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cious and wise use of funding because they serve as important start-
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and requirements. Conventional optimal sampling frameworks, how- optimal design; design '
ever, often identify sub-optimal designs because they typically pre- efficiency; power analysis;
sume the costs of sampling units are equal across treatment multisite cluster-randomized
conditions. In this study, we develop a more flexible framework that trials

allows costs to differ by treatment conditions and derive the optimal

sample size formulas for three-level multisite cluster-randomized trials.

We find that the proposed optimal sampling schemes are driven by

the differences in costs between treatment conditions, cross-level sam-

pling cost ratios and cross-level variance decomposition ratios. We

illustrate the utility of the proposed framework by comparing it to a

conventional framework and find that the proposed framework

frequently identifies more efficient designs. The proposed optimal

sampling framework has been implemented in the R package odr.
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Multisite cluster-randomized trials blend multisite and hierarchical designs by assigning
treatment conditions at random to intermediate clusters (e.g., classrooms) of individuals
(e.g., students) within each site (e.g., school). Two recent studies (Spybrook et al., 2016;
Spybrook & Raudenbush, 2009) found that, among all types of multilevel experiments
funded by the Institute of Education Sciences in the U.S. Department of Education,
three-level multisite cluster-randomized trials were among the most frequently used
designs because they have many desirable practical and statistical properties. For
example, these designs often align well with the typical hierarchical structure of
education (e.g., students nested whinin classes nested within schools) and the nature of
many classroom-based treatments. Three-level multisite designs essentially replicate a
small cluster-randomized study across many sites, they create opportunities to learn
about treatment effect variation. Although there are multiple practical and statistical
advantages to these designs, these advantages are often tempered by the complexity of
the design and the difficulty in identifying efficient sample allocations across the levels
when resources are limited (e.g., Raudenbush & Liu, 2000).
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When planning multisite cluster-randomized trials, investigators must consider both
the power of a particular sampling plan and the relative efficiency with which it uses
resources (Hedges & Borenstein, 2014; Shen & Kelcey, 2020b, 2020c). The intersection
of these criteria has typically been addressed through optimal sampling frameworks that
seek to identify sample allocations that maximize power or efficiency while maintaining
a fixed set of costs (Liu, 2003; Raudenbush, 1997). Conventional optimal sampling
frameworks have covered a variety of multilevel designs, including cluster-randomized
trials (Hedges & Borenstein, 2014; Konstantopoulos, 2009, 2011; Raudenbush, 1997),
multisite-randomized trials (Raudenbush & Liu, 2000), and multisite cluster-randomized
designs (Hedges & Borenstein, 2014). Implicit in these conventional frameworks are two
important assumptions that may constrict their utility: (a) sampling costs for units (e.g.,
students, classes or schools) are equal across treatment conditions and (b) assignment to
treatment condition is necessarily optimized under a balanced design (i.e., 50% to treat-
ment, 50% to control; Hedges & Borenstein, 2014; Konstantopoulos, 2009, 2011;
Raudenbush, 1997; Raudenbush & Liu, 2000).

These assumptions may not be reasonable in practice under many settings. For
instance, holding constant the unit sampling cost across conditions precludes the possi-
bility that the treatment condition incurs extra costs associated with its implementation
and delivery. This is not always the case. For example, for Springer et al. (2011), when
studying the impact of teacher performance bonuses, each additional teacher placed into
the treatment condition incurred a much higher cost (up to US$15,000 a year) than
each additional control teacher. Similarly, class size studies and teacher aid studies have
documented the differential costs associated with small classes, regular classes, and regu-
lar classes paired with teaching aids (Mosteller, 1995). More generally, such differential
costs are not unique to education. Differential cost structures have been noted in many
areas of health, psychology, and other social sciences because of, for example, the cost
of training and implementing interventions (e.g., Greenleaf et al., 2011; Hiscock et al.,
2008; Jacob et al., 2015; Jayanthi et al., 2017; Jennings et al., 2017).

Probing the assumption of equal unit costs across conditions also raises downstream
questions about the universal efficacy of balanced assignment of units to treatment condi-
tions. Conventional optimal sampling frameworks have regularly concluded that the bal-
anced assignment of units to treatment conditions (i.e, 50% treatment, 50% control) will
always produce the most efficient design (e.g., Raudenbush, 1997; see also Hedges &
Borenstein, 2014; Konstantopoulos, 2009, 2011). However, as we shall see, the optimality of
balanced assignment to treatment conditions is heavily contingent upon the equality of costs
assumption. That is, once we have relaxed the equal unit cost across treatment conditions
assumption, balanced assignment does not necessarily provide the most efficient design.

To address these limitations, recent literature has introduced more flexible optimal
sampling frameworks for two- and three-level cluster-randomized trials (Shen & Kelcey,
2020c) and two-level multisite experiments (Shen & Kelcey, 2020b) that allow sampling
costs to vary across both levels of hierarchy and treatment conditions. This literature
has demonstrated that when costs differ across treatment conditions, there are more
efficient designs than those derived from the conventional optimal design frameworks.
Indeed, the conventional frameworks that confine their scope to equal cost settings (e.g.,
Konstantopoulos, 2009, 2011; Raudenbush, 1997; Raudenbush & Liu, 2000) are special
and constrained cases of the more flexible frameworks.
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We extend this more flexible optimal sampling framework to the widely used three-
level multisite cluster-randomized design. Section I develops a working example from
which to explicate our derivations and applications. Section II outlines the multilevel
models used to estimate the average treatment effects in three-level multisite cluster-
randomized trials and delineates the necessary design parameters. Section III introduces
statistical power formulas. Section IV derives optimal sample calculations. Section V
defines relative efficiency to be used for the comparison of designs with different sample
allocations. Section VI illustrates the utility of the optimal sampling framework by com-
paring the sample allocations identified by the proposed framework with those of con-
ventional frameworks. Section VII concludes the paper with a discussion.

Working Example

Before detailing the multilevel models, we provide a working substantive example to clarify
presentation. We note, however, that the framework is applicable to any substantive investi-
gation that draws on a three-level multisite cluster-randomized design. In our example, we
consider the design of a three-level multisite cluster-randomized trial evaluating the impacts
of a teacher development program (Cultivating Awareness and Resilience in Education or
CARE; Jennings et al, 2017) on student academic achievement. The CARE program
focuses on the well-being of teachers and the quality of instruction for better student out-
comes. The program trains teachers on the knowledge and skills of emotional awareness,
techniques and strategies for emotion regulation, and ways to apply these skills to teaching.

