


Foundational Methods: Power Analysis

Randomized trials (RTs) are the gold standard for education impact studies as a well-
designed and implemented RT yields an unbiased estimate of the treatment effect (Hedges,
2017). In an RT, individuals or groups of individuals are randomly assigned to either receive the
treatment that is being tested or to a comparison condition, which often utilizes the business as
usual (BAU) model or program. The intervention being tested might be a reading improvement
program, an online math curriculum, or a professional development program for teachers. A RT
is highly regarded in evaluating program impact because random assignment creates two or more
equivalent groups based on observed or unobserved characteristics (Shadish, Cook, and
Campbell, 2002). For example, the process of randomly assigning students to treatment and
comparison groups would theoretically create two groups that have a similar composition of
gender, race or ethnicity, and socioeconomic characteristics, or observed characteristics. In
addition, random assignment also ensures that the two groups also have similar composition of
unobserved characteristics, or characteristics that cannot be directly measured, such as attitude
and self-efficacy (U.S. Department of Education, 2003). Creating equivalent treatment and
comparison groups is an essential element in designing RTs because it partitions out the
preexisting differences between groups to ensure that the observed treatment effect is the result
of the intervention.

There are many components that contribute to the validity of the inferences in an RT,
including the primary outcome measures and analytic plan (Shadish, Cook, and Campbell, 2002).
Although all of these are important, in this chapter we focus specifically on the statistical power
to detect an effect of a given magnitude. Statistical power is the probability of detecting an effect

of a given magnitude when the true effect is non-zero. The probability of making a Type II error



increases as the statistical power of the study decreases. Low statistical power may lead to
invalid inferences about the presence or absence of a treatment effect.

A statistical power analysis is typically carried out to determine the probability of an RT
to detect the main treatment effect (Hedges and Rhoads, 2010). The main treatment effect is the
average effect of the intervention. It is often quantified in terms of its effect size, defined as the
standardized difference in the mean outcome between the treatment and comparison conditions.
The sensitivity of an RT to detect the main treatment effect often focuses on three overlapping
topics: the standard error associated with the treatment effect, the power to detect the main
effect, and the smallest effect size a study is designed to detect (Hedges and Hedberg, 2012). The
latter two topics are typically the focus of a-priori power analysis, or a power analysis is
conducted during the planning stage of an RT.

Demonstrating that a study is sufficiently powered to detect an effect with a certain
magnitude of interest is an imperative component of planning an RT. For example, suppose a
team of researchers is developing a new online mathematics tutoring program for students and
plans to test the impact of the program on mathematics achievement. They design an RT in
which students are assigned to either the new online tutoring program or the current program. At
the conclusion of the study, the team finds that there is no difference in mean outcomes for the
two groups. A key question one might ask is whether there is no difference because the new
program is not better than the current program or if the study simply is not sufficiently powered
to detect a meaningful treatment effect? That is, was the sample size too small so that the
estimated treatment effect was imprecise leading to a failure to reject the null hypothesis? This is

not a question that one should ask at the end of a study. An a-priori power analysis is critical to



ensure that the study is designed to enable strong evidence of whether an intervention is
effective.

The purpose of this chapter is to present an overview of statistical power for RTs seeking
to test the impact of an educational intervention. We lay the foundation by beginning with the
statistical power to detect the treatment effect for a single-level RT, or a single level study in
which students are the unit of random assignment. Then we discuss the statistical power to detect
the treatment effect for a cluster randomized trial (CRT) or a study in which clusters, such as
schools, are assigned to conditions and outcomes are assessed at the student level. CRTs are
common in impact studies in education given the nested structure of schools, students within
schools, and the fact that interventions are often implemented at the school level. We end with a
discussion of other types of statistical power analyses that are relevant for impact studies of
educational interventions. Though our discussion focuses on studies with randomized designs,
the models and methods of conducting power analyses also apply to non-randomized designs.

1. Power for Single Level RTs
1.1 Model without covariates

Recall the online mathematics tutoring program example. Students are randomly assigned
to either the new program or the current program. Student mathematics achievement is the
primary outcome. The level 1, or student-level model is:

Yi =Bo+ BT e e;~N(0,0%) (1)

Where Y; is the mathematics score for individual i = {1, ..., n}; B, is the overall mean
mathematics score; f3; is the mean difference between the treatment and comparison group or the
main treatment effect; T; is a treatment indicator with -% for control and - for treatment, and e;

is the residual error associated with students with variance 2.



