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Abstract

Analysis of the differential treatment effects across targeted subgroups and contexts is a critical
objective in many evaluations because it delineates for whom and under what conditions particular
programs, therapies or treatments are effective. Unfortunately, it is unclear how to plan efficient and
effective evaluations that include these moderated effects when the design includes partial nesting
(i.e., disparate grouping structures across treatment conditions). In this study, we develop statistical
power formulas to identify requisite sample sizes and guide the planning of evaluations probing
moderation under two-level partially nested designs. The results suggest that the power to detect
moderation effects in partially nested designs is substantially influenced by sample size, moderation
effect size, and moderator variance structure (i.e., varies within groups only or within and between
groups). We implement the power formulas in the R-Shiny application PowerUpRShiny and
demonstrate their use to plan evaluations.
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A common goal of experimental evaluations is determining the average effectiveness of a program,
intervention, or policy (i.e., treatment). However, treatment effectiveness can depend on the indi-
vidual (for whom) and contextual factors (under what conditions). Inclusion of moderator variables
that capture the factors by which effects vary is a common technique to investigate treatment effect
heterogeneity. Planning evaluations that consider treatment effect moderation is aided by the avail-
ability of power formulas for detecting moderation effects in various randomized designs, but these
formulas are unavailable for partially nested designs in which the grouping structure of the treatment
condition is different from that of the control condition. In this study, we develop, describe, and
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investigate power formulas for moderated effects in evaluations with partial nesting to ensure
adequate sample sizes and improve evaluation planning.

Our analyses focus on experimental evaluations because of their ability to produce strong causal
evidence regarding the effectiveness of a treatment but recognize the value of supplementary questions.
Understanding the variability of treatment effects across differing individual characteristics (e.g., race,
gender, pretest score) or group characteristics (e.g., organization size or location) reveals for whom and
under what conditions a treatment is effective. It also provides an avenue to investigate opposing
treatment effects across groups that produce a null main effect (MacKinnon et al., 2011). For example,
anear-zero treatment effect would be produced by an educational intervention that increases academic
achievement among male students but decreases achievement among female students.

The value of capturing a more complete understanding of treatment effects is often reflected in
evaluation literature through the use of moderator variables that detail variance in the effects of an
intervention across different groups. For example, recent literature has used this approach to study
an intervention aimed at reducing violent video game consumption across different lifestyles
(Rivera et al., 2016); a treatment program for mental illness across race, gender, and age (Kenny
et al., 2004); an online intervention for depression across education levels, attitudes toward online
instruction, and willingness to change (Liidtke et al., 2018); and an implementation intentions
method to increase physical activity across levels of executive function (Hall et al., 2014). Funders
and professional organizations also emphasize investigations that capture a more complete under-
standing of treatment effects (e.g., Institute of Education Sciences, 2016; Society for Research on
Educational Effectiveness, 2012).

In conjunction with the increasing emphasis on moderated treatment effects is a growing literature
detailing design and analysis techniques that support the inclusion of moderator variables. For exam-
ple, existing research details the inclusion and analysis of different types of moderator variables (e.g.,
categorical or continuous) in various experimental study designs (Bloom, 2005; Dong et al., 2018;
Jaciw et al., 2016; Spybrook et al., 2016). Many of these advancements have been implemented in
software (e.g., Dong et al., 2016), expanding the capacity of evaluators to plan for and capture
treatment effect moderation. This capacity does not, however, extend to designs with partial nesting
which occur when there are disparate grouping or nesting structures across treatment conditions.

A wide variety of partial nesting structures occur in practice (e.g., Sterba et al., 2014). Such
structures can occur when, for example, assignment to a treatment condition eliminates some nested
structure (e.g., homeschooling treatment vs. typical schooling control condition) or when assign-
ment induces or utilizes some nesting structure in the treatment condition that does not exist in the
control condition. For example, a common design in the field of counseling involves randomly
assigning individuals to therapy led by a counselor or to a waitlist control condition (e.g., Roberts &
Roberts, 2005). In this setting, treatment individuals are nested within counselors while control
individuals are not nested. Similar examples of partial nesting occur in a wide range of fields (e.g.,
Bauer et al., 2008; Lohr et al., 2014; Sterba et al., 2014). In the medical field, patients can receive
novel treatments in a clinic setting or be assigned to receive the typical home-based care in the
control condition (e.g., Morrell et al., 1998); in education settings, a treatment may consist of a
school-based intervention and be compared to an individualized home-based intervention control
condition (e.g., Roberts et al., 2011); and in psychotherapy, the treatment condition may involve a
group therapy while the control condition utilizes individual therapy (e.g., Dishion et al., 2001).

Partial nesting occurs across these examples because assignment to the treatment condition
creates a grouping structure that is dissimilar to the structure of the control condition. Those in the
treatment condition of the provided examples experience the treatment as a group (e.g., classroom,
organization, neighborhood) or share a common agent of implementation (e.g., patients with the
same counselor or students with the same tutor). The result is a treatment condition with a two-level
data structure brought on by treatment delivery but a control condition without any grouping
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Figure |. Individual, cluster, and partially nested randomized designs. (A) . ...(D)

structure. Our examples focus on these “two/one” partially nested designs that combine the grouping
structure of a two-level cluster-randomized trial in the treatment condition with the single-level
structure of an individual-randomized trial in the control condition. The two/one partially nested
nomenclature stems from the design having two levels in the first treatment condition and one level
in the other condition. These designs are common in education, public health, and other social
science settings (e.g., Bauer et al., 2008; Lohr et al., 2014; Sanders, 2011).

