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Abstract

Recently there is a large amount of work devoted to the study of Markov chain
stochastic gradient methods (MC-SGMs) which mainly focus on their convergence
analysis for solving minimization problems. In this paper, we provide a compre-
hensive generalization analysis of MC-SGMs for both minimization and minimax
problems through the lens of algorithmic stability in the framework of statistical
learning theory. For empirical risk minimization (ERM) problems, we establish the
optimal excess population risk bounds for both smooth and non-smooth cases by
introducing on-average argument stability. For minimax problems, we develop a
quantitative connection between on-average argument stability and generalization
error which extends the existing results for uniform stability [38]. We further de-
velop the first nearly optimal convergence rates for convex-concave problems both
in expectation and with high probability, which, combined with our stability results,
show that the optimal generalization bounds can be attained for both smooth and
non-smooth cases. To the best of our knowledge, this is the first generalization
analysis of SGMs when the gradients are sampled from a Markov process. I]

1 Introduction

Stochastic gradient methods (SGMs) have been the workhorse behind the success of many machine
learning (ML) algorithms due to their simplicity and high efficiency. As opposed to the deterministic
(full) gradient methods, SGMs only require a small batch of random example(s) to update the model
parameters at each iteration, making them amenable for solving large-scale problems.

There are mainly two notable types of SGMs which are inherent for different learning problems. In
particular, stochastic gradient descent (SGD) is widely used for solving the empirical risk min-
imization (ERM) problem and the theoretical convergence has been extensively studied [e.g.,
SLIL7L (2141371421 1431153, (5711731 180) |821186]. Concomitantly, the minimax problems instantiate
many ML problems such as Generative Adversarial Networks (GANSs) [2/|30], AUC maximization
[29/145]181], and algorithmic fairness [16}141,|52/|51]. Stochastic gradient descent ascent (SGDA) is
an off-the-shelf algorithm for solving minimax problems. The convergence of SGDA and its variants
is also widely studied in the literature [e.g.,1441149}154}|56].

On the other important front, the ultimate goal of learning is to achieve good generalization from the
training data to the unknown test data. Along this line, generalization analysis of SGMs has attracted
considerable attention using the algorithmic stability approach [11}24]. In particular, stability and
generalization of SGD have been studied using the uniform argument stability |6} 7} 13}[32,|36]
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and on-average stability [39//40]. In [25![38/|85]], different stability and generalization measures are
investigated for SGDA under both convex-concave and non-convex-non-concave settings. A critical
assumption in most of the above studies about SGD and SGDA is the i.i.d. sampling scheme where
the randomly sampled mini-batch or datum at each iteration is i.i.d. drawn from the given training
data, guaranteeing that the stochastic gradient is an unbiased estimator of the true gradient.

Markov chain naturally appears in many important problems, such as decentralized consensus
optimization, which finds applications in various areas including wireless sensor networks, smart
grid implementations and distributed statistical learning [4//14}123]/48,|50} 58!1611 163] as well as
pairwise learning |78] which instantiates AUC maximization [|1,129}/461|81}|87|] and metric learning
[35117511761|79]. A common example is a distributed system in which each node stores a subset of
the whole data, and one aims to train a global model based on these data. We let a central node
that stores all model parameters walk randomly over the system, in which case the samples are
accessed according to a Markov chain. Several works studied this kind of model [33}|34/|48!50!/58].
Markov chains also arise extensively in thermodynamics, statistical mechanics dynamic systems
and so on [59}|67]. In addition, it was observed in [69}|78]] that SGD with Markov chain sampling
(MC-SGD) performs more efficiently than SGD with the common i.i.d. sampling scheme in various
cases. Hence, studying the performance of MC-SGMs has certain theoretical and application values.
The key difference from the i.i.d. sampling scheme is that the stochastic gradient at each iteration is
sampled on the trajectory of a Markov chain, in which the stochastic gradient estimators are neither
unbiased nor independent. Recent studies [4,|18}122}133/|34}|58}|68] overcame this technical hurdle
and provided the convergence rates of MC-SGD. However, to the best of our knowledge, there is no
work on the generalization performance of SGMs with Markov sampling.