In our working illustration, we consider the design of a three-level multi-school
teacher-randomized trial in which teachers within each school are randomly assigned to
an experimental professional development group or a control group. Our analyses con-
sider a three-level nested structure that includes: students (level one), teachers (level
two), and schools (level three). The CARE program provided 30h of in-person training
plus phone coaching to teachers in the experimental group whereas teachers in the con-
trol group continued in a business-as-usual condition (e.g., Jennings et al., 2017;
Institute of Education Science (IES), 2012).

The focal research question in this hypothetical study examines the degree to which
exposure to the professional development program improves student reading achieve-
ment (e.g., Jennings et al., 2017; IES, 2012). In planning the evaluation, researchers
must decide how to use their resources to develop a sampling plan that includes a total
sample size and how that total sample will be allocated across levels in ways that pro-
mote efficiency and eventually achieve adequate power. For this reason, our working
design questions probe the sample allocation plan that produces the maximum statistical
power for a fixed budget (i.e., optimal design). In addition, there are often many prac-
tical constraints that preclude using an optimal sample allocation plan (e.g., limited
number of students per class that can be sampled) — and for this reason we also seek
to identify the sample allocation plan that maximizes power when one or more of the
sample sizes at a particular level are constrained. Below we outline the corresponding
models and develop a framework that addresses these core sampling questions while
relaxing assumptions regarding the equality of costs across treatment conditions.
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Models

Suppose a three-level multi-school teacher-randomized trial assessing the impact of CARE
program on student reading achievement has a total of K schools (i.e., sites or level-three
units), each school has J teachers (i.e., level-two units), and each teacher serves n students (i.e.,
level-one units). Let Yjj be the continuous outcome of student i in teacher j’s class in school k
withi=1,..,n, j=1,..,], and k = 1, ..., K. Let Tj be the treatment indicator with T = 1
for teachers in the experimental group and otherwise Tj = 0. Further let the proportion of
teachers assigned to the experimental group be p (0 < p < 1) such that each school has pJ
teachers in the experimental group (the CARE program) and (1 — p)]J teachers in the control
group. We can use multilevel linear models (Raudenbush & Bryk, 2002) to estimate the aver-
age treatment effects in three-level multisite cluster-randomized trails.

Although unbiased estimate of the treatment effect can be obtained without condi-
tioning on covariates, a common design strategy is to include covariates to improve effi-
ciency (e.g., Hedges & Hedberg, 2007a, 2007b, 2013; Jacob et al., 2010; Kelcey et al,
2016; Raudenbush et al., 2007). For this reason, let us consider Z; = (Z1, ...,Zlql) as a
q1-length vector of student-level covariates with g; > 0 and b; = (bn,...,blql)' be the
vector of regression coefficients, the student-level or level-one model is

Yijk = ﬁOjk + b]Zl + SljkgijkNN(O’ O—%A) . (1)

Where f; is the conditional mean score of teacher j’s class in school k that varies across
teachers, &;j is the error term at the student level with a mean of zero and conditional vari-
ance of 2, the subscript A represents that the variance is adjusted for covariates.

Let Z, = (Za1,...,Z24,) be a q-length vector of level-two (teacher-level) covariates
with g, > 0 and b, = (b, ..., byg,)" be the vector of regression coefficients, the level-two
model is

Bojx = Book + 001 Tix + b2Za + rojk - rojk ~ N(0,03,) . (2)

Where fy is the conditional mean for school k, i« is the treatment effect in school
k that varies across schools, roj is the random effect associate with teacher j in school k
and it has a mean of zero and conditional variance of ¢3,.

In a same vein, let Z3 = (Z3, ..., Z3;) be a g-length vector of level-three (school-level)
covariates with g > 0 and bs = (b3, ..., b34)'s bs = (bas, ..., bsy)" be the vectors of the
regression coefficients, the site-level or school-level models are

Book = Vooo + b3Z5 + MookuookNN(O, GgA) , 3)
and
Oo1k = 0+ bsZ3 + Mo]ku()]kNN(O, Gg)A) . (4)

Where 7, is the conditional mean across all schools, and ug is the random effect asso-
ciated with school k. ¢ is the average treatment effect, ugx is the deviance of school k from
the average treatment effect and it has a mean of zero and conditional variance of 62 ,. 6?2 ,
is often referred as treatment-by-site variance (Raudenbush & Liu, 2000). It is assumed that
the covariates included in the site-level models potentially explain some of the site-level
intercept variance and treatment-by-site variance (e.g., Raudenbush & Liu, 2000).

When g, = g, = g = 0, the above set of equations reduces to unadjusted models without
covariates. We then denote the corresponding unadjusted variance parameters at the
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student, teacher, school levels as 6%, ag, and ag, the unadjusted treatment-by-site variance
as 0. The resulting unconditional variance partition coefficients (or intraclass correlation
coefficients) at the teacher and school levels are

p, = 05/a1 = 03/(a} + 05 + 73), (5)
and
ps = 03/07 = 03/ (07 + 05 + 73), (6)

respectively. The proportions of variance at the student and teacher levels explained by
covariates are

oi—a?
RZ — 1 1A , 7
1 pe @)
and
2 2
g5—0
RZ — 22 2A . 8
5 p (®)
Similarly, the proportion of the treatment-by-site variance explained by covariates is
Rgm _ ‘73)_‘7§)A . 9)

2
0w

Statistical Power

When the null hypothesis is false (i.e., d # 0), the statistical power at the significance
level o for the one-tailed test (e.g., Liu, 2003) is

P=1-—Hic(a,v),v, 4], (10)

where v =K —q — 1, ¢(a,v) is the critical value in a t-distribution with v degrees of
freedom and significance level of «, and H(x,v, 1) is the cumulative distribution func-
tion of the noncentral ¢-distribution with v degrees of freedom and the noncentrality
parameter A. Similarly, the statistical power at the significance level a for the two-tailed
test (e.g., Liu, 2003) is

P=1—Hlc(a/2,v),v, 2] + H[—c(2t/2,v),v, A]. (11)
The noncentrality parameter 4 is defined as
0

0
with 6% as the variance of the average treatment effect estimator. For a three-level multi-
site cluster-randomized design, the variance of the average treatment effect estimator is

