j,h+1(x

τ
h+1, a))| (153)

here πh,k(·|x) is the Soft-max policy.

Note that Qk
j,h+1(x, a) ≤ H for any (x, a). Hence, from (153) we have

|vTwk
j,h| ≤

k−1∑
τ=1

|vT (Λk
h)

−1ϕτ
h|.2H

≤

√√√√k−1∑
τ=1

vT (Λh
k)

−1v

√√√√k−1∑
τ=1

ϕτ
h(Λ

k
h)

−1ϕτ
h.2H

≤ 2H||v||
√
dk√
λ

(154)

Note that ||wk
j,h|| = maxv:||v||=1 |vTwk

j,h|. Hence, the result follows.

The following result is shown in Abbasi-yadkori et al. (2011) and in Lemma D.2 in Jin et al. (2020).

Lemma 26. Let {ϕt}t≥0 be a sequence in ℜd satisfying supt≥0 ||ϕt|| ≤ 1. For any t ≥ 0, we define Λt = Λ0 +∑t
j=0 ϕjϕ

T
j ϕj . Then if the smallest eigen value of Λ0 be at least 1, we have

log

[
det(Λk+1

h )

det(Λ1
h)

]
≤

K∑
k=1

(ϕk
h)

T (Λk
h)

−1ϕk
h ≤ 2 log

[
det(Λk+1

h )

det(Λ1
h)

]
(155)

We use the following result (Lemma J.10 in Ding and Lavaei (2022)).

Lemma 27. Let C̄∗ ≥ 2maxk µ
k,∗, then, if

K∑
k=1

(V
π∗
k

k,r,1(x1)− V πk

k,r,1(x1)) + 2C̄∗
K∑

k=1

(bk − V πk

k,g,1(x1)) ≤ δ (156)
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, then

K∑
k=1

(bk − V πk

k,g,1(x1)) ≤
2δ

C̄∗ (157)

Algorithm 4: Model Free Primal-Dual Algorithm for Linear Function Approximation for Non-stationary Setting without
knowing the variation budget

1 Choose W = K1/2,J (defined in Eq. (158)), γ0 = min
{
1,
√

(K/W ) log(K/W )
(e−1)KH

}
, λ = 1/8 ;

2 Initialize weights of the bandit arms s1(j) = 1, ∀j = 0, 1, . . . , J ;
3 for epoch i = 1, . . . , K

W do
4 Update pi(j)← (1− δ) si(j)∑J

j′=0
si(j′)

+ γ0

J+1 , ∀j = 0, 1, . . . , J ;

5 Draw an arm Ai ∈ [J ] randomly according to the probabilities pi(0), . . . , pi(J) ;

6 Set the estimated budget Bi ←
√
KW

Ai
J

∆W ;
7 Run a new instance of Algorithm 3 for W episodes with parameter value B ← Bi;
8 Observe the cumulative reward Ri and utility Gi.;
9 for arm j=0,1,. . . ,J do

10 R̂i(j) =

{
(Gi/K

λ)I{j=Ai}/(WH(1 + 1/Kλ)pi(j)) if Gi < Wρ

(Ri +Gi/K
λ)I{j=Ai}/(WH(1 + 1/Kλ)pi(j)) if Gi ≥Wρ

; // normalization

11 si+1 ← si(j) exp(γ0R̂i(j)/(J + 1));

H DETAILS PROOF OF THEOREM THEOREM 4

Let W = Kζ and

J =

{√
K

∆W
,

√
KW

1
J

∆W
,

√
KW

2
J

∆W
, . . . ,

√
KW

∆W

}
,∆ =

(
6(1 + ξ)

ξδ
Õ((1 + δ)d5/4H9/4)

)4

(158)

where J = logW as the candidate sets for B in the linear CMDPs. Under assumption K1/8 ≥ 6(1 + ξ)

ξδ
Õ((1 +

1/δ)d5/4B1/4H9/4 we know the optimal budget B ∈ J . Let B̂ be any candidate value in J that leads to the lowest regret
while achieving zero constraint violation. Let Ri(Bi) be the expected cumulative reward received in epoch i with the
estimated epoch length B. Then the regret can be decomposed into:

Regret(K) =E

[
K∑

k=1

(
V

π∗
k

k,1(xk,1)− V πk

k,1(xk,1)
)]

=E

 K∑
k=1

V
π∗
k

k,1(xk,1)−
K/W∑
i=1

Ri(B̂)

+ E

K/W∑
i=1

Ri(B̂)−
K/W∑
i=1

Ri(Bi)

 .