For clarity, Figure 1 illustrates the two/one partially nested designs included in the scope of this
investigation (see Panels C and D) along with the more common individual- (Panel A) and cluster-
randomized design (Panel B). The purpose of Figure 1 is to show the differences and similarities in
treatment and control condition grouping across these designs. Panel (A) in Figure 1 presents a
typical individual-randomized design that does not have any grouping in the treatment or control
condition. Panel (B) in Figure 1 displays a typical cluster-randomized design with intact groups
(represented using circles) randomly assigned to the treatment or control condition. Panel (C) in
Figure 1 displays a partially nested design that leverages individual assignment but whose treatment
induces a two-level nesting structure in the treatment condition. We emphasize that this grouping is
new (i.e., treatment-induced) using spikes around the group circles in the figure. Notice that the
partially nested design combines an unclustered structure for the control condition with a two-level
nesting structure for the treatment condition that was brought about by the nature of the treatment
(e.g., sharing a therapist or teacher). Panel (D) in Figure 1 displays a similar type of partially nested
design as in Panel (C) because it yields a two-level nesting structure in the treatment condition and
an unclustered structure in the control condition. However, the clustering structure in the treatment
condition of Panel (D) arises differently. In Panel (D), grouping is an artifact of a preexisting social
structure (e.g., extant groups). To illustrate extant grouping, we have study participants (black
figures) join others (gray figures) in existing groups (solid circles).
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Evident from the panels in Figure 1, the structures of the control conditions are identical across the
partially nested designs (Panels C and D) and the individual-randomized design (Panel A) because all
three designs leverage individual assignment that results in an ungrouped or unclustered control con-
dition. Similarly, the structures of the treatment conditions in Panels B (cluster-randomized trial), C
(two/one treatment-induced partial nesting), and D (two/one partial nesting with extant groups) are the
same as they each result in a two-level structure for the treatment condition. The distinguishing feature of
the partially nested designs (C and D) is their use of different grouping structures in the treatment and
control conditions. The specific partially nested designs are distinguished by the mechanism that
produces the grouping or clustering. Recall in (C), the clustering is generated by the nature of the
treatment (e.g., individuals assigned to treatment are grouped to form a new therapy group) whereas
in (D), the clustering exists prior to the study (e.g., individuals are assigned to an existing therapy group).

The unique data structure of partial nesting is often disregarded, and past research has widely
documented the various problems this can introduce in terms of efficiency, bias in standard errors of
the treatment effect, and bias in estimates of variance components. These problems lead to inaccu-
rate results and incorrect inferences (Baldwin et al., 2011; Bauer et al., 2008; Candlish et al., 2018;
Hedges & Citkowicz, 2015; Korendijk et al., 2012; Lee & Thompson, 2005; Sanders, 2011; Schweig
& Pane, 2016). Increasing attention has focused on development of analytic approaches and design
strategies to address these issues in partially nested studies. For example, multiple-arm multilevel
models have been extended for partially nested data (e.g., Lachowicz et al., 2015; Lohr et al., 2014;
Sterba et al., 2014), and several studies have investigated sample size considerations and the use of
covariates in partially nested designs (e.g., Moerbeek & Wong, 2008; Roberts & Roberts, 2005).

The purpose of this study is to develop statistical power formulas for moderated effects in
common two/one partially nested designs and investigate these formulas to provide guidance and
recommendations for evaluation planning. We structure our analyses to address two/one partially
nested designs in which (a) treatment assignment induces a nesting structure in the treatment
condition such that individual-level moderators plausibly vary only within groups and (b) treatment
assignment inserts individuals into an extant nesting structure in the treatment condition such that
individual-level moderators plausibly vary within and between groups.

In the first design (see Panel C of Figure 1), random assignment introduces a nesting structure such that
individual-level moderator variables vary within but not across groups. It may seem tenuous to assume
that the variability of an individual-level moderator arises solely from differences among individuals and
not from differences among groups. However, because the formation of treatment conditions in partially
nested designs is frequently the specific feature that induces nesting that would not otherwise exist, the
values of an individual-level pretreatment moderator variable are typically established before assignment
and exposure to the cluster-inducing treatment. As a result, the values of individual-level moderators will
typically not be clustered and will not have variation at the group level.

Consider an evaluation of a counseling therapy in which individuals are randomly assigned to
participate in therapy with a therapist (treatment) or to remain on a waitlist (control). This design
creates a partially nested structure because treatment individuals are nested within therapists whereas
control individuals remain ungrouped on a waitlist. Now consider an individual-level moderator such
as pretreatment mental health. With individuals randomly assigned to therapists, there is no reason to
suspect that the therapist-level averages of pretreatment individual-level mental health will system-
atically differ across therapists. Pretreatment mental health should be equally dispersed across thera-
pists because pretreatment mental health took on values before individuals were assigned to therapists.

In the second design (see Figure 1 Panel D), we consider evaluations in which individuals assigned
to the treatment condition are inserted into a preexisting nested structure such that individual-level
moderator variables plausibly vary within and across groups. In this design, treated individuals par-
ticipate in extant groups rather than forming new groups. Consider an evaluation of a group therapy in
which individuals are randomly assigned to group therapy sessions (treatment) in preexisting groups or
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remain on a control waitlist. Treatment condition structure in this design has individuals nested in
therapy groups whereas the control condition continues to be unclustered.

For example, let us consider pretreatment assessment of individual mental health as a moderator of
group therapy effectiveness. When groups are formed prior to treatment assignment, it is plausible that
the groups differ in their average pretreatment levels of mental health. Pretreatment mental health may
be clustered within groups because of, for example, the prior progress of the groups or the self-
selection of individuals with similar mental health levels into a therapy group. These average differ-
ences in prior mental health may play important contextual roles that moderate the effectiveness of the
therapy. It is possible that the therapy is highly effective for groups with high average pretreatment
mental health but ineffective for groups with low average pretreatment mental health. As a result, the
average pretreatment mental health of a group may play an important moderating role.

Below, we further detail two/one partially nested designs setting a foundation for subsequent power
formula development. We outline the analytic models, describe the error variance of the moderation
effect, then provide formulas for estimating statistical power in two/one partially nested designs with
treatment conditions that induce nesting. We repeat this process for designs that assign treatment to
extant groups. A probe of the newly developed power formulas investigates the feasibility of detecting
moderator effects in evaluations with partial nesting. This is followed by an illustrative example to
demonstrate the application of the formulas in evaluation planning. To conclude, we summarize
results, discuss implications, note limitations, and provide recommendations.