2 2 2
2 Opa , 924 , 014
= T T 13
G=K TG T K (13)
with
J=[pI(1=p))/[p] + (1 = p)]) = p(1 — p)J. (14)
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In general, holding other factors constant, the statistical power of a design will increase
when the sample size at any level gets larger. When the effect size gets larger, the statis-
tical power will also increase.
When we standardize the treatment effect as
0 0

d= = , (15)
NG 6% + 03 + o2
the standardized treatment-by-site variance becomes
2
w = 0(/) (16)

ot aital
Using the information about the variance partition coefficients and R-squared values
(Equations 5 to 9), we can rewrite the variance of the standardized average treatment
effect estimator as

o2 — a5 :p(lfp)n]a)(l —R},) +npy(1=R) + (1= p, — p3)(1 - R}) 17)
1762+ o+ a3 p(1—p)nJK '
The noncentrality parameter thus can be written as
L6 d d\/p(1 = K )
Va3 \/;3 \/p(l—p)n]w(l —R3,,) +npy(1=R3) + (1 — p, — p3) (1 = R})

Optimal Sample Allocation

In contrast to conventional frameworks that assume equal costs between treatment condi-
tions, we allow the costs of sampling each additional student in the experimental and con-
trol groups to differ such that ¢! is the cost for adding a treatment student and ¢, is the
cost for adding a control student. Similarly, let the costs of enrolling each additional
teacher differ between the experimental and control conditions such that ¢! is the cost for
adding a treatment teacher and c, is the cost for adding a control teacher. Moreover, let c3
be the costs of sampling an additional school. The total cost (1) for a three-level multi-
school teacher-randomized design is then the sum of the products of marginal cost per

unit and the number of units across all levels and treatment conditions. We have
m = K[pJ(nc] + cI) + (1 = p)J(nc; + 2) + c3). (19)

Rearranging the above cost equation, we have

K= - :
plncl +c) + (1 =p)J(nc + ) + ¢
These results describe the conventional tradeoff between sample allocation across
levels — e.g., if we sample more teachers in each school, we must sample a smaller
number of schools given a fixed budget. However, these results also describe a new
tradeoff between sample allocation across conditions — e.g., if we sample fewer teachers
in the experimental condition, we can sample more teachers in the control condition
under the same budget. Yet, all combinations of sample size allocations under a fixed
budget may not provide comparable statistical power. To identify an efficient sampling
scheme, we need to consider the information about sampling costs within the context of
the power formula (e.g., 4 or ¢3). Substituting the above equation for K in Equation 17,

(20)
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we have the variance of standardized average treatment effect estimator as

[Py (1-R3,,) + 119, (1-R3) + (1=py=p) (1-R3) | [pT el + ¢F) + (1-p)J (s +2) + 3
p(1-p)njm '
Prior literature has assumed equal costs across treatment conditions (i.e., clT = ¢; and
¢l = ¢;) and derived the optimal sampling values by minimizing the variance of the
treatment effect estimator, which is approximately equivalent to maximizing the statistical
power under a fixed cost (e.g., Raudenbush, 1997). We used a similar approach to iden-
tify the optimal sample allocation while relaxing the assumption of equal costs across
treatment conditions. The results suggested that readily interpretable expressions can be
obtained for the optimal student-level sample size (n) and optimal teacher-level sample
size (J), but not for the optimal proportion of teachers assigned to the experimental con-
dition (p). The derivation process for these equations is presented in Appendix.

To get a sense of what drives the optimal sampling plan, we outline the solutions for
the optimal number of students per teacher (n) and optimal number of teachers per
school (J) for fixed values of the remaining parameters. In terms of the optimal number
of students per teacher (n), our results show that

_ (1—p,—ps)(1-R}) L (L=p)etplg +a
p(1—pJo(1—R,)+p,(1-R3) " (1—p)a+pJe]

(21)

2 _
o, =

(22)

The resulting optimal n parallels the results found in conventional frameworks that are
conceptually composed of two primary components: the ratio of the error variances
across levels and the cost ratio across levels. Specifically, the first component in our result
approximately captures the ratio between the level-one (student-level) conditional variance
and the conditional variance of the average treatment effect (i.e., conditional variance of
the effect across schools and conditional variance across teachers within schools). The
second component roughly captures the ratio between the (weighted) summative cost of
sampling upper-level units (teachers and schools) and the (weighted) cost of sampling
level-one units (students). When assembled, the formula conceptually expands on the
results found in conventional frameworks by delineating the roles and relative contribu-
tions of competing costs. By incorporating differential costs, the results introduce a flex-
ible weight parameter (p) while conventional frameworks can be viewed as implicitly
fixing the value of that weight parameter to .5 because of the equal costs assumption.

Our analyses found a similar result for the optimal number of teachers per school (J).
The optimal J is

J = ”Pz(l—R%)+(1_Pz—P3)(1_R%)X G « 1 .
no(l — R2,,) (1—p)(an+c)+p(cfn+cl)  p(l—p)

(23)

Again, this result suggests that the optimal number of teachers per school (J) is
guided by the product of the cross-level ratios of variance and cost, and additionally by
a third component in which the denominator is the product of sampling weights across
treatment conditions (zﬁ)' This third component has a minimum value of 4 when
p = .5 or in balanced designs. The result implies that once optimal sampling proportion
(p, which will be discussed later) deviates from .5, we will have larger ] values than
those in a conventional framework with p = .5.
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The resulting formulas indicate that the optimal p, n and ] are functions of two sets
of well-known parameters: variance partition parameters and cost structure parameters.
The variance partition parameters include variance partition coefficients at different lev-
els (p,, p3, and ) and proportions of variance explained by covariates (R}, R3, and
R3.). Cost structure parameters include the costs of sampling a unit across levels and
conditions (¢, ¢!, ¢, I, and c).

The equation that identifies the optimal proportion of clusters/teachers assigned to
treatment (p) is outlined in the Equation Al in Appendix. In the Illustration section, we
survey a range of parameter values to explore what factors impact the optimal p. In the
general case, we can numerically solve for the roots of n, J, p simultaneously using
Equations 22, 23, and Al in the Appendix (Shen & Kelcey, 2020c). These solutions have
been implemented in the R package odr (Shen & Kelcey, 2020a). We denote the level-
specific and condition-specific optimal sample using #°, J°, and p°. Once p°, n°, and J°
are identified, the corresponding optimal number of sites/schools (K°) can be deter-
mined by (a) the total budget through Equation 20 when the budget is fixed or (b) by a
targeted statistical power level through Equation 11 (along with Equations 12, 13, and
14) when power is preset. All these types of power and sample size calculations have
been implemented in the R package odr (Shen & Kelcey, 2020a).

