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Abstract

While significant theoretical progress has been achieved, unveiling the generaliza-
tion mystery of overparameterized neural networks still remains largely elusive.
In this paper, we study the generalization behavior of shallow neural networks
(SNNs) by leveraging the concept of algorithmic stability. We consider gradient
descent (GD) and stochastic gradient descent (SGD) to train SNNs, for both of
which we develop consistent excess risk bounds by balancing the optimization
and generalization via early-stopping. As compared to existing analysis on GD,
our new analysis requires a relaxed overparameterization assumption and also
applies to SGD. The key for the improvement is a better estimation of the smallest
eigenvalues of the Hessian matrices of the empirical risks and the loss function
along the trajectories of GD and SGD by providing a refined estimation of their
iterates.

1 Introduction

Neural networks have achieved remarkable success in solving large-scale machine learning problems
in various application domains such as computer vision and natural language processing [33]. First-
order methods such as gradient descent (GD) and stochastic gradient descent (SGD) are mainstream
optimization algorithms for training neural networks due to their simplicity and efficiency [11, 33, 50].
Although the associated optimization problems are nonconvex and nonsmooth, GD/SGD can still
find a model with a very small or even zero training error [16, 20, 34, 39, 64, 69]. At the same time,
the models found by such first-order methods has demonstrated good generalization performance on
test data despite neural networks are often highly overparameterized in the sense that the number of
parameters is much larger than the size of training examples [1, 2, 5].

These surprising phenomena have triggered a surge of research activities in understanding the gener-
alization ability of neural networks. Generalization analysis typically uses complexity measures such
as VC dimension, covering numbers or Rademacher complexities to develop capacity-dependent
bounds [8, 9, 25, 42, 48], which, however, may not explain well the generalization of overparameter-
ized neural networks. Impressive alternatives have been proposed which include the compression
approach [4], the norm-based analysis [8, 25], the PAC-Bayes analysis [21] and the neural tangent
kernel (NTK) approach [5, 28]. In particular, the NTK approach shows that the overparameterization
pulls the dynamic of GD on neural networks close to its counterpart on a kernelized machine with
the least-square loss [5, 20], which shows how overparameterization can help both optimization and
generalization. However, this approach often requires a very high overparameterization to gain useful
results [6, 55, 60].
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The recent appealing work [51] presents a kernel-free approach to study how overparameterization
would improve the generalization for shallow neural networks (SNNs). Their basic tool is the
algorithmic stability [12], which measures how the replacement of an observation would change the
algorithm output. The authors showed the excess risk of GD is controlled by an interpolating network
with the shortest GD path from the initialization, which is able to recover the existing NTK-based
risk bounds as an application. This result is achieved under an overparameterization assumption
m ≳ (ηT )5, where m is the number of hidden nodes, η is the learning rate (step size) and T is the
number of iterations. While this result is very interesting and impressive, the overparameterization
requirement m ≳ (ηT )5 may still be more restrictive than that used in practice. Furthermore, the
analysis in [51] is restricted to the case of the full-batch GD. One natural question thus arises:

Can we relax the overparameterization requirement for GD in [51] and further
establish the stability and generalization of SGD for neural networks?

In this paper, we provide an affirmative answer to the above question by establishing a refined
stability analysis for the gradient methods (GD and SGD) for training SNNs. Our contributions are
summarized as follows.

1. We develop excess risk bounds for GD on SNNs under a relaxed overparameterization. In
more details, we show that GD can achieve the excess risk bounds of the order O(1/

√
n) if

m ≳ (ηT )3, where n is the sample size. This improves the existing overparameterization
condition m ≳ (ηT )5 [51]. Under a low noise condition, our excess risk bounds improve to
O(1/n).

2. One key technical novelty in relaxing the overparameterization condition for GD in [51] is to
improve the existing bounds on the norm of iterate sequence {Wt}. As we soon show in Section
4.1 below, this improvement is achieved by a better estimation of the smallest eigenvalue of the
Hessian matrix of the empirical risk. Specifically, the analysis [51] uses ∥Wt−W

(i)
t ∥2 = O(

√
ηt)

to lower-bound the smallest eigenvalue at αWt + (1 − α)W
(i)
t by −1√

m
(∥Wt − W

(i)
t ∥2 + 1),

where α ∈ (0, 1) and {W(i)
t } is an iterate sequence on a neighboring dataset. As a comparison,

we show ∥Wt −W
(i)
t ∥2 = O(n−1(ηt)

3
2 ) which can be much better than O(

√
ηt) if n is large.

Furthermore, our bound depends on the training errors and would improve in a low noise condition.
Under some specific cases, we can further show that E[∥Wt∥22] = O(1), which is independent of
the iteration number.

3. We extend our analysis to SGD under the relaxed overparameterization condition m ≳ (ηT )3. As
compared to GD, SGD has a computational advantage in the sense that it can achieve the same
risk bounds with a less computational cost. The key analysis of SGD relies on the estimation of
the Hessian spectrum of the loss over the individual training datum. This is more challenging than
estimating the counterpart of the empirical risk of GD since several properties of GD do not hold
for SGD such as the monotonicity of the objective functions along the optimization process. To
overcome this technical hurdle, we provide a refined analysis to control the bounds of the iterates
of SGD which further leads to the estimation of the Hessian spectrum of the loss.

