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Over the past 15 years, we have seen an increase in the use of cluster randomized trials (CRTs)
to test the efficacy of educational interventions. These studies are often designed with the goal of
determining whether a program works, or answering the what works question. Recently, the goals
of these studies expanded to include for whom and under what conditions an intervention is effec-
tive. In this study, we examine the capacity of a set of CRTs to provide rigorous evidence about for
whom and under what conditions an intervention is effective. The findings suggest that studies are
more likely to be designed with the capacity to detect potentially meaningful individual-level
moderator effects, for example, gender, than cluster-level moderator effects, for example, school

type.
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IN the past 15 years, we have seen an increased
emphasis on the use of randomized trials (RTs),
particularly cluster randomized trials (CRTs), to
test the efficacy of educational interventions
(Spybrook et al., 2016). In a CRT, entire clusters,
most often schools, are randomly assigned to con-
dition. The most prominent funder of CRTs to
assess the efficacy of educational interventions is
the Institute of Education Sciences (IES), the
research branch of the U.S. Department of
Education. Since its inception in 2002, IES has
played a leadership role in shaping education pol-
icy and practice around the use of RTs and CRTs
to assess the efficacy of educational programs
(Cook & Foray, 2007). As the leading funder of

educational policy, program evaluation, evaluation, experimental design, research

education research, IES has funded more than
250 efficacy studies, many of which are CRTs.
Although there certainly are other federal funders
of CRTs aside from IES, for example, the
National Science Foundation (NSF) and the
Office of Investment and Innovation (OII), IES
has undoubtedly played a leadership role in the
movement toward the use of CRTs to test educa-
tional interventions and as such is featured prom-
inently in this article.

IES was established by the Education Science
Reform Act of 2002. The mission of IES is to
build a body of rigorous evidence to inform edu-
cation policy and practice (http://ies.ed.gov). In
the early years, this meant that IES focused on
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answering the what works question. For exam-
ple, what math curriculum is most effective for
improving math achievement? What reading pro-
fessional development program is most effective
for improving reading achievement? 1ES priori-
tized efficacy studies that included RTs, most
often CRTs, to answer this question. Although
answering the what works question is still a pri-
mary goal of efficacy trials, over time we have
seen the goals expand to questions about for
whom and under what conditions. These types of
questions are critical in that they help provide a
more comprehensive picture about the types of
students and schools that the programs are most
impactful. For example, a new math program
may be more effective for girls than boys or
small schools rather than large schools. This is
important information for school administrators
as they consider whether or not an intervention
will work in their schools and for their students.
These questions are also central to the mission of
IES to improve outcomes for all students.

Changes in the IES Request for Applications

As the goals of efficacy studies have evolved,
so have the methodological expectations for the
design of these studies. Although there are many
important methodological components to the
design of a rigorous efficacy study, we limit the
scope of this article to one component, the statis-
tical power to detect effects, specifically main
effects and moderator effects. The main effect
corresponds to the what works question, whereas
the moderator effects correspond to the for whom
and the under what conditions question. To docu-
ment the changes in the methodological expecta-
tions around statistical power for main effects
and moderator effects, we reviewed the IES
requests for applications (RFA) from 2002 to
2017. Specifically, we focused on the guidelines
for efficacy studies including the methodological
requirements described in two relevant sections
of the RFA, the section on statistical power and
the section on the description of moderating vari-
ables. In the early RFAs, the language in the sec-
tion on statistical power specified that a power
analysis for the main effect of treatment was nec-
essary. However, the details about what to
include in the power analysis were limited. The
study of moderating variables was encouraged in

What Works, For Whom, Under What Conditions?

the section describing moderating variables.
However, there was no mention of including a
power analysis for moderator effects.

Over time, the requirements for the level of
detail corresponding to the power analyses for
the main effect of treatment were strengthened.
For example, the RFA in the field year 2007
(Institute of Education Sciences, 2006) includes
language stating that applicants must provide
details related to the power analyses for the main
effect of treatment and must justify the expected
effect size. Furthermore, applicants planning a
CRT should consider the total number of schools
as well as the number of individuals per school
and other relevant design parameters for CRTs.
Spybrook and Raudenbush (2009) and Spybrook
et al. (2016) examined the statistical power of
studies to detect the main effect of treatment in
IES-funded CRTs. The findings from these stud-
ies suggest that the precision of IES-funded stud-
ies has increased over time.

The requirements for the description of plans
to assess moderating variables changed very lit-
tle between 2002 and 2012. The RFA for the field
year 2012 (Institute of Education Sciences, 2011)
represents the first RFA to mention statistical
power as it relates to moderating variables. In the
section on the description of the moderating vari-
ables, the RFA stated,

The Institute expects efficacy studies to examine
relevant moderating factors. . . . The Institute
recognizes that many efficacy studies are not powered
to test the effects of a wide-range of moderators and
so expects applicants to focus on a small set of well-
justified ones.

Notably, in the section on the power analysis, the
RFA did not explicitly ask for a power analysis
for moderators.

The next key change related to methodological
expectations around moderator effects occurred
in the field year 2017 (Institute of Education
Sciences, 2016). The RFA stated that the analysis
of moderators is not required but rather that it
makes for a stronger application in the section on
the description of the moderators in the RFA.
However, in the section on power, the RFA asks
applicants to provide detailed power analyses for
moderation, even if the moderator questions are
considered exploratory. This represents a clear
shift in the expectations for those designing
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studies from including one power analysis for the
main effect of treatment to also including power
analyses for important moderator effects.

This shift toward including power analyses
for moderator effects in efficacy trials represents
unchartered territory for many researchers plan-
ning CRTs to test the efficacy of educational
interventions. From 2002 to 2017, the focus was
on designing CRTs to detect the main effect of
treatment of a reasonable magnitude. During this
time, several design principles emerged related
to power for the main effect of treatment in CRTs.
For instance, from a sample size perspective, it is
now well known that the total number of schools
is the key driver for increasing the power to
detect the main effect of treatment in a CRT (e.g.,
Hedges & Rhoads, 2009; Raudenbush, 1997;
Schochet, 2008). We also know that the smaller
the intraclass correlation coefficient (ICC), or
percentage of variance in the outcome that is
between schools, the greater the power to detect
main effects. Likewise, the inclusion of covari-
ates that are strongly related to the outcome can
increase the power to detect main effects. The
empirical literature also suggests that educational
interventions designed to improve achievement
often yield effect sizes of approximately .20 to
.30 standard deviation units, and hence powering
a study to detect an effect of this magnitude is
important (Hill et al., 2008). However, these
same types of design principles and empirical
analyses do not exist for power analyses for mod-
erator effects in CRTs. But, given the changes in
the RFA, it is important to start to investigate the
design principles and the power of CRTs to detect
moderator effects.

