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ABSTRACT
The rapid advances in federated learning (FL) in the past few years

have recently inspired a great deal of research on this emerging

topic. Existing work on FL often assume that clients participate in

the learning process with some particular pattern (such as balanced

participation), and/or in a synchronous manner, and/or with the

same number of local iterations, while these assumptions can be

hard to hold in practice. In this paper, we propose AFL-DGA, an

Anarchic Federated Learning algorithm with Delayed Gradient Av-

eraging, which gives maximum freedom to clients. In particular,

AFL-DGA allows clients to 1) participate in any rounds; 2) par-

ticipate asynchronously; 3) participate with any number of local

iterations; 4) perform gradient computations and gradient commu-

nications in parallel. The proposed AFL-DGA algorithm enables

clients to participate in FL flexibly according to their heterogeneous

and time-varying computation and communication capabilities, and

also efficiently by improving utilization of their computation and

communication resources. We characterize performance bounds on

the learning loss of AFL-DGA as a function of clients’ local itera-

tion numbers, local computation delays, and global gradient delays.

Our results show that the AFL-DGA algorithm can achieve a con-

vergence rate of 𝑂 ( 1√
𝑁𝑇

) and also a linear convergence speedup,

which matches that of existing benchmarks. The results also char-

acterize the impacts of clients’ various parameters on the learning

loss, which provide useful insights. Numerical results demonstrate

the efficiency of the proposed algorithm.
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1 INTRODUCTION
As an emerging paradigm of machine learning (ML), federated learn-
ing (FL) carries out model training in a distributed manner [15]:

Instead of collecting data from a possibly large number of devices
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to a central server in the cloud for training, FL trains a global ML

model by aggregating local ML models computed distributedly

across edge devices based on their local data. One significant ad-

vantage of FL is to preserve the privacy of individual devices’ data.

Moreover, since only local ML models rather than local data are

sent to the server, the communication costs can be greatly reduced.

Furthermore, FL can exploit substantial computation capabilities of

ubiquitous smart devices.

In order to fully realize the potential of FL, several challenges

need to be addressed due to heterogeneous and time-varying com-

putation and communication capabilities of clients’ devices. First of

all, clients may not be able to participate in every round of the entire

learning process. This is particularly the case for cross-device FL

where many clients only have resource-constrained mobile devices

which are sometimes not available to perform local computations

and/or communications with the FL server. Moreover, due to het-

erogeneity in computation and communication capabilities, even a

client is able to participate in learning, it may be impossible or inef-

ficient for all clients to complete their local computations and also

communications of their local models in every round of the learning

process in a synchronous manner. As a result, clients may need

to compute and communicate their local models asynchronously.

Furthermore, even clients can participate in FL synchronously in a

round, they may perform different numbers of local iterations of

computation, based on their computation capabilities. Such hetero-

geneous computation configuration can improve the efficiency of

clients in FL, especially when there are stragglers. However, exist-

ing work on FL only considered some of the issues discussed above,

but not all the issues at the same time.

Besides the heterogeneity in clients’ computation and commu-

nication capabilities, FL also faces the challenge of heterogeneous

local data across clients, so that local gradients computed by clients

from their local data can be diverse. In contrast to conventional

distributed ML where nodes typically communicate after every

local computation iteration, clients in FL can perform multiple local

iterations of computation before communicating their local models.

While this feature can reduce communication costs of FL, it may

slow down the convergence of the global model due to local model

drifts (which has been studied in some recent works such as [9, 21]).

In a typical FL algorithm, each client needs to receive the (av-

erage) global gradient of all participating clients, before starting

the next round of local computation iterations. However, a client

may have to wait for a long time before receiving the average

global gradient, as it involves communications of the local and

global gradients to and from the FL server, respectively. This is

especially the case when gradient communication times are in the

same order of magnitude as gradient computation times. Therefore,
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to improve utilization of clients’ computation resources, it is effi-

cient for a client to start the next round of local computations right

after the previous round, without receiving the global gradient of

the previous round. In other words, the client performs gradient

computations for the next round and gradient communications for

the previous round in parallel.

While such concurrent gradient computations and communica-

tions improves resource utilization and thus can reduce the training

time, it results in a delay of the global gradient when received by

a client, in relative to the client’s current local model. To mitigate

the issue of local model drifts due to this global gradient delay, an

effective approach is to correct a client’s current local model accord-

ing to the delayed global gradient for the past local computation

iterations that have already been carried out in the current round.

Intuitively, such delayed (global) gradient averaging (DGA) can

reduce local model drifts and thus accelerate the convergence of

the FL algorithm.

In this paper, we explore Anarchic Federated Learning with De-

layed Gradient Averaging (AFL-DGA), which addresses all the chal-

lenges of FL as discussed above. In particular, AFL-DGA imposes

minimum control on how clients participate in FL by allowing

clients to 1) participate in arbitrary rounds; 2) participate asyn-

chronously; 3) participate with arbitrary numbers of local iterations;

4) perform gradient computations and gradient communications

in parallel. By giving maximum freedom to clients, AFL enables

clients to participate in FL flexibly according to their needs, e.g.,

based on their heterogeneous and time-varying computation and

communication capabilities. Moreover, AFL-DGA allows clients

to pipeline gradient computations with gradient communications,

which improves utilization of clients computation and communica-

tion resources. In the meanwhile, AFL-DGA can effectively reduce

local model drifts due to clients’ heterogeneous data, by correcting

clients’ local models with delayed global gradients. Although AFL

has been studied very recently in [28], it does not take into account

DGA (see detailed comparison in Section 4.2). While DGA has been

studied in a recent work [31], it did not consider features of AFL

(see detailed comparison in Section 4.2).

The main contributions of this paper are summarized as follows:

• We propose AFL-DGA, an Anarchic Federated Learning

with Delayed Gradient Averaging (AFL-DGA), which allows

clients to participate in any rounds, in an asynchronous man-

ner, and with any numbers of local iterations. The proposed

AFL-DGA algorithm enables clients to participate in FL effi-

ciently and flexibly according to their needs, e.g., based on

their heterogeneous and time-varying computation and com-

munication capabilities. Moreover, the proposed algorithm

allows clients to pipeline gradient computations with gradi-

ent communications, while correcting clients’ local models

with delayed global gradients to reduce the client’s local

model drifts.

• We conduct convergence analysis for the AFF-DGA algo-

rithm by characterizing performance bounds on the learn-

ing loss as a function of various parameters of clients. Our

results show that the AFL-DGA algorithm can achieve a

convergence rate of 𝑂 ( 1√
𝑁𝑇

) and also a linear convergence

speedup, which matches that of existing benchmarks. The

results also characterize the impacts of clients’ local itera-

tion numbers, local computation delays, and global gradient

delays on the learning loss, which provide useful insights.

• We evaluate the performance of the proposed AFL-DGA al-

gorithm by conducting numerical experiments for FL bench-

marks. The experimental results demonstrate the efficiency

of the proposed algorithms.