The remaining parts of the paper are organized as follows. We present the related work in Section 2
and illustrate the formulation of the problem in Section 3. We present the main results in Section 4
and sketch the idea of the proof in Section 5. We conclude the paper in Section 6.

2 Related Work

In this section, we group the related work into two categories: the related work on stability analysis
and the related work on generalization analysis of neural networks.

Stability and generalization. As a fundamental concept in statistical learning theory, algorithmic
stability considers how the perturbation of training examples would affect the output of an algo-
rithm [53], which has a close connection to the learnability [46, 56]. The framework of using the
concept of algorithmic stability to derive generalization bounds was established in an influential
paper [12], where the uniform stability was introduced and was studied for regularization schemes.
Since then, various concepts of stability have been introduced to study the generalization gaps,
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including the hypothesis stability [12, 22], on-average stability [32, 56], Bayes stability [38], locally
elastic stability [19] and argument/model stability [35, 43]. A very successful application of stability
analysis is to use it to study SGD for smooth, Lipschitz and convex problems [26], which motivates
a lot of follow-up studies on stochastic optimization [3, 10, 15, 31, 35, 36, 49]. The smoothness
assumption in [26] was recently removed by taking very small step sizes [10, 35], while the convexity
assumption was relaxed to a weak convexity assumption [52]. Under a Polyak-Lojasiewicz (PL)
condition, it was shown that any algorithm converge to global minima would generalize without con-
vexity conditions [15, 36]. The trade-off between stability and optimization was studied in [17]. Other
than stochastic optimization, stability has found wide applications in structured prediction [44], meta
learning [45], transfer learning [32], hyperparameter optimization [7], minimax problems [23, 37, 65]
and adversarial training [61]. While most of the stability analysis imply generalization bounds in
expectation, recent studies show that uniform stability can yield almost optimal high-probability
bounds [13, 24, 30].

Generalization analysis of Neural Networks (NNs). Generalization analysis of NNs has attracted
increasing attention to understand their great success in practice. A popular approach to study
the generalization of SNNs is via the uniform convergence approach, which studies the uniform
generalization gaps in a hypothesis space [8, 25, 41, 48, 67]. However, this approach leads to
capacity-based bounds which do not well explain why overparameterized models can still generalize
well to testing examples [47]. To address this problem, researchers turn to other approaches such
as the compression approach [4], the PAC-Bayes approach [21], the NTK approach [28] and the
neural tangent random feature approach [14]. The key idea of the NTK approach is that, under
sufficient overparameterization and random initialization, the dynamics of GD on SNNs is close
to the dynamics of GD on a least-squares problem associated to the NTK [5, 20]. This leads to
generalization bounds based on a data-dependent complexity measure, which can distinguish the
difference between learning with random labels and learning with true labels [5]. Meanwhile, recent
studies suggest the connection to kernels might be only good at interpreting the performance of
very wide networks [6, 55, 60], much more overparameterized than those used in reality [51]. The
most related work is the recent analysis of GD for SNNs without either the NTK condition or the
PL condition [51]. They developed nontrivial generalization bounds under an overparameterization
assumption m ≳ (ηT )5. Furthermore, their analysis allows for improved bounds if there is no label
noise, and shows an interesting connection to NTK-based risk bounds. It should be mentioned that
the analysis in [5] considers the ReLU activation function, while the discussions in [51] focus on
smooth activation functions.

3 Problem Setup

Let P be a probability distribution defined on a sample space Z := X × Y , where X ⊆ Rd and
Y ⊆ R. Let S = {zi = (xi, yi) : i = 1, . . . , n} be a sample drawn from P . Based on S we wish to
build a model f : X 7→ R. The performance of f can be measured by the population risk defined as

L(f) =
1

2

∫∫
X×Y

(
f(x)− y)2dP (x, y),

which is unknown and can be approximated by the empirical risk LS(f) =
1
2n

∑n
i=1

(
f(xi)− yi

)2
.

A minimizer of the population risk is the regression function fρ(x) = E[y|x], where E[·|x] denotes
the conditional expectation given x. In this paper, we consider a shallow neural network of the form

fW(x) :=
m∑

k=1

µkσ(⟨wk,x⟩),

where we fix µk ∈ { 1√
m
,− 1√

m
}, σ : R 7→ R is an activation function and W = (w1, . . . ,wm) ∈

Rd×m is the weight matrix. In the above formulation, wk denotes the weight of the edge connecting
the input to the k-th hidden node, and µk is the weight of the edge connecting the k-th hidden node
to the output node. Here m is the number of nodes in the hidden layer and ⟨·, ·⟩ denotes the inner
product operator. For simplicity, we denote

L(W) = L(fW) and LS(W) = LS(fW).