Two/One Partial Nesting

In designs with two/one partial nesting, individuals are randomly assigned to a treatment or control
condition one of which has a two-level data structure while the other has a single-level data
structure. Most often, individuals in the control condition are unaffected by treatment grouping.
This creates a treatment condition with a two-level data structure and a control condition with a
single-level structure. Our derivations apply to partially nested designs with a two-level data struc-
ture in the control condition, but we focus on those with a two-level data structure in the treatment
condition (as illustrated in Figure 1 Panels C and D).

We noted an example in counseling when individuals are randomly assigned to receive a treat-
ment delivered by a therapist or placed on a waitlist. This two/one partially nested design has a
treatment-induced nesting structure (patients within a therapist) with a waitlist control condition
comprised of independent individuals (i.e., the control condition retains a single-level structure).
Two/one partially nested designs can also arise when treatments use extant grouping structure. In the
context of our counseling example, assigning individuals to group therapy sessions utilizes a pre-
existing two-level treatment (i.e., individuals within therapy groups) with wait-listed control indi-
viduals retaining a single-level data structure. In either case, the treatment condition has two levels
while the control condition has one level.

We take up these two complementary types of two/one partial nesting separately because mod-
erator variability likely differs under each type. We refer to the two types of partial nesting as (a)
treatment-induced nesting (moderator plausibly varies only within groups) and (b) treatment assign-
ment to extant nesting (moderator plausibly varies within and between groups). Below, we examine
each of the scenarios assuming that moderators are continuous variables but formulas are adaptable
to binary moderators (see Binary Moderator in the Technical Supplemental Appendix).

Treatment Assignment-Induced Nesting Structure

Treatment-induced nesting structure results in a moderator that plausibly varies within groups only.
We use a working example to help ground the analytic models, moderator effect variance formulas,
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and subsequent power formulas. This hypothetical evaluation in an educational setting investigates
the effectiveness of a spatial intervention program on secondary student mathematics performance
(Lowrie et al., 2019). The spatial intervention is implemented as a summer school program with a
sample of students selected from those performing below proficient levels in mathematics. Students
randomly assigned to the control condition will be placed on a waitlist and will continue with their
summer as usual. Students assigned to the treatment condition will complete the classroom-based
intervention program over 3 weeks in the summer. This evaluation has a two/one partially nested
design with the treatment condition containing two levels (i.e., students nested within classrooms)
and the control condition (i.e., wait-listed students) representing a single level.

In addition to considering the main effect of the spatial intervention program on secondary
student mathematics performance, we include math anxiety as a possible moderator. Student math
anxiety represents a typical individual-level continuous moderator. Math anxiety has a deleterious
relationship with math performance (e.g., Ashcraft & Krause, 2007; Ashcraft & Moore, 2009), and it
is possible that the spatial intervention program has differentiated effects based on a student’s math
anxiety. Given random assignment of students to intervention groups, we can assume that math
anxiety will not have variation at the group level. There is no reason with treatment-induced nesting
to suspect that average math anxiety in the intervention groups will systematically differ across
groups. Although math achievement (outcome) likely varies across individuals and groups, random
assignment of individuals to groups ensures that in expectation pretreatment covariates such as math
anxiety will be evenly distributed across groups.

Analytic Models

We use two analytic models to reflect the different treatment and control conditions and draw on the
common multiple-arm multilevel framework for partially nested data (MA-PN). This approach
makes power formulas more accessible (Spybrook et al., 2016). For the two-level treatment condi-
tion with an individual-level continuous moderator that only varies within groups, we have

Yy =)+ AOMy + 1) (X5 — X)) + 1y V5 + e e ~ N (0, o’;(,)>
' (1)
) = 80+ 08, + S0+ ) i~ w(0:5,)

The superscript ¢ indicates the treatment arm, and subscripts i and j follow common multilevel
model notation indicating individual and group, respectively. The outcome is represented by Y;; and
interpreted in our example as the math performance score from student (i) in classroom (j) after
completing the spatial intervention program (#). Covariates in the model (X, V, and W) explain
extraneous variation in the outcome reflecting a well-established design strategy that improves
study efficiency, increases power to detect a treatment effect, and reduces the sample size necessary
to achieve adequate power (see Covariates in Technical Supplemental Appendix; e.g., Raudenbush

et al., 2007). Investigations of main effects focus on 8, the overall intercept that represents the

conditional average of the outcome value in the treatment condition. In terms of our example, 3 is
the conditional average math score for students who completed the spatial intervention program.
Investigations of treatment effect moderation focus on M;j;, which represents the individual-level
continuous moderator for individual i in group j. Math anxiety for student i in classroom j in our

example. The coefficient A captures the relationship between the moderator (math anxiety) and

outcome (math performance). We have a group- or classroom-specific residual, u(()j) which repre-

sents the classroom-level random effects for the treatment condition (i.e., what variance in math

performance is attributable to the classroom) with szm representing variation in “(oj') across groups or
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classrooms. The individual-level error term is 8 (1 e., an indicator of the precision with which we

are predicting a student’s math performance) w1th GYW as its conditional within-group variance.
|
For the single-level control arm, the outcome model is

Y 8 4 AOM4 1 Xy 1 i NEINpY (0 Gy(() 2)
|

Most variables (e.g., ¥, M, X, and V) and parameters (e.g., 3 A€ and ) retain similar meaning
from the treatment condition model (see Equation 1). Differences include a superscript ¢ indicating the
control arm and a single subscript 7 indicating individuals (i.e., students) are not nested or grouped.
Variance is also simplified, with Gzym representing outcome variance in the control condition and 856)
representing the associated error térm that varies across individuals. We focus on the coefficient
capturing the relationship between the moderator and outcome in the control condition, A©,

Moderator Effect and Error Variance

Estimation of the moderator effect (ME) is possible by contrasting the coefficients capturing the
relationship between the moderator and outcome with

ME = A — A« (3)