In this article, we examine the power to detect
main effects and moderator effects for a sample
of CRTs funded by IES. We intentionally select
CRTs funded after 2012 when the RFA was mod-
ified to include more attention on moderator
analyses. These studies represent CRTs that are
typical in size and fall within budgetary con-
straints. We begin by asking the question:

1. What is the minimum detectable effect
size (MDES) or the smallest effect size
each study is designed to detect with a
power of .80 (addressing the what works
question)?
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Given the emphasis on designing studies to
detect treatment effects in the range of .20 to .30,
and our use of planned sample sizes, we antici-
pate this will be the range for the MDES. Then
we ask the following:

2. What is the minimum detectable effect
size difference (MDESD) or the smallest
differential effect size each study is
designed to detect with a power for .80 for
(a) Individual-level moderator effects
(MDESD,p; typically addressing
the for whom question);

(b) Cluster-level moderator effects
(MDESD, ; typically addressing the
under what conditions question)?

Currently, no set of empirical benchmarks
exist for the magnitude of moderator effects like
the empirical benchmarks we rely on for main
effects. Hence, we begin by simply determining
the magnitude of the moderator effects studies
are powered to detect and comparing it with the
magnitude of the main effect studies are powered
to detect. By considering the MDESDs and the
MDES for the same set of studies, we are also
able to examine where the design principles
underlying power for main effects and moderator
effects are consistent and where they diverge.

Our focus is specifically on design principles
related to sample sizes. We focus on sample sizes
for several reasons. First, the sample size is often
something that is more under the control of the
researcher than other design parameters. Second,
our dataset includes studies with varying sample
sizes at all levels which allows us to empirically
examine the role of sample sizes. Third, we do not
vary other design parameters across studies—that
is, we use the same range for the ICC(s) and
percentage of variance in the outcome that is
explained by covariate(s). We use estimates for
these design parameters based on recent empiri-
cal work, a practice which is common among
researchers planning CRTs.

It is important to keep in mind that the CRTs
in this sample were not required to be powered to
detect moderator effects of a particular magni-
tude. Rather, these studies are being used to rep-
resent the typical size of efficacy trials funded by
IES. The findings from this study will help the



field assess the potential for current CRTs and
future CRTs that are similar in size and scope to
answer questions about what works, for whom,
and under what conditions. The findings will
also help inform dialogues between funders and
researchers about the feasibility of designing
CRTs to sufficiently address all three types of
questions. Note that this is a nontechnical presen-
tation of statistical power and design implica-
tions and we refer readers to relevant literature
throughout for a detailed discussion of the tech-
nical details behind the power calculations.

The article is organized as follows. We begin
with a description of the sample of studies we
used for the empirical analyses. Then we pro-
vide a brief overview of how we calculated the
MDES, MDESD,, for an individual-level mod-
erator, and MDESD, for a cluster-level moder-
ator. We present the findings for the studies and
clucidate the role of sample sizes at different
levels in power for main effects and moderator
effects. We also consider the magnitude of the
main effects and moderator effects the studies
are designed to detect in light of what is known
about effect sizes in education. Finally, we sum-
marize the findings and consider the next steps
in the quest to answer what works, for whom,
and under what conditions.

Sample Description

The sample for this study included IES-funded
efficacy trials between 2013 and 2018. We inten-
tionally selected a starting point after 2012, 1 year
after moderators started to be emphasized in the
RFA. We identified the studies through the IES
website (https://ies.ed.gov/funding/grantsearch/
index.asp). There are four centers within IES: the
National Center for Education Research (NCER),
the National Center for Special Education
Research (NCSER), the National Center for
Education Evaluation and Regional Assistance
(NCEE), and the National Center for Education
Statistics (NCES). NCER funds the largest num-
ber of efficacy studies of the four IES centers and
hence is the focus of this study. We searched
funded grants to identify all of the efficacy studies
funded by NCER between 2013 and 2018, a total
of 75 studies (https://ies.ed.gov/funding/grant
search/). For each efficacy study, we obtained
the structured abstract. The structured abstract

What Works, For Whom, Under What Conditions?

includes key information about each study related
to Research Design and Methods, Key Measures,
Data Analytic Strategy, Setting, and so on. The
grantee is responsible for completing the struc-
tured abstracts at the time a study is funded, and
hence the information in the structured abstract is
based on the planned study. We selected a sub-
sample to narrow down the sample to studies that
were comparable.

Our inclusion criteria included the following:
First, the study targeted students in grades pre-
K-12 and academic achievement was one of the
primary outcome variables. This removed two
postsecondary studies and two additional stud-
ies that did not focus on academic outcomes.
The design parameters, for example, [CC(s) and
percentage of variance in the outcome that is
explained by covariate(s), for planning studies
focused on improving academic outcomes for
grades pre-K—12 are often quite different from
those focused on planning postsecondary studies
or pre-K—12 studies focused on improving social—
emotional or other types of outcomes (Bloom
etal., 2007; Dong, Reinke, et al., 2016; Hedges &
Hedberg, 2007, 2013; Westine et al., 2013).
Hence, as we wanted to hold the range of design
parameters constant across studies to isolate the
effect of the varying sample sizes, it made sense
to remove these studies. Furthermore, effect sizes
are context specific and the magnitude of an
effect in an academic domain in pre-K—12 may
have a different meaning than that in a social—
emotional or other domain or at the postsecond-
ary level (Hill et al., 2008). Thus, for consistency
and to enable comparisons across studies, we
focused only on studies for pre-K—12 with aca-
demic achievement as a primary outcome.

Second, we restricted the sample to nested
two- and three-level CRTs only. That is, we did
not include multisite CRTs, for example, designs
in which students are nested within schools and
schools are randomly assigned to condition
within multiple districts. To date, the literature
and tools for calculating power for moderator
effects in CRTs are limited. This study draws
heavily on two papers that provide power calcu-
lations for moderator effects in two- and three-
level CRTs (Dong et al., 2018; Spybrook et al.,
2016). There is also a tool, PowerUp!-Moderator
(Dong, Kelcey, et al., 2016), which allows users
to conduct power calculations for moderator
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effects for two- and three-level CRTs. However,
the literature and tools for multisite CRTs are not
as developed. Bloom and Spybrook (2017) exam-
ine power for moderator effects in multisite
CRTs. However, they only consider site-level
moderators. That is, they do not consider indi-
vidual-level moderators or cluster-level modera-
tors. Furthermore, PowerUp!-Moderator (Dong,
Kelcey, et al., 2016) does not yet include options
for calculating moderator effects for multisite
CRTs. Given that we are demonstrating power
calculations, we wanted to focus on designs with
the literature and tools currently available for
users planning CRTs and wanting to employ
power calculations for moderator effects. As
such, we removed 28 multisite CRTs.