Implications

As outlined above, the optimal sampling values across levels are mainly driven by two
components that are consistent with prior literature: the conditional variance ratios
across levels and the sampling cost ratios across levels. The optimal sample size at the
level of randomization (e.g., teacher level) is additionally impacted by the product of
sampling weights between treatment conditions. The implication of the first component
(variance ratios) is that optimal sampling is positively proportional to the conditional
variance decomposition — that is, holding other factors constant, increases in the (rela-
tive) conditional variance at a level warrant increases in the sample size for that level.
For example, when the ratio of conditional variance at the student level to conditional
variance at the teacher and school levels ( (=0 —pg)(1 —R) R;)) gets larger, the opti-

p(L=p)Jo(1—R3, )+py (1~
mal n tends to be larger (see Equation 22). Holding other factors constant, larger

(residual) variances at the teacher and school levels relative to the conditional student-
level variance typically suggest that it is beneficial to sample a larger number of teachers
and schools in exchange for fewer students per teacher. The optimal teacher-level sam-
ple size follows a similar pattern but splits the pertinent variance ratio into a numerator
that contains the conditional teacher- and student-level variation and a denominator
that contains school-level variation (Equation 23). Once again, the implication is that
holding other factors constant, an increase in the conditional teacher-level variance sug-
gests sampling more teachers per school in exchange for fewer students per teacher.

The implication of second component (cost ratios) is similar but opposite — optimal
sampling for a level is inversely proportional to the cost of sampling a unit at that level.
That is, intuitively, the optimal sampling strategy suggests sampling additional (rela-

tively) inexpensive units in exchange for fewer expensive units under a fixed budget.
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For the optimal number of students, as the ratio of the marginal costs at the school and
(1=p)Jer + plel +c
(1=p)Jer +ple]
When the ratio of the marginal costs at the school level to those of the teacher and stu-

teacher levels to the student-level costs ( > grows, the optimal # increases.

dent levels

c3 . . .
T panteip(dned) grows, the optimal ] increases. Again, under a fixed

budget, the optimal sampling strategy is to sample additional inexpensive units while
dropping some of the expensive units.

As we discussed before, the optimal sample size at the teacher level (J) is additionally
impacted by the value of optimal p. In turn, optimal p values are mainly impacted by
sampling cost ratio between treatment conditions (see the Illustration section). That is,
the optimal number of teachers per school is also indirectly impacted by the sampling
cost ratio between treatment conditions that is transferred through the optimal p value.
One implication of these relationships is that when we fix p (as in conventional frame-
works), analyses will typically reach a different and sub-optimal value.

Collectively, the variance and cost ratios (including cost ratios across levels and treat-
ment conditions) reflect two considerations that are well-known across multilevel experi-
mental design. The variance ratio component suggests that a relatively larger conditional
variance at a given level necessitates a relatively bigger sample size at that level. This result
reaffirms and expands upon the well-known strategy that levels with larger residual vari-
ance will typically need larger sample sizes to attain a targeted level of precision. Equally,
the cost ratio component suggests that relatively cheaper marginal costs of sampling a unit
at a level translate into larger sample sizes at that level. That is, when the cost of sampling
a unit at a particular level is relatively lower than other levels, it is prudent to oversample
that level because doing so increases precision while incurring little relative cost. The same
principle applies to the cost ratio between treatment conditions — optimal design analyses
suggest sampling a larger portion of units assigned in the less expensive condition.

In contrast to the optimal sample sizes at the student and teacher levels, the roles of
parameters in determining the optimal proportion of teachers to be assigned to the
treatment condition (p°) are less clear in Equation Al. In particular, the results of our
analysis indicated that the optimal proportion of teachers assigned to treatment is gov-
erned by a complex interplay of the concomitant parameters (see Appendix). Moreover,
this result is not unique to multisite cluster-randomized designs but rather extends to
many types of multilevel designs (Shen & Kelcey, 2020b, 2020c). However, recent studies
of optimal sampling in other types of multilevel experiments suggested that the optimal
p is disproportionally driven by the sampling cost ratio between treatment conditions
(Shen & Kelcey, 2020b, 2020c). For this reason, the optimal p for three-level multisite
cluster-randomized studies may also be primarily dominated by the cost ratio between
treatment conditions. We subsequently surveyed this hypothesis using different sets of
parameter values (see the Illustration section).

Constrained Optimal Sample Allocation

Equations 22, 23 and Al jointly provide optimal sampling solutions when each of the
three sample sizes are mutable. However, there may be practical reasons that constrain
one or more of the sample sizes to be fixed or limited to certain values. For example,
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schools may only have a maximum of four teachers in each grade. In this situation, the
number of teachers per school will be limited to a maximum of four. Under such prac-
tical constraints, a constrained optimal sampling plan can be obtained by substituting
the constrained value into an appropriate equation (i.e., one of Equations 22, 23 and
Al) and solving for the remaining (unconstrained) parameters. Solutions for all possible
combinations of constrained and unconstrained optimal sampling strategies have been
implemented in the R package odr (Shen & Kelcey, 2020a).

The constrained framework also enables us to establish a theoretical connection

between the proposed framework and the conventional framework for three-level multi-
site cluster-randomized trails. Specifically, when placing constraints on the per unit sam-
pling costs across treatment conditions and requiring balanced assignment (i.e., p =.5),
our proposed framework reduces to the optimal sampling plans outlined in conventional
frameworks (e.g., Hedges & Borenstein, 2014; Raudenbush, 1997; Raudenbush & Liu,
2000). To illustrate this, let us assume a balanced design (p = .5) and set the cost of
sampling a unit at each level be coarsely summarized by the average cost across condi-
tions such that: (a)C; :pclT + (1 —=p)c; and (b) C, :pczT + (1 —p)c;. That is, C; and
C, represent the respective average costs of sampling a student and a teacher in both
treatment conditions (i.e., C; = CIT% and C, = Cg%). In this scenario, those constraints

produce the following constrained optimal design parameter expressions:

_ (1 —p, — p3)(1-R}) [9 c_3}

" 2\/]@(1 “R,) +4p,1-R) " |G teil (24)

]:2\/nP2(I—R%)+(1—,022—/)3)(1—R%) o .
no(l - R3,,) Cin+ G

The above constrained formulas produce the same values for n and J as those of the
conventional optimal sampling framework for three-level multisite cluster-randomized
trials (Hedges & Borenstein, 2014). Equations 24 and 25 are in a different format from
those in the conventional approach because of differences in notations for sample sizes
and the method of standardizing the treatment-by-site variance. For example, Hedges &
Borenstein (2014) denoted the level-two sample size as the number of clusters per site
in each treatment condition rather than the total number of clusters per site for both
treatment conditions as we did. Also, the treatment-by-site variance was standardized by
scaling the unconditional site-level within treatment variance as one or w :i—% (Hedges
& Borenstein, 2014).