Let W∗ = argminW L(W). We choose a minimizer of L(W) with the smallest norm. The relative
behavior of a model W w.r.t. W∗ is quantified by the excess population risk L(W)− L(W∗). We
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denote by ℓ(W; z) = 1
2 (fW(x)− y)2 the loss function of W on a single example z = (x, y). Two

representative algorithms to minimize the empirical risk are GD and SGD.
Definition 1 (Gradient Descent). Let W0 ∈ Rd×m be an initialization point. GD updates {Wt} by

Wt+1 = Wt − η∇LS(Wt), (3.1)

where η > 0 is the step size and ∇ denotes the gradient operator.
Definition 2 (Stochastic Gradient Descent). Let W0 ∈ Rd×m be an initialization point. SGD updates
{Wt} as follows

Wt+1 = Wt − η∇ℓ(Wt; zit), (3.2)
where it is drawn from the uniform distribution over [n] := {1, . . . , n}.

We are interested in the excess population risk of models trained by GD/SGD with T iterations. We
begin with the introduction of some assumptions on activations and loss functions. Assumptions 1, 2
were also imposed in [51]. We denote by ∥ · ∥2 the Frobenius norm.
Assumption 1 (Activation). The activation ϕ(u) is continuous and twice differentiable with constant
Bϕ, Bϕ′ , Bϕ′′ > 0 bounding |ϕ(u)| ≤ Bϕ, |ϕ′(u)| ≤ Bϕ′ and |ϕ′′(u)| ≤ Bϕ′′ for any u ∈ R.

Activation functions satisfying Assumption 1 include sigmoid and hyperbolic tangent activations [51].
Assumption 2 (Inputs, labels, and the loss function). There exists constants Cx, Cy, C0 > 0 such
that ∥x∥2 ≤ Cx, |y| ≤ Cy and ℓ(W0; z) ≤ C0 for any x, y and z.

Our third assumption is on the regularity of the learning problems. For any λ > 0, we define

W∗
λ = arg min

W∈Rd×m

{
L(W) + λ∥W −W0∥22

}
.

Note we use the asterisk to differentiate W∗
λ and the GD iterate Wt.

Assumption 3 (Regularity). Assume there exist α ∈ (0, 1] and cα > 0 such that

Λλ := L(W∗
λ)− L(W∗) + λ∥W∗

λ −W0∥22 ≤ cαλ
α.

Assumption 3 is related to the approximation error which characterize how well the SNNs approximate
the least population risk, which is motivated from the approximation analysis in kernel learning.
[18, 59, 66]. In more details, a typical assumption in kernel learning is minf L(f)−L(f∗)+λ∥f∥2K =
O(λα), where α ∈ (0, 1] depends on the regularity of a target function f∗ and ∥ · ∥K denotes the
norm in a reproducing kernel Hilbert space. If ∥W∗∥2 = O(1), then it is clear that

L(W∗
λ)− L(W∗) + λ∥W∗

λ −W0∥22 ≤ L(W∗)− L(W∗) + λ∥W∗ −W0∥22 = O(λ) (3.3)

and therefore Assumption 3 holds with α = 1. Our analysis is based on the following error
decomposition of the excess risk:

E[L(WT )]−L(W∗) =
[
E[L(WT )]−E[LS(WT )]

]
+E

[
LS(WT )−LS(W

∗
1

ηT
)− 1

ηT
∥W∗

1
ηT
−W0∥22

]
+
[
L(W∗

1
ηT

) +
1

ηT
∥W∗

1
ηT

−W0∥22 − L(W∗)
]
, (3.4)

where we have used E[LS(W
∗
1

ηT

)] = L(W∗
1

ηT

) due to the independence between W∗
1

ηT

and S. We

refer to the first term E[L(WT )] − E[LS(WT )] as the generalization error (generalization gap)
and the second term E

[
LS(WT ) − LS(W

∗
1

ηT

) − 1
ηT ∥W

∗
1

ηT

− W0∥22
]

as the optimization error.
As in [51], we will use the on-average model stability to control the generalization error and tools
in optimization theory to control the optimization error. We will use Assumption 3 to control the
last term L(W∗

1
ηT

) + 1
ηT ∥W

∗
1

ηT

−W0∥22 − L(W∗). The on-average model stability considers the
sensitivity of the output models up to the perturbation of a single example, and the sensitivity is
averaged by traversing the single example throughout the sample set. Let A(S) be the output model
by applying an algorithm A to S.
Definition 3 (On-average Model Stability [35]). Let S = {z1, . . . , zn} and S′ = {z′1, . . . , z′n} be
drawn independently from P . For any i ∈ [n], define S(i) = {z1, . . . , zi−1, z

′
i, zi+1, . . . , zn} as

the set formed from S by replacing the i-th element with z′i. We say a randomized algorithm A is
on-average model ϵ-stable if ES,S′,A

[
1
n

∑n
i=1 ∥A(S)−A(S(i))∥22

]
≤ ϵ2.
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The connection between the generalization error and the on-average model stability was established
in the following lemma. We say a function W 7→ g(W) is ρ-smooth if, for any W and W′, we have

∥∇g(W)−∇g(W′)∥2 ≤ ρ∥W −W′∥2.
Lemma 1 (Stability and Generalization [35]). Let A be an algorithm. If for any z, the map
W 7→ ℓ(W; z) is ρ-smooth and nonnegative, then

E[L(A(S))−LS(A(S))]≤
ρ

2n

n∑
i=1

E[∥A(S)−A(S(i))∥22]+
(2ρE[LS(A(S))]

n

n∑
i=1

E[∥A(S)−A(S(i))∥22]
) 1

2

.