Main contribution: In this paper, we provide a comprehensive study of the stability and generaliza-
tion for both SGD and SGDA with Markov sampling in the framework of statistical learning theory
[721110]. Our main contribution can be summarized as follows.

e We develop stability and generalization results of MC-SGD for solving ERM problems in both
smooth and non-smooth cases. In particular, we show that MC-SGD can achieve competitive stability
results as SGD with i.i.d. sampling scheme. By trading off the generalization and optimization
errors appropriately, we establish the first-ever-known excess generalization bound O(1/+/n) for
MC-SGD where n is the size of training data. The key idea for handling Markov sampling structure
of MC-SGD is to use the concept of on-average argument stability.

e We first establish the connection between on-average argument stability and generalization for
minimax optimization algorithms, which extends the existing work on uniform argument stability
[38]. We further develop stability bounds of SGDA with Markov sampling (MC-SGDA) for both
smooth and non-smooth cases and obtain the nearly optimal convergence rates O(1/+/T') for convex-
concave problems in the form of both expectation and high probability, where 7' is the number of
iterations, from which its optimal population risk bound is established. Specifically, we consider
several measures of generalization performance and show that the optimal population risk bounds
O(1/+/n) can be derived even in the non-smooth case.

o To the best of our knowledge, this is the first-ever-known work on stability and generalization of
SGD and SGDA under the Markov chain setting. Our results show that, despite the stochastic gradient
estimator is biased and dependent across iterations due to the Markov sampling scheme, the general-
ization performance of MC-SGD and MC-SGDA enjoys the same optimal excess generalization rates
as the i.i.d. sampling setting.

Organization of the paper: We discuss the related work in Subsection and formulate the
problem in Section Sectionpresents the stability and generalization results of MC-SGD for both
smooth and non-smooth losses. Section develops the first nearly optimal convergence rates for
convex-concave problems of MC-SGDA, and show that the optimal risk bounds can be derived in
both smooth and non-smooth cases. Section concludes the paper.

1.1 Related Work
In this subsection, we review some further works which are closely related to our paper.

Algorithmic Stability. Algorithmic stability characterizes the sensitivity of a learning algorithm
when the inputs to the algorithm are slightly perturbed. The framework of algorithmic stability
was established in a seminal paper [11] for the exact minimizer of the ERM problem, where the
uniform stability was established for strongly convex objective functions. Recent work [12(27}|28]



derived sharper generalization bounds for uniformly stable algorithms with high probability. Several
other stability measures were later developed for studying the generalization of different learning
algorithms including the hypothesis stability [11], on-average stability [64], argument stability [47]
and total variation stability [8}|71].

Stability and Generalization Analysis of SGMs. |32] established generalization error bounds of
order O(1/+/n) in expectation for SGD for convex and smooth problems using uniform stability.
The on-average variance of stochastic gradients was used to refine the generalization analysis of SGD
for non-convex problems [88]. The results were improved and refined by [36] using a data-dependent
notion of algorithmic stability for SGD. [39] introduced on-average argument stability and studied the
stability and generalization of SGD for a general class of non-smooth convex losses, i.e., the gradient
of the loss function is a-Holder continuous. They also established fast generalization bounds O(1/n)
for smooth convex losses in a low-noise setting. The same authors also extended the analysis to the
non-convex loss functions in [40]. Meanwhile, [6] addressed uniform argument stability of SGD with
Lipschitz-continuous convex losses. Optimal generalization bounds were also developed for SGD
in different settings [6/|7[261|74}|77]. Stability and generalization for SGMs have been studied for
pairwise learning [65}|78] where the loss involves a pair of examples. In particular, [78] introduced a
simple MC-SGD algorithm for pairwise learning where pairs of examples form a special Markov
chain {¢; = (z;,,2i,_,) : t € N}. Here, z;, and z;,_, are i.i.d. sampled from the training data of
size n at time ¢ and ¢t — 1, respectively. The uniform argument stability and generalization have been
established (see more discussion on the difference between our work and [78] in Remark 8 below).

For minimax problems, [85] studied the weak generalization and strong generalization bounds in the
strongly-convex-concave setting. [25] established the optimal generalization bounds for proximal
point method, while gradient descent ascent (GDA) is not guaranteed to have a vanishing excess
risk in convex-concave case. [38] proved that SGDA can achieve the optimal excess risk bounds
of order O(1/+/n) for both smooth and non-smooth problems in the convex-concave setting. They
also extended their work to the nonconvex-nonconcave problems. However, all the above studies the
stability and generalization of SGD and SGDA under the assumption of the i.i.d. sampling scheme.

Convergence Analysis of MC-SGMs. The convergence analysis of SGD and its variants when the
gradients are sampled from a Markov chain have been studied in different settings [3}/18,|19/22}
34,158.166L1691|70]. Specifically, [341[58] studied the Markov subgradient incremental methods in a
distributed system under time homogeneous and time non-homogeneous settings, respectively. [22]
studied the convergence of stochastic mirror descent under the ergodic assumption. [69] established
the convergence rate O(1/7"~9) with some q € (1/2,1) for convex problems. They also developed
the convergence result for non-convex problems. In addition, decentralized SGD methods with the
gradients sampled from a non-reversible Markov chain have been studied in [68]. [18] considered
an accelerated ergodic Markov chain SGD for both convex and non-convex problems. [19] further
studied the convergence rates without the bounded gradient assumption. All these studies focused on
the convergence analysis of MC-SGD for solving the ERM problems.