A difference between A” and A suggests that the relationship between the treatment and
outcome differs by moderator value. In our example, a difference between A" and A suggests
that the effect of the spatial intervention is dependent on math anxiety. In other words, math anxiety
plausibly moderates the effects of the spatial intervention program on math performance. The
statistical significance of the moderated effect can be determined using a 7 test (see Test Statistic
and Power Formula in Technical Supplemental Appendix) with two key components: (a) the esti-
mate of the ME in Equation 3 and (b) the error variance of ME (o3

The novel contribution of our power formulas are expressions to track t"he expected uncertainty of
the moderator effect (GMEwnhm) using summary statistics that can be predicted a priori (i.e., before

data have been collected). The GIleEwimiu expressions are suitable for power analyses with summary

statistic components identified using historical data, pilot study results, and published catalogs (e.g.,
Aguinis et al., 2005; Hedges & Hedberg, 2007; Stone-Romero & Liakhovitski, 2002). We provide a
brief development of o3 N in Equations 4 and 5 with a detailed presentation available in the
Technical Supplemental Appendix. With independence across treatment conditions, the variance of
the moderated effect is the sum of the variances of the moderator coefficients:
cylzlewithm = Gi(;) + Gi(c). (4)
(see Moderator Effect and Error Variance in Technical Supplemental Appendix for expanded
formulations). We unpack cﬁ,lE . asa function of parameters that are accessible in the design stage

to facilitate prospective power analyses such that (see Technical Supplemental Appendix for details)

o2, (1 - Y“ )/nl" 0% (1 — R@(L;)

2 C,
GMEWII hin = + C (5 )
I ( —C(,)—l) M(z(l Ri]“) (n()—C<)—1) Mm(l _R%/I(o))

with sz and G?,(E) capturing the sample variance of the outcome (e.g., variation in student math
performance) in the treatment and control condition, respectively. Paired with each outcome var-

iance term is a 1 — R? term. The RZL1 and R2 yu terms represent variance explained in the outcome by
i @
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predictor variables (i.e., M, X, and V). The R? value can vary between zero and one such that
increasing values of R? result in smaller and smaller 1 — R? values. The product of the 1 — R? and
2 | produces a smaller value indicating variance in the outcome after conditioning on predictors.

For instance, a pretest on math performance would often be an effective covariate for reducing
outcome variance in our working example. Using a student’s math performance score from a
previous year, we might reasonably achieve an R? value around .75. With GZYU = .8, we have

0.8(1 — 0.75) =0.2 (Bloom et al., 2007). Inclusion of the covariate has reduced GZY() from .8 to .2

leading to a reduction in the overall variance of the moderator effect and an increased ability to
detect significant moderation effects.

Next, we have individual per group sample size (n1 ) inthe term representing the treatment condition
moderator coefficient variance (¢ ‘- Asadivisor of o2 n" reduces error variance of the moderated
effect which typically leads to 1ncreased power to detect the moderated effect. A group sample size term,
n(2 ), is also present in the G2 o term. The n(l ) and nz) terms are absent from the control condition term
because the single-level control condition only has a total sample size (n(%)). Increases in students per
classroom in our example reduces moderator effect variance through reductions in outcome variance.
Increases to the sample of classrooms in the treatment condition and/or total sample in the control
condition also reduce moderator effect variance. The remaining terms in the formula represent variance
of the moderator (0 .,) and variance explained in the moderator by predictors (R3, ; see Moderator
Model in Technical Supplemental Appendix). In terms of our example, they represenf the dispersion or
variation in math anxiety and variance in math anxiety explamed by covariates (i.e., X and V). The
relationship between these terms parallels that described for 6 , and R2

The variance of the moderated effect formulas indicate Wthh parameters and design components
are necessary for an a priori power analysis in a two/one partially nested design. Evaluators must
predict the magnitude of the moderated effect, outcome and moderator variance structure (i.e.,
intraclass correlation coefficients [ICCs]), proportion of variance explained by predictors, and
several sample sizes (nl), ng , and n(9)). Predicted moderator effect and variance structure are
typically identified through a pilot study or based on previous empirical research. Evaluators may
test a range of sample sizes to identify those that provide adequate power while considering practical
constraints (e.g., classroom size) or budgetary limitations.

To summarize, we developed a formulation for moderator effect variance in two/one partially
nested designs with a treatment-induced nesting structure that plausibly limits moderator variance
to within groups. The moderator effect variance formulation is suitable for power analysis in the
planmng stages of an evaluation with formula structure suggesting that greater Varlance ofthe outcome
(0 and GY(L)) increases moderator effect variance while increasing sample sizes (7, >, n(2 ), and n(©))
and moderator variance (GM(,) and GM(( ) decreases the error variance of the moderator effect. Out-
come and moderator variance are typically not malleable and often standardized for evaluation
planning purposes. These terms are encoded in the effect size in a power analysis so we limit further
discussion. Actionable implications include increasing the sample of groups and individuals per group
to reduce GY and G « or including prognostic covariates that explain variance in G%,(,) and ©2
These actions increase the likelihood of finding a significant moderated effect.

yle):

Treatment Assignment to Extant Nesting Structure

When the treatment assignment utilizes extant grouping, it is no longer tenable to assume that
moderators vary within groups only. With preexisting groups, the average moderator values may
systematically differ across groups. Consider a new working example evaluation that investigates
the effectiveness of a group-based intensive lifestyle intervention on weight loss (e.g., Mayer-Davis
et al., 2004). The intervention consists of weekly group sessions encouraging physical activity and
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proper nutrition. An evaluation design could randomly assign a pool of volunteers to attend ongoing
group-based lifestyle intervention sessions (i.e., two-level treatment) or continue with their current
care (i.e., single-level control). That is, volunteers are randomly assigned to join groups formed
independently and before the onset of the study. Group-based intensive lifestyle interventions have
demonstrated an ability to increase weight loss among participants (Mayer-Davis et al., 2004), but
these effects have been shown to be moderated by personal characteristics such as optimism (e.g.,
Scheier & Carver, 1992; Van Nguyen et al., 2018). Optimism represents an individual-level con-
tinuous moderator that plausibly varies across groups under this design because the intervention
groups were formed prior to assignment. The use of extant groups makes it plausible that groups will
differ in their average level of optimism. These average differences may influence the effectiveness
of the intensive lifestyle intervention on weight loss.