Third, the study had to be an original study and
not a follow-up of a prior CRT. Follow-up studies
are intended to assess the longer-term outcomes
of an intervention and often do not tend to include
a CRT. Five follow-up studies were removed.
Finally, one study was removed because sample
sizes were not available via the structured abstract.
Of'the 75 studies originally identified as Cohort 2,
37 are included in this study. See Appendix for a
list of the studies in the sample.

The topics, grade levels, and design classifica-
tions (discussed in the next section) for the 37
studies are identified in Table 1. From Table 1, we
cansee that Social, Behavioral,and Developmental
interventions were the most common in this sam-
ple. The remaining topic areas were very similar
in terms of the number of studies in the sample.
Table 1 also revealed that the majority of the stud-
ies targeted students in elementary schools fol-
lowed by pre-K.

Design Classification

The MDES and MDESD calculations differ
slightly depending on whether the study is a two-
or a three-level CRT. Hence, it is critical to first
classify the study design. In a two- or three-level
CRT, random assignment occurs at the top level.
The difference in these two designs occurs in the
total number of levels, 2 or 3. In more concrete
terms, a two-level CRT may include students
nested within schools in which schools are the
unit of random assignment. Students represent
Level 1 and schools represent Level 2, the top
level and unit of randomization. A three-level
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CRT may include students nested within teachers
nested within schools in which schools are again
the unit of random assignment. Students repre-
sent Level 1, teachers represent Level 2, and
schools represent Level 3, the top level and unit
of randomization.

We classified the designs for the 37 studies in
this sample. In addition, we identified the spe-
cific levels in each study. The design classifica-
tions are shown in Table 1. Approximately 73%
(n = 27) of the studies were two-level CRTs. Of
the two-level CRTs, the majority were designs in
which students were nested within teachers or
classrooms (n = 17). For the purposes of this
article, we use the term teacher rather than class-
room. If a teacher had more than one section, we
refer to those as class sections. For these 27 stud-
ies, schools were not explicitly mentioned in the
structured abstracts. Hence, it may be the case
that multiple teachers were within one school or
that there was only one teacher within each
school. Without further information about the
number of schools and distribution of teachers
within schools, it was safest to assume one teacher
per school. This provides more conservative esti-
mates of the MDES and MDESD as the power to
detect effects will often increase if there is some
type of blocking of teachers within schools. Ten
two-level CRTs included a nesting structure
within students nested within schools. In these
cases, the teacher level was not explicitly men-
tioned in the study abstract. Approximately 27%
(n = 10) of the studies were three-level CRTs.
These 10 studies followed the nesting structure
of students nested within teachers nested within
schools.

Sample Sizes

For each study, we determined the sample
sizes at cach level based on the structured
abstract. The structured abstracts are written by
the grantee after the study is funded, and hence
the sample sizes reflect planned sample sizes.
This is aligned with the purpose of this study
which is to examine the MDES and MDESDs at
the planning phase. In the few cases in which
more than one treatment was randomly assigned,
we calculated the total number of clusters for a
two-group comparison. For example, consider
a study with 80 schools and four conditions,



TABLE 1

Topic, Grade Level, and Design Classification for
Studies in the Sample

No. of studies
(percent of total)

Topic
Math and Science 7(19)
Social, Behavioral, and 13 (35)
Developmental
Literacy, Reading, and Writing 4(11)
Teacher Quality and 7(19)
Professional Development
Other” 6 (16)
Grade level
Pre-K 11(30)
Elementary 18 (49)
Middle school 6 (16)
High school 2(5)
Two-level CRT
Students nested within 17 (46)
teachers
Students nested within schools 10 (27)
Three-level CRT
Students nested within 10 (27)

teachers nested within schools

Note. CRT = cluster randomized trial.

Other topics include English Learners, Educational Technol-
ogy, Early Learning Programs, and State and Local Evalu-
ations.

including three treatment conditions and one
comparison condition. Assuming there were 20
schools per condition, we conducted the MDES
and MDESD calculations using a total of 40
schools, 20 per each of the two conditions. In the
cases where recruitment occurred across multi-
ple years, we used the total sample size across
years for the calculations.

The sample sizes for each of the 37 studies are
provided in Table 2. In addition, the target grade
for each study is also identified. The average
number of schools in the three-level CRTs was
58 (median = 63). Similarly, the average number
of schools in the two-level CRTs which random-
ized at the school level was 57 (median = 52).
The average number of teachers in the two-level
CRTs which randomized at the teacher level was
130 (median = 105). A closer look at Table 2
reveals that the majority of the two-level CRTs

which randomized at the teacher level were
pre-K studies. Pre-K classrooms are not neces-
sarily housed within larger schools which may be
partly why there were so many pre-K studies
which randomized at the teacher level. It is also
interesting to note that the studies with a small
number of students either per teacher or per
school, for example, 10 or fewer students per
teacher or per school, tended to be pre-K studies.
Those that were not pre-K studies but still had a
small number of students per teacher or per school
either served a special population or had special
individualized testing circumstances that likely
required one-on-one testing which is resource
intensive.

Method

Next, we describe the MDES and MDESD
calculations for a two- and a three-level CRT.
Table 3 provides all of the formulas. More details
and derivations for the formulas can be found in
Bloom (2005), Spybrook et al. (2016), and Dong
etal. (2018).

MDES (Addressing the What Works Question)

We begin with the MDES for the two-level
CRT. As we can see from Table 3, to calculate the
MDES, we need to know the total number of
clusters, J, the approximate number of individu-
als per cluster, n, and the proportion of clusters
randomly assigned to condition, P. For each
study, we determined the sample sizes from the
information obtained in the structured abstract.
Across all studies, we assumed equal allocation
of clusters to condition, or a 50-50 split. This
assumption represents the ideal case and yields
the smallest MDES. As a design moves away
from the balanced case, the precision will
decrease. However, it is important to be aware
that small deviations, such as a 60—40 split, will
not result in major changes to the MDES.

