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Power to Detect Moderated Effects in Studies with Three-Level
Partially Nested Data

Kyle Coxa , Ben Kelceyb, and Hannah Lucea

aDepartment of Educational Leadership, University of North Carolina at Charlotte, Charlotte, North Carolina;
bDepartment of Educational Studies, University of Cincinnati, Cincinnati, Ohio

ABSTRACT
Comprehensive evaluation of treatment effects is aided by considerations
for moderated effects. In educational research, the combination of natural
hierarchical structures and prevalence of group-administered or shared
facilitator treatments often produces three-level partially nested data struc-
tures. Literature details planning strategies for a variety of experimental
designs when moderation effects are of interest but has yet to establish
power formulas for detecting moderation effects in three-level partially
nested designs. To address this gap, we derive and assess the accuracy of
power formulas for detecting the different types of moderation effects pos-
sible in these designs. Using Monte Carlo simulation studies, we probe
power rates and adequate sample sizes for detecting the different moder-
ation effects while varying common influential factors including variance in
the outcome explained by covariates, magnitude of the moderation effect,
and sample sizes. The power formulas developed improve the planning of
experimental studies with partial nesting and encourage the inclusion of
moderator variables to capture for whom and under what conditions a
treatment is effective. Educational researchers also have some initial guid-
ance regarding adequate sample sizes and the factors that influence
detecting moderation effects in three-level partially nested designs.
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Monte Carlo Simulation;
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Experimental designs in educational research provide the most robust causal evidence for pro-
gram, intervention, or policy effectiveness (i.e., treatment effectiveness). Inclusion of moderator
variables is a prevalent technique to capture treatment effect heterogeneity in these educational
experiments (Dong et al., 2018; Dong et al., 2021a; Dong et al., 2021b; MacKinnon, 2011;
Spybrook et al., 2016). Investigating differences in program, intervention, or policy effectiveness
across group- (e.g., school size, school location, teacher experience, teacher training) or individ-
ual-characteristics (e.g., student race, student sex, pretest score) improves generalization of results
through a better understanding of for whom or under what conditions a treatment is effective.
Put differently, consideration of supplementary effects can elucidate individual and contextual fac-
tors that influence treatment effectiveness.

A long-standing emphasis on understanding treatment effect heterogeneity by professional
organizations and funding agencies (e.g., Institute of Education Sciences (IES),) 2016; Society for
Research on Educational Effectiveness, 2012) is reflected in a growing literature base detailing
study design and analyses that includes moderation effects. For example, literature has developed
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techniques for the planning various experimental designs that include moderated effects and are
well suited for educational settings (Cox & Kelcey, 2022; Dong et al., 2018; Dong et al., 2021a;
Dong et al., 2021b; Jaciw et al., 2016; MacKinnon, 2011; Spybrook et al., 2016; Tong et al., 2022;
Yang et al., 2020). In applied educational research, considerations for treatment effect heterogen-
eity were included in Chambers et al. (2008) who used a multisite randomized trial to examine
the effect of a computer assisted tutoring program on reading achievement while considering the
moderating effects of school average pretest and Weidinger et al. (2020) who considered a utility-
value intervention on mathematics outcomes while considering the moderating effects of student
migration and parent education. Beyond these individual studies, the Journal of Research on
Educational Effectiveness and Exceptional Children published special issues focusing on treatment
effect heterogeneity in rigorous intervention studies (Fuchs & Fuchs, 2019; Reardon &
Stuart, 2017).

We focus on moderation effects in experimental designs with partially nested data. Partial
nesting occurs when the intervention and control arm have different nesting or grouping struc-
tures. For example, in a study comparing a remote asynchronous online instruction intervention
to typical classroom instruction, the intervention arm (i.e., remote instruction) has a two-level
data structure (i.e., students nested within teachers) while the control arm (i.e., typical in-person
classroom instruction) has a three-level data structure (i.e., students nested within teachers within
schools). Partial nesting commonly arises when a treatment induces nesting through a group-
administered (e.g., whole-school reform, classroom-based intervention, small-group instruction)
or shared facilitator treatment (principal-, teacher-, tutor-, counselor-led activity). The natural
hierarchical structure of educational settings lends itself to group-administered and shared facili-
tator treatments. The combination of natural hierarchical structures in educational settings and
treatments that induce nesting produce a variety of partially nested data structures in educational
experiments (e.g., Bauer et al., 2008; Lohr et al., 2014). These partially nested studies can be iden-
tified using the number of levels in each treatment arm. For example, 2/1 partially nested studies
have a two-level data structure in one treatment arm and single-level data in the other arm. For
3/1 and 3/2 partially nested studies there is a three-level data structure in one treatment arm and
a single-level or two-level data structure in the remaining treatment arm.

Unfortunately, analytic approaches suitable for individual randomized trials or cluster random-
ized trials produce inaccurate results when applied to partially nested data. Specifically, these mis-
specifications produce bias in standard errors of the treatment effect, and bias in estimates of
variance components (Baldwin et al., 2011; Bauer et al., 2008; Candlish et al., 2018; Hedges &
Citkowicz, 2015; Korendijk et al., 2012; Lee & Thompson, 2005; Sanders, 2011; Schweig & Pane,
2016). In response, literature has mapped out design and analytic strategies for partially nested
studies to avoid these issues (e.g., Lachowicz et al., 2015; Lohr et al., 2014; Moerbeek & Wong,
2008; Roberts & Roberts, 2005). More recent literature has established power formulas and related
design strategies for detecting mediation (Kelcey et al., 2020) and moderated effects (Cox &
Kelcey, 2022; Cox et al., under review) in partially nested designs. These recent advancements
allow for more efficient and effective study planning and more comprehensive understanding of
treatment effects when partially nested data are present.

While power formulas for detecting main effects in partially nested designs with two- or three-
levels have been established (e.g., Heo et al., 2017), power formulas for moderated effects remain
limited to partially nested designs with only two-levels (see Cox et al., under review; Cox &
Kelcey, 2022). To address this gap, we derive and assess the accuracy of power formulas for
detecting moderation effects in 3/1 and 3/2 partially nested designs as well as 3/2 partial nesting
as part of a cluster randomized trial (see Figure 1). To supplement these results, we conduct an
initial probe into power and adequate sample sizes for detecting moderation effects in these
designs while varying common influential factors (e.g., variance in the outcome explained by
covariates, magnitude of moderation effect, group and individual per group sample size). The
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remainder of the paper is organized around the moderation effects possible in three-level partially
nested designs. We derive power formulas for detecting moderation effects with 3/1 partial nest-
ing, lower-level moderation with 3/2 partial nesting, upper-level moderation with 3/2 partial nest-
ing, and cluster randomized designs with 3/2 partial nesting. Each section includes an
introduction to the specific type of three-level partially nested design, applicable analytic model,
and moderator effect variance formulas suitable for a priori power analysis. We utilize four
Monte Carlo simulation studies (one for each moderation effect considered) to demonstrate
accuracy of moderator effect variance and power formulas and provide an initial assessment of
typical sample sizes required to detect these effects and the influence of several design parameters.
Results of each simulation study are then shared and implications to design are discussed.
Illustrative examples from educational research are utilized throughout each section to aid in the
description of the design, formula, and results.