To consider situations, like our working example, in which a variable’s aggregate or average may
moderate treatment effects, we adjust the treatment outcome model to allow the continuous mod-
erator (accommodations for binary moderators remain unchanged) to vary within and between
groups such that

Yy =y + AV My — M) + 1) (% - X)) + 15V + ) e ~N (0, o’;m>
O _ S0 o AO7 o 05 4 0 0 ® > | ©)
Tcoj =9 +A2 Mj+gl XJ+C2 VVJ—’_MOJ ”()j ~N O"CY‘(’)

When considering moderators that vary within and between groups, a moderation effect can
occur at Level 1 (MEy;) and a moderation effect can occur at Level 2 (MEj). The Level 1 modera-
tion effect (ME,) describes how the individual-level component of the moderator influences the
relationship between treatment and outcome (e.g., for whom style questions). The Level 2 modera-
tion effect (ME) describes how context (e.g., average of moderator) moderates the relationship
between the treatment and outcome (e.g., under what circumstances style questions). Equation 6

includes the aggregated moderator, A/ » with accompanying coefficient Ag) to consider a moderator
that varies between groups. By utilizing group mean centering on the individual level (M;; — M j),

Ag') captures the total relationship between the moderator and outcome at both levels (i.e., ME;_ p).
Separate investigations of moderation effects at each level are possible with minor adaptations to the
analytic model and moderated effect estimates, but for simplicity, we only discuss the total mod-

eration effect (Ag’); see Between Group Only Moderation Effects in the Technical Supplemental
Appendix). The outcome model for the control condition is unaffected by the additional considera-
tions in the treatment condition. It is unnecessary (or impossible) to consider group-level or aggre-
gated variables with a single-level data structure.

Moderator Effect and Error Variance

The moderated effect is still estimated using differences between the treatment and control model coeffi-
cients associated with the moderator. The A(2t> coefficient captures the total moderated effect under our
formulation as it includes the moderated effect at the individual level (e.g., an individual’s optimism A};)
and group levels (e.g., average optimism M ;). Our expression of the moderated effect is then

ME,,,, =AY — A© (7)

The A(zt) term in our example captures the relationship between a student’s optimism and weight
loss in the treatment condition at the individual level. It also captures the relationship between the
average optimism in an intensive lifestyle intervention group and weight loss in the treatment



142 American Journal of Evaluation 44(1)

condition. The moderated effect is estimated by finding the difference between A(t) and the rela-
tionship between participant optimism and weight loss in the control condition (A ) Note that the

parameter of importance from the control condition, A ), has not changed in substance or inter-
pretation justifying our use of the same models from the within-only moderator variance section.

The statistical significance test for the moderated effect and power formula (see Test Statistic and
Power Formula in Technical Supplemental Appendix) does not differ under the new analytic model.
They do require the new moderation effect (see Equation 7) and a formulation of moderator effect
variance that reflects A2 such that

2
OME,, , = A<’> + 030 (8)

The formulation of o2 “«« remains unchanged. The o2 AY term is new and requires new considera-

tions to reflect between-group variance components (see Between Group Moderator Coefficient
Variance in Technical Supplemental Appendix). We again unpack the variance of the moderated
effect as a function of parameters that are accessible in the design stage. This is necessary for its
implementation in a power analyses (see Technical Supplemental Appendix for details). The error
variance of the moderated effect (GIZ\AE,M) now reflects a moderator that varies within and between
groups such that

5 To ( yg) <1 - Ry(e;)/ng’)
(0} =
Mo 0 > (1) /a0
(nz M(r) M(lﬁ + GM(r) M(Lz)l 1 (9)
0?,((,) <1 RY“)

(n©) = Cly — 1) (1 — Rﬁ%)

+

Several of the terms in the expanded version of GZ « parallel those previously discussed
2

including variance in the outcome at Level 1 or the student level (G?,(,)), variance explained by
predictors (R?), and sample sizes (n(lt), n(zt) , and n(©)). These parallel terms operate and can be
interpreted similarly to their counterparts discussed as under the previous model assuming within
group moderator variation only.

There are, however, two new variance components from the group level of the outcome and
moderator models in the treatment arm (r » and 'c ). We standardize the variance such that

)+ o3 “ = 1. This standardrzatron aids in the 1nterpretat10n of the formula as 7%, is equivalent to
the unconditional ICC. The r « term represents the group-level moderator variance in the treatment
condition. It is obtained from the multilevel model now necessary to reflect variation in the moderator
across groups (see Multilevel Moderator Model in Technical Supplemental Appendix). In our exam-
ple, 'c «» indicates the variance in optimism attributable to the group level or differences in optimism
across 1nterventlon groups. The 12 v term represents the group-level outcome variance in the treatment
condition. The inclusion of this term is now necessary in the moderatlon effect variance formula
because we have a moderator (M ') and moderator coefﬁc1ent term (A ) in the group level of the
outcome model (see Equation 6). In terms of our example, 17, indicates the variance in weight loss
attributable to the group level or differences in weight loss across intervention groups.

Including covariates (that explain outcome Variance) is an effective strategy for increasing power

to detect the moderated effect. Reducing ‘C , and o2 v reduces moderation effect variance (GME )

thus increasing the likelihood of detectlng statistically significant moderation effects. Under the
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analytic model for moderators that vary within and between groups (see Equation 6), outcome
variance can be explained at different levels. This is illustrated by the Levels 1 and 2 in the R?
terms. Covariates may be more or less effective at explaining variance at different levels. For
example, covariates capturing prescription medication use or demographics (e.g., education, race,
gender) may explain variation in the weight loss outcome (GZM) and aggregated covariates (i.e.,

average medication use or demographics in an intervention group) may also explain variation in
aggregated weight loss (TZYM). Group-level covariates (W) can only explain variance in the outcome

at the group level (the R%,(L”z associated with ‘C%,(,)) because a group-level variable cannot vary within

groups. We suggest prioritizing individual-level covariates because they can explain variance at the
individual and group level.
To summarize, partially nested designs with moderators that only vary within groups (Glz\/IEwithin)

share several similarities with designs in which moderators vary within and between groups
(Glzle ). For example, variance of the moderator effect decreases as sample sizes increase and/
W+B

or a greater proportion of outcome variance is explained by covariates. The model allowing mod-

erator variance between groups does include additional variance components. The source of these

additional components is the variance of the aggregated moderator coefficient (Gi ). This term
2

includes variance components from the second level of the outcome and moderator models (t3,, and
‘C}zwm). Estimates of T?/m and ‘C}zwm are needed for evaluation planning in addition to those mentioned

when moderators vary within groups only.