The first term is the regret of using the candidate B̂ from J ; the second term is the difference between using B̂ and Bi

which is selected by Exp3 algorithm. Applying the analysis of the Exp3 algorithm, we know that by using Lemma 2 for any
choice of B̂, the second term is upper bounded:

E

K/W∑
i=1

Ri(B̂)−
K/W∑
i=1

Ri(Bi)

 ≤ Õ(H√KW +HK1−λ).

For the first term, according to the regret bound analysis of Algorithm 3, we have for the W episodes

E

[
W∑
k=1

(
V

π∗
k

k,1(xk,1)−Ri(D̂)
)]
≤ Õ

(
1 + δ

δ
K1− 1ζ

4 H9/4d5/4B̂1/4

)
. (159)
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We need to consider whether B̂ is covered in the range of J to further obtain the bound of (159). We consider the following
two cases

• The first case is that optimal B is covered in the range of J . Note that two consecutive values in J only differ from
each other by a factor of W

1
J , then there exists a value B̂ ∈ J such that B ≤ B̂ ≤W 1/JB. Therefore we can bound

the RHS of (159) by

Õ
(
1 + δ

δ
K1− 1ζ

4 H9/4d5/4B̂1/4

)
≤ Õ

(
1 + δ

δ
K1− 1ζ

4 H9/4d5/4W 1/JB
1/4
)

≤Õ
(
1 + δ

δ
K1− 1ζ

4 H9/4d5/4eB1/4

)
=Õ

(
1 + δ

δ
K1− 1ζ

4 H9/4d5/4B1/4

)
• The second case is that B is not covered in the range of J ,i.e., B ≤

√
K

∆W , then the optimal candidate value in J is
√
K

∆W ,we can bound the RHS of (159) by

Õ
(
1 + δ

δ
K1− 1ζ

4 H9/4d5/4B̂1/4

)
≤Õ

(
1 + δ

δ
K1− 1ζ

4 H9/4d5/4(

√
K

∆W
)1/4

)

For the constraint violation, according to Lemma 2 we have

E

[
K∑

k=1

ρ− Cπk

k,1(xk,1, ak,1)

]
= E

K/W∑
i=1

(Wρ−Gi(Bi))


=E

K/W∑
i=1

(
Wρ−Gi(B̂)

)+ E

K/W∑
i=1

(
Gi(B̂)−Gi(Bi)

)
For the first term, according to Theorem 3, by selecting ϵ =

3(1 + ξ)

ξ
Õ((1 + 1/δ)d5/4B̂1/4H9/4K1−ζ/4)/K, we have

E

K/W∑
i=1

(
Wρ−Gi(B̂)

) ≤ − (1 + ξ)

ξ
Õ((1 + 1/δ)K1−ζ/4H9/4d5/4B̂1/4). (160)

For the second term, we are able to obtain an upper bound by using Lemma 2

E

K/W∑
i=1

(Gi(B̂)−Gi(Bi))

 ≤ 12KλH
√
K1+ζ(J + 1) ln(J + 1) (161)

By balancing the terms Õ(K1−ζ/4), Õ(Kλ+(1+ζ)/2) and K1−λ, the best selection are ζ = 1/2 and λ = 1/8. Therefore we
further obtain

Violation(K) = 0. (162)

We finish the proof of Theorem 4.

I ANOTHER APPROACH FOR UNKNOWN BUDGET

We consider a primal-dual adaptation in the outer loop as well. In particular, after collecting Ri(Bi) and Gi(Bi) under the
selected epoch length Bi, the bandit reward is Ri(Bi)+YiGi(Bi), where Yi = min{max{Yi−1+η(ρ−Gi(Bi)/W ), 0}, ξ}.
Then line 10 in Algorithm 4 is replaced with

R̂i(j) = (Ri(Bi) + YiGi(Bi))/(WH + ξWH)
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Let W = d1/2H−1/2K1/2 be the epoch length, and

J =
{
1,W

1
J , . . . ,W

}
,

where J = logW as the candidate sets for D in the linear CMDPs. We still use Exp-3 to choose an arm. From the Exp-3
analysis we know for any D†∑

m

(Rm(D†) + YmGm(D†))− (Rm(Dm) + YmGm(Dm))

≤2
√
e− 1WH(1 + ξ)

√
(K/W )(J + 1) ln(J + 1) = Õ(Hξ

√
KW ), (163)

Now, from the dual domain analysis, we obtain a similar to (Lemma 15)∑
m

(Y − Ym)(Wρ−Gm(Dm)) ≤ Y 2W

2η
+

ηH2K

2
(164)

We note that η =
√
ξ2W/(KH2), then the upper bound is ξ

√
WKH2. From the results analysis of the constraint violation

from Theorem 3, we have for the optimal choice of D† from J∑
m

(Wρ−Gm(D†)) ≤Õ(K
√

d3H4/D† +D†
√
dD†H2B). (165)

K∑
k

V
π∗
k

k,1(xk,1)−
∑
m

Ri(D
†) ≤Õ(K

√
d3H4/D† +D†

√
dD†H2B). (166)

Hence, we have∑
m

−Ym(Gm(D†)−Gm(Dm)) =
∑
m

−Ym(Gm(D†)−Wρ) +
∑
m

−Ym(Wρ−Gm(Dm))

≤Õ
(
K
√
d3H4/D†ξ +D†

√
dD†H2Bξ + ξ

√
WKH2

)
(167)

where we use (164) (with Y = 0) for the first inequality, and (165) (where we use |Ym| ≤ ξ) for the second term.