Three/one partial nesting

Partially nested designs with a 3/1 data structure have a three-level data structure in one treat-
ment arm and a single-level data structure in the other treatment arm. Consider an illustrative
example as we describe 3/1 partial nesting, associated analytic models, moderator effect variance
and power formulas, and simulation study results. Our example is adapted from Lowrie et al.
(2021) such that the hypothetical study examines the effectiveness of a summer school spatial rea-
soning intervention program aimed at improving student mathematical performance. Individual
random assignment is utilized to place students in the intervention arm or waitlist control arm
(see Figure 1a). Students in the waitlist control arm continue with summer as usual, thus avoid-
ing any grouping (single-level data structure). Conversely, the intervention arm has students in
spatial reasoning intervention groups and teachers instructing multiple groups (three-level data
structure with students nested within groups nested within teachers). Student’s math anxiety has
a well-established detrimental effect on mathematics performance (e.g., Ashcraft & Krause, 2007;
Ashcraft & Moore, 2009). To investigate heterogeneous intervention effects, student math anxiety

Figure 1. Example three-level partially nested designs with (a) 3/1 partial nesting, (b) 3/2 partial nesting, and (c) 3/2 partial nest-
ing in a cluster randomized trial.
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is included as a possible moderator between the spatial reasoning intervention program and stu-
dent performance in mathematics.

Analytic model

We utilize the common multiple-arm multilevel framework for partially nested data (MA-PN).
This approach eases extensions to moderation effects and accommodates the heteroscedastic
variances of the different treatment arms common in partially nested designs. The analytic
model in the intervention arm of a three/one partially nested design with a continuous out-

come (yðtÞijk ), continuous level-one moderator, mðtÞ
ijk � Nð0, r2ðtÞm Þ, and level-one covariate xðtÞijk �

Nð0, r2ðtÞx Þ is

Level 1:

yðtÞijk ¼ bðtÞ0jk þ bðtÞ1jkm
ðtÞ
ijk þ bðtÞ2jkðxðtÞijk � �xðtÞ:jk Þ þ eðtÞijk , eðtÞijk � Nð0, r2

yjðtÞ Þ (1)

Level 2:

bðtÞ0jk ¼ bðtÞ00k þ bðtÞ02kð�xðtÞ:jk � �xðtÞ::kÞ þ uðtÞ0jk , uðtÞ0jk � Nð0, s2
yjðtÞ Þ

Level 3:

bðtÞ00k ¼ dðtÞ000 þ bðtÞ002�x
ðtÞ
::k þ vðtÞ00k , vðtÞ00k � Nð0,/2

yjðtÞ Þ

Level-one or the student-level in our example includes a mathematics performance score (yðtÞijk ) for
student i, in group j, instructed by teacher k. The student’s math anxiety score, which serves as a

possible moderator of the intervention effect, is represented by mðtÞ
ijk with bðtÞ1jk capturing the mod-

erator-outcome relationship in the intervention arm. Level-two represents the spatial reasoning

intervention groups with uðtÞ0jk capturing group-specific deviations and level-three represents the

teacher or instructor level where dðtÞ000 is the mean mathematics performance score in the interven-

tion arm and vðtÞ00k captures teacher-specific deviations. Our intervention model includes the
assumption that the moderator does not systematically vary across intervention group or teacher.
This is a tenable assumption in the presence of random assignment because students randomly
assigned to the intervention and control arm form groups that will not systematically differ on
average math anxiety (in expectation). Additionally, our assumption of uncorrelated outcomes
across treatment arms requires individuals and groups are not located in the same school building
and thus error terms for the intervention and control arms do not covary.

Covariates (e.g., xð:Þ: ) that explain variance in the outcome are a common and effective design
strategy to increase the likelihood of detecting main, mediation, and moderation effects or, relat-
edly, decreasing the sample size necessary to consistently detect these effects (e.g., Cox & Kelcey,
2022; Cox et al., under review; Raudenbush et al., 2007; Spybrook et al., 2016). A covariate or its

aggregate (e.g., �xð:Þ:jk and �xð:Þ::k) may be included at any level in the analytic model of the outcome

for the intervention or control arm. Variance components are then reduced based on variance
explained in the outcome at that level by the covariate or its aggregate.

The outcome model for the single-level control arm with a continuous moderator, mðcÞ
i �

Nð0, r2mðcÞ Þ and continuous covariate xðcÞi � Nð0, r2xðcÞ Þ is
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yðcÞi ¼ dðcÞ þ bðcÞ1 mðcÞ
i þ bðcÞ2 xðcÞi þ eðcÞi eðcÞi � Nð0, r2

yjðcÞ Þ: (2)

Mathematics performance score for student i in the single-level control arm is captured with

yðcÞi and dðcÞ captures the mean mathematics performance score for the control arm students. The

control arm model uses mðcÞ
i to represent a student’s math anxiety score and bðcÞ1 to capture the

moderator-outcome relationship.

Moderator effects and error variance

Contrasting the coefficients in the treatment arms that capture the relationship between the mod-
erator and outcome provides an estimate of the moderation effect (ME) such that

ME ¼ ðdðtÞ000 þ bðtÞ1jkÞ � ðdðcÞ þ bðcÞ1 Þ
h i

� ðdðtÞ000Þ � ðdðcÞÞ
h i

(3)

which simplifies to

ME ¼ bðtÞ1jk � bðcÞ1 : (4)

In terms of our example, the moderation effect estimate is the difference between the math
anxiety-math performance relationship in the intervention and control arms. If this relationship

is different in the presence of the intervention (bðtÞ1jk), then the intervention effect on math per-

formance is dependent on student math anxiety.
In the MA-PN framework, assuming independence and a covariance term that is zero by

design, the sum of the moderator coefficient variances forms the variance of ME such that

r2ME ¼ r2ðbðtÞ1jk�bðcÞ1 Þ ¼ r2
bðtÞ1jk

þ r2
bðcÞ1

: (5)

The r2ME term is used in calculations of the non-centrality parameter and subsequent statistical
tests making it crucial to developing statistical power formulations. Conceptually, r2ME is simple.

