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ABSTRACT

The rapid advances in federated learning (FL) in the past few years
have recently inspired a great deal of research on this emerging
topic. Existing work on FL often assume that clients participate in
the learning process with some particular pattern (such as balanced
participation), and/or in a synchronous manner, and/or with the
same number of local iterations, while these assumptions can be
hard to hold in practice. In this paper, we propose AFL-DGA, an
Anarchic Federated Learning algorithm with Delayed Gradient Av-
eraging, which gives maximum freedom to clients. In particular,
AFL-DGA allows clients to 1) participate in any rounds; 2) par-
ticipate asynchronously; 3) participate with any number of local
iterations; 4) perform gradient computations and gradient commu-
nications in parallel. The proposed AFL-DGA algorithm enables
clients to participate in FL flexibly according to their heterogeneous
and time-varying computation and communication capabilities, and
also efficiently by improving utilization of their computation and
communication resources. We characterize performance bounds on
the learning loss of AFL-DGA as a function of clients’ local itera-
tion numbers, local computation delays, and global gradient delays.
Our results show that the AFL-DGA algorithm can achieve a con-

vergence rate of O( ‘/11]77_) and also a linear convergence speedup,

which matches that of existing benchmarks. The results also char-
acterize the impacts of clients’ various parameters on the learning
loss, which provide useful insights. Numerical results demonstrate
the efficiency of the proposed algorithm.
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1 INTRODUCTION

As an emerging paradigm of machine learning (ML), federated learn-
ing (FL) carries out model training in a distributed manner [15]:
Instead of collecting data from a possibly large number of devices
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to a central server in the cloud for training, FL trains a global ML
model by aggregating local ML models computed distributedly
across edge devices based on their local data. One significant ad-
vantage of FL is to preserve the privacy of individual devices’ data.
Moreover, since only local ML models rather than local data are
sent to the server, the communication costs can be greatly reduced.
Furthermore, FL can exploit substantial computation capabilities of
ubiquitous smart devices.

In order to fully realize the potential of FL, several challenges
need to be addressed due to heterogeneous and time-varying com-
putation and communication capabilities of clients’ devices. First of
all, clients may not be able to participate in every round of the entire
learning process. This is particularly the case for cross-device FL
where many clients only have resource-constrained mobile devices
which are sometimes not available to perform local computations
and/or communications with the FL server. Moreover, due to het-
erogeneity in computation and communication capabilities, even a
client is able to participate in learning, it may be impossible or inef-
ficient for all clients to complete their local computations and also
communications of their local models in every round of the learning
process in a synchronous manner. As a result, clients may need
to compute and communicate their local models asynchronously.
Furthermore, even clients can participate in FL synchronously in a
round, they may perform different numbers of local iterations of
computation, based on their computation capabilities. Such hetero-
geneous computation configuration can improve the efficiency of
clients in FL, especially when there are stragglers. However, exist-
ing work on FL only considered some of the issues discussed above,
but not all the issues at the same time.

Besides the heterogeneity in clients’ computation and commu-
nication capabilities, FL also faces the challenge of heterogeneous
local data across clients, so that local gradients computed by clients
from their local data can be diverse. In contrast to conventional
distributed ML where nodes typically communicate after every
local computation iteration, clients in FL can perform multiple local
iterations of computation before communicating their local models.
While this feature can reduce communication costs of FL, it may
slow down the convergence of the global model due to local model
drifts (which has been studied in some recent works such as [9, 21]).

In a typical FL algorithm, each client needs to receive the (av-
erage) global gradient of all participating clients, before starting
the next round of local computation iterations. However, a client
may have to wait for a long time before receiving the average
global gradient, as it involves communications of the local and
global gradients to and from the FL server, respectively. This is
especially the case when gradient communication times are in the
same order of magnitude as gradient computation times. Therefore,
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to improve utilization of clients’ computation resources, it is effi-
cient for a client to start the next round of local computations right
after the previous round, without receiving the global gradient of
the previous round. In other words, the client performs gradient
computations for the next round and gradient communications for
the previous round in parallel.

While such concurrent gradient computations and communica-
tions improves resource utilization and thus can reduce the training
time, it results in a delay of the global gradient when received by
a client, in relative to the client’s current local model. To mitigate
the issue of local model drifts due to this global gradient delay, an
effective approach is to correct a client’s current local model accord-
ing to the delayed global gradient for the past local computation
iterations that have already been carried out in the current round.
Intuitively, such delayed (global) gradient averaging (DGA) can
reduce local model drifts and thus accelerate the convergence of
the FL algorithm.