Design Implications

After gathering evidence of formula accuracy (see Power Formula Accuracy Simulation in
Technical Supplemental Appendix), we investigated the feasibility of detecting moderator
effects in two/one partially nested designs when (a) the moderator varied within groups only
(i.e., induced nesting design) and (b) the moderator varied within and between groups (i.e.,
extant nesting design). We considered moderator effects of ME, 4, = .2 and .1, ME;, , = .25
(composed of ME,, = .15 and ME; = .1), and ME, ; = .15 (composed of ME,, = .1 and
ME, = .05) to represent evaluations that expected moderation effects of various magnitudes.
We also varied two other factors that commonly influence power: sample size and model
variance structure in the treatment. Feasible sample sizes are dependent on the context of the
evaluation so group (ng)) and individual per group sample size (ngf)) in the treatment arm
ranged from 10 to 100 with the product of these two sample sizes dictating the sample size
of the control arm (n'%); i.e., balanced designs). For example, in an educational context, an
evaluation of an early childhood literacy intervention in a large school district included a
treatment sample of 49 classrooms and 1,229 students (Zvoch et al., 2007) while a more
localized evaluation of an art education program included a treatment sample of only 366
students and approximately 11 teachers (Smith et al., 2010).

Variance structure conditions include individual-level variance of the outcome and moderator set
at 67 = o3, = 0.8 with group-level variance of the outcome and moderator 13 = 13, = .2 and a
second condition with 6% = o3, = .6 and 13 = 13, = .4 (13, is set to 0 when the moderator only
varies within groups). These conditions represent evaluation contexts with more (rzy = rjzw =.4)or
less (3= 13,=.2) variance attributable to the group level. Group-level variance fluctuates based on
several factors including the type of variable (e.g., academic, psychosocial, health), group setting
(e.g., classroom, school, hospital, neighborhood), and geographic location (e.g., state or country;
Hedges & Hedberg, 2007; Kelcey et al., 2016; Shackleton et al., 2016).
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Table I. Power to Detect a Moderated Effect When the Moderator Varies Only Within Groups.

Sample Size Power
Treatment Control Moderated Effect
Groups (ng)) Individuals per Group (n(lt>) Individuals (n©)) 0.1 0.2
100 100 10,000 1.00 1.00
100 50 5,000 1.00 1.00
100 20 2,000 0.86 1.00
100 10 1,000 0.58 0.99
50 100 5,000 1.00 1.00
50 50 2,500 0.93 1.00
50 20 1,000 0.59 0.99
50 10 500 0.30 0.86
25 100 2,500 0.93 1.00
25 50 1,250 0.65 1.00
25 20 500 0.31 0.83
25 10 250 0.18 0.54
10 100 1,000 0.46 0.93
10 50 500 0.22 0.69
10 20 200 0.08 0.35
10 10 100 0.05 0.20

Note. Individual-level variance of the outcome and moderator are 63 = 6% = .8 with group-level variance of the outcome

2 _
T = .2

The remaining parameters were held constant. Variance explained by predictors was set at 50%
(R?>=.5) to represent effective covariates and typical relationships between the moderator, treatment,
and outcome. Coefficients for each path were .3 (m, = Z = .3) and all intercepts were set to zero.
These values are not directly used in the moderator variance and power formulations so their values
were set to ease interpretation of results. The moderator coefficient in the control arm was set to zero
(A<c) =0) and the model variance components in the control arm were set to one
(6% = O3, = 1.0), again to ease interpretation of results.

A fully crossed design with these factors produced 64 conditions. Results can help address
common evaluation planning questions such as: How many intervention groups and individuals are
necessary to consistently detect moderated treatment effects? Is the evaluation sample size large
enough to consider moderators that vary within and between groups? and How will the size of the
moderated effect influence the adequate sample of groups and individuals per group?

Results
Moderator Varies Only Within Groups

Table 1 presents power rates to detect a moderated effect in a two/one partially nested design when
the individual-level continuous moderator only varies within groups. Larger moderation effects and
larger sample sizes substantially (and predictably) increased power. These power rates remained
constant under the different variance structures considered. Results indicate that adequate power to
detect ME, ;. 1s achievable with feasible sample sizes for some experimental evaluations (e.g.,
Schochet, 2011). For example, with ME ;. = .1 and larger individual per group sample sizes (n; >
50), the number of groups required in the treatment condition was often <30. This suggests that
evaluations considering group entities capable of including more than 50 individuals per group (e.g.,

schools, hospitals, companies) have a greater capacity to consistently identify ME_ ;.-
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Figure 2. Power to detect a moderated effect when the moderator varies within groups only by group and

individual per group sample size.
Note. Power to detect a .| moderation effect by (a) group sample size and (b) individual per group sample size

with a sample of 10 (long dash), 50 (dash), and 100 (dot) (a) individuals per group or (b) groups. A solid

horizontal line marks 80% power.

Individual per group sample size has a substantial influence on power to detect the moderated effect
(see Figure 2). A reasonable result, given the individual per group sample size, directly reduces
outcome variance, which reduces the variance of the moderation effect (see Equation 5). This rela-
tionship is noteworthy because power to detect main effects in a typical group-randomized trial is
driven by group sample size (e.g., Raudenbush, 1997). The result implies increasing individual per
group sample size is an effective design strategy for detecting these moderation effects. This is often
less expensive than sampling additional groups. In our working example evaluation, we could sample
more students per intervention group to increase the likelihood of detecting a moderation effect.