Relative Efficiency

When planning multilevel experiments, designs with different sample allocations are
typically considered. Our proposed framework helps structure and start those delibera-
tions by identifying the most powerful sample allocation for a given budget. However,
as noted above, in many instances researchers may discuss sub- or semi-optimal designs
that balance efficient sampling with practical design considerations. In such cases, it can
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be helpful to compare the relative efficiency of two or more potential designs to under-
stand the efficiency lost by sub-optimal sampling.

We use o7 to denote the sampling variance for a suboptimal or alternative sampling
plan and o%o to denote the sampling variance for a more optimal (efficient) sampling
plan. The relative efficiency is 030/07 (e.g., Korendijk et al., 2010). Using the informa-
tion in Equation 21, the relative efficiency between two sampling plans for a three-level
multisite experiment is

RE — oz0 _ p°(1—p°)n°’J’w(1-R5,) + n°py(1=R3) + (1 — p, — p3)(1-R})
- 2 _ _ n2 _ n2 _ _ _ n2
0y p(1 p)n]a)(l R3,,) +np,(1 R2)+(1 P2 /’3)(1 R})
[(1 = p°)(crn®T° + c2J°) + p°(cFn°J° + cLJ°) + s p(1 — p)n]
(1= p)(an] + ca) + p(cTn] + ¢]]) + es]pe(1 — po)noje

Where p° n° and J° represent the optimal design parameters in a more efficient
sampling plan (e.g., the solved values of optimal design parameters expressed in
Equations 22, 23 and Al). p, n, and ] represent the values used in a sub-optimal or
alternative sampling plan. We have implemented this formula in the R package odr
(Shen & Kelcey, 2020a) to assist in the judicious comparison of different designs.

Literature suggests that an RE of .90 or above is considered good and RE values
between .80 and .90 are considered acceptable (Korendijk et al., 2010). Beyond the relative
variance ratio between two designs, RE also has implications on sample size and budget.
Holding other parameters constant, the variance of the standardized average treatment
effect estimator (o‘ﬁ) and the number of sites/schools (K) are inversely proportional (see
Equation 17). From a sample size perspective, a sub-optimal design would need (1 — RE)/
RE x 100% more schools than an optimal design to reach a comparable error variance at
the sub-optimal sample allocation (i.e., values of p, n, and J). For example, a design with
an RE value of .80 would need to sample 25% (i.e., (1 —.80)/.80) additional schools than
an optimal design to achieve a same design precision that the optimal design produces.

Notice that the additional percentage in the number of sites (i.e., (I-RE)/RE x 100%)
is also the additional percentage in budget requested by a sub-optimal design to achieve
a same error variance level. This is because, holding other parameters constant, the
budget (m) is directly proportional to the number of sites (see Equation 19). That is, a
design with an RE value of .80 would need 25% additional budget to maintain the same
design precision with an optimal design.

Alternatively, prior literature has often contrasted designs using their minimum
detectable effect sizes (e.g., Bloom, 1995). We can contrast the minimum detectable
effect size under two sampling designs by noting that

d° = dv/RE. (27)

Here we use d° and d to denote the respective standardized minimum detectable
effect sizes for the optimal and sub-optimal design with RE as their relative efficiency.

(26)

IHlustration

Next, we survey the resulting optimal sampling plans within the context of our working
example by considering a range of cost structures and design parameters taken in litera-
ture (e.g., Jennings et al, 2017; IES, 2012). Our illustrations (a) outline how cost
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structures and values of concomitant parameters (e.g., intraclass correlation coefficients,
treatment-by-site variance) impact optimal sampling plans and (b) compare the sample
size plans identified under our framework and those of the conventional framework that
assume equal cross-treatment costs.

For the intraclass correlation coefficients and R-squared values, we use the empirical
values reported in a recent study for reading achievement as a starting point and then
vary these values. The intraclass correlation coefficients at the school and teacher levels
reported in a recent literature are .06 and .09, respectively (i.e., p; = .06 and p, = .09;
Jacob et al., 2010). Similarly, we set proportions of variance at the student and teacher
levels explained by covariates (e.g., pretest scores) as .50, which are more conservative
estimations than the empirical values reported in literature (Jacob et al., 2010).

To see how variations in the intraclass correlation coefficients potentially impact opti-
mal sampling plans, we consider three other combinations of intraclass correlation coef-
ficients that represent a high proportion of variance at the teacher level (p; = .04,
p, = .20), a high proportion of variance at the school level (p; = .20, p, =.04), and
high proportions of variance at both the teacher and school levels (p; = .20, p, = .20).

Similarly, drawing on our working example, we consider a setting in which costs are
roughly equal across conditions for sampling one additional student (c; = ¢I), but costs
are unequal across conditions when sampling one additional teacher (c; # cI). Specifically,
we let the cost of sampling one additional student be US$10 regardless of which treatment
condition a student is in (i.e., ¢, = clT = US$10), the cost of sampling one teacher in the
control condition be US$50 (i.e., c; = US$50), the cost of sampling one teacher in the
experimental group be US$3,000 or US$6,000 (ie., ci = US$3,000 or ¢} = US$6,000; to
reflect the additional costs for training and mentoring), and the cost of sampling one add-
itional school be US$1,000 or US$2,000 (i.e., c3 = US$1,000 or c; = US$2,000; to reflect
potential costs for recruiting a school and/or incentive pay to a school).

Furthermore, we considered a design targeting an average treatment effect as small as
0.2 (d =0.2) with a treatment-by-site variance of 0.01 (w = 0.01) or 0.04 (w = 0.04).
Finally, we considered 30% of treatment-by-site variance to be explained by covariates
(ie, R3, = .30). In sum, our illustration considered 32 conditions (i.e., a factorial design
of 4 cost structures, 4 intraclass correlation coefficients, and 2 treatment-by-site
variances). We report the resulting optimal sample sizes in the middle four columns of
Table 1 (i.e., the columns of p°, »n°, J°, K°).