In this paper, we explore Anarchic Federated Learning with De-
layed Gradient Averaging (AFL-DGA), which addresses all the chal-
lenges of FL as discussed above. In particular, AFL-DGA imposes
minimum control on how clients participate in FL by allowing
clients to 1) participate in arbitrary rounds; 2) participate asyn-
chronously; 3) participate with arbitrary numbers of local iterations;
4) perform gradient computations and gradient communications
in parallel. By giving maximum freedom to clients, AFL enables
clients to participate in FL flexibly according to their needs, e.g.,
based on their heterogeneous and time-varying computation and
communication capabilities. Moreover, AFL-DGA allows clients
to pipeline gradient computations with gradient communications,
which improves utilization of clients computation and communica-
tion resources. In the meanwhile, AFL-DGA can effectively reduce
local model drifts due to clients” heterogeneous data, by correcting
clients’ local models with delayed global gradients. Although AFL
has been studied very recently in [28], it does not take into account
DGA (see detailed comparison in Section 4.2). While DGA has been
studied in a recent work [31], it did not consider features of AFL
(see detailed comparison in Section 4.2).

The main contributions of this paper are summarized as follows:

e We propose AFL-DGA, an Anarchic Federated Learning
with Delayed Gradient Averaging (AFL-DGA), which allows
clients to participate in any rounds, in an asynchronous man-
ner, and with any numbers of local iterations. The proposed
AFL-DGA algorithm enables clients to participate in FL effi-
ciently and flexibly according to their needs, e.g., based on
their heterogeneous and time-varying computation and com-
munication capabilities. Moreover, the proposed algorithm
allows clients to pipeline gradient computations with gradi-
ent communications, while correcting clients’ local models
with delayed global gradients to reduce the client’s local
model drifts.

e We conduct convergence analysis for the AFF-DGA algo-
rithm by characterizing performance bounds on the learn-
ing loss as a function of various parameters of clients. Our
results show that the AFL-DGA algorithm can achieve a
convergence rate of O(—==) and also a linear convergence

speedup, which matches that of existing benchmarks. The
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results also characterize the impacts of clients’ local itera-
tion numbers, local computation delays, and global gradient
delays on the learning loss, which provide useful insights.

e We evaluate the performance of the proposed AFL-DGA al-
gorithm by conducting numerical experiments for FL bench-
marks. The experimental results demonstrate the efficiency
of the proposed algorithms.

The remainder of this paper is organized as follows. Section II
reviews related work. In Section III, we present AFL-DGA algo-
rithm. In Section IV, we analyze the convergence of the proposed
AFL-DGA algorithm. Numerical results based on experiments are
provided in Section VI.

2 RELATED WORK

FL has emerged as a disruptive computing paradigm for ML by
democratizing the learning process to potentially many individual
users using their end devices [2, 4, 7-9, 13, 15, 16, 18, 19, 23, 25, 26,
29, 30]. The past few years have seen tremendous research on FL.
In the following, we discuss recent work on FL from three different
aspects that are mostly related to this paper.