Moderator Varies Within and Between Groups

Table 2 presents power rates to detect a moderated effect in a two/one partially nested design when
the individual-level continuous moderator varies within and between groups. Larger total modera-
tion effects (ME,_ ;) and sample sizes again led to increased power rates. However, adequate
sample sizes were much larger than those for similar studies with a moderator that varied within
groups only. For example, with a ME, , = .15 and n(1f> = 50, a sample of over 400 groups is
required to achieve 80% power to detect a moderated effect (see Figure 3).

Increasing the sample of individuals per group does little to alleviate the need for a large sample
of groups (see Figure 3). The power to detect ME;,, ; under the probed conditions stems primarily
from the group sample size. We noted that this was likely because variance of the outcome at the
group level r%,(,), which increases moderator effect variance and decreases power, is only reduced by
group sample size (see Equation 9). The TZY“) value has a substantial influence on the power to detect
ME;, ; through its influence on moderator effect variance. The example above requiring 400
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Table 2. Power to Detect a Moderated Effect When the Moderator Varies Within and Between Groups.

Sample Size Power
Treatment Control Moderated Effect
Groups (ng>) Individuals per Group (n(lt>) Individuals (n©)) .15 .25
100 100 10,000 31 .68
100 50 5,000 .30 .68
100 20 2,000 .30 .66
100 10 1,000 29 .64
50 100 5,000 A7 .39
50 50 2,500 A7 .38
50 20 1,000 A7 .37
50 10 500 .16 .36
25 100 2,500 .10 .20
25 50 1,250 .10 .20
25 20 500 .10 .20
25 10 250 .10 19
10 100 1,000 .06 .09
10 50 500 .06 .09
10 20 200 .06 .09
10 10 100 .06 .09

Note. Individual-level variance of the outcome and moderator are 63 = 6% = .8 with group-level variance of the outcome

and moderator 1} = 13 = .2.
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Figure 3. Power to detect a moderated effect when the moderator varies within and between groups by
group and individual per group sample size.

Note. Power to detect a .15 moderation effect (MEy, 5) when the moderator varies within and between groups
by (a) individual per group sample size and (b) group sample size with a sample of (a) 50 (long dash), 100 (dash),
and 500 (dot) groups and (b) 10 (long dash), 50 (dash), and 100 (dot) individuals per group. A solid horizontal
line marks 80% power.
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groups to achieve adequate power would only require 125 groups if rzy(,) = .05 and GZY(,) = .95.
Individual per group sample size also becomes more influential on power rates under this variance
structure. The feasibility of an evaluation including a moderator that varies within and between
groups is therefore heavily dependent on the variance of the outcome attributable to individuals or
the group (i.e., unconditional ICC of the outcome). Our evaluation would require an exorbitant
number of intensive lifestyle intervention groups to detect a moderated effect if optimism varied
among participants and across intervention groups while variance in the weight loss outcome
attributable to the group was around 1%, > .1. If weight loss was less clustered (e.g., T, < .05),
then the feasibility of the evaluation increases (i.e., adequate sample sizes become more reasonable).

In summary, simulation study results indicated that our formulas produced appropriate Type |
error rates and accurately predicted power (see simulation results in Technical Supplemental Appen-
dix). A probe of these formulas found that power to detect both ME, ;.. and ME ;. ; increased as
their magnitude increased and as sample sizes increased. The influence of outcome variance on
power to detect moderated effects indicates prognostic covariates that explain variance in the
outcome represent an effective and important design strategy for consistently detecting moderated
effects. It is worth noting that when covariates explain similar amounts of variance in the outcome
and moderator, power to detect the moderated effect remains relatively constant. Put differently,
inclusion of covariates that explain approximately equal amounts of variance in the outcome and
moderator will not improve the detection of moderated effects.

Adequate power (e.g., 80%) to detect moderator effects when the moderator only varied within
groups was achievable using typical sample sizes for studies planned to detect main effects. Increas-
ing individual per group sample size substantially influenced power to detect these effects. When the
moderator varied within and between groups, achieving adequate power required larger sample sizes
or larger moderated effects. A primary driver of these power rate differences was increased mod-
erator effect variance caused by the inclusion of group-level outcome variance (r?,(,)). As T%,m
increases, increasing individual per group sample also becomes less effective at increasing power
with group sample size becoming increasingly influential.

llustrations

We now illustrate our results and the use of our formulas in the planning of evaluations with a two/
one partially nested design. Our first evaluation example examined the effect of a spatial interven-
tion program on math performance while considering the moderating effects of student math anxi-
ety. Treatment assignment induced nesting (i.e., novel intervention groups were created) so we can
assume intervention groups will have approximately equal levels of student math anxiety (i.e., the
moderator varies within groups only).

Using the R-Shiny application PowerUpRShiny for moderated effects in partially nested designs
(Baietal.,2020; Bulus et al., 2019) , we can predict the power rate to detect a moderated effect for this
evaluation with a specific sample size or determine the adequate sample to detect a moderated effect
with acceptable power (e.g.,>80%). Several design parameter estimates are needed to conduct this type
of evaluation planning. We assume a variance structure based on educational evaluations considering
academic outcomes (e.g., Hedges & Hedberg, 2007) such that variance of math performance and math
anxiety at the individual level is set at 63 = o3, = .8 with variance at the group level set at 13 = .2
(13, = 0 in this case because the moderator does not vary across groups). Variance in the outcome and
moderator for the control arm is standardized with a value of 1.0. We include several covariates and
assume these variables along with the moderator explain approximately 50% of the variance in the
outcome and moderator in both the treatment and control arms (R*=.5). Given strong evidence of
spatial intervention program effectiveness, we assume it will have an approximately .2 standardized
effect on math performance with a moderated effect from student math anxiety of .1 (ME,;3;, = -1).
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Our evaluation takes place in a large school district so we have access to a large number of
qualifying students and resources for approximately 50 intervention groups (i.e., ng):50). Our
formulas indicate that approximately 30 students per group with 1,500 wait-listed students are
necessary to achieve 80% power to detect a moderated effect under the specified conditions (see
Figure 3). Thirty students per group may not be practical so let us examine the same evaluation with
the number of students per group capped at 10 (i.e., ngt):IO). An evaluation with this sample
structure would require well over 100 groups. This result is indicative of the substantial influence
individual per group sample size has on the ability to consistently detect ME ;.-