4 Main Results

In this section, we present our main results on the risk bounds of GD and SGD which are summarized
in Table 1. We denote B ≍ B′ if there exist some universal constants c1 and c2 > 0 such that
c1B ≤ B′ ≤ c2B. We denote B ≳ B′ if there exists a universal constant c > 0 such that B ≥ cB′.

Algorithm Excess risk bound Low noise overparameterization Computation

GD [51]
O(n− α

1+α ) No m ≳ (ηT )5 ≍ n
5

α+1 O(n
α+2
α+1 )

O(n−α) Yes m ≳ (ηT )5 ≍ n5 O(n2)

GD O(n− α
1+α ) No m ≳ (ηT )3 ≍ n

3
α+1 O(n

α+2
α+1 )

This work O(n−α) Yes m ≳ (ηT )3 ≍ n3 O(n2)

SGD O(n− α
1+α ) No m ≳ (ηT )3 ≍ n

3
α+1 O(n)

This work O(n−α) Yes m ≳ (ηT )3 ≍ n3 O(n)

Table 1: Summary of results. Low noise means L(W∗) = infW L(W) = 0. Computation means
the complexity of the gradient computation, which is nT for GD and T for SGD. The results in
second and third rows for GD are derived by combining Assumption 3 with the risk bounds in [51].
In particular, if α = 1, our results indicate both GD and SGD for 2-layer SNNs with subquadratic
overparametrization m ≳ n3/2 can lead to optimal risk rate O(n−1/2) while the results in [46] need
superquadratic overparametrization m ≳ n5/2.

4.1 Gradient Descent

We first study the excess risk of the GD algorithm for SNNs. Let e be the base of the natural logarithm.
Let ρ = C2

x

(
B2

ϕ′ +Bϕ′′Bϕ +
Bϕ′′Cy√

m

)
and b = C2

xBϕ′′(Bϕ′Cx + C0).

Theorem 2 (Generalization Error). Let Assumptions 1, 2 hold. Let {Wt} be produced by Eq. (3.1).
If η ≤ 1/(2ρ) and

m ≥ 32C0η
2T 2C4

xB
2
ϕ′′

(
2n−1

√
ρ(ρηT + 2)Bϕ′Cx(1 + ηρ)ηeT + 1

)2

, (4.1)

then for any t ∈ [T ] we have

E[L(Wt)− LS(Wt)] ≤
(4e2η2ρ2t

n2
+

4eηρ

n

) t−1∑
j=0

E[LS(Wj)].

Remark 1. Under an assumption m ≳ (ηT )3, a bound similar to Theorem 2 was established in [51].
We relax this assumption to m ≳ (ηT )5/n2+ η2T 2 in Eq. (4.1). As we will show, a typical choice is
ηT ≍ n

1
1+α . In this case, the assumption in Eq. (4.1) becomes m ≳ (ηT )3n− 2α

1+α + η2T 2, which is
milder than the assumption m ≳ (ηT )3 in [51]. This improvement is achieved by a better estimation
of the smallest eigenvalue of a Hessian matrix. Indeed, the smallest eigenvalue at αWt+(1−α)W

(i)
t

is lower bounded by − 1√
m
(∥Wt − W

(i)
t ∥2 + 1) (up to a constant factor), where α ∈ (0, 1) and

{W(i)
t } is the SGD sequence on S(i). The analysis [51] uses ∥Wt −W

(i)
t ∥2 = O(

√
ηt) to control

the smallest eigenvalue. Instead, we show ∥Wt −W
(i)
t ∥2 = O(n−1(ηt)

3
2 ) (Lemma B.1).
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A key step to relax the overparameterization is to build a bound on E[∥Wt − W∗
1

ηT

∥22]. The

existing analysis shows that ∥Wt − W0∥22 = O(ηt) [51], which grows to infinity as we run
more and more iterations. In the following lemma to be proved in Section B.1, we improve it to
E[∥Wt −W∗

1
ηT

∥22] = O(η
2T
n

∑T−1
j=0 E[LS(wj)] + ∥W∗

1
ηT

−W0∥22). In particular, if ηT = O(
√
n)

and ∥W∗
1

ηT

−W0∥22 = O(1), this bound becomes E[∥Wt −W∗
1

ηT

∥22] = O(1). This explains why

we relax the overparameterization assumption from m ≳ (ηT )5 in [51] to m ≳ (ηT )3. Furthermore,
the bound involves

∑T−1
j=0 E[LS(Wj)] which would improve if the training errors are small, which

is critical to get fast rates in a low noise case. Our basic idea to prove Lemma 3 is to first control
E[∥Wt −W∗

1
ηT

∥22] in terms of training errors. Our novelty is to replace these training errors with
testing errors by using Theorem 2, which allows us to use Eq. (4.2) to remove some terms. The proof
is given in Section B.2. For simplicity we assume ∥W∗

1
ηT

−W0∥2 ≥ 1.