The results suggest that two primary factors determine the value of optimal p°. The first
factor is the cost ratio between treatment conditions at the individual- and cluster-level.
Specifically, for same intraclass correlation coefficients and treatment-by-site variance, the
larger the cost ratio between treatment and control conditions (e.g., CZT /¢y or C;}ZIZ) is, the
smaller the optimal p value (i.e., p°). Holding other parameters equal, when the cost of
sampling a school rises, p° essentially does not change. That is, the optimal p is mainly
determined by the cost ratio at the level of randomization (e.g., teacher-level in this
example). The second factor impacting the value of optimal p is the intraclass correlation
coefficients at the teacher- and school-levels. For example, increases in the variance at the
teacher level results in a smaller p° (see the first and fourth combinations of intraclass cor-
relation coefficients versus the other two combinations). The change of treatment-by-site
variance has a negligible effect on p° as its values are identical for @ = 0.01 and w = 0.04.
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Table 1. Optimal design parameters in three-level multi-school teacher-randomized trials

Proposed framework Conventional framework
(3. p3) (], c3) (US$) p° n° P Ke Mp—s  Jpes  K,—s  Power  RE
= 0.01
(.04, .20 (3,000, 1,000) .20 15.74 11.62 16.19 24.07 6.12 18.66 .69 .78
(3,000, 2,000) .20 15.74 16.43 13.09 24.07 8.66 13.69 .68 .78
(6,000, 1,000) a7 19.91 9.92 20.04 33.90 435 25.26 .66 73
(6,000, 2,000) A7 19.91 14.03 15.37 33.90 6.15 18.06 .66 73
(.06, .09) (3,000, 1,000) 24 26.61 6.88 12.94 37.95 4.1 14.59 71 .82
(3,000, 2,000) 24 26.61 9.73 10.24 37.95 5.81 11.02 71 .83
(6,000, 1,000) .20 34.14 5.72 15.31 53.45 2.92 17.39 68 77
(6,000, 2,000) .20 34.14 8.08 12.44 53.45 4.12 13.99 .69 .78
(.20, .04) (3,000, 1,000) 27 39.86 418 11.01 53.83 2.74 10.75 71 .86
(3,000, 2,000) 27 39.86 591 8.68 53.83 3.87 9.07 73 .87
(6,000, 1,000) 23 51.67 3.40 13.67 75.81 1.94 13.41 69 .81
(6,000, 2,000) 23 51.67 4.81 9.78 75.81 2.75 10.24 .70 .82
(.20, .20) (3,000, 1,000) .20 13.74 11.99 15.95 21.39 6.12 18.46 .68 77
(3,000, 2,000) .20 13.74 16.96 12.38 21.39 8.66 13.56 .68 77
(6,000, 1,000) .16 17.33 10.31 20.66 30.12 435 25.03 65 72
(6,000, 2,000) .16 17.33 14.58 15.01 30.12 6.15 17.90 .66 73
w = 0.04
(.04, .20) (3,000, 1,000) 0.20 15.74 5.81 32.82 24.07 3.06 37.82 .70 .79
(3,000, 2,000) 0.20 15.74 8.22 26.53 24.07 433 30.27 71 .80
(6,000, 1,000) 0.17 19.91 4.96 40.61 33.90 217 51.12 .67 74
(6,000, 2,000) 0.17 19.91 7.01 31.18 33.90 3.07 36.60 68 75
(.06, .09) (3,000, 1,000) 0.24 26.61 3.44 29.33 37.95 2.05 29.59 72 .84
(3,000, 2,000) 0.24 26.61 4.87 20.67 37.95 2.90 22.29 73 .85
(6,000, 1,000) 0.20 34.14 2.86 31.04 53.45 1.46 49.10 .70 .79
(6,000, 2,000) 0.20 34.14 4.04 25.20 53.45 2.06 28.36 71 .80
(.20, .04) (3,000, 1,000) 0.27 39.86 2.09 22.27 53.83 1.37 28.77 74 .88
(3,000, 2,000) 0.27 39.86 2.96 17.43 53.83 1.94 18.24 75 .89
(6,000, 1,000) 0.23 51.67 1.70 22.71 75.81 0.97 27.18 73 .83
(6,000, 2,000) 0.23 51.67 2.40 2271 75.81 137 27.18 73 .85
(.20, .20) (3,000, 1,000) 0.20 13.74 6.00 3235 21.39 3.06 37.42 .70 .78
(3,000, 2,000) 0.20 13.74 8.48 26.18 21.39 433 29.97 .70 .80
(6,000, 1,000) 0.16 17.33 5.16 41.86 30.12 217 50.66 .67 73
(6,000, 2,000) 0.16 17.33 7.29 32.07 30.12 3.07 36.30 .67 75

Note. The above calculations are based on ¢ = ¢] = US$10, ¢, =US$50, g =1, R? = R = .50, and R, = .30. p,
and p; are the intraclass correlation coefficients at the teacher and school levels, respectively. p°, n° and J° are the
optimal design parameters identified by the proposed framework, K° is the number of schools/sites required to achieve
80% power under the optimal sample allocation. n,—s and J,—s are the constrained optimal sample sizes identified by
the conventional framework (Hedges & Borenstein, 2014) with a constrained p = .5, K,_ 5 is the number of schools/sites
the conventional framework can sample under the same budget. Power is the statistical power that a conventional opti-
mal sampling plan can achieve under the same budget required by the proposed sampling plan to produce 80% power.
RE is the relative efficiency of the design identified in the conventional framework compared with the corresponding
one in the proposed framework.

These findings echo those found in cluster-randomized trials and two-level multisite
randomized trials (Shen & Kelcey, 2020b, 2020c¢).

As for the values of #n° and J°, the trends are aligned with their respective equations
and those implications we have outlined in a previous section: n° and J° are impacted by
both sampling cost and conditional variance ratios across levels. Holding other factors
fixed, when sampling a teacher is more expensive, the optimal number of students (#n°)
gets larger; when the (conditional) variance at the teacher and school levels gets larger, the
value of »n° is smaller. Adjustments to the treatment-by-site variance do not appear to
impact the value of n° (e.g., the results are identical for the two @ values; see Table 1).

In contrast, the value of J° is impacted by changes in the treatment-by-site variance in
our examples. A larger treatment-by-site variance necessitates more sites/schools to clearly
separate out the variance attributable to effect heterogeneity and sampling error. As a result,
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when treatment-by-site variance grows, smaller values prevail for J°. The value of J° is also
impacted by the cost ratio across levels — when the cost of sampling a school/site
increases, sampling a teacher is relatively cheaper, resulting in a larger value of J° (Table 1).

Comparison with the Conventional Framework

Using the same 32 conditions, we compare the optimal sampling plans under the pro-
posed framework with those of the conventional framework (Hedges & Borenstein,
2014). Our analysis for the conventional framework assumes that the proportion of
teachers assigned to the treatment is p = .5, and that costs of sampling a control unit
and a treated unit at each level are equal to the average costs of treatment and control
units at that level. For example, when the true costs of sampling a teacher in a control
and treatment condition are ¢; = US$50 and ¢l = US$3,000, we use their average costs
(C, =2 JZFCZ = US$3’030+$50 = US$1,525) for the conventional framework. For the con-
ventional framework, we present the optimal sample size values along with the relative
efficiency comparing to designs identified by the proposed framework.