Our second evaluation example examined the effect of an intensive lifestyle intervention program
on weight loss while considering the moderating effects of optimism. Treatment participants were
assigned to an existing intervention group (i.e., use of extant intervention groups) so intervention
groups may vary on aggregate levels of optimism (i.e., the moderator varies within and between
groups). Using the described parameter estimates and conditions, but with ME;,, ; = .15, an evalua-
tion including 50 groups with 30 participants per group and 1,500 participants continuing with their
current care would achieve approximately 17% power to detect the moderated effect. This is far from
adequate; in fact, nearly 400 intervention groups are required to achieve power rates approaching 80%.
However, health and psychosocial outcomes may have a much smaller 12 , (e.g., Shackleton et al.,

Y
2016). With szm = .07 and GZY(,) = .93, the same evaluation requires around 170 intervention groups.

Discussion

Experimentally designed evaluations provide strong evidence regarding average effectiveness of a
treatment but treatment effects may depend on individual and contextual factors. Including mod-
erators in evaluation design planning can help evaluators identify these differential treatment effects.
Planning experimental evaluations that include moderation effects, however, has been limited in
some cases. Specifically, partially nested designs pose a challenge because statistical power for-
mulas for moderation effects have not yet been available.

In response, this study develops these formulas and investigates their properties and implications
for practice. Our aim is to encourage the use of adequate sample sizes, to identify typical sample
sizes necessary to detect moderated effects, and to determine the factors that influence these sample
sizes. We first considered moderators that varied within groups only which are likely in partially
nested designs with treatment-induced nesting. Random assignment serves to eliminate systematic
differences across groups on pretreatment moderator variables under this design. In a second set of
formulas, we relaxed this assumption and allowed moderators to vary within and between groups,
which is likely when using extant groups in the treatment condition.

The power formulas presented here improve evaluation efficiency. Evaluators can now determine
the sample sizes necessary to detect a moderated effect in a proposed evaluation, avoiding wasted
resources from oversampling. Evaluations that consider moderation effects also produce better
evidence regarding treatment effects. When a significant effect is present, evaluators can examine
for whom and under what conditions it is applicable. Conversely, evaluators can investigate non-
significant results and determine whether the treatment was effective for some groups while counter-
effective for others resulting in a combined effect near zero (i.e., counteracting treatment effects).

The initial probe of power formulas for moderated effects in partially nested designs found that
the sample sizes required to achieve adequate power are similar to those required to detect main and
mediated effects when the moderator only varies within groups (e.g., Kelcey et al., 2017). Evalua-
tions examining this type of moderation effect are feasible as the sample size is likely to be adequate
based on planning for other effects. We also found a particularly strong relationship between
individual per group sample size and power. This implies that evaluations with a limited number
of groups can still consistently detect moderated effects if a large individual per group sample size is
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available. For example, an evaluation limited to 25 treatment groups only has an 18% chance to
detect a .1 magnitude moderation effect with 10 individuals per group. However, if the group
contains many easily accessible individuals (e.g., school) such that individual per group sample
size can be 100, the power to detect the moderation effect is greater than 90%.

In comparison, when the moderator varies within and between groups, the additional variance
from the group level can overpower any additional moderated effect from the aggregated moderator.
Evaluations with this type of moderator will often require large group sample sizes with increases to
individual per group sample size doing little to increase power once n(lf >10. These problematic
conditions do dissipate as outcome variance at the group level decreases.

Conclusion

To conclude, we highlight some limitations, opportunities for future research, and summarize
implications for practice. We limited the scope of our study to designs with a two-level data
structure in one treatment arm and a single-level data structure in the other treatment arm (i.e.,
two/one partially nested designs). Many evaluations take place across a single entity (e.g., school
district, state, company) with the treatment inducing nesting or using extant groups. However,
many settings will have additional levels of nesting that should be considered for statistical or
substantive reasons (e.g., students within schools within districts). These conditions require con-
siderations beyond two levels. We encourage future research examining power in three/one and
three/two partially nested designs.

Limited design conditions were used in our probe of the newly developed power formulas (e.g.,
sample sizes from 10 to 100). A more comprehensive set of sample size, moderator variance
structure, and outcome variance structure combinations is needed. It would be informative to
establish expected power rates for total and specific moderation effects (i.e., within-group modera-
tion effects and between-group moderation effects) across a wider range of design conditions.

We noted that making assumptions about inputs to the power analysis was necessary because of
the sparsity of literature reporting such values. Pilot studies are an excellent source for these values
but are not always practical. We encourage future research to report the empirical values required for
the power formulas presented here. Additionally, investigations into the robustness of predicted
power to misspecified parameter values could indicate the degree of precision required for accurate
predictions of power. Despite these limitations, this study enhances the set of tools that evaluators
can use to plan evaluations. Specifically, considering moderated effects is increasingly relevant to
policy and practice. Better planning evaluations to generate evidence about for whom and under
what conditions an intervention, program, or policy is effective is coveted across evaluation settings.

To close, we highlight several takeaway recommendations for evaluators interested in moderation
effects with partially nested designs. First, consult existing evidence (e.g., literature or pilot study
results) to identify moderators that are likely to have a large effect on the treatment—outcome relation-
ship. This evidence should also be consulted to identify other parameter values required for the power
analysis. Second, include covariates that reduce outcome variation. This is especially important when
the moderator varies within and between groups as reductions in group-level outcome variance typically
have a substantial influence on power. Third, when a moderator only varies within groups, increasing the
sample of individuals per group is an effective strategy to increase power. Finally, if the moderator varies
within and between groups, carefully consider the variance structure of the outcome as it has a substan-
tial influence on evaluation feasibility and the relationship between power and sample size.
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