It is the combined error variance of the moderator coefficients in the intervention (r2
bðtÞ1jk

) and con-

trol (r2
bðcÞ1

) arms. However, our formulation of r2ME requires components easily predicted during

the design phase of a study. We begin with a reformulated error variance of the moderator coeffi-
cient in the intervention arm (i.e.,r2

bðtÞ1jk
) such that (Dong et al., 2021b; Snijders, 2001; Snijders,

2005)

r2
bðtÞ1jk

¼
r2ðtÞyj ð1� R2

yðtÞL1
Þ=nðtÞ1

ðnðtÞ2 nðtÞ3 � CðtÞ � 1Þr2
mðtÞ

: (6)

The r2
bðtÞ1jk

term includes r2ðtÞyj , variance of the outcome (e.g., mathematics performance scores)

in the intervention arm, which is reduced by the proportion of outcome variance at level-one
explained by the covariate at level-one (R2

yðtÞL1
, see Raudenbush and Bryk (2002) for details on the

calculation of multilevel R2
: ) and then divided by nðtÞ1 , the sample of individuals per group (e.g.,

students per intervention group). The sample size terms for level -two and -three (nðtÞ2 and nðtÞ3 )
and variance of the moderator (r2mðtÞ) form the denominator of the r2

bðtÞ1jk
term along with CðtÞ, the

number of predictor variables in the outcome model of the treatment arm. This suggests that
group sample size and teacher sample size along with greater variance in student math anxiety
scores reduce r2

bðtÞ1jk
: The second component of r2ME is the error variance for the moderator
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coefficient in the control arm (i.e.,r2
bðcÞ1

) which we formulate as

r2
bðcÞ1

¼
r2
yjðcÞ ð1� R2

yðcÞL1

Þ
ðnðcÞ � CðcÞ � 1Þr2

mðcÞ
: (7)

The terms in the formulation of r2
bðtÞ1jk

and r2
bðcÞ1

are similar with total sample size in the

control arm represented with nðcÞ (e.g., waitlisted students). Substituting the expanded formula-
tions of r2

bðtÞ1jk
and r2

bðcÞ1

into the r2ME formula from Equation 5 we have

r2ME ¼
r2ðtÞyj ð1� R2

yðtÞL1
Þ=nðtÞ1

ðnðtÞ2 nðtÞ3 � CðtÞ � 1Þr2
mðtÞ

þ
r2
yjðcÞ ð1� R2

yðcÞL1

Þ
ðnðcÞ � CðcÞ � 1Þr2

mðcÞ
: (8)

Noncentrality parameter, statistical test, and power

With an estimate of the moderated effect (ME) and its variance (r2ME), we can determine statis-
tical significance using a t test. Assuming the alternative hypothesis is true, the t statistic will fol-
low a noncentral t distribution with a noncentrality parameter of

ME
rME

(9)

with nðtÞ3 � 2 degrees of freedom. The statistical power for the two-sided test is then

PðjtMEj > tcritical Þ ¼ ð1� tðtcritical � tMEÞ þ tð�tcritical � tMEÞÞ (10)

where t is the cumulative t density described above. While we assume a continuous moderator,
our formulas are easily adapted to accommodate binary moderators (see Binary Moderators in
the Supplemental Material).

Three/two partial nesting

A more complex partially nested design involves a three-level data structure in one treatment
arm and a two-level data structure in the remaining treatment arm (see Figure 1b). Multilevel
structure in both the intervention and control arms allows a moderator at the lower-level and/or
the upper-level to affect the intervention-outcome relationship. We utilize a new illustrative
example to describe lower-level and upper-level moderation in 3/2 partially nested designs, their
associated analytic models, moderator effect variance and power formulas, and simulation
study results.

The example is adapted from Weidinger et al. (2020) and investigates the effect of a utility-
value intervention on student mathematics performance while considering student-level and
teacher- or classroom-level moderation effects. Our hypothetical 3/2 partially nested study design
has a three-level data structure in the intervention arm and a two-level data structure in the con-
trol arm and we again assume error terms for the intervention and control arms do not covary.
Individual random assignment places high-school students into the intervention or control arm.
Students are then assigned to a mathematics teacher. Students in the intervention arm classrooms
are also placed in small groups for a utility-value intervention in which students evaluate and dis-
cuss interview quotations from other high school students describing situations in which math-
ematics was useful (Gaspard et al., 2015; Weidinger et al., 2020). Utility-value interventions that
prompt students to better grasp the usefulness of mathematics have improved student motivation
and achievement (e.g., Brisson et al., 2017; Gaspard et al., 2015) but it is unclear if these benefits
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(i.e., intervention effects) are consistent across all students, teachers, and/or classrooms (e.g.,
Rosenzweig et al., 2019). Our example study considers a composite measure of student’s socio-
economic status (family income, parental educational attainment, parental occupation) as a
lower-level moderator of the utility-value intervention-mathematics performance relationship. To
review, the intervention arm has students nested within utility-value intervention groups, nested
within classrooms while the control arm includes students nested within classrooms. Note the
treatment arms have a corresponding lower-level (students) and a corresponding upper-level
(teachers) but the intervention arm has an additional middle-level induced by the intervention
(utility-value intervention groups). In summary, the example study is examining the effect of a
utility-value intervention on high-school student mathematics performance while considering
treatment effect heterogeneity across student socio-economic status.

Utilizing the MA-PN framework, the analytic model for the three-level intervention arm in a
3/2 partially nested design is unchanged from the model for the 3/1 design. However, a 3/2 par-
tially nested design requires a two-level outcome model for the control arm. With an individual-
level moderator, mðcÞ

ijk � Nð0, r2mðcÞ Þ and covariate (xðcÞijk � Nð0,r2xðcÞ Þ it can be represented using

yðcÞijk ¼ bðcÞ00k þ bðcÞ1jkm
ðcÞ
ijk þ bðcÞ2jkðxðcÞijk � �xðcÞ:jk Þ þ eðcÞijk eðcÞijk � Nð0, r2

yjðcÞ Þ

bðcÞ00k ¼ dðcÞ000 þ bðcÞ002�x
ðcÞ
::k þ vðcÞ00k , vðcÞ00k � Nð0,/2

yjðcÞ Þ:
(11)

This model reflects the similarity between corresponding levels in the intervention and control
arms. Level-one or the lower-level of the analytic models for the intervention and control arms
are nearly identical with the superscript c indicated the control arm. The upper-level of both ana-
lytic models is also nearly identical (i.e., level-three in the intervention arm and level-two in the
control arm). The middle-level is absent from the control arm as it is induced by the group-
administered intervention. Contrasting the coefficients capturing the relationship between the
moderator and outcome from the different treatment arms again provides an estimate of the
moderation effect and the sum of the moderator coefficient variances again forms the variance
of ME.