Lemma 3. Let Assumptions 1, 2 hold. Let {Wt} be produced by Eq. (3.1). If η ≤ 1/(2ρ), Eq. (4.1)
holds,

E[L(Ws)] ≥ L(W∗
1

ηT
), ∀s ∈ {0, 1, . . . , T − 1} (4.2)

and
m ≥ 4b2(ηT )2

(√
2ηTC0 + E[∥W∗

1
ηT

−W0∥2]
)2
, (4.3)

then for any t ∈ [T ] we have

E[∥Wt −W∗
1

ηT
∥22] ≤ RT :=

(8e2ρ2η3T 2

n2
+

8eη2Tρ

n

) T−1∑
j=0

E[LS(Wj)] + 2∥W∗
1

ηT
−W0∥22.

Remark 2. We impose the assumption E[L(Ws)] ≥ L(W∗
1

ηT

), ∀s ∈ {0, 1, . . . , T − 1}. If this
assumption does not hold, then Assumption 3 implies further

min
s∈{0,1,...,T−1}

E[L(Ws)]− E[L(W∗)] ≤ L(W∗
1

ηT
)− E[L(W∗)] = O((ηT )−α).

This shows the violation of Eq. (4.2) already implies a model Wt, t ∈ [T ] with a very small excess
risk, and therefore the assumption Eq. (4.2) does not essentially affect our results.

It should be mentioned that if ∥W∗∥2 = O(1) we can derive similar results by replacing W∗
1

ηT

in

the analysis with W∗ (note W∗ already satisfies the inequality L(W∗) − L(W∗) + 1
ηT ∥W

∗ −
W0∥22 = O(1/(ηT )) and therefore can play the role of W∗

1
ηT

). In this case, we no longer require the

assumption (4.2). Indeed, Eq. (4.2) always holds with W∗
1

ηT

replaced by W∗ due to the inequality

L(Ws) ≥ L(W∗). It should be mentioned that the bound in Lemma 3 is stated in expectation.
Therefore, we cannot directly combine this bound and the uniform convergence analysis to derive
generalization bounds.

Now we present the optimization error bounds for GD. Recall RT is defined in Lemma 3. The proof
is given in Section B.2.

Theorem 4 (Optimization Error). Let Assumptions 1, 2 hold. Let {Wt} be produced by Eq. (3.1)
with η ≤ 1/(2ρ). If Eq. (4.1), (4.2) and (4.3) hold, then

E[LS(WT )] ≤ L(W∗
1

ηT
) +

1

ηT
∥W∗

1
ηT

−W0∥22 +
bRT√
m

(
∥W∗

1
ηT

−W0∥2 +
√
2ηTC0

)
.

Remark 3. The following optimization error bounds were established in [51]

LS(WT ) ≤ min
W

{
LS(W) +

∥W −W0∥22
ηT

+
b∥W −W0∥32√

m

}
+

bC0(ηT )
3
2

√
m

. (4.4)

A key difference between the above bound and Theorem 4 is that Eq. (4.4) involves a term (ηT )
3
2√

m
,

while Theorem 4 involves a term O
(√

ηTRT√
m

)
. If RT = o(ηT ), then the optimization error bounds
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in Theorem 4 would be tighter than Eq. (4.4). Indeed, the analysis in [51] requires m ≳ (ηT )5 to get
the following optimization error bounds

LS(WT ) ≤ min
W

{
LS(W) +

∥W −W0∥22
ηT

+
b∥W −W0∥32√

m

}
+O

( 1

ηT

)
.

As a comparison, if RT = O(1), Theorem 4 requires the assumption m ≳ (ηT )3 to derive

E[LS(WT )] ≤ L(W∗
1

ηT
)+

∥W∗
1

ηT

−W0∥22
ηT

+O
(√ηT√

m

)
= L(W∗

1
ηT

)+
∥W∗

1
ηT

−W0∥22
ηT

+O
( 1

ηT

)
.

We combine the above discussions on generalization and optimization error bounds together to derive
the following excess risk bounds. Note the right-hand side of Eq. (4.1), (4.3) and Eq. (4.5) are of
the order of (ηT )3 if ηT = O(n) and ∥W∗

1
ηT

−W0∥2 = O(
√
ηT ). The proofs of Theorem 5 and

Corollary 6 are given in Section B.3.
Theorem 5 (Excess Population Risk). Let Assumptions 1, 2 hold. Let {Wt} be produced by Eq.
(3.1) with η ≤ 1/(2ρ). If ηT = O(n), Eq. (4.1), (4.2), (4.3) hold and

m ≥ 4
(8e2ρ2η3T 2

n2
+

8eη2Tρ

n

)2(
bT

(
∥W∗

1
ηT

−W0∥2 +
√
2ηTC0

))2

, (4.5)

then

E[L(WT )]− L(W∗) = O
(ηTL(W∗)

n
+ Λ 1

ηT

)
,

where Λλ is defined in Assumption 3.