Federated Learning with Partial Client Participation. One
major challenge for FL is that clients may not always participate
throughout the entire learning process. This is especially true for
cross-device FL where many clients have resource-constrained mo-
bile devices which are sometimes not possible or too costly to
perform local computations and/or communicate local/global mod-
els with the server. Many recent works [13, 23, 28, 31] studied FL
where only some of all clients participate in learning in a round.
Most of these studies [13, 31] assumed that clients’ participation is
balanced (e.g., the set of participating clients are randomly selected
from all clients), such that each client has the same probability of
participation. Under this assumption, it has been shown that FL
algorithms can achieve a vanishing convergence error. However, in
the general case where clients’ participation can be arbitrary, there
is a non-vanishing convergence error due to the worst-case client
participation. This paper not only considers arbitrary client par-
ticipation, but also asynchronous participation and heterogeneous
local iteration numbers of clients. A recent work [28] has proposed
and studied the AFL algorithm, where clients can participate in
a round or not in an asynchronous manner with different local
iteration number. Compared to AFL, the AFL-DGA proposed in this
paper integrates the DGA algorithm, which is a major algorithmic
difference compared to AFL (see detailed discussion in Section 4.2).
Asynchronous Federated Learning. Many existing work [13,
23, 31] on FL studied synchronous algorithms where participating
clients perform local computations and exchange local models in the
same round (note that synchronous FL can also have partial client
participation). However, synchronous algorithms can be inefficient
as some clients may have to wait for other clients to complete their
computations and/or communications, especially when there are
stragglers due to heterogeneous computation and communication
capabilities of clients. In this case, asynchronous algorithms [14, 28]
are more efficient where a client can start its local computations in
one round while completing the communication of its local model
in another round. In this paper, besides asynchronous learning, we
also consider arbitrary client participation and heterogeneous local
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iteration numbers. A recent work [31] studied the DGA algorithm
under the simplified settings where clients participate in each round
in a synchronous manner with the same local iteration number.
Compared to DGA, the AFL-DGA algorithm proposed in this paper
includes DGA as a special case and is much more non-trivial (see
detailed discussion in Section 4.2).

Federated Learning with Heterogeneous Computations. One
salient feature of FL is that clients can have heterogeneous computa-
tion capabilities. As a result, it is more efficient and flexible to allow
clients to use different computation configurations. Some existing
work on FL [20, 28] considered clients who use different mini-batch
sizes, different local iteration numbers, and/or different learning
model structures, etc. This paper considers clients with different
local iteration numbers as well as arbitrary client participation and
asynchronous algorithms.

3 ANARCHIC FEDERATED LEARNING WITH
DELAYED GRADIENT AVERAGING

In this section, we first present the settings and the problem formu-
lation of the FL problem we study. Then we describe the algorithm
design of the Anarchic Federated Learning with Delayed Gradient
Averaging (AFL-DGA), and explain its rationale.

3.1 System Setting and Problem Formulation

Consider a FL system with an FL server and N clients in set A’ who
collaboratively train a ML model with distributed local data in an
asynchronous manner. The goal of the FL system is to minimize the
training loss, which is given by the following optimization problem:

min F(w) = D piFiw),
keN

where F(w) is the global loss function, w is the model parameter py
is the coefficient of client k’s local loss function, and Y c o Px =
1. Fr.(w) is the local loss function determined by client k’s local
dataset and f;(w) = Eg, [Fi(w; &)]. In the setting of empirical risk
minimization, f; could be further expressed as finite sums and the
random variable &; corresponds to a mini-batch sample. Let wf’j
denote the local model of client i in the j-th iteration of round ¢,
and gf,j the corresponding stochastic gradient.

A client i is considered as participating in round ¢ if it sends
its local gradient to the server in round ¢, which is then used by
the server to compute the global gradient for round ¢. If a client
i participates in round t, it uses its local model to perform one or
multiple local iterations of stochastic gradient descent (SGD), each
of which is given by

t oAt b gt . t
Wije1 =Wij— r]VFl(wi’j, 'i,j), j=01.,K -1,

where h is the local iteration index, §f ,, is a sample uniformly

chosen from the client k’s local dataset, and Ki[ is the number of
local iterations in round .

Let Tl.t be the delay of the client i’s most recent participation
with respect to round ¢ (i.e., the difference between ¢ and the index
of the round in which client i last participate before round t). In
particular, if T;; =1, Yk € N, then the FL algorithm is synchronous;
otherwise, it is asynchronous.
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We use I' = Ype v pi (F* — F) to quantify the non independent
and identically distributed (non-i.i.d) degree of the local data among
all clients [13]. If T = 0, then the local data are i.i.d., otherwise, they
are non-ii.d case. The larger T is, the higher non-i.i.d. degree is. In
addition, we do not allow a client to never update her model to the
server, which means there exists a maximum delay constraint.

3.2 Algorithm Design of AFL-DGA

In the following, we present the design of the AFL-DGA algorithm.
0. In the beginning, each client i uses the initial global model w.
1.In each round ¢, if client i participates in round t, it performs

a K! number of local iterations of SGD from its local model wio.

If client i receives the global gradient of a previous round ' <

t in any local iteration k of round ¢, it corrects its local model

according to Wzt',k = wik - r]Kl.t'gt' +1 Zi’tl gflj After this local

model correction, client i continues its local SGD iterations for
round ¢ until Kl.t iterations are completed. Then client i starts a new
round of local SGD iterations based on its local model, for the next
round that it participates in (which can be any round ¢’ > ¢).