The second component of r2ME for 3/2 partially nested designs is the error variance for the
moderator coefficient in the control arm (i.e., r2

bðcÞ1jk

). This term reflects the two-level data structure

of the control group such that

r2
bðcÞ1jk

¼
r2
yjðcÞ ð1� R2

yðcÞL1

Þ=nðcÞ1

ðnðcÞ3 � CðcÞ � 1Þr2
mðcÞ

: (12)

The terms in the formulation r2
bðcÞ1jk

now include individual-level variance of the outcome and

individual sample size in the numerator and upper-level sample size and the variance of the mod-
erator in the denominator. In our example, individual-level variance of mathematics performance
score reduced by variance explained by covariates, and divided by students per classroom would
form the numerator while sample of classrooms and individual-level variance of student socio-
economic status composite scores are the key terms in the denominator. Substituting the
expanded formulations of r2

bðtÞ1jk
and r2

bðcÞ1jk

into the general r2ME formula from Equation 5 we have

r2ME ¼
r2
yjðtÞ ð1� R2

yðtÞL1
Þ=nðtÞ1

ðnðtÞ2 nðtÞ3 � CðtÞ � 1Þr2
mðtÞ

þ
r2
yjðcÞ ð1� R2

yðcÞL1

Þ=nðcÞ1

ðnðcÞ3 � CðcÞ � 1Þr2
mðcÞ

: (13)

The non-centrality parameter, t-test for determining a significant moderated effect and power
formula remain unchanged from the 3/1 partially nested design formulations.
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Upper-level moderator

Thus far we have considered moderation effects stemming from moderators located at level-one
(e.g., student anxiety and student socio-economic status). For 3/2 partially nested designs a vari-
able located at the upper-level (level-three in the intervention arm and level-two in the control
arm) can moderate the relationship between the intervention and outcome. Upper-level modera-
tors may include variables measured at the upper-level or aggregates of lower-level variables. We
can revise our current working example such that the moderator is a composite score of teacher
effectiveness (e.g., Martinez et al., 2016) with intervention effect heterogeneity across teacher
effectiveness levels under examination. The moderator is now located at the upper-level (i.e.,
teacher-level) while other study design features remain the same.

To examine upper-level moderation effects we make a slight change to the analytic models. In the
intervention arm of a 3/2 partially nested design with a continuous outcome (yðtÞijk ), individual-level
covariate, xðtÞijk � Nð0, r2ðtÞx Þ, and upper-level moderator, mðtÞ

k � Nð0,/2
mjðtÞ Þ the analytic model is

Level 1:

yðtÞijk ¼ bðtÞ0jk þ bðtÞ2jkðxðtÞijk � �xðtÞ:jk Þ þ eðtÞijk , eðtÞijk � Nð0, r2
yjðtÞ Þ (14)

Level 2:

bðtÞ0jk ¼ bðtÞ00k þ bðtÞ02kð�xðtÞ:jk � �xðtÞ::k Þ þ uðtÞ0jk , lðtÞ0jk � Nð0, s2
yjðtÞ Þ

Level 3:

bðtÞ00k ¼ dðtÞ000 þ bðtÞ001m
ðtÞ
k þ bðtÞ002�x

ðtÞ
::k þ uðtÞ00k , lðtÞ00k � Nð0,/2

yjðtÞ Þ

The moderator (mðtÞ
k ) is now located at the upper-level (level-three) of the intervention arm out-

come model. The two-level control arm outcome model is now

yðcÞijk ¼ bðcÞ00k þ bðcÞ2jkðxðcÞijk � �xðcÞ:jk Þ þ eðcÞijk eðcÞijk � Nð0, r2
yjðcÞ Þ

bðcÞ00k ¼ dðcÞ000 þ bðcÞ001m
ðcÞ
k þ bðcÞ002�x

ðcÞ
::k þ uðcÞ00k , lðcÞ00k � Nð0,/2

yjðcÞ Þ
(15)

with the moderator, mðcÞ
k � Nð0,/2

mjðcÞ Þ, located at the upper-level (level-two). While the moder-
ator is located at different levels in the respective outcome models (intervention and control)
both reflect the classroom-or teacher-level.

We now subtract the coefficients paired with the upper-level moderator in the treatment and
control arms to estimate of the moderation effect (ME) such that

ME ¼ bðtÞ001 � bðcÞ001: (16)

The sum of the moderator coefficient variances still forms the variance of ME such that

r2ME ¼ r2ðbðtÞ001�bðcÞ001Þ
¼ r2

bðtÞ001
þ r2

bðcÞ001

: (17)
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However, the error variance of moderator coefficient in the intervention arm (i.e.,r2
bðtÞ001

) must
now include outcome variance across all levels such that

r2
bðtÞ001

¼
/2
yjðtÞ ð1� R2

yðtÞL3
Þ þ s2

yjðtÞ ð1� R2
yðtÞL2
Þ=nðtÞ2 þ r2

yjðtÞ ð1� R2
yðtÞL1
Þ=ðnðtÞ2 nðtÞ1 Þ

ðnðtÞ3 � CðtÞ � 1Þr2
mðtÞ

(18)

In terms of our example, the error variance of the moderation effect includes the variance of
mathematics performance scores at the student-level (r2

yjðtÞ), at the utility-value intervention group
level (s2

yjðtÞ), and the classroom/teacher-level (/2
yjðtÞ). All of these outcome error variance terms can

be reduced by the variance explained by covariates (R2
yðtÞ:
) and sample size at the corresponding

level. For example, outcome error variance at the utility-value intervention group level (s2
yjðtÞ) is

reduced by intervention group sample size (nðtÞ2 ).
The error variance for the moderator coefficient in the control arm (i.e.,r2

bðcÞ001

) also includes
outcome variance across levels but reflects a two-level data structure. We formulate r2

bðcÞ001

such

that

r2
bðcÞ001

¼
/2
yjðcÞ ð1� R2

yðcÞL3

Þ þ r2
yjðcÞ ð1� R2

yðcÞL1

Þ=nðcÞ1

ðnðcÞ3 � CðcÞ � 1Þr2
mðcÞ

(19)

with terms and notation retaining similar meaning from the intervention arm outcome model.
We utilize level-one and level-three notation in the control arm outcome model to emphasize the
correspondence between levels in both outcome models.

Substituting these formulations of r2
bðtÞ001

and r2
bðcÞ001

into the r2ME formula we have

r2ME ¼
/2
yjðtÞ ð1� R2

yðtÞL3
Þ þ s2

yjðtÞ ð1� R2
yðtÞL2
Þ=nðtÞ2 þ r2

yjðtÞ ð1� R2
yðtÞL1
Þ=ðnðtÞ2 nðtÞ1 Þ

ðnðtÞ3 � CðtÞ � 1Þr2
mðtÞ

þ

/2
yjðcÞ ð1� R2

yðcÞL3

Þ þ r2
yjðcÞ ð1� R2

yðcÞL1

Þ=nðcÞ1

ðnðcÞ3 � CðcÞ � 1Þr2
mðcÞ

:

(20)

The non-centrality parameter, t-test for determining a significant moderated effect and power
formula remain unchanged from the previous designs and analytic models.