The bound in Theorem 5 was also obtained in [51] under the assumption m ≳ (ηT )5. As a direct
corollary, we can use Assumption 3 to show that GD can achieve excess risk bounds of the order
O(n− α

1+α ) in the general case, and bounds of the order O(n−α) in the case L(W∗) = 0 which is
due to the incorporation of empirical risks in the generalization bounds. The basic idea is to balance
the optimization and generalization via early-stopping [29, 39, 40, 58, 62, 63]. Similar bounds can
be derived by the analysis in [51] under Assumption 3.
Corollary 6. Let Assumption 3 hold and assumptions in Theorem 5 hold.

(a) If we choose ηT ≍ n
1

α+1 and m ≍ (ηT )3 ≍ n
3

α+1 , then E[L(WT )]− L(W∗) = O(n− α
1+α ).

(b) If L(W∗) = 0, choosing ηT ≍ n and m ≍ (ηT )3 ≍ n3 implies that E[L(WT )] = O(n−α).

Remark 4. Other than the stability analysis [51], there are some discussions on the stability analysis
for nonconvex functions that can be applied to SNNs [15, 26, 36, 68]. The discussions in [26] use
step sizes ηt = O(1/t) to get meaningful stability bounds, which, however, is not sufficient for a
good convergence of optimization errors. The discussions in [15, 36, 68] impose a PL condition, and
their error bounds depend on a condition number which can be large in practice. A recent paper [27]
studies SGD for one-hidden-layer ReLU network with L2 regularization from the NTK perspective
and derives the appealing minimax optimal rate under the assumption that m is sufficiently large
(e.g., m is at least larger than O(n8)). However, it is hard to derive a direct comparison since we
study one-hidden-layer network with a smooth activation function. Furthermore, our result holds if
η ≤ 1/(2ρ), which is independent of m and n and is outside of the NTK regime. As a comparison,
the analysis based on NTK [34] requires η ≤ 2/λmax(Θ), where Θ ∈ R(md)×(md) is an neural
tangent kernel and therefore the learning rate there is very small.

4.2 Stochastic Gradient Descent

As compared to GD, the analysis of SGD is more challenging since several properties of GD do not
hold for SGD. For example, the analysis in [51] relies critically on the monotonicity of the sequence
{LS(Wt)}, which does not hold for SGD. Furthermore, the introduced randomness of {it} increases
the variance of the iterates, which increases the difficulty of controlling the norm of iterates.

We first develop stability and generalization bounds of SGD. In particular, we are interested in
generalization bounds incorporating the training errors in the analysis [32, 35, 51]. This shows
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how good optimization would improve generalization, which is consistent with the analysis of
SGD in a convex setting [35]. Eq. (4.7) gives on-average model stability bounds, which imply
generalization bounds in Theorem 7. The proof of Theorem 7 is given in Section C.2. Without
loss of generality we assume 4TηC0 ≥ 1. Let R′

T = max{2
√
TηC0, ∥W∗

1
ηT

− W0∥2} and

b′ = C2
xBϕ′′

(
CxBϕ′ +

√
2C0

)
. Let S(i) be defined as in Definition 3.

Theorem 7 (Stability and Generalization). Let Assumptions 1, 2 hold. Let {Wt}t and {W(i)
t }t be

produced by SGD with η ≤ 1/(2ρ) on S and S(i), respectively. If

m ≥ 16η2T 2(b′R′
T )

2(1 + 2ηρ)2, (4.6)

then for any t ≤ T − 1 we have

1

n

n∑
i=1

E
[
∥Wt+1 −W

(i)
t+1∥22

]
≤ 8e2ρ(1 + t/n)η2

n

t∑
j=0

E[LS(Wj)]. (4.7)

Furthermore, we have the following generalization bounds

E[L(Wt)− LS(Wt)] ≤
4e2ρ2(1 + t/n)η2

n

t∑
j=0

E[LS(Wj)]

+ 4eρη
( (1 + t/n)E[LS(Wt)]

n

t∑
j=0

E[LS(Wj)]
) 1

2

.

We now consider the optimization error bounds of SGD for SNNs. In the following theorem, we give
a bound on the average of the optimization errors for the sequence of SGD iterates. Recall that R′

T is
defined above Theorem 7. Let ∆t := maxj=0,...,t E[∥Wj −W∗

1
ηT

∥22] for any t ∈ N.

Theorem 8 (Optimization Error). Let Assumptions 1, 2 hold. Let {Wt}t be produced by SGD with
η ≤ 1/(2ρ). If Eq. (4.6) and Eq. (4.2) hold, then

2η
T−1∑
t=0

E
[
LS(Wt)−LS(W

∗
1

ηT
)
]
≤ E[∥W0 −W∗

1
ηT

∥22] + 2ρη2
T−1∑
t=0

E[LS(Wt)] +
2Tηb′R′

T∆T√
m

.