2. At the end of each round ¢, each client participating in round

t computes its local gradient averaged over its local iterations in

round ¢, which is g} = Zﬁl gl{ j / Klt , and then sends it to the server.

3. After receiving the average local gradient from each par-
ticipating client ¢, the server computes the global gradient for
round t as the average local gradient across all clients, which is
? = Zfil gf/N. If a client i does not participate in round ¢, the
server uses the most recent local gradient received from client i to
compute the global gradient for round ¢. Then the server sends the
global gradient for round ¢ to all clients.

4. Repeat the step 1 — 3 until the training process converges or
reaching the maximum training round.

To illustrate the main ideas of the AFL-DGA algorithm, we ana-
lyze its dynamics as follows. In round ¢, client i first performs Klt
local iterations such that

Ki-1

N t
Wikt TWikt-1 "Mkt T T Wio T Z 9ij
Jj=0

When client i completes its local iterations for round ¢, it sends its
average local gradientg§ to the server. Right after the local gradient
is sent, client i immediately continues to perform local iterations for
round ¢ + 1 (assuming that it participates in round ¢ + 1), leaving the
local gradient of round tin transmission. When client i receives the
global gradient for round ¢ from the server, it has already performed
another Df local iterations for round t + 1, such that

Di-1
T T e e L S r+1
Wipt Vipt—-1 " M9ipt—1 T T Wige T Z 9ij
Jj=0
—_————
round £+1

At this point, the global gradient ? of round t arrives, Then we
correct client i’s local model by replacing all the local gradients
computed for round ¢ in (1) by the global gradient of round ¢, given
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[ m2 | M2 | M2 M2
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Figure 1: Schedule of AFL-DGA: AG is local gradient aggregation, each C block represents an iteration of local gradient
Computation, each M block represents a local gradient coMmunication (uplink or downlink communication).

by
Di-1
t+1 _ t+1 t ot t
wi,le —wi’Ki[ -1 Z 9i,j -nK; (9" - g;)
Jj=0

Compared to the time spent on computing the gradient, correcting
the gradient takes almost no time, due to the fact that correcting the
gradient only involves a small number of adding and subtraction
operations. The detailed process is shown in Algorithm 1.

The schedule of the proposed AFL-DGA algorithm is described
in Fig 1. As an example, the evolution trajectory of client 3’s local
model is given as below:

w0 — 193, — 1951~ Ng5, —n(g' — 93,) — 195, —ngs,
— 2 2 4 4 -3 4 5
—-1n(29° = 951 — 932) — 1933 — 934 — 19> —NG35 — 193 1-

Note that client 3 participates in rounds 1, 2, and 4, but not round 3.

3.3 Rationale of AFL-DGA

Next we discuss the rationale behind the algorithm design of AFL-
DGA.

Global gradient averaging replaces clients’ local gradients with
the averaged global gradient of all clients, which reduces clients’
local model drifts and thus can accelerate the convergence of the FL
algorithm. However, global gradient averaging involves gradient
communications which can incur substantial delays. By paralleliz-
ing gradient computations with gradient communications, clients’
computation and communication resources are better utilized while
the running time of the FL algorithm can be reduced. However, such
parallelization results in delayed gradient averaging, which comes
at the cost that the extra local gradients computed before averag-
ing a client’s local model with the delayed global gradient is more
biased than that computed after the averaging.

We observe from the algorithm design of AFL-DGA that each
clients sends its local gradient averaged over its local iterations to
the server, which is then further averaged over all clients to find the
global gradient. Intuitively, the averaged local gradient (rather than
the accumulative local gradient) over the local iterations should
be used, since all clients have the same weight in the global loss
function of the FL problem.

We should also note from the algorithm design of AFL-DGA that,
instead of replacing a client’s local model entirely by the delayed
global model, the local model is corrected by the delayed global
gradient by replacing only the local gradient components of the
local model that are computed in the round of the global gradient.
Intuitively, the extra local gradients computed before correcting the
local model, although they are biased, are still useful components
of the local model to direct the progress of local computations. This
is a major difference of DGA algorithms compared to standard
asynchronous FL algorithms,

Moreover, it is worth noting that the delayed global gradient is
always used by each client to correct its local model, as soon as it is
received by the client, no matter whether the client participate in a
round or not. Intuitively, even when a client does not participate
in a round, after correcting the client’s local model with the de-
layed global model of that round, its local model (and thus its local
gradient computed from the local model) would be less biased.