Cluster randomized trials with partial nesting

Thus far we have only considered partially nested designs with individual randomization to treat-
ment arm. Cluster randomized designs or cluster randomized trials (CRTs) randomize intact
groups or clusters to treatment arm and are commonly employed in educational experiments. For
3/2 partially nested designs, this equates to randomization at the upper-level (see Figure 1c). This
is not a trivial change when considering moderation effects because cluster randomization allows
the moderator to vary within and between groups. Recall, for individual randomized trials the
randomization of individuals allows us to assume a moderator at the lower- or upper-level does
not systematically vary across groups. For CRTs, it is plausible, if not likely, that moderator val-
ues vary systematically between groups. For CRTs with 3/2 partial nesting, we must account for
moderator variance within and between groups in the analytic models and subsequent moderator
effect variance formulations. Put differently, randomization of groups still ensures asymptotically
unbiased estimates of the main treatment effect but individual-level moderators may vary system-
atically between these extant groups.
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For our example we adapt Lawrence et al. (2017) to illustrate CRTs with 3/2 partially nested
data. The study examines Word Generation, a whole school intervention for middle school stu-
dent vocabulary (Lawrence et al., 2017). This two-level CRT investigates a group-administered
treatment such that an additional level of grouping is added to the intervention arm. Middle
schools are randomly assigned to implement the Word Generation intervention or be placed on a
two-year waitlist before implementation to serve as a control. The intervention itself involves spe-
cific instructional tasks implemented by English Language Arts teachers with the outcome of
interest student academic vocabulary. Differential treatment effects across baseline student
vocabulary ability are of interest so it is included as a possible moderator of the Word
Generation-student academic vocabulary treatment effect.

In summary, intact schools (level-3) are randomly assigned to adopt the Word Generation
intervention with ELA teachers (level-2) implementing the intervention in treatment classrooms
and middle school student (level-1) academic vocabulary serving as the outcome of interest. The
intervention arm includes students nested within teachers, nested within schools but the control
arm only includes students nested within schools. This hypothetical investigation includes stu-

dent-level baseline vocabulary scores (mðtÞ
ijk ) as a possible moderator of the Word Generation-stu-

dent academic vocabulary treatment effect. Teachers may have systematic differences in

aggregated levels of the moderator (�mðtÞ
:jk ) that influence the treatment effect, and the use of extant

schools may also produce aggregated levels of the moderator (�mðtÞ
::k ) that influence the treat-

ment effect.
To consider this systematic variation and capture the moderation effects possible at each level,

we include the aggregate or average moderator in the analytic model of the outcome in the inter-
vention arm at levels two and three (�mðtÞ

:jk and �mðtÞ
::k ) such that

Level 1:

yðtÞijk ¼ bðtÞ0jk þ bðtÞ1jkm
ðtÞ
ijk þ bðtÞ2jkðxðtÞijk � �xðtÞ:jk Þ þ eðtÞijk , eðtÞijk � Nð0, r2

yjðtÞ Þ (21)

Level 2:

bðtÞ0jk ¼ bðtÞ00k þ bðtÞ01k �m
ðtÞ
:jk þ bðtÞ02kð�xðtÞ:jk � �xðtÞ::k Þ þ uðtÞ0jk , uðtÞ0jk � Nð0, s2

yjðtÞ Þ

Level 3:

bðtÞ00k ¼ dðtÞ000 þ bðtÞ001 �m
ðtÞ
::k þ bðtÞ002�x

ðtÞ
::k þ vðtÞ00k , vðtÞ00k � Nð0,/2

yjðtÞ Þ:

In terms of our example, we have academic vocabulary scores as the outcome (yðtÞijk ) for student i,

instructed by teacher j, in school k. Baseline vocabulary ability (mðtÞ
ijk ) for student i, instructed by

teacher j, in school k is included to track possible moderation effects (bðtÞ1jk). The average student

baseline vocabulary ability for a teacher and school (�mðtÞ
:jk and �mðtÞ

::k ) are also included to track pos-

sible moderation effects at level-two and level-three. For example, a student’s baseline vocabulary
ability may influence the effectiveness of the Word Generation intervention but the average
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student baseline vocabulary ability for a teacher (�mðtÞ
:jk ) may also influence the effectiveness of the

Word Generation. Perhaps, the intervention is easier to implement with a student group possess-
ing higher baseline vocabulary or, conversely, a group of students with lower baseline vocabulary

may be more receptive to the intervention. These moderation effects would be captured with bðtÞ01k
while school-level moderation effects are captured with bðtÞ001:

The outcome model in the control arm also includes the aggregated moderator at the upper-
level to consider moderator variance within and between groups such that

yðcÞijk ¼ bðcÞ00k þ bðcÞ1jkm
ðcÞ
ijk þ bðcÞ2jkðxðcÞijk � �xðcÞ:jk Þ þ eðcÞijk eðcÞijk � Nð0, r2

yjðcÞ Þ
bðcÞ00k ¼ dðcÞ000 þ bðcÞ001 �m

ðcÞ
::k þ bðcÞ002�x

ðcÞ
::k þ vðcÞ00k , vðcÞ00k � Nð0,/2

yjðcÞ Þ:
(22)

Terms and interpretations for the outcome model of the control arm retain similar meaning
from the intervention arm.

Our moderation effect variance formulations for CRTs with 3/2 partially nested data must
accommodate moderator variation within and between groups. This requires a multilevel model
for the moderator to reflect variation across the three-levels such that

Level 1:

mðtÞ
ijk ¼ bðm, tÞ

0jk þ eðm, tÞ
ijk , eðm, tÞ

ijk � Nð0, r2mðtÞ Þ (23)

Level 2:

bðm, tÞ
0jk ¼ bðm, tÞ

00k þ uðm, tÞ
0jk , uðm, tÞ

0jk � Nð0, s2mðtÞ Þ

Level 3:

bðm, tÞ
00k ¼ dðm, tÞ

000 þ vðm, tÞ
00k , vðm, tÞ

00k � Nð0,/2
mðtÞ Þ:

The key terms to map out the variance of moderation effects in CRTs with 3/2 partially nested
data are: r2mðtÞ , the variance of the moderator or baseline student vocabulary scores, s2mðtÞ , the
variance of the moderator at level-two or the variance of baseline student vocabulary scores at
the teacher-level, and /2

mðtÞ , the variance of the moderator at level-three or variance of baseline
student vocabulary scores at the school-level.

A similar multilevel model for the moderator is utilized in the control arm such that

mðcÞ
ijk ¼ bðm, cÞ

00k þ eðm, cÞ
ijk eðm, cÞ

ijk � Nð0, r2mðcÞ Þ
bðm, cÞ
00k ¼ dðm, cÞ

000 þ vðm, cÞ
00k , vðm, cÞ

00k � Nð0,/2
mðcÞ Þ:

(24)

Like the moderator model in the intervention arm, the key terms for estimating moderator
effect error variance are r2mðcÞ and /2

mðcÞ : These terms capture the variance of the moderator in the
control arm at the lower- and upper-level. In our example, r2mðcÞ and /2

mðcÞ capture variance of
baseline vocabulary scores at the student- and school-level in the control arm.

