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Abstract

Multilevel structural equation models (MSEMs) are well suited for educational
research because they accommodate complex systems involving latent variables in
multilevel settings. Estimation using Croon’s bias-corrected factor score (BCFS) path
estimation has recently been extended to MSEMs and demonstrated promise with
limited sample sizes. This makes it well suited for planned educational research which
often involves sample sizes constrained by logistical and financial factors. However,
the performance of BCFS estimation with MSEMs has yet to be thoroughly explored
under common but difficult conditions including in the presence of non-normal indi-
cators and model misspecifications. We conducted two simulation studies to evaluate
the accuracy and efficiency of the estimator under these conditions. Results suggest
that BCFS estimation of MSEMs is often more dependable, more efficient, and less
biased than other estimation approaches when sample sizes are limited or model
misspecifications are present but is more susceptible to indicator non-normality.
These results support, supplement, and elucidate previous literature describing the
effective performance of BCFS estimation encouraging its utilization as an alternative
or supplemental estimator for MSEMs.
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Multilevel structural equation models (MSEMs) are well suited for research in educa-
tion because they accommodate hierarchical structures (e.g., teachers nested within
schools, students nested within classrooms, and principals nested within districts),
complex theories relating individuals and groups and variables that are latent (i.e.,
not directly observable). With large sample sizes, MSEMs have proven effective in
evaluating theses complex multilevel systems while accounting for the measure-
ment error associated with latent variables (e.g., Cheung & Lau, 2017; Hox et al.,
2010; Li & Beretvas, 2013). However, educational research often has financial and
logistical constraints that limit feasible sample sizes. For example, large experi-
mental multilevel studies can be expensive while budgets are limited (e.g., Kelcey
& Phelps 2013a, 2013b), and recruiting large sample sizes is difficult (e.g., Autio
& Deussen, 2017).

These constraints are somewhat intractable, but several methodological solutions
have been proposed in literature. MSEM are typically estimated using maximum
likelihood (ML) estimation, but it requires large sample sizes at each level to provide
accurate and dependable parameter estimates (e.g., Hox et al., 2010; Li & Beretvas,
2013; Meuleman & Billiet, 2009; van de Schoot & Miocevi¢, 2020). Multilevel path
analysis using factor scores (FSs) in place of measurement models (i.e., uncorrected
FS approach) provides an alternative method to examine complex multilevel systems
connecting latent variables. While this approach typically requires smaller sample
sizes, it ultimately provides biased results because it disregards the measurement
error associated with the latent variables (e.g., Devlieger et al., 2016; Devlieger &
Rosseel, 2017). Croon’s bias-corrected factor score (BCFS) path estimation tracks
and corrects for the bias introduced in a typical FS path analysis using key measure-
ment model properties (Croon, 2002).

BCFS has shown promise in select settings and conditions. It provided nearly
unbiased coefficient estimates for a variety of MSEMs with various cluster and indi-
vidual per cluster sample sizes (Devlieger & Rosseel, 2019; Kelcey et al., 2021) and
outperformed ML in terms of bias, efficiency, convergence rate, and robustness to
model misspecification. The performance of BCFS estimation was influenced by
sample size, indicator weights, and type of model misspecification. While these
results are encouraging, it is important to establish the relative and absolute perfor-
mance of BCFS estimation of MSEMs under a more complete range of conditions
that are common in planned educational research. We expand on work by Kelcey
et al. (2021) and Devlieger and Rosseel (2019) by considering BCFS with a fully
crossed combination of factors that influence the estimation of MSEMs including
non-normal indicators, the number of indicators per factor, model misspecifications,
and limited sample sizes. The influence of these factors on BCFS estimation is con-
sidered in an MSEM similar to the model employed by Kelcey et al. (2021) but with
additional indicators per factor. This multilevel mediation model reflects a complex
theory of action examined in an experimental study likely to have a limited sample
size (e.g., Schochet, 2011; Spybrook et al., 2016).
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We also consider the performance of BCFS estimation with various model misspe-
cifications. Misspecified measurement and structural models are common in social
science research, and these misspecifications can bias estimates of MSEM parameters
when using ML (e.g., Bollen et al., 2007; Ropovik, 2015). Previous research has
found BCFS estimation to be more robust to structural misspecifications and perform
similarly or better than ML under misspecified measurement models (Devlieger &
Rosseel, 2017, 2019; Hayes & Usami, 2020a; Kelcey et al., 2021). However, it is
unclear if these results hold with additional complexity in the measurement model
and increasingly severe model misspecifications (e.g., two misspecified indicators in
the measurement model).