2 Problem Setting and Target of Analysis

In this section, we introduce the SGD for ERM and SGDA for solving minimax problems with
Markov Chain, and describe the target of generalization analysis for both optimization algorithms.

Target of Generalization Analysis. Let JV be a parameter space in R? and D be a population
distribution defined on a sample space Z. Let f : W x Z — [0,00) be a loss function. In the
standard framework of Statistical Learning Theory (SLT) [10!/72], one aims to minimize the expected
population risk, i.e., F'(w) := E,[f(w; z)], where the model parameter w belongs to WV, and the
expectation is taken with respect to (w.r.t.) z according to D. However, the population distribution is
often unknown. Instead, we have access to a training dataset S = {z; € Z}7 ; with size n, where z;
is independently drawn from D. Then consider the following ERM problem

vrvréi%/lv {Fs(W) = il_zlf(w,zl)} (D

For a randomized algorithm A to solve the above problem, let A(.S) be the output of algorithm A
based on the dataset .S. Then its statistical generalization performance (prediction ability) is measured
by its excess population risk F(A(S)) — F(w*), i.e., the discrepancy between the expected risks of
the model .A(.S) and the best model w* € V. We are interested in studying the excess population risk.



Let Eg 4[] denote the expectation w.r.t. both the randomness of data S and the internal randomness
of A. To analyze the excess population error, we use the following error decomposition

Es a[F(A(S))] = F(w") = Es a[F(A(S)) — Fs(A(S))] + Es.a[Fs(A(S)) — Fs(w")]. (2

The first term is called the generalization error of the algorithm .4 measuring the difference between
the expected risk and empirical one, for which we will handle using stability analysis as shown soon.
The second term is the optimization error, which is induced by running the randomized algorithm .4
to minimize the empirical objective. It can be estimated by tools from optimization theory.

As discussed in the introduction, many machine learning problems can be formulated as min-
imax problems including adversarial learning [30]], reinforcement learning [15 |20] and AUC
maximization |29} 46| |81/ [87]. We are also interested in solving this type of problem. Let
W and V be parameter spaces in R?. Let D be a population distribution defined on a sample
space Z, and f : W x V x Z — [0,00). We consider the minimax optimization problems:
minyew maxyey {F(w,v) := E, p[f(w,v;2)]}. In practice, we only have a training dataset

S ={z1,..., 2z, } independently drawn from D and hence the minimax problem is reduced to the
following empirical version:
1 n
i F == c2) ) 3
g s AFs(viv) = 03 fwvi )} ®

Since minimax problems involve the primal variable and dual variable, we have different measures
of generalization [38|85]. For a randomized algorithm A(.S) solving the problem (3), we denote
the output of A as A(S) = (Aw(S5), Ay (S)) for notation simplicity. Let E[-] denote the expectation
w.r.t. the randomness of both A and S. We are particularly interested in the following two metrics.

Definition 1 (Weak Primal-Dual (PD) Risk). The weak Primal-Dual population risk of A(S),
denoted by A" (Aw, Ay), is defined as maxyecy E[F(Aw(S),v)] —minwew E[F(w, Ay (S))].
The corresponding (expected) weak PD empirical risk, denoted by AY (Aw,Ay), is de-

emp

fined by maxyey E[Fs(Aw(S),v)] — minwew E[Fs(w, Ay (S))]. We refer to A (A, Ay) —
Aghp(Aw, Ay ) as the weak PD generalization error of the model (Aw (S), Av(S)).

Definition 2 (Primal Risk). The primal population and empirical risks of A(S) are respectively
defined by R(Aw(S)) = maxyey F(Aw(S),v), and Rs(Aw(S)) = maxyey Fs(Aw(S),v). We
refer to R(Aw(S)) — Rs(Aw(S)) as the primal generalization error of the model A, (S), and
R(Aw(S)) — mingey R(w) as the excess primal population risk.

SGD and SGDA with Markov Sampling. One often considers SGD to solve the ERM problem .
Specifically, let W C R? be convex, Projy,,(-) denote the projection to W, and 0 f(w; z) denote a
subgradient of f(w; z) at w. Let wy € W be an initial point, and {7; } is a stepsize sequence. For
any ¢ € N, the update rule of SGD is given by

wi = Projy,, (wi—1 — n:0f (w15 23,)), “4)

where {i;} is generated from [n] = {1,2,...,n} with some sampling scheme. A typically sampling
scheme is the uniform i.i.d. sampling, i.e., i; is drawn randomly from [n] according to a uniform
distribution with/without replacement.