Moderator effects and error variance

We consider the total moderation effect of mð:Þ
ijk because it is unlikely that a study will be designed

with power to detect a level-specific moderation effect as the focal point. In our example, we are
investigating treatment effect heterogeneity across different student baseline vocabulary ability.
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The actual moderation effect may stem from differences in student baseline vocabulary ability,
aggregated student baseline vocabulary ability at the teacher-level, aggregated student baseline

vocabulary ability at the school-level or some combination (i.e., bðtÞ1jk þ bðtÞ01k þ bðtÞ001). Without

group mean centering, the coefficients paired with the moderator and aggregated moderator at
each level capture the total moderation effect such that

MET ¼ ðbðtÞ1jk þ bðtÞ01k þ bðtÞ001Þ � ðbðcÞ1jk þ bðcÞ001Þ: (25)

This is akin to finding the total moderation effect of student baseline vocabulary ability, aggre-
gated student baseline vocabulary ability at the teacher-level and aggregated student baseline
vocabulary ability at the school-level on the Word Generation-student academic vocabulary
relationship.

With a total moderation effect estimated using coefficients paired with each moderator (or
aggregated moderator value), the error variance of the total moderation effect is the sum of all
coefficient variances such that

r2MET
¼ ðr2

bðtÞ1jk
þ r2

bðtÞ01k
þ r2

bðtÞ001
Þ þ ðr2

bðcÞ1jk

þ r2
bðcÞ001

Þ: (26)

Variance of coefficient estimates for moderators that vary within groups remain the same (see
Equations 6 and 15 for r2

bðtÞ1jk
and r2

bðcÞ1jk

respectively). The variance of coefficient estimates related to

the aggregated moderators (r2
bðtÞ001

, r2
bðtÞ01k

and r2
bðcÞ001

) are new terms. Under stated assumptions, we

formulate these new coefficient variance terms as

r2
bðtÞ01k

¼
s2
yjðtÞ ð1� R2

yðtÞL2
Þ þ ðr2

yjðtÞ ð1� R2
yðtÞL1
Þ=nðtÞ1 Þ

ðnðtÞ3 nðtÞ2 � 2Þðs2
mjðtÞ þ r2

mðtÞ=n
ðtÞ
1 Þ

(27)

r2
bðtÞ001

¼
/2
yjðtÞ ð1� R2

yðtÞL3
Þ þ ðs2

yjðtÞ ð1� R2
yðtÞL2
Þ=nðtÞ2 Þ þ ðr2

yjðtÞ ð1� R2
yðtÞL1
Þ=nðtÞ2 nðtÞ1 Þ

ðnðtÞ3 � 2Þð/2
mjðtÞ þ s2

mjðtÞ=n
ðtÞ
2 þ r2

mjðtÞ=n
ðtÞ
2 nðtÞ1 Þ

(28)

and

r2
bðcÞ001

¼
/2
yjðcÞ ð1� R2

yðcÞL3

Þ þ ðr2
yjðcÞ ð1� R2

yðcÞL1

Þ=nðcÞ1 Þ
ðnðcÞ3 � 2Þð/2

mjðcÞ þ r2
mðcÞ=n

ðcÞ
1 Þ

: (29)

These formulations can be substituted into the total moderation effect variance formula (e.g.,
r2MET

) with the non-centrality parameter, t-test for determining a significant moderated effect,
and power formula remaining unchanged.

These variance terms are a bit more complicated than those found in partially nested designs
using individual random assignment due to the additional moderator variance terms (e.g., /2

mjðtÞ ,
/2
mjðcÞ , and s2

yjðtÞ). However, they follow a very similar structure to the previous coefficient variance
formulas. Generally, outcome variance terms occupy the numerator of the formulas and are
reduced by variance explained by covariates and the sample size at the corresponding level. The
denominator now includes variance of the moderator at all applicable levels and these variance
terms are reduced by sample size at the corresponding level. For example, Equation 32 is the for-
mula for variance of the coefficient associated with the upper-level aggregated moderator (bðcÞ001).
It includes variance of the outcome in the control arm at the upper-level and lower-level, variance
explained by covariate terms, and lower-level per group sample size in the numerator. This com-
bination of components matches pervious two-level coefficient variance formulas (see Equation
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22). The denominator includes group and per group sample size terms along with variance of the
moderator at the upper- and lower-levels. To summarize in terms of our example, when a moder-
ator such as baseline student vocabulary ability may vary systematically within and between
groups, which can be expected in a CRT randomizing schools, variance of the baseline student
vocabulary moderator must be modeled and included in moderation effect error vari-
ance formulas.

Simulation studies

We conducted four simulation studies to establishment the accuracy of our four moderation
effect variance and power formulas with three-level partially nested data (see Supplemental
Materials for R code). Conditions were purposefully selected to provide some initial indication of
sample size requirements to consistently detect these moderated effects and the influence of key
design parameters on power rates (see Table 1). We generated data sets in R (R Core Team, 2021)
with sample sizes of 10 and 20 at each level. Control sample size was set to ensure a balanced design

with nðcÞ ¼ nðtÞ1 � nðtÞ2 � nðtÞ3 for 3/1 partial nesting and nðcÞ1 ¼ nðtÞ1 � nðtÞ2 and nðcÞ3 ¼ nðtÞ3 for 3/2 par-
tial nesting. Moderation effects of ME ¼ 0:1 and ME ¼ 0:05 were included with a total ME ¼ 0:15

for CRTS with 3/2 partial nesting (bðtÞ1jk ¼ 0:1, bðtÞ01k ¼ 0:0,bðtÞ001 ¼ 0:05). In the intervention arm, three

values of individual-level variance of the outcome were considered,r2yðtÞ ¼ 0:9, 0:8, and 0:6 with

variance of the outcome at level-two and level-three held equal with corresponding values of s2yðtÞ ¼
/2
yðtÞ ¼ 0:05, 0:1, and 0:2: In the control arm, r2yðcÞ ¼ 1 and /2

yðcÞ ¼ 0 for the single-level control

condition in a 3/1 partially nested design. In all other control arm conditions r2yðcÞ ¼
0:95, 0:9, and 0:8 with corresponding values at the upper-level of /2

yðcÞ ¼ 0:05, 0:1, and 0:2:

Finally, we considered variance explained in the outcome at each level by covariates. Across all levels
in both the intervention and control arm, we examined R2

: ¼ 0:0, 0:4, and 0:7: Simulation condi-
tions were guided by previous simulation literature examining partially nested designs (Cox &
Kelcey, 2022; Roberts, 2021; Roberts et al., 2016; Heo et al., 2017; Snijders, 2005) and moderation in
group-randomized trials (Spybrook et al., 2016; Dong et al., 2016; Dong et al., 2021b; Mathieu et al.,
2012) with all analyses conducted in R (R Core Team, 2021).