4 CONVERGENCE ANALYSIS OF AFL-DGA
In this section, we first introduce some assumptions, followed with

the convergence analysis of our algorithm.

ASSUMPTION 1. (Smoothness). Each local objective function is
L-smooth, that is, Vx,y

IV£i(x) = vfi(y)ll < L llx =yl

AssumPTION 2. (Unbiased Local Stochastic Variance). The
stochastic gradient at each client is an unbiased estimator of the local
gradient: E¢,[gi(x|&)] = VFi(x), and has bounded variance

Eg [llgiwl&) - viwIIP] <o Vie{l 2, .

AssUMPTION 3. (Bounded Gradients). We assume that the un-
biased gradients has bounded second moment: E ||gi(w)||2 < G2

L m) a2 >0

AsSUMPTION 4. (Bounded Asynchronous Delay). We assume
that there exists a maximum delay t;, which means a client must
communicate with the server within t; rounds (t; > max{ritIi €
N, te[L,T]}).

Assumption 1 and 4 are standard and commonly used in the
literature on learning and optimization [6, 21, 28]. For Assumption 2,
the boundedness of local stochastic gradients’ variances is also a
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Algorithm 1 Anarchic Federated Learning with Delayed Gradient
Averaging (AFL-DGA),

1: input: local iteration numbers {Kit|i e N, t € [1,T]}, global
gradient delays {Dl?|i € N, t € [1,T]}, local computation
delays {rl.t|i € N, t € [1,T]}, initial global model w';

2: forRoundt =1to T do

Sever: .

Collect the updates gf from communicating clients;

if Client i communicates with the server then
Set 7/ = 1 and store g! on the server;

end if

if Client i does not communicate with the server then
Set Tit = fl.t_l +1;

10:  endif

F_1yN 77 s
1 gt=x 3N, g, " andwl =w! —pgt;
122 Broadcast g/;
13:  Client:

14: for Clienti=1to N do

15: for round s =t — 7} to t do

16: if Receive the average global gradient g5 then

17: wi = wl?_l + r]gf_1 —ngs~1, where w? =wl;

18: end if

19: for Local iteration k = 1 to K do

20: Sample the stochastic gradient gik at the previous
iterate w$ k’

2t Wik = Wik " 190k

22: end for

23: end for o

24: Send the t-th round accumulated local updates gl? =

t
a1 vk )
K7 thl ginto the server;
25:  end for

26: end for
27: Return: w!.

common assumption for prior work on FL with non-IID datasets [5,
17, 24]. Assumption 3 is used in some works [13].

4.1 Main Results

Next, we present theoretical performance guarantee for the AFL-
DGA algorithm via convergence analysis.

THEOREM 1. Under Assumption 1, 2, 3 and 4. The sequence gener-

ated by delayed gradient averaging with stepsizen < + satlsﬁes

1« — 12 2 — — nL

— t = 0y — T I= (52 2

LS o] < 2 )
LN ,

+L2p2 (K + D) 2G? + (a +GH= ZZ(T +r 1)
t=0 i=

where Dy, = maX{Dl.t|i € [1,N], t € [1,T]} and Ky, = max{Kl.t|i €
[LN], t e [LT]}

Remark: We note that the convergence error bound consists of
two parts: a vanishing term that decreases and goes to 0 as the
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number of rounds T increases, and a non-vanishing (constant) term
which depends on the parameters of the problem instance and is
independent of T. The decay rate of the vanishing term matches
that of the typical SGD methods. The first part of the non-vanishing

term (ie., & (O' +G?)) is due to the local stochastic gradients used
by each chent which shrinks at rate 1/N as the number of clients
N increases.