The treatment effect is estimated by ; = Yz — ¥, where ¥; is the mean for the treatment
group and Y is the mean for the control group. The variance of the estimated treatment effect,

which describes uncertainty of the estimate effect, is:

a2

Var(,[?l) = e (2)

Note the variance of the treatment effect is a function of the total sample size (n), the proportion
of students assigned to the treatment condition (P), and the between-student variance within a

treatment condition (a?). The associated hypothesis test is:
Hy: B, =0 3)
Hi:p;#0

This test is based on the F statistic, which is defined as:

(Mstreatment)
Fopopiops = ———treatment; 4
statistic (Mserror) ()

which denotes the relationship between treatment variance and error variance.
The power for F-test is (Kirk, 1982):

Power = Prob (Reject Hy|H, is false) (5)
= Prob (F > Fy)-3)
=1—Prob (F < Fu1,-2)
where F,; ;5 is the critical value under the null hypothesis with 1 numerator degree of freedom
and n — 2 denominator degrees of freedom. Under the null hypothesis, the F-statistic follow the

central F-distribution. Under the alternative hypothesis, the F-statistic follows the noncentral F-

distribution, represented by a non-centrality parameter A. As Equation 6 shows, the non-



centrality parameter is a function of the true treatment effect and variance of the estimated

treatment effect.

T Var@y)  o%/[P(-P)n]

It is common to standardize the parameters. The standardized treatment effect can be

expressed as § = B, /Vo?. Set 02 = 1 and substituting & into Equation 6, we get the

standardized version as:

62
A= Tt @

The non-centrality parameter is related to the power of the test. That is, the power
increases as the A increases. Equation 7 suggests A is a function of the sample size (n), the
standardized treatment effect (&), and the proportion of individuals in the treatment condition
(P). As n increases, the non-centrality parameter increases, thus the power also increases.
Applying this concept to the example of designing a study to test an online mathematics tutoring
program, the researcher could improve the power to detect the treatment effect by increasing the
number of students in the sample. This approach is often adopted by researchers since sample
size typically under the control of the researcher. The power also increases as § increases.
However, the magnitude of the treatment effect is a function of the intervention and not

something that is typically under the control of the researcher.
1.2 Model with a covariate

Researchers often include covariates to increase the precision of the estimated treatment

effect. A pre-treatment measure, such as the students’ mathematics achievement prior to



receiving the intervention, is often incorporated in the model. In this case, the level-1 or the

student level model is an extension of Equation 1:
Vi =Bo+ BiTi + BoXi + e ei~N(0,07) (8)

where X; is the pre-treatment covariate and £, is the effect associated with the covariate. The

2
. . . S o] )
proportion of variance explained by the covariate is Rlzx =1- —U': where 2 is the between-

person variance within a treatment condition and aﬁc is the variance conditional on the covariate
Under the alternative hypothesis, the F-statistic follows a non-central F-distribution with

1 numerator and n — 3 denominator degrees of freedom. Note that the inclusion of a covariate

reduces the degrees of freedom by 1. The standardized version of the non-centrality parameter is:

né?

A= UramiarD)] ©)

As Equation 9 suggests, A is a function of the sample size (n), the percent of variance explained
by the covariate (R|2x), the treatment effect which was standardized by between-person variance
within a treatment condition (&), and the proportion of individuals assigned to the treatment
condition (P). As R |2x increases, the non-centrality parameter increases, thus the power also

Increases.

Continuing with the example of designing a study to test an online mathematics tutoring
program, the researcher could include a pre-intervention measure that is highly correlated with
the mathematics achievement outcome, such as the student’s mathematics achievement outcome

from the previous year, to increase the power of test for a given sample size and treatment effect.

1.3 Power calculation for individual level RCTs



There are two main approaches to conducting a power analysis: the sample size approach
and the effect size approach. The sample size approach calculates the number of individual level
units necessary for a study to detect a standardized main treatment effect of a given magnitude
with a specified level of power, often power = 0.80, which is generally the acceptable level of
power for designing educational studies. Software programs, like Optimal Design Plus
(Raudenbush et al., 2011), CRT Power (Borenstein and Hedges, n.d.), and PowerUp! (Dong and
Maynard, 2013) are freely available for conducting power analysis for individual-level and
multi-level RTs. These software programs can also be used to conduct power analysis for studies

with non-randomized designs.