Finally, we develop the excess risk bounds for SGD on SNNs. Note Eq. (4.8) can be satisfied by
choosing m ≍ (ηT )3 since R′

T = O(
√
ηT ), which matches the overparameterization requirement of

GD and improves the requirement m ≳ (ηT )5 in [51]. The proofs of Theorem 9 and Corollary 10
are given in Section C.3.
Theorem 9 (Excess Population Risk). Let Assumptions 1 and 2 hold. Let {Wt} be produced by
(3.2) and Eq (4.2) hold. If η ≤ 1/(2ρ),

m ≥ max
{
16η2T 2(b′R′

T )
2(1 + 2ηρ)2,

4
(
8b′Tρη2R′

T

)2(
1 +

4e2ηρT (1 + T/n)

n
+

4eT
1
2 (1 + T/n)

1
2

√
n

)2}
(4.8)

and T = O(n) then we have

1

T

T−1∑
t=0

E[L(Wt)− L(W∗)] = O
(
Λ 1

ηT
+ ηL(W∗)

)
.

Corollary 10. Let Assumption 3 hold and assumptions in Theorem 9 hold. We choose an appropriate
m ≍ (ηT )3.

(a) We can choose η ≍ T− α
1+α and T ≍ n to get 1

T

∑T−1
t=0 E[L(Wt)]− L(W∗) = O(n− α

1+α ).

(b) If L(W∗) = 0, we can choose T ≍ n and η ≍ 1 to get 1
T

∑T−1
t=0 E[L(Wt)] = O(n−α).
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Remark 5. By Corollary 10, SGD achieves excess risk bounds of the same order to that of GD in
Corollary 6. An advantage of SGD over GD is that it requires less computation. To illustrate this, let
us consider the general case for example. In this case, GD requires T ≍ n

1
1+α to achieve the error

bound O(n− α
1+α ). Since GD requires O(n) gradient computations per iteration and therefore the

total gradient computation complexity is O(n
2+α
1+α ). As a comparison, SGD requires O(n) gradient

computations and therefore saves the computation by a factor of O(n
1

1+α ). Note Corollary 6 considers
the risk for the last iterate, while Corollary 10 considers the average of risks for all iterates. The
underlying reason is that GD consistently decreases the training errors along the optimization process,
while SGD does not enjoy this property. Note that the overparameterization requirement becomes
m ≍ n

3
α+1 and m ≍ n3 in Part (a) and Part (b), respectively.

5 Main Idea of the Proof

5.1 Gradient Descent
In this subsection, we sketch our idea on the proof on gradient descent.

Generalization errors. The starting point of our proof is the following bound given in Lemma A.4

∥∥Wt+1−W
(i)
t+1

∥∥2
2
≲

(1 + p)
∥∥Wt −W

(i)
t

∥∥2
2

1−
η∥Wt−W

(i)
t

∥∥
2√

m

+

(
1 + 1/p

)
η2

n2

(
∥∇ℓ(Wt; zi)∥22+∥∇ℓ(W

(i)
t ; z′i)∥22

)
.

To apply the above inequality, we need to give a lower bound of 1 −
η∥Wt−W

(i)
t

∥∥
2√

m
. The analysis

in [51] uses the crude bound ∥Wt −W
(i)
t

∥∥
2
≤ ∥Wt −W0

∥∥
2
+ ∥W0 −W

(i)
t

∥∥
2
≲

√
ηt, which

does not use the fact that Wt+1 and W
(i)
t+1 are produced by SGD on neighboring datasets. By the

generation of Wt+1 and W
(i)
t+1, we show that

∥∥Wt −W
(i)
t

∥∥
2
= O((ηt)

3
2 /n) (Lemma B.1). This

explains why we get a relaxed overparameterization in the stability analysis as compared to [51].

Optimization errors. The starting point of our proof is the following bound given in Eq. (B.8)

1

t

t−1∑
s=0

E[LS(Ws)] +
E[∥W∗

1
ηT

−Wt∥22]

ηt
≤ E[LS(W

∗
1

ηT
)]+

E[∥W∗
1

ηT

−W0∥22]

ηt
+

b√
mt

t−1∑
s=0

(
1 ∨ E[∥W∗

1
ηT

−Ws∥32]
)
. (5.1)

The analysis in [51] controls ∥W∗
1

ηT

−Ws∥32 as follows

∥W∗
1

ηT
−Ws∥32 ≲ ∥W∗

1
ηT

−W0∥32 + ∥W0 −Ws∥32 ≲ ∥W∗
1

ηT
−W0∥32 + (ηs)

3
2 .