Therefore, the purpose of this study is to extend understanding of BCFS estimation
in MSEMs with limited sample sizes when also facing indicator non-normality or a
misspecified model. Specifically, we examine the performance of BCFS estimation
with MSEMs when sample size is limited, the number, normality, and factor weights
of measurement model indicators vary, and the structural and measurement models
include misspecifications. We accomplish this through two simulation studies focus-
ing on the estimation of MSEM path coefficients using Croon’s BCFS approach, ML
estimation, and an uncorrected FS approach. The first simulation focuses on small
sample size conditions and various measurement model indicator complications,
while the second simulation includes three types of structural model misspecifications
and two types of measurement model misspecifications. Criteria for evaluating esti-
mator performance include convergence failure rate, bias, and efficiency. Preceding
the two simulations is a description of BCFS estimation, and the MSEM used in the
simulation studies. Following each simulation study are supplemental studies to
investigate specific areas of interest and guide future research. To conclude, we sum-
marize results then discuss their implications, limitations, and future research
possibilities.

BCFS Path Estimation

Croon’s BCFS path estimation has been developed for single-level mediation,
single-level moderation, sequential mediation, multilevel mediation, and other
MSEMs (e.g., Cox & Kelcey, 2021; Devlieger & Rosseel, 2017, 2019; Kelcey, 2019;
Kelcey et al., 2021) and is applicable in a variety of MSEMs including those with
more complex multidimensional factor structures, multiple outcome models, models
with multiple endogenous variables (e.g., treatments), and models incorporating sev-
eral of these features (e.g., Devlieger et al. 2019; Hayes & Usami, 2020b). The
BCFS process begins with the estimation of factor models for each latent variable
and subsequent calculation of FSs. A variance—covariance matrix is constructed
using these FSs and values from any observed variables under consideration.
Parameter estimates based on this variance—covariance matrix are biased because
latent variable unreliability has been disregarded. The correction of BCFS uses
results from the measurement models to adjust the variance—covariance matrix to
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Figure I. Conceptual Representation of a MSEM With a Manifest Variable (T) and Latent
Variables Y, X, W, and M Measured by Four Indicators.

Note. MSEM = multilevel structural equation model.

account for this unreliability. Finally, the corrected variance—covariance matrix is
used to estimate the structural model. If inferential testing is of interest, bootstrap
methods are applicable and appropriate for determining standard errors with BCFS
results (see Kelcey et al., 2021 for details).

In our examination of BCFS, we employ a modified version of the multilevel
mediation model seen in Kelcey et al. (2021) with more indicators per latent factor.
The modified multilevel mediation model with four indicators per latent factor is
illustrated in Figure 1 (adapted from part of Figure 1 by Kelcey et al., 2021). The
model includes a treatment (T) that is assigned at the cluster-level and influences an
outcome (Y), through an individual-level mediator (M) and includes covariates at the
cluster level (W) and individual level (X). BCFS with this model begins with
the single-level and multilevel factor models representing the latent variables. The



Cox and Kelcey 5

individual-level latent variables (i.e., ,,, My, and m,) require a multilevel measure-
ment model to properly account for variance among and within clusters while the
cluster-level latent covariate (vy,) only varies between clusters enabling the use of a
single-level measurement model. The factor models are estimated using ML with
FSs obtained using the regression predictor method.

BCEFS utilizes a Croon (2002) method of moments correction to adjust the FS cov-
ariance matrix to account for attenuation brought about by additional uncertainty in
the FSs. Measurement model error indicates the magnitude of the bias and correction
necessary for each latent variable (Croon, 2002). These corrections are the crucial
component of BCFS and are required for each variable pairing that includes a latent
variable. For example, when estimating the mediation model (see Figure 1), there is
a cluster-level covariance between two latent variables measured at the individual-
level (cov(nt?,mk?)). The measurement step provides the necessary values to deter-
mine the covariance between the cluster-level latent variable FSs (cov[Y*2, M*2]).
The corrected covariance between the latent variables (cov(n}?,m%?)) is a function of
(cov(Y*2, M*™?) and their FSs and factor loading values (Devlieger et al., 2016;
Kelcey et al., 2021). The corrections for other latent variable pairings operate in a
similar fashion. Following these corrections, a bias-corrected path analysis is con-
ducted using the corrected covariance matrixes (see Devlieger & Rosseel, 2019 and
Kelcey et al., 2021 for a more detailed explanation of BCFS for MSEMs).