We observe that the first part of the non-vanishing term in-

volves the local gradient variance 2 and depends on the number
of clients N. This error term is due to the variance of stochastic
gradients, and it reduces at the rate of 1/N. Intuitively, although
clients’ data are heterogeneous, the variance of the aggregated lo-
cal stochastic gradients across clients is lower than that of a single
client, which results in the variance reduction. The second part
of the non-vanishing term (i.e., L?5?(Ky; + Dpn)2G?) depends on
clients’ local iteration numbers Kit, and it increases with K lt . Intu-
itively, due to clients’ heterogeneous data, more local computation
iterations drives each client’s local model more towards its local
optimal model and possibly away from the global optimal model
(also known as “local drifts” in existing works on FL [13, 18]). As
a result, the error bound increases as the local iteration numbers
go up. To make the non-vanishing terms small, a sufficiently small
learning rate 7 should be chosen.
Remark: We also observe that the error bound increases as clients’
local model delays increase. This is because, as the local model
delay increases, there is more error in the most recent local model
used in the proposed algorithm compared to the actual local model
without any delay. Therefore, the error increases when the delay is
higher.

We observe that the convergence error bound also depends on

clients’ global gradient delays.
Remark: Since gradient computations can be performed simul-
taneously with gradient communications, the total time span of
a round ¢ can be reduced from maxi{(Ki‘ + Df)d} to maxi{Kl.td}
where d is the delay of one local computation iteration. Therefore,
DGA can reduce the training time by a fold of (Kit + Df )/K lt . This
performance gain is substantial when communication delays are
large.

Based on Theorem 1, we obtain the following convergence rate
for the proposed AFL-DGA algorithm with a proper choice of the
learning rate.

COROLLARY 1. Let the stepsize n =

[f(wT)] yields

—Z

+0 (?(Km + Dm)ZGz) +0 (?(th -1)(c®+ GZ))

slﬁ

and A = E [f(wo)]

va(wf)H ] (—(LA+0 +G ))

Remark: The result above shows that our AFL-DGA algorithm
achieves a convergence rate of O(\/LT). It has been shown that

asynchronous FL algorithms under the non-convex setting can
achieve a convergence rate of O( LT) (e.g., AsyncCommSGD [3],

AFA-CD [28]). As our algorithm which is asynchronous can reach
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a convergence rate of O(\/LT)’ it matches that of the existing asyn-

chronous algorithms.

We observe that when T is larger than some threshold (which
depends on (K, + D;;)?), the first term of the bound is dominant,
so that the error bound is O(ﬁ). This shows that AFL-DGA

achieves a linear speedup despite non-IID datas of clients, which
matches many existing algorithms.

Remark: Corollary 1 shows that the proposed Algorithm 1 can
converge to the optimal value (rather than an error neighborhood)
in the sense that the convergence error can be made arbitrarily small
if the number of rounds t is large enough. It has been shown in prior
work [22] that FL with arbitrary client participation results in a non-
vanishing convergence error. This is due to an objective function
drift under the worst-case scenario of client participation, regardless
of the choices of learning rates and local iteration numbers. In
our proposed algorithm, we use the most recent local model from
a client in a round if the server does not receive a local model
update from that client in that round. In this way, we show that
the objective function drift can be addressed, despite of using the
most recent local model rather than the actual local model from
the client if the server would receive a local model update from
that client in that round. In fact, the error between the most recent
local model and the actual local model can be properly controlled
by choosing an appropriate learning rate.

4.2 Discussions

Comparison with DGA. The DGA algorithm has been proposed
and studied in [31] under ideal and simplified settings where all
clients participate in each round in a synchronous manner with
the same local iteration number. In this paper, we propose AFL-
DGA under much more general settings which are practical but
complex. Compared to DGA, AFL-DGA includes DGA as a special
case and is much more non-trivial. In particular, the algorithm
design of AFL-DGA has several major differences: 1) if a client
does not participate in a round, the server uses the most recent
averaged local gradient received from the client to compute the
global gradient of the round; 2) a client computes the averaged
(normalized) local gradient over its multiple local iterations in a
round, which is used by the server to compute the global gradient for
the round; 3) a client uses the delayed global gradient of a round to
correct its local model, regardless of whether the client participates
in that round or not. Due to these algorithmic differences of AFL-
DGA, its convergence analysis is also different from that of DGA in
non-trivial ways. In particular, the use of the most recent averaged
local gradient of each client allows us to decompose an error term
involving the global loss function’s gradient into multiple error
terms, each involving the gradient of only one client’s local loss
function. Also, using the delayed global gradient in every round
to correct a client’s local model allows us to quantify the error
between the client’s local model and the server’s global model in a
round. Moreover, in the convergence analysis of [31], as all clients
use the same local iteration number, a bound is found on the error
between a client’s local model and the average local model of all
clients in each local iteration. However, as heterogeneous local
iteration numbers are considered in this paper, we need to bound
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the error between a client’s local model and the global model in a
round, which results in substantial differences in the analysis.
Comparison with AFL. A recent work [28] has proposed and
studied the AFL algorithm, where clients can participate in a round
or not in an asynchronous manner with different local iteration
number. Compared to AFL, AFL-DGA integrates the key idea of
the DGA algorithm, which is using delayed global gradients to
correct a client’s local model. This major algorithmic difference of
AFL-DGA compared to AFL results in a non-trivial challenge in the
convergence analysis, due to the coupling among asynchronous
local gradient delays, global gradient delays, and local iteration
numbers. In particular, the error between a client’s local model and
the server’s global model (which results in the non-vanishing term
in the convergence error) depends on all these three parameters.