For comparison purposes, we also report the total number of schools to achieve 80%
power at the optimal sample allocation identified by the proposed framework (the K°
column in Table 1). Thus, a total cost can be calculated (e.g., through Equation 19) to
achieve 80% power for an optimal design. Because the conventional optimal sampling
framework identifies different sample sizes at the student and teacher levels (the n,_ 5
and J,—5 columns in Table 1), for the same total cost we can subsequently calculate the
total number of schools can be sampled at the conventional optimal size allocation (the
K,—5 column in Table 1). Given all these parameter values, we report the statistical
power a conventional optimal design can achieve (i.e., the Power column in Table 1)
under the same resources where 80% power has been achieved by the optimal sampling
plans in the proposed framework.

The results for the conventional optimal sampling framework are presented in the
right four columns in Table 1 (i.e., columns of n,_5, J,—5, RE, and Power). The pri-

mary result is that our framework consistently suggests sampling more teachers in favor
of fewer students and schools when it is more costly to sample treatment teachers than
control teachers, which is aligned with our prior explanation of optimal sample size for-
mulas. The intuition motivating this strategy is that because control teachers demand
relatively fewer resources, it is often more efficient to oversample control teachers.

More generally, there tends to be a large initial reduction in the error variance of the
treatment effect associated with sampling additional control teachers relative to other
units (schools, students, treatment teachers). However, the accelerated reduction of the
error variance associated with oversampling control teachers eventually levels off such
that it becomes more efficient to sample other units (i.e., treatment teachers, students,
and schools). In contrast, the conventional framework overlooks this critical opportunity
because it considers conditions and units exchangeable in terms of cost.

Our results also suggest that the differences in sampling plans selected by the frame-
works have nontrivial impacts on relative efficiency and power (Table 1). Across the
conditions sampled, the average relative efficiency of designs in the conventional frame-
work is only 80%. That is, designs identified by the conventional framework need an
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average of 25% additional budget to sample 25% more schools so that these designs can
produce the same power level of 80%.

Similarly, across the conditions sampled, the results suggest that the average power
produced by the proposed optimal sampling framework is 15% larger than that of the
conventional optimal sampling framework. Under identical resources, the proposed
framework can generate 15% more power than the conventional framework just by
nominally modifying the sample allocation. Collectively, these findings also echo the
nonlinear relationship between power and sample size. Thus, the RE value between two
designs will be different from their relative power (e.g., Cox & Kelcey, 2019). To gain
an average of 15% more power, we need to sample an average of 25% more schools,
which is substantially larger than the 15% increase on power.

Discussion

In this article, we develop a more flexible optimal sampling framework for three-level mul-
tisite group-randomized trials. This development parallels those addressing sampling and
planning issues in other types of multiple designs (e.g., Shen & Kelcey, 2020b, 2020c). The
proposed framework expands the scope of prior research on optimal sampling that assumed
equal sampling costs between treatment conditions (e.g., Hedges & Borenstein, 2014) by
operationalizing more flexible cost structures of sampling across conditions and levels.

We find that when costs vary across treatment conditions, the proposed framework
can often identify more efficient and more powerful sampling plans relative to the con-
ventional framework that assumed equal costs between treatment conditions with fixed
sample allocation between conditions. In part, our results substantiate and replicate
well-known design strategies. For example, our results suggest that an efficient strategy
is to sample units (e.g., students, teachers, or schools) proportional to their relative cost
and variance. In other ways, however, our results expand upon these strategies. For
instance, when units differ in their costs across treatment conditions, our results suggest
that oversampling units in the lower cost condition (e.g., control condition) can provide
a strong return on investment (e.g., more efficient and powerful designs).

In this way, the results of our study potentially improve upon theoretical benchmarks
for optimal sampling guidelines. The resulting formulas and guidelines we developed cap-
ture a critical starting point for design conversations and decisions regarding sampling
considerations. In most empirical studies, practical considerations outside the scope of con-
ventional experimental design parameters will additionally influence the eventual sampling
plan. The results from our framework offer more efficient and nuanced starting points for
researchers to balance theoretical and practical considerations.

Like the conventional framework, the added value of our framework is also contin-
gent upon the plausibility of concomitant parameter values used as inputs (e.g., intra-
class correlation coefficients). The literature has compiled empirical values for a variety
of design parameters (Hedges & Hedberg, 2007a, 2007b, 2013; Kelcey et al, 2016;
Raudenbush et al., 2007), including those can be used for planning three-level multi-
school teacher-/class-randomized trials that are similar to our example (Dong et al,
2016; Jacob et al., 2010; Zhu et al., 2012). However, compared with conventional optimal
sampling frameworks and power analysis, our framework requires additional information
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about the approximate costs of sampling treatment and control units. In some instances,
such information can be roughly estimated from publicly available information at cost
centers (e.g., CostOut at https://www.cbcsecosttoolkit.org/). Alternatively, in the absence
of empirical evidence as to the parameter values, a common approach is to conduct pilot
studies and/or consider a range of plausible values for parameters to understand the
implications, limitations, and sensitivity of different sampling plans.

The proposed framework can be applied to a diverse range of studies beyond the sub-
stantive examples provided (i.e., three-level multi-school teacher-randomized trials). For
example, a common design in settings of students nested within schools nested within
districts draws on a three-level multi-district school-randomized study to target student
achievement gains from whole school reform programs (e.g., Fahle & Reardon, 2018;
Hedberg & Hedges, 2014; Westine, 2016). Investigators can find empirical values of
intraclass correlation coefficients in the three-level nesting for different achievement
domains (e.g., Fahle & Reardon, 2018; Hedberg & Hedges, 2014; Hedges & Hedberg,
2013; Kelcey & Shen, 2017; Westine, 2016) to help design efficient three-level experi-
mental studies using the framework presented in this article.