From Table 3, we can also see that the MDES
depends on an estimate of the proportion of vari-
ance between clusters, ICC, and an estimate of
the proportion of variance explained by covari-
ates, R, and R;,. These values are not included
in the online structured abstracts. However, in the
past decade, we have seen an emerging empiri-
cal database of design parameters necessary for
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TABLE 2
Sample Sizes and Grade Level for Each Study in the Sample

Three-level CRT Total no. Avg. no. of teachers Avg. no. of students
(Study ID) of schools per school per teacher Target grade
1 72 3 10 Pre-K
2 30 20 23 Middle
3 66 4 52 Middle
4 32 8 25 Elementary
5 30 16 65 Elementary
6 56 3 25 Elementary
7 60 7 6 Elementary
8? 66 6 20 Elementary
9° 70 5 3 Elementary
10* 100 2 4 Elementary
Two-Level CRT Total no. of No. of students per
(Study ID) schools school Target grade
11 20 24 Elementary
12 30 21 Elementary
13 52 673 Elementary
14 56 20 Elementary
15 81 60 Elementary
16 85 200 Elementary
17 40 18 Middle
18° 50 10 Middle
19° 52 10 High
20 103 100 High
Two-Level CRT Total no. of No. of students per
(Study ID) teachers teacher Target grade
21 60 8 Pre-K
22 60 8 Pre-K
23 64 19 Pre-K
24 100 8 Pre-K
25 100 10 Pre-K
26 120 10 Pre-K
27 120 10 Pre-K
28 120 18 Pre-K
29 140 8 Pre-K
30 220 5 Pre-K
31 84 26 Elementary
32° 110 25 Elementary
33 160 19 Elementary
34 440 10 Elementary
35 130 40 Elementary
36 55 20 Middle
37 100 25 Middle

Note. CRT = cluster randomized trial.
“Studies represent those included a special population, for example, English Language Learners, students with severe social
anxiety, social skill challenges, disruptive behaviors, or special individualized testing circumstances.
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TABLE 4

Design Parameters Used in Calculating MDES, MDESD,,,, and MDESD ., for Two- and Three-Level CRTs

Two-level CRT

Three-level CRT

ICC R Ri> ICC, ICC, RA R?, R
MDES 15,25 .20,.50  .50,.80 ,.15 .07,.10  20,.50  .20,.50  .50,.80
MDESD,, 15,25 .20,.50 — ,.15.07,.10  .20,.50 — —
MDESD, « — — — J10,.15  .07,.10  .20,.50  .20,.50 —
MDESD, 15,25 .20,.50  .50,.80 ,.15 .07,.10  20,.50  .20,.50  .50,.80

Note. MDESD(, in Row 3 for the three-level CRT corresponds to the teacher-level moderator and MDES in Row 4 for the
three-level CRT corresponds to the school-level moderator. Estimates are based on Bloom et al. (2007), Brandon et al. (2013),
Hedges and Hedberg (2007, 2013), Jacob et al. (2010), Online Variance Almanac (n.d.), Spybrook et al. (2016), Westine et al.
(2013), and Zhu et al. (2012). MDES = minimum detectable effect size; CRT = cluster randomized trials; ICC = intraclass

correlation.

planning CRTs, particularly for CRTs focused on
academic achievement. This set of empirical esti-
mates is often used for planning CRTs and, as
such, we used the empirical literature to estimate
the ICC, R?,,and R},.

The empirical literature suggests that design
parameters vary by context, where context
includes factors such as grade level, subject area,
and types of schools. To account for this varia-
tion, we use a range of values to estimate the
design parameters. Note that the upper and lower
bounds we use for the empirical estimates of the
design parameters capture the typical variations
across grade level, subject areas, types of schools,
and so on when the outcome is academic achieve-
ment. We estimate the design parameters for the
two-level CRTs from the empirical studies which
nest students within schools.

Although 17 of our studies actually have
teacher as Level 2, recall that we assumed one
teacher per school. As such, school and teacher
are confounded and estimates of design parame-
ters from data with students nested within schools
are reasonable. The estimates we used for the
ICC, R}, and R}, are based on the range of
estimates found in the empirical literature and
are provided in Table 4 (e.g., Bloom et al., 2007;
Brandon et al., 2013; Hedges & Hedberg, 2007,
2013; Jacob et al., 2010; Spybrook et al., 2016;
Westine et al., 2013; Zhu et al., 2012). In our cal-
culations, we assume one covariate at each level.
We could include multiple covariates at each
level. However, each additional covariate at
Level 2 results in the loss of one additional
degree of freedom. Given that the pretest is a

common and powerful covariate in CRTs focused
on academic achievement and that, after the pre-
test is included, additional covariates do not tend
to explain much more variation, we assume that
the covariate is a pretest and do not include other
covariates.

Looking to the right in Table 3, we see the
MDES for a three-level CRT. The MDES looks
very similar to the two-level CRT. The key dif-
ference is that now there are three sample sizes,
two ICCs, and potentially three R* values. As in
the case of the two-level CRT, we used the struc-
tured abstract to determine the relevant sample
sizes for each study and assumed a balanced
design. We turned to the empirical literature to
estimate the ICCs and R* values (e.g., Bloom
et al., 2007; Hedges & Hedberg, 2007, 2013;
Jacob etal., 2010; Westine et al., 2013). Although
there is quite a substantial literature base of
empirical estimates of ICCs for two-level studies
with students nested within schools, there is
much less available for three-level studies with
students nested within teachers nested within
schools.

To our knowledge, there are three studies that
estimate design parameters for students nested
within teachers nested within schools (Jacob
et al., 2010; Nye et al., 2004; Xu & Nichols,
2010). For reading and math outcomes, these
studies tended to report approximately 5% to
10% of the variation in the outcome at the teacher
level and large portions of teacher- and school-
level variance explained by pretests. We use this
to guide our estimates of the ICC ranges as shown
in Table 4.
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MDESD,y,, (Addressing the for Whom
Question)

Similar to the MDES, the MDESD,, calcula-
tions differ depending on the design. We begin
with the two-level CRT. For illustrative purposes,
we assume a binary individual-level moderator,
such as gender. From Table 3, we can see several
differences in the MDESD, formula compared
with the MDES formula. For example, the Level
2 variance and the percent of variance explained
at Level 2 do not factor into the MDESDy, cal-
culations. This is because in the case of an indi-
vidual-level moderator, such as gender, in a
two-level design, the differences in boys and girls
are within clusters and thus the school effects can-
cel out (Spybrook et al., 2016). This is critical
because, as discussed earlier, research over the
past 15 years has established that the ICC plays a
big role in the MDES calculations. That is, the
larger the ICC, the larger the MDES (e.g., Hedges
& Rhoads, 2009; Raudenbush, 1997; Schochet,
2008). Furthermore, as the school effects cancel
out, the total sample size, n X J, becomes the
critical sample size, whereas the MDES is largely
driven by the total number of clusters. Another
important difference is that, in addition to P, the
proportion of clusters assigned to condition, we
need to also specify O, the proportion of individu-
als in each moderator subgroup. Throughout our
calculations, we assume an equal proportion of
individuals in each subgroup which again repre-
sents the ideal case. For moderators such as gen-
der, this may be a realistic assumption. For other
moderators, such as free or reduced price lunch
status, this may not be appropriate and we caution
researchers to consider this carefully. Similar to
the allocation of clusters to condition, the more
imbalanced the design, the larger the MDESD .
The empirical estimates of the relevant design
parameters for MDESD ,, are shown in Table 4.
Although inclusion of the moderator may explain
some additional variance at the level of the mod-
erator, we use the same range of estimates of Rfl
as a conservative lower bound. We do not esti-
mate Rzz as this does not enter the calculations
and the ICC is necessary only because the Level 1
variance contributes to the calculations of
MDESD,p.