Suppose the researchers designing the online mathematics tutoring program are interested
in determining the number of students they need to detect a treatment effect of 0.20 standard
deviations (SD). Figure 1 shows the study needs at least 790 students to detect a treatment effect
of 0.20 at power = 0.80 if using a model without covariates (solid line). However, as the dashed
line in Figure 1 demonstrates, the study only needs to recruit 288 students if using a model with a
pretest covariate that explains 64% of the between-student variance within a treatment condition

(R |2x = 0.64). This is an example where choosing appropriate covariate(s) in the model could

significantly reduce the cost associated with the study. Note that we set the target treatment
effect size as 0.20 SD in this example. This is based on the effect sizes of 0.20 — 0.30 SD

commonly found in education interventions (Hill et al., 2009)
[Insert Figure 1 here]

The effect size approach determines the minimum detectable effect size (MDES) a study

can detect with a given number of individual-level units at a given level of power, typically



power = 0.80 (Bloom, 1995). Continuing with the example of an online mathematics tutoring
program, suppose the research team is limited to a sample of 500 students. They want to know
the MDES assuming power = 0.80. Figure 2 demonstrates that the MDES is 0.25 based on the
model without covariates (solid line). However, the dashed line in Figure 2 shows that the
MDES is 0.15 when considering a pretest covariate that explains 64% of the between-student
variance within a treatment condition. In other words, the study could detect a smaller treatment
effect with power = 0.80 when the model includes a covariate, while other parameters remain
constant.

[Insert Figure 2 here]
2. Power for Two-Level CRTs

In a cluster randomized trial (CRT), groups of individuals, or clusters are randomly
assigned to treatment and comparison conditions. This type of design is prevalent in education
because individual units are naturally nested within clusters. For instance, students are naturally
nested in schools, where students within one school experience the same type of school climate
and administrative support. Because of this nesting structure, interventions are often assigned to
schools and students within a school receive the same treatment.
2.1 Model without Covariates

Suppose a research team is interested in assessing the effectiveness of a supplemental
reading program and plans to assign schools to either implement the program or carry on with
the program that is already in place. The team seeks to determine the impact of the program on
student reading achievement. This is a typical two-level CRT with students nested within
schools, schools randomly assigned to treatment and comparison conditions and outcome

measured at the student level.



The level-1, or the student level model is:
Yij = Boj + € e;j~N(0,0?) (10)
where Yj; is the reading score for individual i = {1, ...,n}; Bo; is the mean reading score for

school j; e;; is the residual error associated with students with variance a2,
The level 2, or the school-level model is:

ﬂoj =Yoo + Yo1Tj + 7o;j Toj"’N(O»Too) (11)
where y,, is the grand mean reading achievement; y, is the mean difference between the

treatment and control groups or the main treatment effect; T; is a treatment indicator with -2 for

control and ' for treatment, and 1y is the residual error associated with schools with variance
Too-
The treatment effect is estimated by 75, = Yz — Y where Y is the mean for the treatment

group and Y is the mean for the control group. The variance of the estimated treatment effect is:

(Too+0?%/n)

Var(Yo1) = JP(1-P) (12)

Equation 12 shows that the variance of the estimated treatment effect is a function of the
between-cluster variance within a treatment condition (7g), within-cluster or between-student
variance (02), the sample size within a cluster (), and the total number of clusters (J). The
associated hypothesis is:

Hyp:yo1 =0
Hi:y91 #0 (13)

and the power for the test is:

10



Power = Prob (Reject Hy|H, is false) (14)
= PT‘Ob (F > Fa’;l,]—Z)

=1 — Prob (F < Fa;l,]—Z)

(MStreatment) {jnder the null hypothesis, the F°

(MSCluster)

In the case of 2-Level CRT, the F-statistic =

statistic follows a central F distribution with 1 numerator degree of freedom and J — 2
denominator degrees of freedom. Under the alternative hypothesis, the F statistic follows a non-

central F distribution represented by the non-centrality parameter A.