The optimal sampling framework developed in this article offers investigators the the-
ory and tools to incorporate disparate costs when designing studies to detect main
effects. Although research into main effects represents a principal estimand in many
studies, recent literature has emphasized the value in expanding such questions with
those that probe effect heterogeneity and theories of action through investigations of
moderation and mediation. The framework developed in this study could be extended
to questions of mediation and/or moderation effects.
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Appendix
1. The Optimal p Equation

[nJoo(1 = Ry, )p(1 = p) + npy (1= R) + (1 = py — p3)(1 = RD)] J(c[n + ) —J(cin + )]
p(1=p) = (1 =2p)[(1 = p)(ain + ) +pJ(cin+ ) + 5] [nps (1 = RY) + (1 = p = p3)(1 = R)] = 0
(A1)
2. Derivation of the Optimal p Expression

Letting the first-order partial derivatives of % in Equation 21 with respect to p be 0, we have

d ,_d nJo(1—R2)p(1 —p)+np,(1—RE) + (1 — p, — p3)(1 — RY)

dp™° dp p(1 - p)nJK
L A=planta)+ pJ(cn+c) +c
m
_ nJo(1—R)p(1 —p) +np,(1 —R)) + (1 — p, — p3)(1 — RY)
p(1 —p)nJK
4 (1=p)an+a) +pJ(cln+c) +¢
dp m
N (1 —p)J(ain+ )+ pJ(c[n+c]) + ¢
m
y d nJo(1=R)p(L—p) +npy (1 =R3) + (1= py — p3) (1 = R})
dp p(1 —p)niK
_ 1 [njo(1—R.)p(1—p) +npy(1 —R3) + (1= p, — p3)(1 — RY)
m p(1 —p)nJK

x [J(cTn+c)) —Jan+ )] + [(1 = p)(an+c) +pl(cin+cl) +c]
VLN nJo(1 —RZ)(1 —2p)p(1 —p)—(1 - 2p)
nJK p2(1-p)’

x [nJeo(1 = R)p(1 = p) + npy (1 = R2) + (1 = py — py) (1 — Rm} o

Multiplying each side by p?(1 — p)? 2k We have

[nJo (1 — R )p(1 — p) + np,(1 — R3)
+(1=p,—p3) (1 =R)IY(cIn+ ) —J(an+c)]p(1 - p)
+[(1 = pM(cin + &) + pJ(cln+ cf) + cs]{nJw(1 — R2) (1 — 2p)p(1 — p)

— (1=2p)[nJoo(1 = R2)p(1 = p) + np,(1 = R3) + (1 — p, — p3) (1 — RY)]}
-0
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[nJor(1 = R2)p(1 —p) +npy(1 = R3) + (1 — p, — p3) (1 = RY) ] [J(c]n + c})
—J(cin+6)]p(1 —p)
+ [(1 = p)(cin+ &) + pJ(c[n+¢}) + ;] {nJo(1 — R2) (1 — 2p)p(1 — p)
= (1=2p)[nJor(1 = R} )p(1 = p) + npy (1 = R3) + (1= p, — p3) (1 = RY) ]}
=0

Further combining like terms, we have Equation Al.

3. Derivation of the Optimal n Expression

Letting the first-order partial derivatives of ¢ in Equation 21 with respect to n be 0, we have

d , d [an(l—Rfu)p(l—p)+np2(1—R§)+(1—p2—p3)(1—R§)

dn’° ™ dn p(1—p)nJ
LA=panta)+ pl(cn+d) +c
m
_ 1 d [nJo(1=R%)p(1—p) +np,(1 =R3) +(1—p, — p3)(1 - R})
p(l1 —p)Jmdn n

< (- py(an + )+ pildn+ )+

:——i——{M—mKWH«n+m@h+dwwﬁ

p(1—p)Jm
y d nJo(1=R2)p(1—p) +np,y (1 =R3) + (1 = py — p3) (1 = R})
dn n
N nJo(1 —R:)p(1 —p) +np, (1 —R2) + (1 — p, — p3) (1 — R?)
n

d
X (1= p)J(cin+c) +pI(cin+c)) +cs) }

= m { [(1 —p)l(an+c) +pJ(clTn + C;) + c3}

y { Joo(1 = R2)p(1 = p) + p, (1 = RY)]n

n?

[nJor(1 = R2)p(1 = p) +nps (1 = R3) + (1 — po — p3) (1 — RY)] }
n2

+an(l —R2)p(1 = p) +np,(1—R%) + (1 — p, — p3) (1 — R?) ‘[

- (1 —p)Jc; + pJcT] }

=0

Multiplying each side by n’p(1 — p)Jm, we have
[(1 =p)(an+ ) +pl(cin + ) + ] { Jo(1 = R, )p(1 = p) + po (1~ R3)]n
— [ (1= R)p(1 = p) +np, (1 = RS) + (1= po — p3) (1 = RY)] }
+ [nJo(1 = R.)p(1 = p) +npy (1= R3) + (1= pp — p3) (1 = R)] [(1 = p)Jcy
+pJc]]n=0
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Further combining like terms, we have
Jer(1 = R2)p(1 = p) + p2 (1 = RY)][(1 = p)er + pJci|n?
— [(1 = p)Jez + pJc] + 6] (1= p, = p3) (1 = RY) =0

Further solving for n, we have Equation 22.

4. Derivation of the Optimal ] Expression

Letting the first-order partial derivatives of % in Equation 21 with respect to J be 0, we have
d , d {an(1 —R2)p(1 = p) +np,(1—R3) + (1 — py — p3) (1 — RY)

ETACER Y] p(1—p)nJ
LA=panta)+ pl(cn+c) +c
m
1 d (1= R)p(—p)+nps(1—RY) + (1 py— ps) (1~ RY)
p(1 —p)nmdJ J

x [(1=p)Jan+c)+pi(cn+c)) +c] }

— s [0 = paan + )+ pidn+ )+l

p(1 —p)nm
y dnJo(1-R)p(1—p)+np,(1 =R} +(1—p,—p5)(1 - R})
dJ J
(1 = R2)p(1 —p) 4 mpy (1~ B) + (1 ps — pu)(1 - )
J

d
x— [(1=p)J(cin+ ) +pJ(c[n+c}) + cs] }

S - { (1= p)an + )+ pi(cn+ ) + )

p(1 —p)nm
(1= R2)p(1 = p)J=[nJor(1 = R2)p(1 = p) +np, (1 = R3) + (1 = p, — p3) (1 = R})]
J2
+njcu(1 - eru)p(l _p) +np2(1 - R%) + (1 — P2~ ,03)(1 - R%) % [(1 —p)(cln —|—C2)

J
+p(dn+d)] =0

Multiplying each side by J*p(1 — p)nm, we have
(1= pein+ )+ picn-+€) + ) {mot - R)o(1 -1

ol = R )p(1 —p) + 1pa(1 =R + (1 = p, )1 - )]

+ [nJo(1 = R%)p(1 = p) + np,(1 — R3)
+ (1= p2 = p3)(1 = R)][(1 = p)(ein + &) +p(cin +¢]) ]I = 0
Further combining like terms, we have
[ (1= R%)p(1 = p)] x [(1 = p)(an+c) +p(cn + )]~
—a[npy(1-R3) + (1= py—p3)(1=R})] =0

Further solving for J, we have Equation 23.
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