In this paper, we are particularly interested in the case when é; € [n] is drawn from a Markov Chain
which is widely used in practice [3] 4] 18}122]|34}166!169/[70]. Let P be an n X n-matrix with
real-valued entries. We say a Markov chain { X} } with finite state [n] and transition matrix P is
time-homogeneous if, for k € N, i,j € [n], and i1, ...,ix_1 € [n], there holds Pr(X 1 = j|X; =
i1,..., Xy = 1) = Pr(Xgq1 = j| Xy = ¢) = [P]; ;. Likewise, the SGDA algorithm with Markov
sampling scheme is defined as follows. Specifically, let Oy, f and Oy, f denote the subgradients of f
w.r.t. the arguments w and v, respectively. We initialize (wo, vg) € W x V, forany ¢ € N, let {i;}
is drawn from [n] according to a Markov Chain. The update rule of SGDA is given by

{Wt = Projyy, (Wi—1 — 00w f(Wi—1,Vi—1; 2, )
vi = Projy, (vic1 + mOy f(We—1, vi—13 23,)).

For brevity, we refer to the above algorithms as Markov chain-SGD (MC-SGD) and Markov chain-
SGDA (SGDA), respectively. There are two types of randomness in MC-SGD/MC-SGDA. The first
randomness is due to training dataset S which is i.i.d. from the population distribution D. The other

randomness arises from the internal randomness of the MC-SGD/MC-SGDA algorithm, i.e., the
randomness of the indices {i; }, which is a Markov chain.

(&)



Remark 1. Convergence analysis mainly considers the empirical optimization gap, i.e., the dis-
crepancy between Fs(A(S)) and Fg(w™*). Here, we are mainly interested in the generalization
error which measures the prediction ability of the trained model on the test (future) data. As such,
the purpose of this paper is to provide a comprehensive generalization analysis of MC-SGD and
MC-SGDA in the framework of statistical learning theory. Specifically, given a finite training data .S,
let A(S) be the output of the MC-SGD for solving the ERM problem (1). Our target is to analyze
the excess population risk Eg 4[F(A(S))] — F(w*). Let A(S) = (Aw(S), Av(S)) be the output
of MC-SGDA for solving the empirical minimax problem , our aim is to analyze the weak PD
population risk A" (Aw, Ay ) and the excess primal population risk R(Aw(S)) — miny ey R(w).
In both cases, the generalization analysis will be conducted using the algorithmic stability [11,(32].
As we show soon below, the final rates are obtained through trade-offing the optimization error
(convergence rate) and the generalization error (stability results).

Properties of Markov Chain. Denote the probability distribution of X}, as the non-negative row
vector 7% = (7*(1), 7*(2),...,7%(n)), i.e., Pr(Xy = j) = 7" (j). Further, we have Y, 7% (i) =
1. For the time-homogeneous Markov chain, it holds 7% = 7#*~'P = ... = 71 P¥=1 forall k € N.
Here, 7! is an initial distribution and P* denotes the k-th power of P. A Markov chain is irreducible
if, for any 4, j € [n], there exists k such that [P¥]; ; > 0. That is, the Markov process can go from
any state to any other state. State i € [n] is said to have a period 7 if [P¥]; ; = 0 whenever k is not a
multiple of 7 and 7 is the greatest integer with this property. If 7 = 1 for every state ¢ € [n], then
we say the Markov chain is aperiodic. We say a Markov chain with stationary distribution IT* is
reversible if IT*(¢)[P]; ; = II*(j)[P];, forall ¢, j € [n].

We need the following assumption for studying optimization error of MC-SGMs.

Assumption 1. Assume the Markov chain {4, } with finite state [n] is time-homogeneous, irreducible
and aperiodic. It starts from an initial distribution 7!, and has transition matrix P and stationary
distribution IT* with IT*(i) = L for any i € [n], i.e., limy_ 0o P¥ = 11,1, where 1,, € R™ is the

vector with each entry being 1 and 1,} denotes its transpose.

Remark 2. Our assumptions on Markov chains listed above are standard in the literature [[18//341|50}
69, 168!178]. For instance, Markov chain-type SGD was proposed for pairwise learning which can
apply to various learning task such as AUC maximization and bipartite ranking [1|83/[87./29}/46] and
metric learning [35}|75(|76}/79]. This pairwise learning algorithm forms pairs of examples following
a special Markov chain {&; = (z;,,2;,_,) : t € N} where z;, and z;,_, are i.i.d. sampled from the
training data of size n at time ¢ and ¢ — 1, respectively and, at time ¢, the model parameter is updated
using gradient descent based on &;. As mentioned in Remark 3 of [78]], {&; : ¢ € N} is a Markov
Chain satisfying all of our assumptions. Another notable example is the decentralized consensus
optimization in a multi-agent network, where the samples are accessed according to a Markov chain
and the number of states of the Markov chain equals the number of nodes in the network, which is
finite. One always considers the same transition matrix P for each node and assumes the Markov
chain is irreducible and aperiodic [50}/84].