MDESD,,, for the three-level CRT follows
the same pattern as we saw in the case of the
two-level CRT. That is, the between-school and
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between-teacher effects cancel out so the vari-
ance components at these levels do not contrib-
ute to the variance of the moderator effect and
the total sample size becomes the key driver of
MDESD,,- Again, we assume an equal propor-
tion of schools assigned to each condition and
an equal proportion of individuals in each sub-
group. As shown in Table 4, the relevant design
parameters for MDESD,, for the three-level
CRT are consistent with those used to estimate
the MDES.

MDESD,, (Addressing the Under What
Conditions Question)

As in the case of an individual-level modera-
tor, we assume a binary cluster-level moderator.
In the two-level CRTs, we have both schools and
teachers as clusters. As such, the moderator
might be something like school type (urban or
rural) if the cluster is school or teacher experi-
ence (new vs. veteran) if the cluster is teacher. As
the cluster may represent schools or teachers, we
simply refer to it as the cluster for the two-level
CRT knowing that it may represent a school- or a
teacher-level moderator.

In Table 3, we provide the formula for
MDESD,, for the two-level CRT in the second
row of the MDESD, values for consistency
with the three-level CRT because the moderator
in this case is at the top level. The equation for
MDESD,, looks very similar to that of the
MDES for a two-level CRT. As such, similar to
MDES, the total number of clusters will be the
key driver of MDESD, . There is also the addi-
tion of the O term. Assuming an equal proportion
of clusters assigned to condition and an equal
proportion of clusters in each cluster-level mod-
erator subgroup, this suggests that, holding all
else constant, MDESD, will be larger than the
MDES. Table 4 shows the same empirical esti-
mates used for MDESD,,. As in the case of
MDESD,,, we use the same range of estimates
for the R* values and the ICC noting that the
inclusion of the moderator may explain some
additional variance at Level 2 and as such we are
estimating a conservative lower bound.

In a three-level CRT, there are two levels of clus-
tering. In our studies, teachers are at Level 2, whereas
schools are at Level 3. We calculate MDESD
for moderators at both levels and denote them



MDESD ¢ a1 crr) ad MDESDgcyy 3 e Tespec-
tively. We begin by looking at MDESDgcyy; (31 crr)
in Table 3. This equation looks very similar to
that of the MDES for a three-level CRT with the
addition of the Q term. As such, it will function
similar to the MDES where the total number of
schools will be the key sample size. However,
MDESDycygesicrr) 10oks slightly different than
the MDES and MDESDgyy; 31 crr)- Although it
also has a O term, Q in this case represents the
proportion of teachers in the moderator sub-
group. Furthermore, the between-school vari-
ance cancels out, similar to the case of the
individual-level moderator. As such, the between-
school variance does not contribute to the calcu-
lations and the total number of teachers becomes
the critical sample size. Table 4 shows the same
empirical estimates used for MDESDy ey 31 crr)
and MDESDgcy; 3 crr) As in the case of
MDESD,,, we use the same range of estimates
for the relevant R” values and the ICC noting that
the inclusion of the moderator may explain some
additional variance and as such we are estimating
a slightly conservative lower bound.

Results

We begin with the results for the MDES.
Then we present the findings for MDESD,, for
the individual-level moderators. Next, we con-
sider cluster-level moderators. We present the
findings for the MDESD for a school-level mod-
erator followed by the findings for a teacher-
level moderator. The MDES and MDESD are
graphed together to facilitate comparisons.
Furthermore, Study ID in all of the figures
matches Study ID in Table 2.

MDES (Addressing the What Works Question)

The MDES for each of the 37 studies is shown
by the striped bars in Figure 1. A range of the
MDES is graphed for each study because a range
of design parameters was used for all the calcula-
tions to account for the variability in design
parameters. The mean of the midpoint of the
MDES across studies is .21 (SD = .06). As we
expected, this finding is consistent with bench-
marks for meaningful effect sizes in intervention
studies focused on improving academic out-
comes suggested by Hill et al. (2008).

What Works, For Whom, Under What Conditions?

Hill et al. (2008) examined 61 randomized
studies and found average effect sizes ranging
from .27 to .51 for interventions designed to
improve achievement outcomes from elementary
through high school grades. Furthermore, they
examined 76 meta-analyses of educational inter-
ventions and found average effect sizes ranging
between .20 and .30. In general, they suggested
that studies should be designed to detect effect
sizes for the mean effect of treatment in the
range of .20 to .30. It is interesting to note that
the IES RFA does not specify the MDES for a
study. Rather, the RFA specifies that one should
conduct a power analysis and provide a strong
rationale for the appropriateness of the magni-
tude of the main effect the study is powered to
detect. The findings in Figure 1 suggest that
most studies are designed with power to detect
main effects in a reasonable range based on
empirical benchmarks.

MDESD,, (Addressing the for Whom
Question)

Now that we know that most studies are
designed to detect a main effect of a reasonable
magnitude, the next question is what is the mag-
nitude of individual moderator effects that these
same studies are powered to detect. Regardless
of whether a study is a two- or a three-level CRT,
MDESD,, can be calculated. The results of
MDESD,,, for all 37 studies are displayed by the
solid bars in Figure 1.

In general, the range for MDESD,, is smaller
than that of the MDES because as discussed earlier
the school effects cancel out. As such, the power
calculations are simplified. For example, the vari-
ance explained at Level 2, R}, , which introduces
additional variance into the MDES calculations
does not factor into the MDESD,, calculations.
The mean for MDESD, is .19 (SD = .10). Recall
the mean of the MDES is .21. Although the means
are similar, from Figure 1 it is clear that there are
some cases in which MDESD,, is smaller than
the MDES and others where it is larger than the
MDES. So the question is what is driving these
differences.

Let us consider Studies 13 and 21. From
Figure 1, we can see that the range of the MDES
for Studies 13 and 21 was approximately .14 to
.28 and .21 to .33, respectively. The range of
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appears to the right of Study ID. The MDES and MDESD are ranges based on the assumptions in Table 2 for the sample sizes

and Table 4 for the design parameters.