The remainder of this paper is organized as follows. Section II

reviews related work. In Section III, we present AFL-DGA algo-

rithm. In Section IV, we analyze the convergence of the proposed

AFL-DGA algorithm. Numerical results based on experiments are

provided in Section VI.

2 RELATEDWORK
FL has emerged as a disruptive computing paradigm for ML by

democratizing the learning process to potentially many individual

users using their end devices [2, 4, 7–9, 13, 15, 16, 18, 19, 23, 25, 26,

29, 30]. The past few years have seen tremendous research on FL.

In the following, we discuss recent work on FL from three different

aspects that are mostly related to this paper.

Federated Learning with Partial Client Participation. One
major challenge for FL is that clients may not always participate

throughout the entire learning process. This is especially true for

cross-device FL where many clients have resource-constrained mo-

bile devices which are sometimes not possible or too costly to

perform local computations and/or communicate local/global mod-

els with the server. Many recent works [13, 23, 28, 31] studied FL

where only some of all clients participate in learning in a round.

Most of these studies [13, 31] assumed that clients’ participation is

balanced (e.g., the set of participating clients are randomly selected

from all clients), such that each client has the same probability of

participation. Under this assumption, it has been shown that FL

algorithms can achieve a vanishing convergence error. However, in

the general case where clients’ participation can be arbitrary, there

is a non-vanishing convergence error due to the worst-case client

participation. This paper not only considers arbitrary client par-

ticipation, but also asynchronous participation and heterogeneous

local iteration numbers of clients. A recent work [28] has proposed

and studied the AFL algorithm, where clients can participate in

a round or not in an asynchronous manner with different local

iteration number. Compared to AFL, the AFL-DGA proposed in this

paper integrates the DGA algorithm, which is a major algorithmic

difference compared to AFL (see detailed discussion in Section 4.2).

Asynchronous Federated Learning. Many existing work [13,

23, 31] on FL studied synchronous algorithms where participating

clients perform local computations and exchange local models in the

same round (note that synchronous FL can also have partial client

participation). However, synchronous algorithms can be inefficient

as some clients may have to wait for other clients to complete their

computations and/or communications, especially when there are

stragglers due to heterogeneous computation and communication

capabilities of clients. In this case, asynchronous algorithms [14, 28]

are more efficient where a client can start its local computations in

one round while completing the communication of its local model

in another round. In this paper, besides asynchronous learning, we

also consider arbitrary client participation and heterogeneous local



Anarchic Federated learning with Delayed Gradient Averaging Conference’17, July 2017, Washington, DC, USA

iteration numbers. A recent work [31] studied the DGA algorithm

under the simplified settings where clients participate in each round

in a synchronous manner with the same local iteration number.

Compared to DGA, the AFL-DGA algorithm proposed in this paper

includes DGA as a special case and is much more non-trivial (see

detailed discussion in Section 4.2).

Federated Learning with Heterogeneous Computations. One
salient feature of FL is that clients can have heterogeneous computa-

tion capabilities. As a result, it is more efficient and flexible to allow

clients to use different computation configurations. Some existing

work on FL [20, 28] considered clients who use different mini-batch

sizes, different local iteration numbers, and/or different learning

model structures, etc. This paper considers clients with different

local iteration numbers as well as arbitrary client participation and

asynchronous algorithms.

3 ANARCHIC FEDERATED LEARNINGWITH
DELAYED GRADIENT AVERAGING

In this section, we first present the settings and the problem formu-

lation of the FL problem we study. Then we describe the algorithm

design of the Anarchic Federated Learning with Delayed Gradient

Averaging (AFL-DGA), and explain its rationale.

3.1 System Setting and Problem Formulation
Consider a FL system with an FL server and 𝑁 clients in setN who

collaboratively train a ML model with distributed local data in an

asynchronous manner. The goal of the FL system is to minimize the

training loss, which is given by the following optimization problem:

min

𝒘
𝐹 (𝒘) ≜

∑︁
𝑘∈N

𝑝𝑘𝐹𝑘 (𝒘),

where 𝐹 (𝒘) is the global loss function,𝒘 is the model parameter 𝑝𝑘
is the coefficient of client 𝑘’s local loss function, and

∑
𝑘∈N 𝑝𝑘 =

1. 𝐹𝑘 (𝒘) is the local loss function determined by client 𝑘’s local

dataset and 𝑓𝑖 (𝒘) = 𝐸𝜉𝑖 [𝐹𝑖 (𝒘 ; 𝜉𝑖 )]. In the setting of empirical risk

minimization, 𝑓𝑖 could be further expressed as finite sums and the

random variable 𝜉𝑖 corresponds to a mini-batch sample. Let 𝒘𝑡
𝑖, 𝑗

denote the local model of client 𝑖 in the 𝑗-th iteration of round 𝑡 ,

and 𝒈𝑡
𝑖, 𝑗

the corresponding stochastic gradient.

A client 𝑖 is considered as participating in round 𝑡 if it sends

its local gradient to the server in round 𝑡 , which is then used by

the server to compute the global gradient for round 𝑡 . If a client

𝑖 participates in round 𝑡 , it uses its local model to perform one or

multiple local iterations of stochastic gradient descent (SGD), each

of which is given by

𝒘𝑡𝑖, 𝑗+1 ≜ 𝒘𝑡𝑖, 𝑗 − 𝜂▽𝐹𝑖 (𝒘
𝑡
𝑖, 𝑗 , 𝜉

𝑡
𝑖, 𝑗 ), 𝑗 = 0, 1, ..., 𝐾𝑡𝑖 − 1,

where ℎ is the local iteration index, 𝜉𝑘
𝑡,ℎ

is a sample uniformly

chosen from the client 𝑘’s local dataset, and 𝐾𝑡
𝑖
is the number of

local iterations in round 𝑡 .

Let 𝜏𝑡
𝑖
be the delay of the client 𝑖’s most recent participation

with respect to round 𝑡 (i.e., the difference between 𝑡 and the index

of the round in which client 𝑖 last participate before round 𝑡 ). In

particular, if 𝜏𝑡
𝑘
= 1,∀𝑘 ∈ N , then the FL algorithm is synchronous;

otherwise, it is asynchronous.

We use Γ =
∑
𝑘∈N 𝑝𝑘 (𝐹 ∗ − 𝐹 ∗𝑘 ) to quantify the non independent

and identically distributed (non-i.i.d) degree of the local data among

all clients [13]. If Γ = 0, then the local data are i.i.d., otherwise, they

are non-i.i.d case. The larger Γ is, the higher non-i.i.d. degree is. In

addition, we do not allow a client to never update her model to the

server, which means there exists a maximum delay constraint.

3.2 Algorithm Design of AFL-DGA
In the following, we present the design of the AFL-DGA algorithm.

0. In the beginning, each client 𝑖 uses the initial global model𝒘0
.

1.In each round 𝑡 , if client 𝑖 participates in round 𝑡 , it performs

a 𝐾𝑡
𝑖
number of local iterations of SGD from its local model 𝒘𝑡

𝑖,0
.