3 Results for Markov Chain SGD

In this section, we present the stability and generalization results of MC-SGD. Our analysis requires
the following definition and assumptions. Let G, L > 0 and || - |2 denote the Euclidean norm.

Definition 3. We say f is convex w.r.t. the first argument if, for any z € Z and w, w’ € W, there
holds f(w;z) = f(w';z) + (0f(W';2), w — w').

Assumption 2. Assume f is G-Lipschitz continuous, i.e., for any z € Z and w, w’ € W, there
holds | f(w; z) — f(w'; 2)| < Gllw — w'[|2.

Assumption 3. Assume f is L-smooth, i.e., for any z € Z and w, w’ € W, there holds f(w;z) —
fw'sz) < (Of (W' 2),w —w') + §lw — w'||3.

3.1 Stability and Generalization of MC-SGD

Let w* = argminweyy F(w) be the best model in W and Wy = 25;1 njw;/ 25;1 n; be the
output of MC-SGD with T iterations. We will use algorithmic stability to study the generalization
errors, which measures the sensitivity of the output model of an algorithm. Below we give the
definition of on-average argument stability [39].



Definition 4. (On-average argument stability) Let S = {z1,..., 2z, } and S = {Z1,...,2n} be drawn
independently from D. For any i € [n], define S — {z1,...,2i-1, Zi, Zit1,- - -, Zn} as the set
formed from S by replacing the i-th element with Z;. We say a randomized algorithm A4 is on-average
e-argument-stable if Eg 5 , [+ Y21, [LA(S) — A(SW)]2] <e.

To obtain on-average argument stability bounds of MC-SGD, our idea is to first write the stability as
a deterministic function according to whether the different data point is selected, and then take the
expectation w.r.t. the randomness of the algorithm. The detailed proofs are given in Appendix[B.T]

Theorem 1 (Stability bounds). Suppose f is convex and Assumptionholds. Let W = R< and let
A be MC-SGD with T iterations.

(a) (Smooth case) Suppose Assumption holds and nj < 2/L. Then A is on-average e-argument-

stable with e < % Z};l nj-

(b) (Non-smooth case) A is on-average e-argument-stable with € < 2G4/ Z]-Tzl 77]2 + % ?:1 ;-

Remark 3. Without any assumption on Markov chain, Theorem shows that argument stability
bounds of MC-SGD are in the order of O(Tn/n) and O(v/Tn+ Tn/n) with a constant stepsize 1 for
smooth and non-smooth losses, respectively. Both of them match the corresponding bounds for SGD
with i.i.d. sampling [6/32}|39!|74], which imply that stability of MC-SGD is at least not worse than
that of the i.i.d. sampling case. The technical novelty here is to observe that, in the sense of on-average
argument stability, we can use the calculation of E 4[Y /", I};,—q] to replace that of E 4 [I;,—; ], where
[l is the indicator function. This key step avoids the complicated calculations about [E 4[I};,—;].
Taking the uniform stability as example, we need to consider neighboring datasets differing by the ¢-th
data, and can get Ea[|w, — will2] = O(n 3 _; Ealli,=i]) = O(n 25, S5 [P/ ar! (K)),
which depends on the transition matrix P and is not easy to control. In contrast, with the on-average
stability we get stability bounds depending on )", I;;,—;, which is always 1, i.e., the on-average
stability allows us to ignore the effect of sampling process.

The following theorem presents generalization bounds for MC-SGD in both smooth and non-smooth
cases, which directly follows from Lemma and Theorem

Theorem 2 (Generalization error bounds). Suppose f is convex and Assumption holds. Let

W = R? and let A be MC-SGD with T iterations.

(a) (Smooth case) Suppose Assumption (3| holds and let n; = n < 2/L. Then there holds
Es.alF(Wr) - Fs(wr)] < 2570,

(b) (Non-smooth case) If n; = n, then there holds Es 4[F (Wr) — Fs(wr)] = O(VTn + %)

3.2 Excess Population Risk of MC-SGD

In this subsection, we present excess population risk bounds for MC-SGD in both smooth and
non-smooth cases. The proofs are given in Appendix We use the notation B = B if there exist
universal constants c1, ¢ca > 0 such that ¢; B < B < ¢3B. Let \;(P) be the i-th largest eigenvalue
of the transition matrix P and A(P) = (max{|\2(P)|, A (P)|} +1)/2 € [1/2,1). Let Kp be
the mixing time and C'p be a constant depending on P and its Jordan canonical form (detailed
expressions are given in Lemma. We assume sup, .z f(0; z) and ||w*||5 are bounded.

Assumption 4. Assume the Markov chain {i;} is reversible with P = PT.