Measurement and Structural Models

Our investigation of BCFS utilizes the MSEM depicted in Figure 1 and a similar
model with 10 indicators for each latent variable. The single-level common factor
model used for the cluster-level latent covariate () was

Wj:l‘«w*'AW"IWf"'EJW (1)

with j indexing clusters, w; representing observed indicators, Ay for factor loadings,
W capturing indicator intercepts, with error terms € jW . We fixed the variance of M,
to one to set the scale, used ML estimation to fit the model, and the regression predic-
tor method to obtain FSs.

A multilevel factor model was utilized for the individual-level latent variables
with each decomposed into a cluster- and individual-level components (see config-
ural constructs in Stapleton et al., 2016). For example, M is decomposed into cluster-
and individual-level components m%? and m%} with

_ L2, 12 L1_L1 M*2 M
mi = Wy, + Agpyy + Ay, T & gy (2)

where m;; represents the latent variable indicators of the mediator for individual i in

cluster j, with cluster- and individual-level factor loadings A%? and Aﬁ}, intercepts
. .« . L2 .

My and cluster- and individual-level error terms 8]M and efy . The variance of the

cluster- and individual-level factors is again set to one to establish the scale. Parallel
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model formulations were utilized for the other latent variables requiring multilevel
factor models (m%* and m! for X and %2, and n}! for Y).

We connect the latent and manifest Varlables under consideration (i.e., 7, W, X, M,
and Y) with multilevel structural models (e.g., Preacher et al., 2010) such that the path
model for M is

My, = Lo+ Ll +eg € ~N(0,03,)

3)

’T]M—ﬂTo'i'aT +1T1’Y]W+1T2’T]X +u u}4~N(O,Tf\4‘)

At the 1nd1V1dua1 level (m}} ,)> Lo represents the intercept with an individual-level
error term of 8 , the only path coefficient, {;, captures the relationship between the
mediator and the individual-level component of the individual-level covarlate (4

At the cluster-level, 1 represents the intercept with a random effect of uj , the treat-
ment indicator for each cluster is 7}, the path coefficient, a, captures the relationship
between the treatment and mediator (M), the remaining path coefficients at the clus-
ter-level, 7 and 7r;, capture the relationship between the mediator and latent cluster-
level covariate (nW) and the cluster-level component of the individual-level covari-

ate (%
The corresponding multilevel structural model for the outcome, 7, is similar with

= L1 L1 Y Y 2
My, = Bo+bimy, +Bimy; ey &;~N(0,0y)

, 4

My =Yoo t b+ e Ty, t oyt ~NO,T)) @
B, represents the intercept at the individual-level (nyl) the b; coefﬁc1ent captures
the relationship between the individual-level component of M (n}} ) and the outcome
while the 8, coefficient captures the relationship between the individual-level com-
ponent of the individual-level latent covarlate (¥ ) and the outcome, and the error
term at the individual-level error is g}, At the cluster—level Yoo represents the inter-
cept with a cluster-level random effect of u , b is paired with the cluster-level com-
ponent of M (nk? ) capturing its relationship to the outcome, the direct effect of the
treatment on the outcome is represented by ¢/, coefficients paired with the cluster-
level latent covariate () and the cluster-level component of the individual-level
covariate (n% ) are vy, and v,. Note that in our multilevel structural models for both
the mediator and outcome, we do not specify random slopes. This is a necessary
restriction because BCFS cannot currently accommodate MSEMs with random
slopes.

Simulation Study I: Limited Sample Size and Measurement
Model Factors

The first simulation study seeks to better understand BCFS performance when sam-
ple size is limited and the number, normality, and factor weights of measurement
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model indicators vary. We estimate the MSEM with BCFS, ML, and an uncorrected
FS approach and capture convergence failure rate, bias, and efficiency of coefficient
estimates as performance criteria. ML is a prevalent estimation approach often ser-
ving as the default for MSEM (e.g., Mplus and the lavaan package in R). As a full
information method, it estimates the measurement and structural components of the
MSEM simultaneously. While ML is both efficient and consistent, its simultaneous
approach to highly parameterized MSEMs has been found to produce biased esti-
mates and high convergence failure rates when sample sizes are limited (Rosseel,
2020). An alternative to ML is the FS approach which estimates the measurement
models and then the structural components similar to BCFS but does not include a
correction step to address measurement error related to any latent variables.