If client 𝑖 receives the global gradient of a previous round 𝑡 ′ <

𝑡 in any local iteration 𝑘 of round 𝑡 , it corrects its local model

according to 𝒘𝑡
𝑖,𝑘

= 𝒘𝑡
𝑖,𝑘

− 𝜂𝐾𝑡 ′
𝑖
𝒈𝑡 ′ + 𝜂∑𝐾𝑡 ′

𝑖

𝑗=1
𝒈𝑡

′
𝑖, 𝑗
. After this local

model correction, client 𝑖 continues its local SGD iterations for

round 𝑡 until 𝐾𝑡
𝑖
iterations are completed. Then client 𝑖 starts a new

round of local SGD iterations based on its local model, for the next

round that it participates in (which can be any round 𝑡 ′ > 𝑡 ).
2. At the end of each round 𝑡 , each client participating in round

𝑡 computes its local gradient averaged over its local iterations in

round 𝑡 , which is 𝒈𝑡
𝑖
=

∑𝐾𝑡
𝑖

𝑗=1
𝒈𝑡
𝑖, 𝑗
/𝐾𝑡
𝑖
, and then sends it to the server.

3. After receiving the average local gradient from each par-

ticipating client 𝑡 , the server computes the global gradient for

round 𝑡 as the average local gradient across all clients, which is

𝒈𝑡 =
∑𝑁
𝑖=1 𝒈

𝑡
𝑖
/𝑁 . If a client 𝑖 does not participate in round 𝑡 , the

server uses the most recent local gradient received from client 𝑖 to

compute the global gradient for round 𝑡 . Then the server sends the

global gradient for round 𝑡 to all clients.

4. Repeat the step 1 − 3 until the training process converges or

reaching the maximum training round.

To illustrate the main ideas of the AFL-DGA algorithm, we ana-

lyze its dynamics as follows. In round 𝑡 , client 𝑖 first performs 𝐾𝑡
𝑖

local iterations such that

𝒘𝑡
𝑖,𝐾𝑡

𝑖

= 𝒘𝑡
𝑖,𝐾𝑡

𝑖
−1 − 𝜂𝒈

𝑡
𝑖,𝐾𝑡

𝑖
−1 = ... = 𝒘𝑡𝑖,0 − 𝜂

𝐾𝑡
𝑖
−1∑︁

𝑗=0

𝒈𝑡𝑖, 𝑗

When client 𝑖 completes its local iterations for round 𝑡 , it sends its

average local gradient𝒈𝑡
𝑖
to the server. Right after the local gradient

is sent, client 𝑖 immediately continues to perform local iterations for

round 𝑡 + 1 (assuming that it participates in round 𝑡 + 1), leaving the
local gradient of round 𝑡 in transmission. When client 𝑖 receives the

global gradient for round 𝑡 from the server, it has already performed

another 𝐷𝑡
𝑖
local iterations for round 𝑡 + 1, such that

𝒘𝑡+1
𝑖,𝐷𝑡

𝑖

= 𝒘𝑡+1
𝑖,𝐷𝑡

𝑖
−1 − 𝜂𝒈

𝑡+1
𝑖,𝐷𝑡

𝑖
−1 = ... = 𝒘𝑡

𝑖,𝐾𝑡
𝑖

− 𝜂
𝐷𝑡
𝑖
−1∑︁

𝑗=0

𝒈𝑡+1𝑖, 𝑗︸     ︷︷     ︸
round 𝑡+1

At this point, the global gradient 𝒈𝑡 of round 𝑡 arrives, Then we

correct client 𝑖’s local model by replacing all the local gradients

computed for round 𝑡 in (1) by the global gradient of round 𝑡 , given
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Figure 1: Schedule of AFL-DGA: AG is local gradient aggregation, each C block represents an iteration of local gradient
Computation, each M block represents a local gradient coMmunication (uplink or downlink communication).

by

𝒘𝑡+1
𝑖,𝐷𝑡

𝑖

= 𝒘𝑡
𝑖,𝐾𝑡

𝑖

− 𝜂
𝐷𝑡
𝑖
−1∑︁

𝑗=0

𝒈𝑡+1𝑖, 𝑗 − 𝜂𝐾𝑡𝑖 (𝒈𝑡 − 𝒈𝑡
𝑖
)

Compared to the time spent on computing the gradient, correcting

the gradient takes almost no time, due to the fact that correcting the

gradient only involves a small number of adding and subtraction

operations. The detailed process is shown in Algorithm 1.

The schedule of the proposed AFL-DGA algorithm is described

in Fig 1. As an example, the evolution trajectory of client 3’s local

model is given as below:

𝒘0 − 𝜂𝒈13,1 − 𝜂𝒈
2

3,1 − 𝜂𝒈
2

3,2 − 𝜂 (𝒈1 − 𝒈1
3,1) − 𝜂𝒈

4

3,1 − 𝜂𝒈
4

3,2

− 𝜂 (2𝒈2 − 𝒈2
3,1 − 𝒈2

3,2) − 𝜂𝒈
4

3,3 − 𝜂𝒈
4

3,4 − 𝜂𝒈3 − 𝜂𝒈
4

3,5 − 𝜂𝒈
5

3,1 .

Note that client 3 participates in rounds 1, 2, and 4, but not round 3.

3.3 Rationale of AFL-DGA
Next we discuss the rationale behind the algorithm design of AFL-

DGA.

Global gradient averaging replaces clients’ local gradients with

the averaged global gradient of all clients, which reduces clients’

local model drifts and thus can accelerate the convergence of the FL

algorithm. However, global gradient averaging involves gradient

communications which can incur substantial delays. By paralleliz-

ing gradient computations with gradient communications, clients’

computation and communication resources are better utilized while

the running time of the FL algorithm can be reduced. However, such

parallelization results in delayed gradient averaging, which comes

at the cost that the extra local gradients computed before averag-

ing a client’s local model with the delayed global gradient is more

biased than that computed after the averaging.

We observe from the algorithm design of AFL-DGA that each

clients sends its local gradient averaged over its local iterations to

the server, which is then further averaged over all clients to find the

global gradient. Intuitively, the averaged local gradient (rather than

the accumulative local gradient) over the local iterations should

be used, since all clients have the same weight in the global loss

function of the FL problem.

We should also note from the algorithm design of AFL-DGA that,

instead of replacing a client’s local model entirely by the delayed

global model, the local model is corrected by the delayed global

gradient by replacing only the local gradient components of the

local model that are computed in the round of the global gradient.

Intuitively, the extra local gradients computed before correcting the

local model, although they are biased, are still useful components

of the local model to direct the progress of local computations. This

is a major difference of DGA algorithms compared to standard

asynchronous FL algorithms,

Moreover, it is worth noting that the delayed global gradient is

always used by each client to correct its local model, as soon as it is

received by the client, no matter whether the client participate in a

round or not. Intuitively, even when a client does not participate

in a round, after correcting the client’s local model with the de-

layed global model of that round, its local model (and thus its local

gradient computed from the local model) would be less biased.