Results

Power to detect a lower-level moderation effect in a three/one partially nested design

Formula based predicted power rates to detect a moderated effect from a lower-level moderator
in a 3/1 partially nested design closely approximated empirical rejection rates in our simulation
study. The accuracy of the power formulas held across various decompositions of outcome vari-
ance, variance explained by covariates, and sample sizes (see Table 2 for selected results and
Supplementary Materials for all conditions). Slightly overestimated power rates in several condi-
tions stem from the small sample sizes considered at the second and third levels of the interven-
tion arm (e.g., nðtÞ2 and nðtÞ3 ). These discrepancies dissipate as nðtÞ2 and nðtÞ3 increase and a
comparison of formula-based moderation effect error variance and the observed variance of the
moderation effect across simulation runs supports power formula accuracy.

While limited, results do provide some initial indication of the feasibility of detecting a moder-
ation effect in a 3/1 partially nested design. Typical sample sizes found in planned educational
experiments with multilevel structures (e.g., Schochet, 2011) will often be sufficient to consistently
detect these moderation effects. For example, power to detect the moderation effect of student
math anxiety on the summer school spatial reasoning intervention would be >80% in all but the
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smallest sample size considered when ME ¼ 0:1: Even smaller moderation effects could be con-
sistently detected if student, group, and teacher sample size at each level exceeded 20. Other
design parameters that influenced power rates included outcome variance decomposition and
variance explained by covariates. While minor (<10%), increased share in outcome variance at
levels two and three in the intervention arm, increased power to detect the moderation effect. Put
differently, if more variance in mathematics performance scores is attributable to group- and
teacher-levels, power to detect the moderation effect of student math anxiety would increase. The
use of covariates that explain variance in the outcome also increased power to detect moderation
paralleling results found in previous literature (e.g., Cox & Kelcey, 2022; Cox et al., under review).
In our example, a pretest of student mathematics performance would be a valuable covariate to
include in the outcome model of both intervention and control arms.

Power to detect a lower-level moderation effect in a three/two partially nested design

Our second simulation study found formula based predicted power rates for lower-level moder-
ation effects in a 3/2 partially nested design closely approximated empirical rejection rates (see
Table 3 for selected results and Supplementary Materials for all conditions). We again found
minor discrepancies between predicted power and simulation rejection rates at the smallest sam-
ple sizes. As with moderated effects in 3/1 partially nested designs, no systematic bias was found
in the error variance formula and power rates matched reject rates as sample sizes increased.

Power rates and the influence of design parameters were very similar for lower-level moder-
ation effects across designs with 3/1 and 3/2 partially nested data. In terms of our illustration, it
would be feasible to detect the moderating effect of student socio-economic status on the Utility-
value intervention treatment effect with typical sample sizes. Greater variation in mathematics
performance at the intervention-group (level-two) and classroom-level (level-three) and inclusion
of a student’s pretest mathematics performance score in the outcome models would increase
power to detect the moderation effects.

Power to detect an upper-level moderation effect in a three/two partially nested design

Our power formulas for detecting upper-level moderation effects in designs with 3/2 partially
nested data again closely matched simulation study rejection rates (see Table 4 for selected results
and Supplementary Materials for all conditions). With moderators located at the upper-level of
the treatment and control models, power to detect moderation effects was much more dependent
on upper-level sample size (i.e., nðtÞ3 and nðcÞ3 ). Logistical and financial constraints inherently limit
these sample sizes thus reducing the power to detect upper-level moderation effects under typical
conditions. We adjusted some conditions in our simulation study to reflect differences in detect-
ing upper-level moderation effects. First, we eliminated the small ME condition (ME¼ 0.05)
because power rates would be consistently and extraordinarily low. We then added an R2

: ¼ 0:7
condition and varied nðtÞ3 sample sizes from 30 to 100 to consider power formula accuracy across
a wider range of power rates. These additional conditions also provide supplementary evidence
regarding the feasibility of detecting upper-level moderation effects.

The shift from lower-level moderation to upper-level moderation effects produced substantially
lower power rates, as noted, and led to changes in the influence of design parameters. Results
suggest we would have great difficulty detecting moderation effects from a teacher effectiveness
composite score or any other teacher-level characteristic on the Utility-value intervention-student
mathematics relationship. Power to detect upper-level moderation effects under the original simu-
lation conditions never exceeded 20%. Even with R2

: ¼ 0:7, power to detect the upper-level mod-
eration effect did not exceed 60%. This suggests that even inclusion of a very effective covariate
such as mathematics performance pretest score would not result in consistently detectible upper-
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level moderation effects. In the expanded nðtÞ3 sample size conditions we found adequate power
(i.e., 80%) was not achievable without covariates when nðtÞ3 � 100: The only scenarios in which
upper-level moderation effects were consistently detectable (i.e., >80%) included effective covari-
ates (i.e., R2

: ¼ 0:7) and larger upper-level sample sizes (i.e., nðtÞ3 � 60; see complete results in
Supplementary materials). It is possible that well resourced educational experiments could reach
these sample sizes but for many it may be financially or practically difficult to recruit more than
>100 teachers, schools or classrooms (e.g., nðtÞ3 � 50 and nðcÞ3 � 50).

As for the influence of other design parameters on power, detecting upper-level moderation
effects was more susceptible to changes in outcome variance decomposition. Specifically, increased
share in outcome variance at levels two and three in the intervention arm, substantially decreased
power to detect the moderation effect. For example, when nðtÞ3 ¼ nðtÞ2 ¼ nðtÞ1 ¼ 20, nðcÞ1 ¼ nðtÞ1 � nðtÞ2
and nðcÞ3 ¼ nðtÞ3 , R2

: ¼ 0:7, and ME¼ 0.1, power to detect an upper-level moderation effect is �
60% with r2yðtÞ ¼ 0:9, s2yðtÞ ¼ /2

yðtÞ ¼ 0:05, r2yðcÞ ¼ 0:95, and /2
yðcÞ ¼ 0:05but < 20% under the same

conditions with r2yðtÞ ¼ 0:6, s2yðtÞ ¼ /2
yðtÞ ¼ 0:2, r2yðcÞ ¼ 0:8, and /2

yðcÞ ¼ 0:2: Note that this is the
inverse of results found for lower-level moderation. If we are interested in moderated effects of a
teacher or classroom characteristic (i.e., moderator at the upper-level), it is advantageous for power
rates if variance in mathematics performance outcome is concentrated at the student-level.

Power to detect the total moderation effect in a cluster randomized trials with three/two
partial nesting

In our final simulation study, we examined the accuracy of our power formulas for moderated
effects in cluster randomized trials with 3/2 partially nested data. Formula power rates approxi-
mated empirical rejection rates for moderated effects in this design (see Table 5 for selected
results and Supplementary Materials for all conditions). We did note formula predicted power
consistently overestimated the empirical rejection rate when nðtÞ2 and nðtÞ1 were small (e.g., � 10).
However, these discrepancies were small (i.e., �2%) and disappeared as nðtÞ2 and nðtÞ1 exceeded 20.