Theorem 3 (Excess population risk for smooth losses). Suppose f is convex and Assumptions
and hold. Let W € R%. Let A be MC-SGD with T iterations, and {w }le be produced
by A with wyg = 0 and n; = n < 2/L. If we select T < n and n = (Tlog(T))~/2, then
Es,a[F(Wr)] — F(w*) = O(y/log(n)/(v/nlog(1/A(P)))).

Remark 4. A term Kp/(Mon? logi(n)) with My = min{y/nlog(n)CpnA(P)%X? 1} appears
in the excess risk bound of MC-SGD (see the proof of Theorem , which will be worse than

\/log(n)/+/n when Kp is large. Note Lemma A.1 implies that this term will disappear if P is
symmetric. Hence, we introduce Assumption 4 to get the nearly optimal rate.



Theorem 4 (Excess population risk for non-smooth losses). Suppose f is convex and Assumptions
hold. Let W € R% Let A be MC-SGD with T iterations, and {w ; }]T:1 be produced by A withn; =

1. If we select T < n? and n = T—3/4, then Es 4[F (Wr)] — F(w*) = O(1/(y/nlog(1/A(P)))).

Remark 5. To estimate the excess population risk, we need the convergence rates of MC-SGD
which can be found in Appendix[ 69] established a convergence rate of O(1/7'%) with some
q € (1/2,1) under the bounded parameter domain assumption. We remove this assumption by

showing ||w¢[|3 = (’)(Zfil i) and obtain the nearly optimal convergence rate O(1/v/T) with a

careful choice of n = 1/4/T log(T"). To understand the variation of the algorithm, we present a
confidence-based bound for optimization error, which matches the bound in expectation up to a
constant factor. We also provide the convergence analysis for non-convex problems in Appendix

Remark 6. Theorems andshow, after carefully selecting the iteration number 7" and stepsize
7, that the excess population risk rate O(1/4/n) is achieved in both smooth and non-smooth cases.
Note [61/321|39] show that the excess population risk rate O(1/+/n) is optimal for the i.i.d. sampling
case. Therefore, our results for MC-SGD are also optimal since the i.i.d. sampling is a special case
of Markov sampling. Our results imply that despite the gradients are biased and dependent across
iterations in Markov sampling, the generalization performance of SGD is competitive with the i.i.d.
sampling case. Theorems and also show the impact of the smoothness in achieving the optimal
rate. The rate for the non-smooth case in Theorem [4|looks slightly better than the smooth case
(Theorem[3) with a logarithmic term. However, the optimal rate can be achieved with a linear gradient
complexity (i.e., the total number of computing the gradient) for smooth losses, while Theorem
implies that gradient complexity O(n?) is required for non-smooth losses.

Remark 7. According to Theorems and we can further observe how the transition matrix
P affects the excess population risks. Indeed, the excess population risk rates are monotonically
increasing w.r.t A(P). Particularly, the closer A(P) is to 1/2, the better the rate is. Let us consider two
extreme examples. Suppose the Markov chain starts from the uniform distribution and has transition
matrix P = %1,115. MC-SGD degenerates to SGD with i.i.d. sampling in this case. The excess
population risk rate O(1/+/n) is obtained from Theorem with A(P) = 1/2. For a Markov chain
moving on a circle (i.e., if the chain is currently at state ¢, then it goes to states ¢ + 1, ¢ and ¢ — 1 with
equal probability), we can verify that A\(P) = O(1 — 1/n?), which implies a bad rate in this case.

Remark 8. [78] proposed a simple MC-SGD algorithm for pairwise learning associated with a
pairwise loss f(w, z, z). Specifically, at iteration ¢, the algorithm update the model parameter as
follows: w; = w1 — 3tV f(Wi—1, 24, 2;,_, ) Where z;, and z;, , are i.i.d. sampled from the
training data of size n at time ¢ and ¢ — 1, respectively. In Remark 3 of [7§], it was shown that
{& = (ir,i4—1) € [n] x [n]} does form a time-homogeneous, irreducible and aperiodic Markov
chain. There are two key differences between our work and [78]. Firstly, the work [78] used uniform
stability directly due to E 4[I;,—;] = 1/n, while this term is not easy to control in our general setting
(see Remark for details). To overcome this hurdle, we resort to the on-average stability and show
that MC-SGD achieves the optimal excess risk rate. Secondly, the proofs there critically rely on
the fact f(wy_1;2;,,2i, ,) = f(Wi_2;2;,,%;,_,) + O(n:—1) and the independence of w;_o W.I.t.
iy and ;1. However, these specially tailored techniques for pairwise learning do not apply to the
general Markov setting as we considered here.