4 CONVERGENCE ANALYSIS OF AFL-DGA
In this section, we first introduce some assumptions, followed with

the convergence analysis of our algorithm.

Assumption 1. (Smoothness). Each local objective function is
L-smooth, that is, ∀𝑥,𝑦

∥▽𝑓𝑖 (𝑥) − ▽𝑓𝑖 (𝑦)∥ ≤ 𝐿 ∥𝑥 − 𝑦∥
Assumption 2. (Unbiased Local Stochastic Variance). The

stochastic gradient at each client is an unbiased estimator of the local
gradient: 𝐸𝜉𝑖 [𝑔𝑖 (x|𝜉)] = ▽𝐹𝑖 (x), and has bounded variance

E𝜉

[
∥𝑔𝑖 (𝒘 |𝜉𝑖 ) − ▽𝑓𝑖 (𝒘)∥2

]
≤ 𝜎2, ∀𝑖 ∈ {1, 2, , ..., 𝑚}, 𝜎2 ≥ 0

Assumption 3. (Bounded Gradients). We assume that the un-
biased gradients has bounded second moment: E ∥𝑔𝑖 (𝒘)∥2 ≤ 𝐺2.

Assumption 4. (Bounded Asynchronous Delay). We assume
that there exists a maximum delay 𝑡𝑑 , which means a client must
communicate with the server within 𝑡𝑑 rounds (𝑡𝑑 ≥ max{𝜏𝑡

𝑖
|𝑖 ∈

N , 𝑡 ∈ [1,𝑇 ]}).
Assumption 1 and 4 are standard and commonly used in the

literature on learning and optimization [6, 21, 28]. For Assumption 2,

the boundedness of local stochastic gradients’ variances is also a
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Algorithm 1 Anarchic Federated Learning with Delayed Gradient

Averaging (AFL-DGA),

1: input: local iteration numbers {𝐾𝑡
𝑖
|𝑖 ∈ N , 𝑡 ∈ [1,𝑇 ]}, global

gradient delays {𝐷𝑡
𝑖
|𝑖 ∈ N , 𝑡 ∈ [1,𝑇 ]}, local computation

delays {𝜏𝑡
𝑖
|𝑖 ∈ N , 𝑡 ∈ [1,𝑇 ]}, initial global model𝒘0

;

2: for Round 𝑡 = 1 to 𝑇 do
3: Sever:
4: Collect the updates 𝒈𝑡

𝑖
from communicating clients;

5: if Client 𝑖 communicates with the server then
6: Set 𝜏𝑡

𝑖
= 1 and store 𝒈𝑡

𝑖
on the server;

7: end if
8: if Client 𝑖 does not communicate with the server then
9: Set 𝜏𝑡

𝑖
= 𝜏𝑡−1

𝑖
+ 1;

10: end if

11: 𝒈𝑡 = 1

𝑁

∑𝑁
𝑖=1 𝒈

𝑡−𝜏𝑡
𝑖

𝑖
and𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝒈𝑡 ;

12: Broadcast 𝒈𝑡 ;
13: Client:
14: for Client 𝑖 = 1 to 𝑁 do
15: for round 𝑠 = 𝑡 − 𝜏𝑡

𝑖
to 𝑡 do

16: if Receive the average global gradient 𝒈𝑠 then
17: 𝒘𝑠

𝑖
= 𝒘𝑠−1

𝑖
+ 𝜂𝒈𝑠−1

𝑖
− 𝜂𝒈𝑠−1, where𝒘0

𝑖
= 𝒘0

;

18: end if
19: for Local iteration 𝑘 = 1 to 𝐾𝑠

𝑖
do

20: Sample the stochastic gradient 𝒈𝑠
𝑖,𝑘

at the previous

iterate𝒘𝑠
𝑖,𝑘
;

21: 𝒘𝑠
𝑖,𝑘+1 = 𝒘𝑠

𝑖,𝑘
− 𝜂𝒈𝑠

𝑖,𝑘
;

22: end for
23: end for
24: Send the 𝑡-th round accumulated local updates 𝒈𝑡

𝑖
:=

1

𝐾𝑡
𝑖

∑𝐾𝑡
𝑖

ℎ=1
𝒈𝑡
𝑖,ℎ

to the server;

25: end for
26: end for
27: Return:𝒘𝑇 .

common assumption for prior work on FL with non-IID datasets [5,

17, 24]. Assumption 3 is used in some works [13].

4.1 Main Results
Next, we present theoretical performance guarantee for the AFL-

DGA algorithm via convergence analysis.

Theorem 1. Under Assumption 1, 2, 3 and 4. The sequence gener-
ated by delayed gradient averaging with stepsize 𝜂 ≤ 1

𝐿
satisfies

1

𝑇

𝑇−1∑︁
𝑡=0

E

[


▽𝑓 (𝒘𝑡 )


2] ≤ 2

𝜂𝑇

(
E

[
𝑓 (𝒘0)

]
− E

[
𝑓 (𝒘𝑇 )

] )
+ 𝜂𝐿
𝑁

(𝜎2 +𝐺2)

+ 𝐿2𝜂2 (𝐾𝑚 + 𝐷𝑚)2𝐺2 + 𝐿
2𝜂2

𝑁 2
(𝜎2 +𝐺2) 1

𝑇

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑖=1

(𝜏𝑡𝑖 + 𝜏
𝑡−𝜏𝑡

𝑖

𝑖
− 1)

where 𝐷𝑚 = max{𝐷𝑡
𝑖
|𝑖 ∈ [1, 𝑁 ], 𝑡 ∈ [1,𝑇 ]} and 𝐾𝑚 = max{𝐾𝑡

𝑖
|𝑖 ∈

[1, 𝑁 ], 𝑡 ∈ [1,𝑇 ]}.

Remark: We note that the convergence error bound consists of

two parts: a vanishing term that decreases and goes to 0 as the

number of rounds𝑇 increases, and a non-vanishing (constant) term

which depends on the parameters of the problem instance and is

independent of 𝑇 . The decay rate of the vanishing term matches

that of the typical SGDmethods. The first part of the non-vanishing

term (i.e.,
𝜂𝐿

𝑁
(𝜎2 +𝐺2)) is due to the local stochastic gradients used

by each client, which shrinks at rate 1/𝑁 as the number of clients

𝑁 increases.