__ Y& _ JPA-PW& (15)
Var(¥o1)  (Too+o?/n)

As in the case of the single-level RT, it is common to standardize the parameters, Hence

WE can re-express A as:

_ JP(1-P)é&?
A= ras oy (16)
where § is the standardized treatment effect § § = \/% and p is the intraclass correlation
Toot0O
(ICC) p = - Ti"az , or the proportion of between-cluster variance within a treatment condition
00

relative to the total variance within a treatment condition. .

Recall that the power increases as the noncentrality parameter increases. Equation 16
demonstrates that power increases as the treatment effect (J ) increases, the sample size increases
and specifically the total number of clusters (J) and the ICC (p) decreases. As noted earlier, the
magnitude of the treatment effect is a function of the intervention and hence not typically under

the control of the researcher. The ICC is a function of the clusters. That is, the more homogenous
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the clusters, schools for example, the smaller the ICC. Therefore, the researcher may have some
control in reducing the ICC during the sampling stage of the study. However, the sample size is
still the parameters that the researcher can influence the most. Though it is important to note that
increasing the total number of clusters (J) has a much stronger effect on the power to detect the

main treatment effect than increasing the number of individuals per cluster (7).
2.2 Model with a cluster-level covariate

Similar to the case of an individual-level RT, it is common to include covariates to
increase the precision of the estimated treatment effect (Bloom, Richburg-Hayes, and Black, 2007).
In a two-level CRT, cluster-level covariates, such as school mean achievement scores are
frequently incorporated in impact analyses because they are more readily available and less
costly to collect compared to the data for individual-level covariates. In addition, they explain the
between-cluster variance and thus drive down the ICC, which increases the power to detect the
treatment effect, holding everything else constant. Hence, we limit our discussion to the case of
cluster-level covariates.

The level-1 model is the same as the level-1 model without covariates. The level-2, or the
cluster-level model is

Boj = Yoo + Yo1Tj + Vo2 Wj + 1y rOjNN(OJ T00|W) (17)
where W; is the cluster-level covariate and vy, is the effect associated with the covariate. The

proportion of between-cluster variance within a treatment condition explained by the covariate is

2 _ 4 _ Toow
RYy =1—222
00
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Under the alternative hypothesis, the F-statistic follows a non-central F-distribution with
1 numerator and J — 3 denominator degrees of freedom. Note that the inclusion of a covariate

reduces the degrees of freedom by 1. The standardized version of the non-centrality parameter is:

. JP(1-P)&%
[a-RZ)p+(1-p)/n]]

(18)

Note that the difference between Equation 18 and the non-centrality parameter for the
model without covariates (Equation 16) is the factor (1 - R|2W), which reduces the between-

cluster variance within a treatment condition. However, a cluster-level covariate does not reduce
the within-cluster variance. The more variance explained by the cluster-level covariate, the

greater the power, holding everything else constant.

The proportion of variance between-clusters within a treatment condition (ICC) and the
proportion of variance explained by a cluster-level covariate (R|2W) are referred to as the design

parameters for conducting power analysis. These design parameters are context-specific and
depend on the specific outcome, sample, nesting structure, etc. Empirical estimates of these
design parameters for some outcomes, such as student achievement outcomes, are widely
available in the literature (Hedges and Hedberg, 2007; Hedges and Hedberg, 2012; Kelcey &
Shen, 2016; Spybrook, Westin, and Taylor, 2016). The literature generally suggests the school-
level ICCs, such that involved in the power calculations for two-level CRTs where schools are at
level-2, are in the range of 0.14 — 0.26 for student mathematics and reading achievement
outcomes (Hedges and Hedberg, 2007) and 0.17 — 0.31 for student science achievement
outcomes (Spybrook, Westin, and Taylor, 2016). Similarly, studies of teacher development that
draw on two-level CRTs where teachers are nested within schools 2 suggest that ICCs are in the

range of 0.16 — 0.35 for mathematics knowledge for teaching and 0.08 to 0.24 for reading
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knowledge for teaching (Kelcey & Phelps, 2013a; 2013b). The school-level R’ values associated
with achievement pretest covariates are 0.71 — 0.80 for student mathematics, reading, and
science achievement outcomes (Hedges and Hedberg, 2007; Spybrook, Westin, and Taylor,
2016). These design parameters are pertinent in the accuracy of power calculation for CRTs. In
the event the empirical estimates are not available for a particular outcome or context, a small
pilot study in similar schools with a similar outcome may be useful for generating estimates of

the design parameters.