4 Results for Markov Chain SGDA

In this section, we study the generalization analysis of MC-SGDA for minimax optimization problems.
Let (W, vr) be the output of MC-SGDA with T iterations, where

T T T T
wr = mw;/Y njand Vo =Y nv /> ;. (6)
i=1 j=1 =1 =

We first introduce some necessary definitions and assumptions.

Definition 5. Let p > O and g : W x V — R. We say g is p-strongly-convex-strongly-concave
(p-SC-SC) if, for any v € V, the function w — g(w, v) is p-strongly-convex and, for any w € W,
the function v — g(w, v) is p-strongly-concave. We say ¢ is convex-concave if g is 0-SC-SC.

The following two assumptions are standard [25]85]. Assumptionamounts to saying f is Lipschitz
continuous w.r.t. both w and v, while Assumption@considers smoothness conditions.



Assumption 5. Assume for all w € W,v € V and z € Z, Ha‘,‘,f(w,v;z)H2
G and ||0y f(w,v;2)||, < G.

Assumption 6. For any z, assume the function (w,v) — f(w,v;z) is L-smooth, i.e., the following
inequality holds forallw € W,ve Vandz € Z

Owf(W,v;2) — Ow f(W, v z
Duf(w,viz) — O f(W,V;2)
4.1 Stability and Generalization Measures

We use algorithmic stability to study the generalization of minimax learners. To this end, we first
introduce the stability for minimax optimization problems.

Definition 6 (Argument stability for minimax problems). Let S, S and S@ be defined as Deﬁnition
Let A be a randomized algorithm and € > 0. We say A is on-average e-argument-stable for minimax

problems if 371 | B[ Aw(S%) = Aw ()2 + [y (S) ~ Av(S)[|2] < e

The following theorem establishes a connection between stability and generalization. Part (a) shows
that on-average argument stability implies generalization measured by the weak PD risk, while Part
(b) shows that on-average argument stability guarantees a strong notion of generalization in terms of
the primal risk under a strong concavity assumption. Theoremwill be proved in Appendix

Theorem 5 (Generalization via argument stability). Let A be a randomized algorithm and € > 0.

(a) If A is on-average e-argument-stable and Assumpnonlholds then there holds A" (Ay,, Ay) —
DN (Aw, Ay) < Ge.
(b) If A is on-average e-argument-stable, the function v — F(w,v) is p-strongly-concave and

Assumptions @hold, then we have Eg 4 [R(Aw(S)) — Rs(Aw(S))] < (1+ L/p)Ge.
In the following theorem we develop stability bounds for MC-SGDA applied to convex-concave
problems. The proof is given in Sectionof the Appendix.

Theorem 6 (Stability bounds). Assume for all z, the function (w,v) — f(w,Vv; z) is convex-concave.
Let W =R% and Assumption hold, and let A be MC-SGDA with T iterations.

(a) (Smooth case) IfAssumptionlaholds and ET 1 17]2 < 1/(2L?), then A is on-average e-argument
stable with e < 4G(L YT 2) '/ 4 826 5T )
(b) (Non-smooth case) A is on-average e-argument stable with ¢ <2G /2 Z =115 2+ 4IG 23 1M+

Remark 9. For convex-concave and Lipschitz problems, the stability bound of the order (’)(n(f +
T/n)) was established for SGDA with a constant stepsize under the uniformly i.i.d. sampling
setting. Under a further smoothness assumption, the stability bound was improved to the order of
O(nT/n) [38]. Our stability bounds in Theorem E]match these results up to a constant factor and
extend them to the Markov sampling case.

Remark 10. Let {(wt ,vt )} be the SGDA sequence based on S, The existing stability anal-

ysis [38] builds a recursive relationship for E 4 [HWt - W )H2 + ||ve — vgl) ||§], which crucially
depends on the i.i.d. sampling property of i; € [n]. This strategy does not apply to MC-SGDA since
the conditional expectation over %, is in a much complex manner due to the Markov Chain sampling.
We bypass this difficulty by building a recursive relationship for ||w, — wii) 3+ [lve — v,gi) |2 in
terms of a sequence of random variables II;,_;. A key observation is that the effect of randomness
would disappear if we consider on-average argument stability since Z?:l Ij;,—qy = 1 forany ¢t € N.

We can combine the stability bounds in Theorem[6]and Theorem[5]to develop generalization bounds.
We first establish weak PD risk bounds in Theorem|7| and then move on to primal population risk
bounds in Theoreml 8] The proofs are given in Section|C.1of the Appendix.

Theorem 7 (Weak PD risk bounds). Suppose Assumptlon lholds Assume for all z, the function
(W, V) = f(w,V;2) is convex-concave. Let W = R* and {w;,v;}T_, be produced by MC-SGDA
Wlth nj = n. Let A be defined by Ay (S) = wr and Ay(S) = Vr for (Wr, V) in (6). Denote

gen =AY (WT,\_/'T) — Agfnp(WT,\_lT).