We observe that the first part of the non-vanishing term in-

volves the local gradient variance 𝜎2 and depends on the number

of clients 𝑁 . This error term is due to the variance of stochastic

gradients, and it reduces at the rate of 1/𝑁 . Intuitively, although

clients’ data are heterogeneous, the variance of the aggregated lo-

cal stochastic gradients across clients is lower than that of a single

client, which results in the variance reduction. The second part

of the non-vanishing term (i.e., 𝐿2𝜂2 (𝐾𝑚 + 𝐷𝑚)2𝐺2
) depends on

clients’ local iteration numbers 𝐾𝑡
𝑖
, and it increases with 𝐾𝑡

𝑖
. Intu-

itively, due to clients’ heterogeneous data, more local computation

iterations drives each client’s local model more towards its local

optimal model and possibly away from the global optimal model

(also known as “local drifts” in existing works on FL [13, 18]). As

a result, the error bound increases as the local iteration numbers

go up. To make the non-vanishing terms small, a sufficiently small

learning rate 𝜂 should be chosen.

Remark:We also observe that the error bound increases as clients’

local model delays increase. This is because, as the local model

delay increases, there is more error in the most recent local model

used in the proposed algorithm compared to the actual local model

without any delay. Therefore, the error increases when the delay is

higher.

We observe that the convergence error bound also depends on

clients’ global gradient delays.

Remark: Since gradient computations can be performed simul-

taneously with gradient communications, the total time span of

a round 𝑡 can be reduced from max𝑖 {(𝐾𝑡𝑖 + 𝐷𝑡
𝑖
)𝑑} to max𝑖 {𝐾𝑡𝑖 𝑑}

where 𝑑 is the delay of one local computation iteration. Therefore,

DGA can reduce the training time by a fold of (𝐾𝑡
𝑖
+ 𝐷𝑡

𝑖
)/𝐾𝑡

𝑖
. This

performance gain is substantial when communication delays are

large.

Based on Theorem 1, we obtain the following convergence rate

for the proposed AFL-DGA algorithm with a proper choice of the

learning rate.

Corollary 1. Let the stepsize 𝜂 =

√
𝑁

𝐿
√
𝑇

and Δ = E

[
𝑓 (𝒘0)

]
−

E

[
𝑓 (𝒘𝑇 )

]
yields

1

𝑇

𝑇−1∑︁
𝑡=0

E

[


▽𝑓 (𝒘𝑡 )


2] = O
(

1

√
𝑁𝑇

(𝐿Δ + 𝜎2 +𝐺2)
)

+ O
(
𝑁

𝑇
(𝐾𝑚 + 𝐷𝑚)2𝐺2

)
+ O

(
𝑁

𝑇
(2𝑡𝑑 − 1) (𝜎2 +𝐺2)

)
Remark: The result above shows that our AFL-DGA algorithm

achieves a convergence rate of O( 1√
𝑇
). It has been shown that

asynchronous FL algorithms under the non-convex setting can

achieve a convergence rate of O( 1√
𝑇
) (e.g., AsyncCommSGD [3],

AFA-CD [28]). As our algorithm which is asynchronous can reach
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a convergence rate of O( 1√
𝑇
), it matches that of the existing asyn-

chronous algorithms.

We observe that when 𝑇 is larger than some threshold (which

depends on (𝐾𝑚 + 𝐷𝑚)2), the first term of the bound is dominant,

so that the error bound is O( 1√
𝑁𝑇

). This shows that AFL-DGA
achieves a linear speedup despite non-IID datas of clients, which

matches many existing algorithms.

Remark: Corollary 1 shows that the proposed Algorithm 1 can

converge to the optimal value (rather than an error neighborhood)

in the sense that the convergence error can bemade arbitrarily small

if the number of rounds 𝑡 is large enough. It has been shown in prior

work [22] that FL with arbitrary client participation results in a non-

vanishing convergence error. This is due to an objective function

drift under theworst-case scenario of client participation, regardless

of the choices of learning rates and local iteration numbers. In

our proposed algorithm, we use the most recent local model from

a client in a round if the server does not receive a local model

update from that client in that round. In this way, we show that

the objective function drift can be addressed, despite of using the

most recent local model rather than the actual local model from

the client if the server would receive a local model update from

that client in that round. In fact, the error between the most recent

local model and the actual local model can be properly controlled

by choosing an appropriate learning rate.

4.2 Discussions
Comparison with DGA. The DGA algorithm has been proposed

and studied in [31] under ideal and simplified settings where all

clients participate in each round in a synchronous manner with

the same local iteration number. In this paper, we propose AFL-

DGA under much more general settings which are practical but

complex. Compared to DGA, AFL-DGA includes DGA as a special

case and is much more non-trivial. In particular, the algorithm

design of AFL-DGA has several major differences: 1) if a client

does not participate in a round, the server uses the most recent

averaged local gradient received from the client to compute the

global gradient of the round; 2) a client computes the averaged

(normalized) local gradient over its multiple local iterations in a

round, which is used by the server to compute the global gradient for

the round; 3) a client uses the delayed global gradient of a round to

correct its local model, regardless of whether the client participates

in that round or not. Due to these algorithmic differences of AFL-

DGA, its convergence analysis is also different from that of DGA in

non-trivial ways. In particular, the use of the most recent averaged

local gradient of each client allows us to decompose an error term

involving the global loss function’s gradient into multiple error

terms, each involving the gradient of only one client’s local loss

function. Also, using the delayed global gradient in every round

to correct a client’s local model allows us to quantify the error

between the client’s local model and the server’s global model in a

round. Moreover, in the convergence analysis of [31], as all clients

use the same local iteration number, a bound is found on the error

between a client’s local model and the average local model of all

clients in each local iteration. However, as heterogeneous local

iteration numbers are considered in this paper, we need to bound

the error between a client’s local model and the global model in a

round, which results in substantial differences in the analysis.

Comparison with AFL. A recent work [28] has proposed and

studied the AFL algorithm, where clients can participate in a round

or not in an asynchronous manner with different local iteration

number. Compared to AFL, AFL-DGA integrates the key idea of

the DGA algorithm, which is using delayed global gradients to

correct a client’s local model. This major algorithmic difference of

AFL-DGA compared to AFL results in a non-trivial challenge in the

convergence analysis, due to the coupling among asynchronous

local gradient delays, global gradient delays, and local iteration

numbers. In particular, the error between a client’s local model and

the server’s global model (which results in the non-vanishing term

in the convergence error) depends on all these three parameters.

5 NUMERICAL EXPERIEMENTS
In this section, we conduct experiments to verify our theoretical

results.

5.1 Simulation Setup
We use i) logistic regression (LR) on manually partitioned non-i.i.d.

MNIST dataset [11] ii) convolutional neural network (CNN) for im-

age classification using CIFAR-10 [10]. To impose data heterogene-

ity, we distribute the data evenly to each worker in a label-based

partition following the same process in the literature [12, 15, 27].

We use the code Federated-Learning-Master [1] and the above real

datasets to verify our theoretical results.

We first compare the accuracy of 4 algorithms in i.i.d. and non-

i.i.d data settings. Then we further simulate the relationship be-

tween communication rounds and test accuracy, and training loss,

respectively.