5 NUMERICAL EXPERIEMENTS

In this section, we conduct experiments to verify our theoretical
results.

5.1 Simulation Setup

We use i) logistic regression (LR) on manually partitioned non-i.i.d.
MNIST dataset [11] ii) convolutional neural network (CNN) for im-
age classification using CIFAR-10 [10]. To impose data heterogene-
ity, we distribute the data evenly to each worker in a label-based
partition following the same process in the literature [12, 15, 27].
We use the code Federated-Learning-Master [1] and the above real
datasets to verify our theoretical results.

We first compare the accuracy of 4 algorithms in i.i.d. and non-
iid data settings. Then we further simulate the relationship be-
tween communication rounds and test accuracy, and training loss,
respectively.

5.2 Simulation Results

5.2.1 Training accuracy. : We conduct the following experiments
with different algorithms. We choose 3 different algorithms, which
are FedAvg, DGA [32], and our proposed AFL-DGA. We choose
the stepsize at 0.01, local iteration is 10. From Table 1 and Fig 2, it
can be found that the algorithm with DGA can maintain accuracy
compared with FedAvg. As our algorithm allows clients to run
heterogeneous local iterations and delayed iterations which better
make use of training time while DGA [32] only allows homogeneous
local iteration and delayed iterations, thus our AFL-DGA algorithm
can reach a slightly higher test accuracy than DGA.
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o
&

°
>
RN

Test Accuracy
o
S

Training Loss

°
[N

o o

R ®

6 10 20 30 40 50 60 70 80 90 100
Communication Round

10 20 30 40 50 60 70 80 90 100
Communication Round

Figure 2: Test accuracy vs Figure 3: Training Loss vs
communication round for 4 communication round for 4
algorithms. algorithms.
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Table 1: Comparison of FedAvg, DGA’s and our algorithm’s accuracy on 2 datasets with both i.i.d and non-i.i.d partitions in

synchronous federated learning.

Datasets  Partition FedAvg (N=5) FedAvg (N=10) DGA [32] (N=5,D=20) Our Algorithm (N=5, D=20, t; = 1)
MNIST iid 89.1 90.1 90.2 90.7
non-iid 62.3 61.7 61.9 62.0
CIFAR-10 iid 87.8 89.3 89.5 90.2
non-i.i.d 68.6 67.2 69.3 69.1
24 ——aom has the lowest global loss among all situations. At the beginning of
24 — 2 EEZ!}IE E:f:ii;é the FL training, the difference between the 4 different maximum
2.2 2 o) delays is relatively small, since we only require the maximum delay,
B T resulting in a small difference in clients’ choices at the beginning
212 o 1
o Oos of the training. When the training is nearly finished, the difference
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Number of rounds
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Number of rounds

Figure 4: Training loss vs Figure 5: Training loss vs
communication round un-communication round un-
der different schemes for der different non-i.i.d degree
AFL-DGA. for AFL-DGA.

5.2.2  Impact of the scheme of AFL-DGA. In the previous experi-
ments, we have proved that our AFL-DGA algorithm can work well
in most settings, and we next test the effect of different communi-
cation schemes on the convergence speed. We choose the stepsize
at 0.01, local iteration is 10, the number of clients is 30, the asyn-
chronous delay t; = 2, and the non-i.i.d. degree I' = 0. As shown
in Fig 4, fast-k refers to the server collecting the fast-s clients who
finish their local computation under the maximum delay constraint
in the IID setting. It can be found that more clients computing
in a round (a larger s) can speed up the training process because
more participating clients can let clients compute with a smaller
delay model. When there are only a few clients can update their
model in each round, then there must exist a straggler with a much
higher maximum delay, which can make the aggregation result
degradation.