2.3 Power calculation for two-level CRTs

The two approaches for conducting power calculation for individual-level RTs also apply
to CRTs. Suppose a research team assigns the supplemental reading program to schools, such
that half of the schools receive the intervention and the other half continues with the current
program. The team is interested in examining the program’s impact on students’ reading
achievement. Using the sample size approach, the team wants to determine the number of
schools the study needs to detect a treatment effect of 0.20 with 50 students per school at power
= 0.80. The team assumes that 15% of the variance is between the clusters (i.e., ICC = 0.15).
Figure 3 shows the study needs at least 132 schools based on the model without any covariates
(solid line). Suppose the team plans to include the school average reading score from a year prior
to implementing the intervention as a level-2 covariate. Further, this covariate explains 80% of
the between-cluster variance within a treatment condition. Figure 3 shows the study only needs
approximately 40 schools to achieve a power of 0.80 (dashed line), which is approximately 1/3

of those needed for the model without any covariate.

[Insert Figure 3 here]
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Similarly, the research team could use the effect size approach for power analysis.
Suppose the same the research team has a limited budget and they could only recruit 50 schools
and 50 students per school. Figure 4 demonstrates that the MDES is 0.33 based on the model
without any covariates (solid line), which is larger than the 0.20 — 0.30 effect size that studies in
education typically are designed to detect. However, when the school average pretest covariate is
included as a cluster-level covariate that explains 80% of the between-cluster variance within a
treatment condition, the MDES is 0.18 (dashed line in Figure 4). This new MDES is below the
range of 0.20 — 0.30, which suggests that the study is sufficiently powered to detect a meaningful
treatment effect. This example highlights the importance of cluster-level covariates in reducing

the sample sizes needed to sufficiently power a study.

[Insert Figure 4 here]

3. Future Directions

As the field is accumulating more knowledge on the main treatment effects of educational
interventions, which answers the “what works?” question, researchers are also interested in the
capacity of RTs to answer more questions. For example, “for whom?”, “under what
conditions?”, and “how?” questions are quintessential for understanding the applicability of
interventions across educational contexts and the underlying mechanisms the interventions work
to improve student achievement. Researchers often rely on moderator and mediator analyses for
answering these questions. As such, more researchers are planning studies and conducting power

analyses for main, moderator, and mediator effects (Spybrook et al., 2020).

Moderator effects represent differential treatment effects. For example, one may ask,

does the treatment have a differential effect based on gender or pretest score? From a modeling
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perspective, they are represented by an interaction term between the moderator and the
treatment. In an individual-level RT, moderators are the individual-level. In a two-level CRT,
moderators may be at the individual-level or cluster-level. The literature on calculating power for
moderator effects in CRTs is growing (e.g. Bloom, 2005; Jaciw, Lin, and Ma, 2016; Spybrook,
Kelcey, and Dong, 2016; Dong et al., in press; Dong, Kelcey, and Spybrook, in press) and
software is also available for conducting these analyses (PowerUp!-Moderator).

Mediator effects are key to understanding the mechanisms through which an intervention
comes to be effective. For example, the researcher may want to test the extent to which a new
science curriculum operates by first increasing students’ interest in science such that the
increased interest leads to greater science achievement. Interest in science represents the
mediator in this example. Literature for power calculations for mediator effects is also growing,
particularly for CRTs (e.g. Kelcey et al., 2020; Kelcey, Spybrook, and Dong, 2019) and software
is also available for conducting these analyses (PowerUp!-Mediator).

However, there are many challenges ahead. One challenge being the moderator and
mediator effect sizes studies should aim to detect. Education researchers typically plan CRTs to
detect the main treatment effect of 0.20 — 0.30 SDs (Hill et al., 2008). The same reference effect
sizes for planning studies to detect a moderator or mediator effects are in need of further
exploration. As more CRTs are incorporating these types of analyses in their designs, we hope to

see more evidence of moderation and mediation effects accumulate in the field.
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