5.2 Simulation Results
5.2.1 Training accuracy. : We conduct the following experiments

with different algorithms. We choose 3 different algorithms, which

are FedAvg, DGA [32], and our proposed AFL-DGA. We choose

the stepsize at 0.01, local iteration is 10. From Table 1 and Fig 2, it

can be found that the algorithm with DGA can maintain accuracy

compared with FedAvg. As our algorithm allows clients to run

heterogeneous local iterations and delayed iterations which better

make use of training timewhile DGA [32] only allows homogeneous

local iteration and delayed iterations, thus our AFL-DGA algorithm

can reach a slightly higher test accuracy than DGA.
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Figure 2: Test accuracy vs
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Table 1: Comparison of FedAvg, DGA’s and our algorithm’s accuracy on 2 datasets with both i.i.d and non-i.i.d partitions in
synchronous federated learning.

Datasets Partition FedAvg (N=5) FedAvg (N=10) DGA [32] (N=5, D=20) Our Algorithm (N=5, D=20, 𝑡𝑑 = 1)

MNIST i.i.d 89.1 90.1 90.2 90.7

non-i.i.d 62.3 61.7 61.9 62.0

CIFAR-10 i.i.d 87.8 89.3 89.5 90.2

non-i.i.d 68.6 67.2 69.3 69.1
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Figure 4: Training loss vs
communication round un-
der different schemes for
AFL-DGA.

0 10 20 30 40 50 60 70 80 90 100

Number of rounds

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

G
lo

b
a
l 
lo

s
s

i.i.d. Data

Non-i.i.d. Dataset 1

Non-i.i.d. Dataset 2

Non-i.i.d. Dataset 3

Figure 5: Training loss vs
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for AFL-DGA.

5.2.2 Impact of the scheme of AFL-DGA. In the previous experi-

ments, we have proved that our AFL-DGA algorithm can work well

in most settings, and we next test the effect of different communi-

cation schemes on the convergence speed. We choose the stepsize

at 0.01, local iteration is 10, the number of clients is 30, the asyn-

chronous delay 𝑡𝑑 = 2, and the non-i.i.d. degree Γ = 0. As shown

in Fig 4, fast-𝑘 refers to the server collecting the fast-𝑠 clients who

finish their local computation under the maximum delay constraint

in the IID setting. It can be found that more clients computing

in a round (a larger 𝑠) can speed up the training process because

more participating clients can let clients compute with a smaller

delay model. When there are only a few clients can update their

model in each round, then there must exist a straggler with a much

higher maximum delay, which can make the aggregation result

degradation.

5.2.3 Impact of the non-i.i.d. degree. In the previous experiments,

we test the effect of the non-i.i.d. degree on the convergence speed.

We choose the stepsize at 0.01, local iteration is 10, the number

of clients is 30, the asynchronous delay 𝑡𝑑 = 2, and the com-

munication scheme is top-1. As shown in Fig 5, the non-i.i.d. de-

gree of 4 datasets is increasing (Γ(i.i.d) < Γ(non-i.i.d dataset 1) <
Γ(non-i.i.d dataset 2) < Γ(non-i.i.d dataset 3)). It is shown that the
degree of non-IID affects the convergence rate, where a slower con-

vergence speed with a higher non-i.i.d. degree, but it does not affect

the final results, which meet our analyses.

5.2.4 Impact of the asynchronous delay. In this experiment, we test

the effect of the asynchronous delay on the convergence speed. We

choose the stepsize at 0.01, local iteration is 10, the number of clients

is 30, the non-i.i.d. degree Γ = 0, and the communication scheme is

top-1. As shown in Fig 6, the global loss increases with increasing

maximum delay. For a synchronous FL (𝑡𝑑 = 0), which obviously

has the lowest global loss among all situations. At the beginning of

the FL training, the difference between the 4 different maximum

delays is relatively small, since we only require the maximum delay,

resulting in a small difference in clients’ choices at the beginning

of the training. When the training is nearly finished, the difference

becomes larger and larger due to the effect of straggler clients.
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Figure 6: Training loss vs
communication round with
varies maximum delay for
AFL-DGA.
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Figure 7: Test accuracy vs
communication round un-
der different local iterations
for AFL-DGA.

5.2.5 Impact of the local iteration numbers. In this experiment, we

test the effect of the local iteration numbers on the test accuracy. We

choose the stepsize at 0.01, the number of clients is 30, the non-i.i.d.

degree Γ = 0, the asynchronous delay 𝑡𝑑 = 2, and the communica-

tion scheme is top-1. The fact that the clients are allowed to make

several local iterations is a crucial component of FL algorithms. In

this experiment, we investigate how varying local update round

counts affect training efficiency. As shown in Fig 7, we test the

accuracy of the AFL-DGA in i.i.d. data setting with homogeneous

local iteration numbers. It is shown that when the local iteration is

too small e.g., 𝐾 = 1, it needs more communication rounds to reach

convergence. Moreover, too many local iterations can not speed

up the convergence, due to the local training may not contribute

much to the global model as the local iteration increases.

5.2.6 Impact of the number of clients. In this experiment, we test

the effect of the number of clients on the test accuracy. We choose

the stepsize at 0.01, local iteration is 10, the non-i.i.d. degree Γ = 0,

the asynchronous delay 𝑡𝑑 = 2, and the communication scheme is

top-1. We conduct the following experiments with different number

of clients. We use the number of clients from the set {10, 30, 50, 70}.
As shown in Fig 8, test accuracys with different number of clients

have nearly similar performances.

5.2.7 Impact of the stepsize. In this experiment, we test the effect

of the number of clients on the test accuracy. We choose the number



Conference’17, July 2017, Washington, DC, USA Li and Gong.

0 10 20 30 40 50 60 70 80 90 100

Communication Round

0

0.2

0.4

0.6

0.8

1

T
e
s
t 
A

c
c
u
ra

c
y

N=10

N=30

N=50

N=70

Figure 8: Training loss vs
communication round with
varies number of clients for
AFL-DGA.

0 10 20 30 40 50 60 70 80 90 100

Communication Round

0

0.2

0.4

0.6

0.8

1

T
e
s
t 
A

c
c
u
ra

c
y

=0.00005

=0.0001

=0.005

=0.01

Figure 9: Test accuracy vs
communication round un-
der different stepsizes for
AFL-DGA.

of clients is 30, local iteration is 10, the non-i.i.d. degree Γ = 0, the

asynchronous delay 𝑡𝑑 = 2, and the communication scheme is top-

1. We use the stepsize from the set {0.0005, 0.001, 0.005, 0.01}. As
shown in Fig. 9, larger local step-sizes lead to faster convergence

rates.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose Anarchic Federated Learning with Delay

Gradient Averaging (AFL-DGA) to deal with high communication

latency in both synchronous and asynchronous federated learning.

We have justified that the theoretical convergence is no slower than

FedAvg in non-convex settings for both situations. We also loosen

the restriction on local loss function gradients being bounded. Next,

we demonstrate that our algorithm is capable of enjoying high scal-

ability under poor network conditions while preserving accuracy,

especially on non-i.i.id partitions. Finally, using realistic datasets,

we run simulations. We think that a variety of applications in high

latency networks among heterogeneous federated learning contexts

will be made possible by our work.