5.2.3 Impact of the non-i.i.d. degree. In the previous experiments,
we test the effect of the non-ii.d. degree on the convergence speed.
We choose the stepsize at 0.01, local iteration is 10, the number
of clients is 30, the asynchronous delay t; = 2, and the com-
munication scheme is top-1. As shown in Fig 5, the non-ii.d. de-
gree of 4 datasets is increasing (I'(ii.d) < I'(non-i.i.d dataset 1) <
I'(non-i.i.d dataset 2) < I'(non-i.i.d dataset 3)). It is shown that the
degree of non-IID affects the convergence rate, where a slower con-
vergence speed with a higher non-i.i.d. degree, but it does not affect
the final results, which meet our analyses.

5.24 Impact of the asynchronous delay. In this experiment, we test
the effect of the asynchronous delay on the convergence speed. We
choose the stepsize at 0.01, local iteration is 10, the number of clients
is 30, the non-ii.d. degree I' = 0, and the communication scheme is
top-1. As shown in Fig 6, the global loss increases with increasing
maximum delay. For a synchronous FL (t; = 0), which obviously

becomes larger and larger due to the effect of straggler clients.
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Figure 6: Training loss vs Figure 7: Test accuracy vs
communication round with communication round un-
varies maximum delay for der different local iterations
AFL-DGA. for AFL-DGA.

5.2.5 Impact of the local iteration numbers. In this experiment, we
test the effect of the local iteration numbers on the test accuracy. We
choose the stepsize at 0.01, the number of clients is 30, the non-i.i.d.
degree I' = 0, the asynchronous delay ¢; = 2, and the communica-
tion scheme is top-1. The fact that the clients are allowed to make
several local iterations is a crucial component of FL algorithms. In
this experiment, we investigate how varying local update round
counts affect training efficiency. As shown in Fig 7, we test the
accuracy of the AFL-DGA in i.i.d. data setting with homogeneous
local iteration numbers. It is shown that when the local iteration is
too small e.g., K = 1, it needs more communication rounds to reach
convergence. Moreover, too many local iterations can not speed
up the convergence, due to the local training may not contribute
much to the global model as the local iteration increases.

5.2.6 Impact of the number of clients. In this experiment, we test
the effect of the number of clients on the test accuracy. We choose
the stepsize at 0.01, local iteration is 10, the non-i.i.d. degree I = 0,
the asynchronous delay t; = 2, and the communication scheme is
top-1. We conduct the following experiments with different number
of clients. We use the number of clients from the set {10, 30, 50,70}.
As shown in Fig 8, test accuracys with different number of clients
have nearly similar performances.

5.2.7  Impact of the stepsize. In this experiment, we test the effect
of the number of clients on the test accuracy. We choose the number
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of clients is 30, local iteration is 10, the non-i.i.d. degree I = 0, the
asynchronous delay t; = 2, and the communication scheme is top-
1. We use the stepsize from the set {0.0005,0.001, 0.005,0.01}. As
shown in Fig. 9, larger local step-sizes lead to faster convergence
rates.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose Anarchic Federated Learning with Delay
Gradient Averaging (AFL-DGA) to deal with high communication
latency in both synchronous and asynchronous federated learning.
We have justified that the theoretical convergence is no slower than
FedAvg in non-convex settings for both situations. We also loosen
the restriction on local loss function gradients being bounded. Next,
we demonstrate that our algorithm is capable of enjoying high scal-
ability under poor network conditions while preserving accuracy,
especially on non-i.i.id partitions. Finally, using realistic datasets,
we run simulations. We think that a variety of applications in high
latency networks among heterogeneous federated learning contexts
will be made possible by our work.

For future work, we will explore AFL-DGA in other settings of
FL, such as for decentralized networks of clients. These cases will
be more challenging to study due to the complex communication
structure.
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A LEMMA 1 AND PROOF

LEMMA 1. The difference between the i-th client at j-th local itera-
tion in round t — Tit and the average parameter across all clients is
uniformly bounded:
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B PROOF OF THEOREM 1
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