MDESD,,, for Studies 13 and 21 was approxi-
mately .03 to .05 and .33 to .39, respectively. So
although the range for the MDES for the two
studies was not that different, the range for
MDESD,, was very different. As they both
were based on the same estimates of the design
parameters, we know that the differences are a
function of the sample sizes. From Table 2, we
can obtain the sample sizes for both studies.
Study 13 was a two-level CRT with approxi-
mately 673 students per school and a total of 52
schools. Study 21 was a two-level CRT with
approximately eight students per teacher and a
total of 60 teachers. The two studies have a simi-
lar number of total clusters, 52 and 60, respec-
tively. As the MDES is driven by the total number
of clusters, it makes sense that the range of the
MDES is similar for the two studies. However,
they are very different in terms of the number of
students per cluster, 673 and 8, respectively.
MDESD,, is driven by the total number of
students and thus Study 13, with a total of 673 X
52 = 34,996 students relative to Study 21, with a
total of 8 X 60 = 480 students, has the capacity
to detect much smaller individual-level modera-
tor effects.

From Table 2, we can see that the studies with
smaller numbers of students per cluster tend to be
the pre-K studies, Studies 21 to 30, and in some
cases studies that randomized teachers, Studies
31 to 37. Studies with large numbers of total stu-
dents tend to be elementary, middle, and high
school studies that randomize schools, Studies 1
to 20. These include two-level CRTs with stu-
dents nested within schools, Studies 11 to 20, or
three-level CRTs with students nested within
teachers nested within schools, Studies 1 to 10.
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Note that for a three-level CRT the total number
of students is the number of students per teacher
multiplied by the number of teachers per school
multiplied by the total number of schools. Figure
1 reflects the importance of large numbers of
individuals per cluster in decreasing MDESD,y,
relative to the MDES as Studies 1 to 20, or stud-
ies which randomize schools, reveal cases where
MDESD,y, is smaller than the MDES.

It is also important to consider the magnitude
of the moderator effects these studies are
designed to detect. Given the lack of empirical
benchmarks, we consider the magnitude of the
moderator effect relative to the magnitude of the
main effect. In the case of a binary moderator, the
moderator effect represents a differential effect
between two groups. Based on prior research
from psychology, we anticipate that moderator
effects will be smaller than the main effect
(Aguinis et al., 2005). Hence, the studies which
have a smaller MDESD,,, than MDES, such as
Study 13, will tend to be in a stronger position to
detect individual-level moderator effects. As dis-
cussed above, this tends to be elementary, middle,
and high school studies that randomize schools.
Studies of pre-K interventions with small num-
bers of individuals per cluster are likely to not be
able to detect reasonable individual-level mod-
erator effects.

MDESD, (Addressing the Under What
Conditions Question)

We begin by examining the capacity of stud-
ies to detect school-level moderators. Hence,
the studies that randomize at the school level,
the two-level CRTs with schools at Level 2 and
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and Table 4 for the design parameters. The upper bound for Study 11 for the MDESD is truncated at 1.0.

the three-level CRTs in the sample are relevant.
This includes a total of 20 studies. The findings
are presented alongside the MDES for each
study in Figure 2. The mean of MDESDg,, is
A48 (SD = .15).

Clearly, the magnitude of MDESDgy, is
quite a bit larger than that of the MDES. For
example, consider Study 5, a study targeting ele-
mentary schools with a total of 30 schools, 16
teachers per school, and 65 students per teacher.
The MDES ranges from .15 to .30. However,
MDESDyg,,; ranges from .35 to .66. This is
because just like the MDES, MDESDg,, 1is
driven by the total number of schools. In the case
of a binary moderator with equal allocation of
schools to condition and equal numbers of
schools per moderator subgroup, it is similar to a
study that compares four groups rather than two
groups and hence the magnitude of MDESDgy,
is approximately twice that of the MDES
(Spybrook et al., 2016). Furthermore, the total
number of schools is the key sample size unlike
the case of MDESD,, where the number of stu-
dents per school was extremely helpful in detect-
ing smaller individual-level moderator effects.

Just like in the case of an individual-level
moderator, the cluster-level moderator represents
a differential treatment effect. Again, the lack of
benchmarks for the magnitude of moderator
effects makes it challenging to interpret these
findings. However, if we assume that moderator
effects will be smaller than the main effects, this
suggests that current studies are not well

positioned to detect meaningful school-level
moderator effects. Even if we assume that clus-
ter-level moderator effects may be similar to
main effects, the findings in Figure 2 reveal that
studies are not powered to detect moderator
effects of similar magnitudes.

Next, we consider the teacher-level modera-
tor. We begin with two-level CRTs that have
teachers at Level 2 (n = 17). In these studies,
teachers represent the top level. Hence, the cal-
culations are identical to those performed for a
two-level CRT with schools at the top level. We
separate them out here because substantively it
is different to think about teacher-level moder-
ators, for example, teacher experience, than
school-level moderators, for example, school
type.

The findings are shown in Figure 3. The mean
MDESD cprercrr) Value is .37 (SD = .10). From
Figure 3, we can see that MDESD ¢ypor crry 18
larger than the MDES. Again, this is because,
just like in the case of the two-level CRT with
schools at the top level, the MDESD is driven by
the total number of clusters, or teachers in this
case. With regard to the magnitude of the teacher-
level moderator effect when teachers are at the
top level, the fact that it is quite a bit higher than
the main effect as can be seen in Figure 3 sug-
gests that these studies may not have the capacity
to detect meaningful teacher-level moderator
effects.

We also consider the capacity of studies to
detect teacher-level moderator effects in
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three-level CRTs. In this case, the moderator is at
the middle level, one level lower than the level of
randomization. As shown in Table 3, the magni-
tude of MDESDxcyrp crr) in the three-level CRT
is driven by the total number of teachers, which is
the number of teachers per school multiplied by
the total number of schools.

The MDES and MDESDyqyg 1 crry Values are
shown in Figure 4. The mean MDESDcyg 31 crry
value is .21 (SD = .07). From Figure 4, we can
see that in some cases MDESDycypeicrr) 18
smaller than the MDES. For example, in Study 2,
there are 20 teachers per each of 30 schools.
Hence, the calculations are based on a sample size
0f20 X 30 = 600 teachers and MDESD g 31 crr
ranges from approximately .11 to .15.

In the case of a three-level CRT with teachers
at Level 2, studies with large numbers of teachers
per school may be able to detect smaller teacher-
level moderator effects than main effects. From
Table 2, we see one middle school study and one
elementary study with 20 and 16 teachers,
respectively. In terms of the magnitude of the
teacher-level moderator effects the studies are
able to detect, from Figure 4 we can see that sev-
eral of the studies may be able to detect modera-
tor effects that are smaller than .20, the typical
magnitude we desire to detect for main effects.
Again, without empirical benchmarks to guide
these interpretations, it is hard to anticipate if
these are reasonable; however, we do observe
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that they are smaller than what is deemed to be
reasonable for main effects.