For future work, we will explore AFL-DGA in other settings of

FL, such as for decentralized networks of clients. These cases will

be more challenging to study due to the complex communication

structure.
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A LEMMA 1 AND PROOF
Lemma 1. The difference between the 𝑖-th client at 𝑗-th local itera-

tion in round 𝑡 − 𝜏𝑡
𝑖
and the average parameter across all clients is

uniformly bounded:

E

[



𝒘𝑡 −𝒘
𝑡−𝜏𝑡

𝑖

𝑖, 𝑗





2] ≤
𝑡−1∑︁

𝑗=𝑡−𝜏𝑡
𝑖
−𝜏

𝑡−𝜏𝑡
𝑖

𝑖

E

[


𝜂𝒈 𝑗 


2] + 𝜂2 (𝐾𝑚 + 𝐷𝑚)2𝐺2

Proof: For parameter 𝒘𝑡 and 𝒘
𝑡−𝜏𝑡

𝑖

𝑖, 𝑗
, we need to decide when

client 𝑖 communicates with the server. If 𝐷𝑡−𝜏
𝑡
𝑖
−1 < 𝐾𝑡−𝜏

𝑡
𝑖 , then we

can find that client 𝑖 communicates with the server in round 𝑡−𝜏𝑡
𝑖
−1.

Otherwise, if 𝐷𝑡−𝜏
𝑡
𝑖
−1 > 𝐾𝑡−𝜏

𝑡
𝑖 , and 𝐷𝑡−𝜏

𝑡
𝑖
−2 < 𝐾𝑡−𝜏

𝑡
𝑖
−1 + 𝐾𝑡−𝜏𝑡𝑖 ,

thenwe can find that client 𝑖 communicates with the server in round

𝑡 − 𝜏𝑡
𝑖
− 2. This process can continue to the time when 𝐷𝑥−1 < 𝐾𝑥 ,

thus we can get that 𝑗 ≤ 𝐷𝑚 + 𝐾𝑚 , where 𝐷𝑚 = max{𝐷𝑡
𝑖
|𝑖 ∈

[1, 𝑁 ], 𝑡 ∈ [1,𝑇 ]} and 𝐾𝑚 = max{𝐾𝑡
𝑖
|𝑖 ∈ [1, 𝑁 ], 𝑡 ∈ [1,𝑇 ]}.

In addition, we can obtain

E

[



𝒘𝑡 −𝒘
𝑡−𝜏𝑡

𝑖

𝑖, 𝑗





2]

= E










(𝒘0 − 𝜂

𝑡−1∑︁
ℎ=1

𝒈ℎ) − (𝒘0 − 𝜂
𝑡−𝜏𝑡

𝑖
−𝜏

𝑡−𝜏𝑡
𝑖

𝑖
−1∑︁

ℎ=1

𝒈ℎ

−𝜂
𝑡−1∑︁

ℎ=𝑡−𝜏𝑡
𝑖
−𝜏

𝑡−𝜏𝑡
𝑖

𝑖

𝒈ℎ
𝑖
− 𝜂

𝑗−1∑︁
ℎ=1

𝒈𝑡−1
𝑖,ℎ

)










2

𝑑1≤
𝑡−1∑︁

𝑗=𝑡−𝜏𝑡
𝑖
−𝜏

𝑡−𝜏𝑡
𝑖

𝑖

E

[


𝜂𝒈 𝑗 


2] + 𝜂2 (𝐾𝑚 + 𝐷𝑚)2𝐺2
(1)

where 𝑑1 follows Assumption 3.

From (3), we can get

E

[


−𝜂𝒈𝑡 


2] = 𝜂2E











1

𝑁

𝑁∑︁
𝑖=1

1

𝐾
𝑡−𝜏𝑡

𝑖

𝑖

𝐾
𝑡−𝜏𝑡

𝑖
𝑖∑︁
𝑗=1

𝒈
𝑡−𝜏𝑡

𝑖

𝑖, 𝑗










2

𝑏1≤ 𝜂2
1

𝑁 2

𝑁∑︁
𝑖=1

1

𝐾
𝑡−𝜏𝑡

𝑖

𝑖

𝐾
𝑡−𝜏𝑡

𝑖
𝑖∑︁
𝑗=1

E

[



𝒈𝑡−𝜏𝑡𝑖𝑖, 𝑗





2]

= 𝜂2
1

𝑁 2

𝑁∑︁
𝑖=1

1

𝐾
𝑡−𝜏𝑡

𝑖

𝑖

𝐾
𝑡−𝜏𝑡

𝑖
𝑖∑︁
𝑗=1

E

[



𝒈𝑡−𝜏𝑡𝑖𝑖, 𝑗
− ▽𝑓𝑖 (𝒘

𝑡−𝜏𝑡
𝑖

𝑖, 𝑗
)

+▽𝑓𝑖 (𝒘
𝑡−𝜏𝑡

𝑖

𝑖, 𝑗
)




2]

≤𝜂2 1

𝑁 2

𝑁∑︁
𝑖=1

1

𝐾
𝑡−𝜏𝑡

𝑖

𝑖

𝐾
𝑡−𝜏𝑡

𝑖
𝑖∑︁
𝑗=1

(
E

[



𝒈𝑡−𝜏𝑡𝑖𝑖, 𝑗
− ▽𝑓𝑖 (𝒘

𝑡−𝜏𝑡
𝑖

𝑖, 𝑗
)




2]

+E
[



▽𝑓𝑖 (𝒘𝑡−𝜏𝑡𝑖𝑖, 𝑗

)




2])

𝑏2≤𝜂2 1

𝑁 2

𝑁∑︁
𝑖=1

1

𝐾
𝑡−𝜏𝑡

𝑖

𝑖

𝐾
𝑡−𝜏𝑡

𝑖
𝑖∑︁
𝑗=1

(
𝜎2 + E

[



▽𝑓𝑖 (𝒘𝑡−𝜏𝑡𝑖𝑖
)




2])

=
𝜂2

𝑁

(
𝜎2 +𝐺2

)
(2)

where 𝑏1 follows Jensen’s inequality, and 𝑏2 is from Assumption 2.

Thus, we can get

𝑡−1∑︁
𝑗=𝑡−𝜏𝑡

𝑖
−𝜏

𝑡−𝜏𝑡
𝑖

𝑖

E

[


𝜂𝒈 𝑗 


2] ≤
𝑡−1∑︁

𝑗=𝑡−𝜏𝑡
𝑖
−𝜏

𝑡−𝜏𝑡
𝑖

𝑖

𝜂2

𝑁

(
𝜎2 +𝐺2

)
=
𝜂2

𝑁
(𝜏𝑡𝑖 + 𝜏

𝑡−𝜏𝑡
𝑖

𝑖
− 1) (𝜎2 +𝐺2)

Thus,

E

[



𝒘𝑡 −𝒘
𝑡−𝜏𝑡

𝑖

𝑖, 𝑗





2] ≤
𝑡−1∑︁

𝑗=𝑡−𝜏𝑡
𝑖
−𝜏

𝑡−𝜏𝑡
𝑖

𝑖

E

[


𝜂𝒈 𝑗 


2] + 𝜂2 (𝐾𝑚 + 𝐷𝑚)2𝐺2

This completes the proof.