As a comparison, we use ∥Ws −W0∥2 = O(
√
ηs) in Eq. (5.1) and show that

E[∥W∗
1

ηT
−Wt∥2

2]

ηt can
be bounded from above by

L(W∗
1

ηT
)− 1

t

t−1∑
s=0

E[LS(Ws)] +
E[∥W∗

1
ηT

−W0∥22]

ηt
+

b
√
ηt√
mt

t−1∑
s=0

(
1 ∨ E[∥W∗

1
ηT

−Ws∥22]
)

≤ L(W∗
1

ηT
)− 1

t

t−1∑
s=0

E[LS(Ws)] +
E[∥W∗

1
ηT

−W0∥22]

ηt
+

1

2ηt
max
s∈[t]

(
1 ∨ E[∥W∗

1
ηT

−Ws∥22]
)
,

where we have used the overparameterization m ≳ (ηT )3. It then follows that

E[∥W∗
1

ηT
−Wt∥22] ≲ (ηt)

(
E[L(W∗

1
ηT

)]− 1

t

t−1∑
s=0

E[LS(Ws)]
)
+ E[∥W∗

1
ηT

−W0∥22].
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Furthermore, we can apply stability analysis to relate E[LS(Ws)] to E[L(Ws)], and get (Lemma 3)

E[∥Wt −W∗
1

ηT
∥22] ≲

η2T

n

T−1∑
j=0

E[LS(wj)] + ∥W∗
1

ηT
−W0∥22,

which is sharper than the bound ∥W∗
1

ηT

−Wt∥2 = O(
√
ηt) in [51]. This explains why we get a

relaxed overparameterization in the optimization error analysis as compared to [51].

5.2 Stochastic Gradient Descent

Our starting point is to prove ∥Wt − W0∥ = O(
√
ηT ) for t ∈ [T ]. This was shown for GD

in [51]. However, the analysis there relies heavily on the following inequality LS(Wj+1) ≤
LS(Wj) − η∥∇LS(Wj)∥2

2

2 , which does not hold for SGD. We use the induction strategy to show
∥Wt −W0∥ = O(

√
ηT ). If ∥Wt −W0∥ = O(

√
ηT ), Lemma A.1 implies λmin(∇2ℓ(Wt; z)) ≳

−
√
ηT√
m
. If m ≳ (ηT )3 we can use the update strategy of SGD and the induction assumption to show

∥Wt+1 −W0∥ = O(
√
ηT ). The bound ∥Wt −W0∥ = O(

√
ηT ) is a crude estimate of the norm

of iterates. To get our results, we show the following sharper bound on the norm of iterates by
considering bounds in expectation (Lemma C.2)

E[∥Wt −W∗
1

ηT
∥22] ≲ ∥W0 −W∗

1
ηT

∥22 + η2
(
1 +

η(t+ t2/n)

n
+

√
t
√

1 + t/n√
n

) t∑
j=0

E[LS(Wj)].

(5.2)
To show this, we use E[∥Wt+1−W∗

1
ηT

∥22] ≤ E[∥Wt−W∗
1

ηT

∥22]+η2E[LS(Wt)]+ηE
[
LS(W

∗
1

ηT

)−

LS(Wt)
]
+ η

√
ηT√
m

E[∥W∗
1

ηT

−Wt∥22] (Eq. (C.5), up to a constant factor). We take a summation of

this inequality and use m ≳ (ηT )3 to get

E[∥Wt+1−W∗
1

ηT
∥22] ≤ η2

t∑
j=0

E[LS(Wj)]+η

t∑
j=0

E
[
LS(W

∗
1

ηT
)−LS(Wj)

]
+
1

2
max
j∈[t]

E[∥W∗
1

ηT
−Wj∥22],

from which we get Eq. (5.2). The bound in Eq. (5.2) requires to estimate
∑t

j=0 E[LS(Wj)]. Our
next step is then to control

∑t
j=0 E[LS(Wj)] as follows (Lemma C.3)

T−1∑
t=0

E[LS(Wt)] ≲ TL(W∗
1

ηT
) +

(1
η
+

T
√
ηT√
m

)
∥W0 −W∗

1
ηT

∥22.

6 Conclusion
In this paper, we present stability and generalization analysis of both GD and SGD to train neural
networks. Under a regularity assumption, we show both GD and SGD can achieve excess risk
bounds of the order O(n− α

α+1 ), which further improve to the order O(n−α) under a low noise
condition. As compared to the existing stability analysis [51], we achieve our bounds under a relaxed
overparameterization assumption and extend the existing analysis on GD to SGD. Our improvement
is achieved by developing sharper bounds on norm of the GD/SGD iterate sequences.

There remain several interesting questions for further discussion. The first question is whether the
overparamterization requirement m ≳ (ηT )3 can be further improved, and whether the overparame-
terization requirement can be independent of T . Second, our analysis applies to SNNs with a smooth
activation function. It would be very interesting to extend our analysis to SNNs with the ReLU
activation function. A key challenge in this direction is to control the smallest eigenvalue of the
associated Hessian matrix [51]. Third, our bounds are stated in expectation. It would be useful to
develop high-probability bounds to understand the robustness of the algorithm. Finally, our analysis
requires early-stopping in a low noise-setting. It would be very interesting to develop risk bounds in
a low-noise setting without early-stopping [54].
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IIS-2110546 and DMS-2110836).
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