Conclusion

The findings from this article suggest that
recently funded IES efficacy trials are designed
to detect main effects of treatment of approxi-
mately .20 standard deviation units. Given the
recent empirical literature which suggests that
boosting academic achievement by .20 standard
deviation units is a practically significant effect,
we would expect studies to be designed to meet
this threshold. As such, our results concur with
other studies that IES-funded CRTs are well posi-
tioned to answer the what works question
(Spybrook et al., 2016). The push toward also
understanding for whom and under what circum-
stances an intervention is effective suggests the
importance of assessing the capacity of studies to
provide rigorous evidence of the effects of indi-
vidual-, teacher-, and school-level moderators.
The findings from this study shed light on these
questions.

We begin with the for whom question. Overall,
some studies were well positioned to detect stu-
dent-level moderator effects that were less than
.20, and in some cases as small as .03 to .05.
Studies that were well positioned to detect
smaller student-level moderator effects were
those that randomized elementary, middle, or
high schools and included larger numbers of
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FIGURE 4. Minimum detectable effect size (MDES) and minimum detectable effect size difference (MDESD)
for a teacher-level moderator for the three-level CRTs in the sample.

Note. The MDES is represented by striped bars and appears to the left of Study ID. The MDESD is represented by solid bars and
appears to the right of Study ID. The MDES and MDESD are ranges based on the assumptions in Table 2 for the sample sizes

and Table 4 for the design parameters.

students per school. This is a direct result of
design principles for powering CRTs to detect
student-level moderator effects. That is, although
the number of clusters drives the magnitude of
the main effects studies are designed to detect,
the total number of individuals, number of clus-
ters times the number of individuals per cluster,
drives the magnitude of the student-level moder-
ator effects studies are designed to detect. Hence,
if a study is seeking to answer not only what
works but also for whom, larger numbers of stu-
dents per school will be helpful in answering the
for whom question. This is important as increas-
ing the number of students per school may not be
very costly, particularly in elementary, middle,
or high schools which often use standardized
assessment as the key academic outcome.

However, some studies were only able to
detect student-level moderators that were larger
than .20, which is not likely to be seen in practice.
These were pre-K studies or studies with special
populations. Often, these studies are limited in the
number of individuals per cluster. Or they rely on
individual administration of tests, in which case it
may be very costly to include more students.

The question of under what circumstances a
treatment is effective, or questions related to

school-level moderators, will be challenging to
answer for current studies. The studies were all
designed to detect school-level moderator effects
larger than the main effects, which is not likely
to be seen in practice. This is because, from a
design perspective, the total number of clusters
drives the power for both main effects and
school-level moderator effects. Typically, there
are enough schools in a study to be powered to
detect a reasonable main effect, but recruiting
additional schools to increase the capacity of a
study to detect a school-level moderator can be
very costly and likely outside of the budget for
one study.

Questions related to teacher-level moderators are
slightly more complicated as they depend partly on
whether teachers are the unit of assignment. If they
are, as in the case of a two-level CRT with students
nested within teachers, the magnitude of teacher-
level moderators these studies were designed to
detect was approximately .40, which is quite large
and not likely to be seen in practice. From the design
perspective, much like school-level moderator
effects in a school randomized study, the number of
teachers drives the power for the main effect and the
teacher-level moderator. However, in the case in
which teachers represent a level below the unit of
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assignment, for example, a three-level CRT with
students nested within teachers nested within
schools, studies with large numbers of teachers per
school, some studies were able to detect moderator
effects smaller than the main effects. From a design
perspective, this is because teachers are at a level
lower than the unit of randomization and hence the
total number of teachers, the number of schools
times the number of teachers, is the critical sample
size. In practice, for large school-wide interventions
where schools are randomized and there are many
teachers per school, increasing the number of teach-
ers may be a relatively inexpensive strategy to
increase the capacity to detect teacher-level modera-
tor effects. However, for studies that target particular
grades within schools and hence are limited to the
number of teachers in a specific grade, this may not
be possible.

Limitations

There are several limitations to this study.
First, it is important to keep in mind that these
studies were designed to have adequate power to
detect the main effect of treatment. This translates
to many studies having power to detect an effect
size of .20 standard deviation units. However,
these studies were not required to be adequately
powered to detect meaningful moderator effects.
Hence, these studies are being used to represent
typical IES studies to demonstrate likely levels of
power to detect moderator effects.

Second, the sample sizes used in this study
were obtained from online structured abstracts.'
Structured abstracts are submitted after a study is
funded. However, studies may change after the
initial funding period and this may include
changes to the design and sample sizes. Spybrook
et al. (2013) examined changes in sample size
and precision between the planning phase and
the implementation phase of a set of early CRTs
funded by IES and found that, in the majority of
studies, changes in sample sizes between phases
did not lead to major changes in the precision of
the study. However, any changes that may have
occurred in the sample size in this sample of
studies are not accounted for in these analyses.

Third, some structured abstracts provided
more information than others. In cases in which
designs or sample sizes were not clear, we used
our knowledge of research design to classify
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studies to the best of our ability. However, our
assessments may not be consistent with the origi-
nal intent of the authors.

Fourth, we used the empirical literature to
estimate design parameters. Individual studies
may have used different estimates of design
parameters specific for their study and hence the
use of the empirical literature may lead to an
overestimate or underestimate of the MDES and
MDESD:s. Fifth, we assume equal allocation of
teachers or schools to condition, and equal allo-
cation of students, teacher, or schools to different
moderator subgroups. Deviations away from this
will lessen the power to detect main effects and
moderator effects. Finally, we did not include
multisite CRTs in our sample as the methodologi-
cal work related to the power calculations for
moderator effects in multisite CRTs lags behind
that of two- and three-level CRTs. Given the lim-
itations in this study, the findings are not meant
to be definitive in nature. Rather, they are meant
to help the field start to understand the likely
capacity of typical size CRTs funded by IES to
help answer questions about what works, for
whom, and under what conditions.

Looking Forward

Moving beyond the what works question and
considering questions about for whom and under
what conditions an intervention is effective is
critical in meeting the mission of IES to improve
education outcomes for all students. These are
important questions that will help policymakers
and school personnel make better decisions about
which interventions to adopt. We applaud IES for
pushing researchers to answer these critical ques-
tions. However, we believe that it is important to
also consider whether one study, given the typi-
cal resource allotment, can achieve all of these
goals. Although we show that there may be
potential for studies conducted in elementary,
middle, and high schools to detect meaningful
moderators at the student or teacher level, we
also show that this is not likely in pre-K studies
or studies of special populations where the num-
ber of students per teacher or school may be
small. Furthermore, regardless of target grade, it
is more challenging to design studies with the
capacity to detect meaningful effects of school-
level moderators.