We found the total moderated effect (i.e., moderated effects that include effects from the aggre-
gated moderator at levels-2 and �3) was overwhelmed by additional error variance components.
Put differently, it would be difficult to detect moderation effects from varying student baseline
vocabulary ability on the Word Generation intervention. Randomization of schools would require
the inclusion of student academic vocabulary variance at the student-, teacher-, and school-level to
be included in components of the moderation effect variance. This additional variance would likely
exceed any additional moderation effects found at the teacher- and school-level. For example,
power to detect a total moderated effect of ME¼ 0.15 (bðtÞ1jk ¼ 0:1, bðtÞ001 ¼ 0:05) was �8% even with
R2
: ¼ 0:4: Sample sizes at the upper-levels must be increased to achieve power rates even approach-

ing adequate (i.e., 80%). For example, power to detect the total moderation effect in these designs
was 45% with nðtÞ3 ¼ 100, nðtÞ2 ¼ nðtÞ1 ¼ 10, nðcÞ1 ¼ nðtÞ1 � nðtÞ2 and nðcÞ3 ¼ nðtÞ3 , R2

: ¼ 0:7, and
MET¼0.15. There are, of course, conditions in which one could consistently detect total moderation
effects in these designs (e.g., large nðtÞ3 , nðtÞ2 , nðtÞ1 values, large ME values) but acquiring these sample
sizes in planned educational experiments is difficult. For example, it would be difficult to recruit
more than 200 schools (intervention and control arm nð:Þ3 sample sizes � 100) for our example
study. We conclude that under common conditions detecting total moderation effects in cluster
randomized studies with 3/2 partially nested data is not practically feasible.

Discussion

Comprehensive evaluation of treatment effects is aided by considering moderated effects. In edu-
cational research, the combination of natural hierarchical structures (e.g., students nested within
classrooms) and prevalence of group-administered or shared facilitator treatments often produces
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three-level partially nested data. Literature details planning strategies for a variety of experimental
designs when moderation effects are of interest but had yet to establish power formulas for
detecting moderation effects in three-level partially nested designs. The lack of planning strategies
and tools (e.g., power formulas) made efficient planning of these studies difficult. To address this
gap, we developed moderation effect variance formulas and the subsequent power formulas for
detecting moderation effects in three/one and three/two partially nested designs. We conducted
simulation studies to both assess the accuracy of the newly developed formulas and provide an
initial probe into power and adequate sample sizes for moderation effects in these designs.
Simulation conditions included different decompositions of outcome variance across levels, differ-
ing amounts of variance in the outcome explained by covariates, different magnitudes for the
moderation effect, and different sample sizes across all levels.

The two primary contributions of this work are then (a) the moderation effect variance and
subsequent power formulas for detecting moderation effects in three-level partially nested designs
and (b) increased understanding of power rates and adequate sample sizes for detecting moder-
ation effects in partially nested designs. These contributions improve planning of educational
experiments with partial nesting. Use of resources is likely to be more efficient because estimates
of the adequate sample sizes needed to consistently detect moderation effects will be more accur-
ate. Availability of power formulas and other study planning guidance (e.g., use of covariates)
also promotes inclusion of moderator variables that elucidate important features of an interven-
tion (i.e., for whom and under what conditions it is effective). To promote adoption and imple-
mentation of the formulas they have been implemented in the online R-Shiny application
PowerUpRShiny (https://poweruprshiny.shinyapps.io/PartiallyNestedPower/).

More specific implications of this research involve the feasibility of detecting moderation
effects in studies with different partially nested data structures. It is unlikely that a planned edu-
cational experiment will be designed for the sole purpose of investigating moderated effects.
Rather, intervention effectiveness is likely to be the primary focus. It is then beneficial to consider
the power to detect moderation effects under sample sizes typically achieved in planned educa-
tional experiments. Detecting moderation effects stemming from individual-level moderators in
both 3/1 and 3/2 partially nested designs is feasible under a variety of scenarios with samples sizes
typically seen in planned educational experiments. We encourage the inclusion of individual-level
moderators in these studies because sample sizes are likely adequate to detect any moderation
effects and these effects provide a more comprehensive understanding of treatment effects.
Conversely, the detection of moderation effects from upper-level moderators in 3/2 partially
nested designs is not feasible with samples sizes typically seen in planned educational experi-
ments. Detection of these upper-level moderation effects rely on upper-level sample sizes that
have logistical (limited availability) and financial (limited budgets) constraints.

These findings are similar to those for detecting moderation effects in fully nested three-level
designs (i.e., three-level cluster randomized trials, Dong et al., 2018). Specifically, in both fully
and partially nested three-level designs the location of the moderator or moderation effect was
the most influential factor in determining the feasibility of detecting the effect. For both designs,
power to detect lower-level moderation effects was typically adequate with sample sizes that
achieve adequate power to detect main effects. Conversely, power to detect upper-level moder-
ation effects was typically inadequate with sample sizes that achieve adequate power to detect
main effects.

We also found typical sample sizes resulted in inadequate power to detect total moderation
effects in cluster randomized trials with 3/2 partially nested data. In this context, it is not neces-
sarily limited sample sizes that prevent the detection of moderation effects but the study design
structure and resulting moderator effect variance. With randomization occurring at the upper-
level, individual-level moderators may vary in systematic ways across groups and this variance
must be incorporated into moderation effect error variance formulas. Our results indicate these
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additional variance components typically overwhelm the total moderation effect producing inad-
equate power across the conditions considered. Exceptions are certainly possible but detecting
total moderation effects is likely to be difficult in typical cluster randomized education experi-
ments with partial nesting.

Conclusion

This study, like all simulation studies, had a limited scope of conditions that was practically con-
siderable. A more comprehensive examination of the different moderation effects possible in these
partially nested designs is recommended with a particular focus on conditions for sufficiently
detecting upper-level moderation and moderation in cluster randomized trials with partial nest-
ing. These comprehensive examinations should expand on the sample size conditions and vari-
ance of the outcome decompositions.

Along with subsequent simulation studies, we encourage exploration and documentation of
the design parameter values required for the moderation effect power formulas. Accuracy of these
parameters directly influences the accuracy of ensuing power formulas. Design parameters have
been compiled for several types of experimental designs and outcomes but need further develop-
ment for partially nested designs that include moderators. Not only will empirically based design
parameters increase study design accuracy, they can be used to better delineate appropriate condi-
tions in future simulation studies.

To close, let us summarize two key takeaways from the results of this study. First, three-level
partially nested studies that randomize at the individual-level will often be sufficiently powered to
detect a moderated effect when utilizing typical sample sizes for detecting main effects. Increasing
individual-level sample sizes and incorporating covariates that explain variance in the outcome
represent two effective strategies for increasing the power to detect moderation effects in these
settings. Second, upper-level moderation in 3/2 partially nested designs and total moderation in
cluster randomized designs often require upper-level sample sizes that are not feasible in educa-
tional experiments. In these settings, outcome variance explained by covariates does increase
power but not dramatically enough to ensure study feasibility.
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