B PROOF OF THEOREM 1
Proof:

By the smoothness of 𝑓 , we have

E

[
𝑓 (𝒘𝑡+1)

]
− E

[
𝑓 (𝒘𝑡 )

]
≤ E

[〈
▽𝑓 (𝒘𝑡+1), 𝒘𝑡+1 −𝒘𝑡

〉
+ 𝐿
2




𝒘𝑡+1 −𝒘𝑡



2]

For E

[
𝐿
2




𝒘𝑡+1 −𝒘𝑡



2] , we have

E

[
𝐿

2




𝒘𝑡+1 −𝒘𝑡



2] =

𝐿

2

E

[


−𝜂𝒈𝑡 


2]

= 𝜂2
𝐿

2

E











1

𝑁

𝑁∑︁
𝑖=1
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𝑁 2
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𝑖=1

1
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𝑖

𝐾
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𝑗=1

E
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𝒈𝑡−𝜏𝑡𝑖𝑖, 𝑗





2]

= 𝜂2
𝐿

2

1

𝑁 2

𝑁∑︁
𝑖=1

1

𝐾
𝑡−𝜏𝑡

𝑖

𝑖

𝐾
𝑡−𝜏𝑡

𝑖
𝑖∑︁
𝑗=1

E

[



𝒈𝑡−𝜏𝑡𝑖𝑖, 𝑗
− ▽𝑓𝑖 (𝒘

𝑡−𝜏𝑡
𝑖

𝑖, 𝑗
)

+▽𝑓𝑖 (𝒘
𝑡−𝜏𝑡

𝑖

𝑖, 𝑗
)




2]

≤𝜂2 𝐿
2

1

𝑁 2

𝑁∑︁
𝑖=1

1

𝐾
𝑡−𝜏𝑡

𝑖

𝑖

𝐾
𝑡−𝜏𝑡

𝑖
𝑖∑︁
𝑗=1

(
E

[



𝒈𝑡−𝜏𝑡𝑖𝑖, 𝑗
− ▽𝑓𝑖 (𝒘

𝑡−𝜏𝑡
𝑖

𝑖, 𝑗
)




2]

+E
[



▽𝑓𝑖 (𝒘𝑡−𝜏𝑡𝑖𝑖, 𝑗

)




2])
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𝑏2≤𝜂2 𝐿
2

1

𝑁 2

𝑁∑︁
𝑖=1

1

𝐾
𝑡−𝜏𝑡

𝑖

𝑖

𝐾
𝑡−𝜏𝑡

𝑖
𝑖∑︁
𝑗=1

(
𝜎2 + E

[



▽𝑓𝑖 (𝒘𝑡−𝜏𝑡𝑖𝑖
)




2])

=𝜂2
𝐿

2

𝜎2

𝑁
+ 𝜂2 𝐿

2

1

𝑁 2

𝑁∑︁
𝑖=1

1

𝐾
𝑡−𝜏𝑡
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𝑖
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[



▽𝑓𝑖 (𝒘𝑡−𝜏𝑡𝑖𝑖
)




2] (3)

where 𝑏1 follows Jensen’s inequality, and 𝑏2 is from Assumption 2.

Moreover,

E

[〈
▽𝑓 (𝒘𝑡 ), 𝒘𝑡+1 −𝒘𝑡

〉]
=E

[〈
▽𝑓 (𝒘𝑡 ), −𝜂𝒈𝑡

〉]
= −𝜂E
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▽𝑓 (𝒘𝑡 ), 𝒈𝑡
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= − 𝜂E
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▽𝑓 (𝒘𝑡 ), 1

𝑁
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2] (5)

where 𝑐1 and 𝑐2 follows Jensen’s inequality, and 𝑐3 follows𝐿-smoothness.

Thus, using Lemma 1 to substitute (5), we can get

𝜂

2

E










▽𝑓 (𝒘𝑡 ) −

1

𝑁

𝑁∑︁
𝑖=1

1

𝐾
𝑡−𝜏𝑡

𝑖

𝑖

𝐾
𝑡−𝜏𝑡

𝑖
𝑖∑︁
𝑗=1

▽𝑓𝑖 (𝒘
𝑡−𝜏𝑡

𝑖

𝑖, 𝑗
)










2

≤𝜂
2

1

𝑁

𝑁∑︁
𝑖=1

1

𝐾
𝑡−𝜏𝑡

𝑖

𝑖

𝐾
𝑡−𝜏𝑡

𝑖
𝑖∑︁
𝑗=1

𝐿2E

[



𝒘𝑡 −𝒘
𝑡−𝜏𝑡

𝑖

𝑖, 𝑗





2]

≤𝜂
2

1

𝑁

𝑁∑︁
𝑖=1

1

𝐾
𝑡−𝜏𝑡

𝑖

𝑖

𝐾
𝑡−𝜏𝑡

𝑖
𝑖∑︁
𝑗=1

𝐿2
(
𝜂2

𝑁
(𝜏𝑡𝑖 + 𝜏

𝑡−𝜏𝑡
𝑖

𝑖
− 1) (𝜎2 +𝐺2)

+𝜂2 (𝐾𝑚 + 𝐷𝑚)2𝐺2

)
=
𝐿2𝜂3

2𝑁 2
(𝜎2 +𝐺2)

𝑁∑︁
𝑖=1

(𝜏𝑡𝑖 + 𝜏
𝑡−𝜏𝑡

𝑖

𝑖
− 1) + 𝐿

2𝜂3

2

(𝐾𝑚 + 𝐷𝑚)2𝐺2
(6)

Next, combining (3), (4), and (6) together, we have
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Thus, we can get
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Moreover,
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Telescoping from 𝑡 = 1, ...,𝑇 , we have

1

𝑇

𝑇−1∑︁
𝑡=0

E

[


▽𝑓 (𝒘𝑡 )


2] ≤ 2

𝜂𝑇

(
E

[
𝑓 (𝒘0)

]
− E

[
𝑓 (𝒘𝑇 )

] )
+ 𝜂𝐿
𝑁

(𝜎2 +𝐺2)

+ 𝐿2𝜂2 (𝐾𝑚 + 𝐷𝑚)2𝐺2 + +𝐿
2𝜂2

𝑁 2
(𝜎2 +𝐺2) 1

𝑇

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑖=1

(𝜏𝑡𝑖 + 𝜏
𝑡−𝜏𝑡

𝑖

𝑖
− 1)

This completes the proof.
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