Given some of the potential challenges asso-
ciated with powering studies to detect effects of
school-level moderators, perhaps IES might
encourage greater collaboration across studies
during the design phase of studies. For example,
they might encourage or incentivize the collec-
tion of a set of common moderator variables and
outcomes across studies. This would facilitate
tests of moderator effects of similar outcomes
across several studies where pooling across stud-
ies may lead to greater power to detect important
moderator effects. On a larger scale, common
moderator variables and outcomes would also
lead to stronger meta-analyses of the effects of
various interventions. Working together, particu-
larly in the design phase of studies, will likely
help us move closer to building a body of evi-
dence on which to base education policy and
practice, a central goal of IES.

More support for methodological work related
to power for moderator effects is also critical.
Over the past several years, we have started to
see more work dedicated to power for moderator
effects in CRTs (e.g., Bloom & Spybrook, 2017;
Dong et al., 2018; Spybrook et al., 2016). For
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example, researchers are considering strategies
to improve power to detect moderator effects that
involve things such as selecting schools that are
more heterogeneous on the moderator of interest
to maximize the magnitude of the effect and
hence the likelihood of detecting the effect
(Zhang et al., 2019). This work extends beyond
binary moderators to consider continuous mod-
erators and the potential differences in power
across the two types of moderators. In addition,
work on power for moderator effects in multisite
CRTs is underway. We have also started to see a
new set of user-friendly software available to
conduct these calculations. PowerUp!-Moderator
(Dong, Kelcey, et al., 2016) is available in an
excel platform and as PowerUpR Shiny applica-
tion (poweruprshiny.shinyapps.io/v104/). Both
of these interfaces are accessible and intended
for substantive researchers and methodologists
conducting power calculations. We anticipate
that the availability of user-friendly tools will
ultimately lead to a steady increase in power
analyses for planning CRTs to answer questions
about what works, for whom, and under what
conditions.

Principal investigator

Project title

Efficacy of the DCCS Program: ESL and Classroom Teachers Working Together With
Promoting School Readiness Through Emotional Intelligence: An Efficacy Trial of

Testing the Efficacy of Double Check: A Cultural Proficiency Professional

Testing the Efficacy of a Developmentally Informed Coping Power Program in Middle

Testing the Integration of an Empirically-Supported Teacher Consultation Model and a

Social-Emotional Learning and Literacy Intervention in Urban Elementary Schools

Efficacy of a Brief Intervention Strategy for School Mental Health Clinicians

Babinski, L.
Students and Families
Bailey, C.
Preschool RULER
Bradshaw, C.
Development Model in Middle Schools
Bradshaw, C Evaluating Maryland State Policies to Improve School Climate
Bradshaw, C.
Schools
Brown, J.
Bruns, E.
Crawford, A.

Examining the Cost-effectiveness of Continuous Improvement Models for Preschool

Teachers: Balancing PD Structures to Match Teacher Need

Davenport, J.
Downer, J.

Improving Children’s Understanding of Mathematical Equivalence: An Efficacy Study
Examining the Efficacy of RULER on School Climate, Teacher Well-Being,

Classroom Climate, and Student Outcomes

Dynarski, S.

Dual-Credit Courses and the Road to College: Experimental Evidence From Tennessee

(continued)
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Principal investigator

Project title

Feng, M.
Freiberg, J.
Gray, S.
Greenwood, C.
Gunn, B.
Harris, C.
Herman, K.
Howard, E.
Justice, L.
Landry, S.
Landry, S.
Lewis, C.
Lorch, E.
Mashburn, A.
Moeller, B.
Nugent, G.
Redmond, C
Rosanbalm, M.
Roschelle, J.
Schneider, S.
Schneider, S.
Sorby, S.
Swanson, E.

Upshur, C.

Wayne, W.
Wendt, A.

Efficacy of ASSISTments Online Homework Support for Middle School Mathematics
Learning: A Replication Study

Consistency Management & Cooperative Discipline (CMCD): An Efficacy Trial With
Students in Third and Fourth Grade Urban Schools

Efficacy of the TELL Curriculum for Preschool Children Who Are Economically
Disadvantaged

The Effects of Promoting Engaging Early Literacy Interactions in Preschool
Environments: Literacy 3D

An Investigation of Direct Instruction Spoken English for At-Risk English Learners

Efficacy Study of an Integrated Science and Literacy Curriculum for Young Learners

Evaluation of a Classroom Management Training Program for Middle School
Teachers

An Efficacy Trial of the HighScope Preschool Curriculum (HSPC)

Causal Effects of the Kindergarten Transition Intervention

Internet Implementation of Empirically-Supported Interventions That Can Be
Remotely Delivered in Authentic Preschool Programs for Mothers and Teachers:
Evaluation of Direct Child and Teacher Outcomes

Scalable Approaches for Preparing Early Childhood Teachers: Identifying Costs and
Effectiveness of Evidence Based Approaches to Coaching

Improvement of Elementary Fractions Instruction: Randomized Controlled Trial Using
Lesson Study With a Fractions Resource Kit

Efficacy of a Narrative Comprehension Intervention for Elementary School Children
At-Risk for Attention-Deficit Hyperactivity Disorder

Efficacy of MindUP on Pre-Kindergarteners’ Development of Social-Emotional
Learning Competencies and Academic Skills

Math for All: Assessing the Efficacy of a Professional Development Program for
Elementary School Teachers

Testing the Efficacy of INSIGHTS for Promoting Positive Learning Environments and
Academic Achievement in Nebraska: A Replication Study

Testing the Efficacy of Embedded Social Skills Within a Universal Classroom
Management Program: Well-Managed Schools

Effects of the Incredible Years Dinosaur Classroom Prevention Program on Preschool
Children’s Executive Functioning and Academic Achievement

Efficacy of an Integrated Digital Elementary School Mathematics Curriculum

Word Learning Strategies: A Program for Upper-Elementary Readers

Efficacy Study of Adventures Aboard the S.S.GRIN: Social, Emotional, and Academic
Skills

Enhancing Middle School Mathematics Achievement Through Spatial Skills
Instruction

Examining the Efficacy of Differential Levels of Professional Development for
Teaching Content Area Reading Strategies

Kidsteps II: Promoting School Readiness Through Social-Emotional Skill Building in
Preschool

My Science Tutor: Improving Science Learning Through Tutorial Dialogs (MyST)

Evaluation of We Have Skills, A Multimedia Classroom Level Social Skills Program
for Elementary Students
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