Hence, from (163)∑
m

(Rm(D†)−Rm(Dm))

≤Õ(Hξ2
√
e− 1WH(1 + ξ)

√
(K/W )(J + 1) ln(J + 1) +

∑
m

−Ym(Gm(D†)−Gm(Dm))

≤Õ
(
K
√

d3H4/D†ξ +D†
√
dD†H2Bξ + ξ

√
WKH2 +Hξ

√
KW

)
(168)

Now, suppose that optimal D exists in the range, thus, D† ≤ D ≤ D†W 1/J = eD†. Hence, from D = B−1/2W , and
(166) we have the regret bound of Õ((1 + 1/δ)H9/4d5/4B1/4K3/4).

If D is not covered – if D < 1, then B−1/2d1/2H−1/2K1/2 ≤ 1, thus, B ≥ O(K) which will make the regret and violation
bound vacuous. Thus, we consider D > W . Hence, B−1/2d1/2H−1/2K1/2 > d1/2H−1/2K1/2, thus, we have B < 1.
Hence, the optimal D† = d1/2H−1/2K1/2 by balancing the terms in (168). Thus, the regret bound again follows, i.e., the
regret bound is Õ((1 + 1/δ)H9/4d5/4B1/4K3/4).

Now, we bound the constraint violation. Note that

K∑
k

V
π∗
k

k,1(xk,1)−
∑
m

Rm(Dm) + Y
∑
m

(Wρ−Gm(Dm))

=

K∑
k

V
π∗
k

k,1(xk,1)−
∑
m

Rm(D†) +
∑
m

Ym(Wρ−Gm(D†))
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+
∑
m

Ym(Gm(D†)−Gm(Dm)) +
∑
m

(Rm(D†)−Rm(Dm)) +
∑
m

(Y − Ym)(Wρ−Gm(Dm))

≤Õ
(
K
√
d3H4/D†ξ +D†

√
dD†H2Bξ + ξ

√
WKH2 +Hξ

√
KW

)
(169)

where we use (166), (165), (163), and (164) to bound each term in the right-hand side respectively.

By using lemma 27, we can have∑
m

Wρ−Gm(Dm) ≤Õ
(
K
√
d3H4/D† +D†

√
dD†H2B +

√
WKH2 +H

√
KW

+
1

ξ
(K
√
d3H4/D†) +D†

√
dD†H2B)

)
(170)

From a similar argument (for regret) where optimal D is covered within the range or not, we bound D† and obtain the result
for constraint violation. We prove the results by substituting ξ = 2H

γ .

J Simulation

We compare Algorithm 1 with two baseline algorithms: an algorithm (Mao et al., 2020) for non-stationary MDPs, and an
algorithm (Wei et al., 2022b) for stationary constrained MDPs using a grid-world environment, which is shown in Figure.
1a. The objective of the agent is to travel to the destination as quickly as possible while avoiding obstacles for safety. Hitting
an obstacle incurs a cost of 1. The reward for the destination is 1. Denote the Euclidean distance from the current location x
to the destination as d0(x), the longest Euclidean distance is denoted by dmax, then the reward function for a locations x is
defined as 0.1∗(dmax−d0)

dmax
. The cost constraint is set to be 5 (we used cost instead of utility in this simulation), which means

the agent is only allowed to hit the obstacles at most five times. To account for the statistical significance, all results were
averaged over 10 trials. To test the algorithms in a non-stationary environment, we gradually vary the transition probability,
reward, and cost functions. In particular, the reward is added an additional variation of ± 0.1

K , where the sign is uniformly
sampled, the cost varies 0.1

K at all the locations. We vary the transitions in a way that the intended transition ”succeeds”
with probability 0.95 at the beginning; that is, even if the agent takes the correct action at a certain step, there is still a 0.05
probability that it will take an action randomly. The probability is increased with 0.1

K at each iteration.

As shown in Figure. 1b, we can observe that our Algorithm 1 can quickly learn a well-performed policy while satisfying the
safety constraint (below the threshold), while other methods all fail to satisfy the constraint.

(a) Grid World (b) Average Reward and Cost during training

Figure 1: Performance of the three algorithms under a non-stationary environment
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