(a) (Smooth case) If Assumption @ holds and 25:1 < 1/(2L%), then €., <
T 1/2 2 T
AGH(E 32 mf) T B ST

i=1"

(b) (Non-smooth case) The weak PD risk satisfies €., < 2V/2G? ( erzl 77]2) bz + @ Z?:l 7.

Theorem 8 (Primal risk bounds). Suppose Assumption holds. Assume for all z, the function
(w,v) — f(w,v;z) is convex-concave, and the function v — F(w,v) is p-strongly-concave.
Let W = R? and let {w;,v; };*-le be produced by MC-SGDA with n; = 1. Let A be defined by
Aw(8) = wr and Ay (S) = v for (Wp,vr) in (6). Denote €0, := Eg 4[R(Wr) — Rs(Wr)].

(a) (Smooth case) If Assumption E] holds and Z};l n; < 1/(2L%), then b, < 4G*(1 +
1

T T
Lip (2 Xjm)* + 2250 ).
(b) (Non-smooth case) The primal population risk satisfies €., — < 20/2G%(1 +
T 1/2 T
L/p)((Zjzam)) ™+ % =i ms)-

4.2 Population Risks of MC-SGDA

Now we establish the population risk bounds for MC-SGDA. The following theorem establishes the
weak PD population risk of MC-SGDA for both smooth and non-smooth problems. Let Dy, and D,
be the diameters of / and V. The proof for Theorem[9]is provided in Appendix|C.3|

Theorem 9 (Weak PD population risk). Suppose Assumptions and hold. Assume for all z, the
function (w,v) — f(w,V;z) is convex-concave. Let {w;,v;};_, be produced by MC-SGDA with
n; = 1. Let A be defined by Av,(S) = wr and Ay (S) = vy for (Wr, V) in (6).

(a) (Smooth case) LetAssumptionEIhold. IfT =< nandn = (Tlog(T))"2, then A*(Wr,Vp) =
O(1og(n)/(v/nlog(1/A(P)))).
(b) (Non-smooth case) If we select T = n? and n < T’%, then we have AY(Wr,vry) =
O(1/(y/nlog(1/A(P)))).
Remark 11. The above excess population risk bounds are obtained through the trade-off between
the optimization errors (convergence analysis) and stability results of MC-SGDA. The convergence
rates O(1/ VT ) of MC-SGDA for minimax problems in both expectation and high probability are
provided in Theorem|C.3|and [C.4]in Appendix|C.2] With gradient complexity O(n), the minimax
optimal excess risk bound O(1/y/n) for SGDA with uniform sampling for smooth problems was
established in [38]. We show SGDA with Markov sampling can achieve the nearly optimal bound
with the same gradient complexity. For non-smooth problems, part (b) shows that the optimal excess
risk bound can be exactly achieved with the gradient complexity O(n?).

Finally, we establish the following bounds for excess primal population risk under a strong concavity
condition on v — F'(w, v), which measures the performance of the primal variable. The proof for

Theorem|[10[is provided in Appendix[C.3]

Theorem 10 (Excess primal population risk). Suppose Assumptions[1|[4][5|and[6| hold. Assume
Sor all z, the function (w,v) — f(w,V; z) is convex-concave. Assume v — F(w, V) is p-strongly-
concave. Let {w;, v, }szl be produced by MC-SGDA with 1; = 1. Let A be defined by Aw(S) =
wr and Ay(S) = Vr for (Wr,Vr) in (6). If we choose T < n,n < (Tlog(T))~/2 then
Es,a[R(Wr)] — minwew R(w) = O((L/p)+/log(n)/(v/nlog(1/A(P)))).

Remark 12. We show MC-SGDA attains population risk bounds of the order O(1/,/n) with a linear
gradient complexity O(n), which are minimax optimal up to a logarithmic factor. This implies that
considering sampling with a Markov chain does not weaken the learnability. Theorems[9]and[I0]also
show the effect of P on the population risk rates, i.e., the rates get better as A(P) decreases.

5 Conclusion

We develop the first-ever-known stability and generalization analysis of Markov chain stochastic
gradient methods for both minimization and minimax objectives. In particular, we establish the



optimal excess population bounds O(1/+/n) for MC-SGD for both smooth and non-smooth cases.
We also develop the first nearly optimal convergence rates (7)(1 /+/T) for convex-concave problems
of MC-SGDA, and show that the optimal risk bounds O(1/4/n) can be derived even in the non-
smooth case. Although the gradients from Markov sampling are biased and not independent across
the iterations, we show the performance of MC-SGMs is competitive compared to SGMs with the
classical i.i.d. sampling scheme. An interesting direction is to consider other variants of SGMs with
variance reduction techniques and differentially private SGMs under the Markov sampling scheme.
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using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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