Data Generation

Data for the first simulation were generated based on the depiction in Figure 1, the
structural models in Equations 3 and 4, and the measurement models in Equations 1
and 2. We began by generating the manifest treatment indicator 7; coded as +0.5
and the exogenous latent covariates m;, and m, such that ~N(0,1). The intraclass cor-
relation coefficients of M and Y were set to be equal and included two conditions
p=0.2 and 0.4. The remaining endogenous latent variables were generated using
Equations 3 and 4 with a=0.5, 5=04, b;=0.1, ¢/=0.1, m;=0.2, m,=0, v, =0.3,
v, =0, {; =0.2, and B; =0.2. We based our limited sample sizes on previous simula-
tion literature (e.g., Devlieger & Rosseel, 2019; Kelcey et al., 2021) with cluster sam-
ple sizes of n; =100, 80, 50, 30, 20, and 10 and individual per cluster sample sizes
of n; =80, 40, 20, 10, and 5.

We varied three measurement model factors with these limited sample sizes: the
number of indicators per latent variable, indicator weights, and distribution of indica-
tor residuals. We included four indicators per latent trait reflecting typical values
from past simulation literature (e.g., Devlieger et al., 2016; Devlieger & Rosseel,
2019; Kelcey, 2019; Kelcey et al., 2021) and also 10 indicators per latent trait to
examine estimator performance under a novel large number of indicators condition.
The measurement model had three conditions for indicator weights because they
have been shown to influence estimator performance in MSEMs (e.g., Devlieger &
Rosseel, 2019; Kelcey et al., 2021). The first condition was a mix of 1.0, 0.666, and
1.5, while the second and third conditions had uniform indicator weights of 0.666
and 1.5, respectively. We imposed cross-level invariance on the factor loadings (e.g.,
AZL; and A]LMI) by setting indicator weights at the cluster- and individual-level equal
with variability of cluster-level components set at 0.2 and individual-level compo-
nents at 0.8 such that ICC(1) = 0.2 (see Shrout & Fleiss, 1979; Stapleton et al.,
2016).

We also considered non-normal distributions for the indicator residuals by gener-
ating residuals with distributions having skewness of 2 and kurtosis of 7 (Fleishman,
1978). Considering non-normal indicator distributions while varying other
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measurement model factors (e.g., indicators per factor and factor weights) properly
reflects the conditions in which BCFS is likely to be applied (e.g., Blanca et al.,
2013; Micceri, 1989). Literature has indicated ML is somewhat robust to indicator
non-normality, but it is unclear if these results hold under the conditions considered
here and extend to BCFS with MSEMs (e.g., Lei & Lomax, 2005).

To summarize, we conducted a simulation study to investigate BCFS, ML, and
FS estimation of MSEMs when sample sizes are limited and several influential fac-
tors vary. Performance criteria included convergence rate, bias, and efficiency. We
considered novel conditions with non-normal indicator residuals and 10 indicators
per latent trait while also developing a more comprehensive understanding of BCFS
performance in MSEMs by employing a fully crossed design with more than 720
conditions. In total, 1000 data sets were generated for each condition using R (R
Core Team, 2019) with estimation conducted in the lavaan (Rosseel, 2012) and /me4
(Bates et al., 2015) packages.

Results

Select results are presented by performance criteria with sections below detailing
convergence rate, bias, and efficiency. The general results were not substantially
influenced by the intraclass correlation coefficient of M and Y, so we focus on the
p=0.2 condition. Given the variety of conditions, we rely on several figures to effi-
ciently communicate these results. Unless specifically identified, the default condi-
tions for Simulation study 1 figures were four indicators per latent trait, mixed
indicator weights (i.e., a mix of 1.0, 0.666, and 1.5), indicator residuals with normal
distributions, correctly specified MSEMs, intraclass correlation coefficients of M and
Y of,p=0.2, and 40 individuals per cluster (n; =40). Complete results and simulation
code are available upon request.

Convergence Rate. We tracked the convergence rate or more specifically the failure
of an estimation method to provide a solution across all conditions. Convergence
failure rates increased for each estimator as sample sizes decreased. This relationship
is illustrated in Figure 2 by the black markers identifying the convergence failure rate
of each estimation approach by cluster sample size with different individual per clus-
ter sample sizes (Figure 2A—C). Any condition missing a black marker indicates the
estimation approach failed to converge in more than 50% of the replications.
Convergence failure rate was influenced by the sample of individuals per cluster (7;)
but driven more by the sample of clusters (n,) such that all approaches had unaccep-
table convergence failure rates (e.g., >25%) at the lowest cluster sample size con-
sidered (n; =10).

While the relationship between sample size and convergence failure rate was sim-
ilar for each estimator, the convergence failure rate did vary substantially. BCFS had
the smallest convergence failure rate in almost every condition followed closely by
the FS approach with ML often incurring the largest convergence failure rate. It
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should be noted that the convergence failure rate for ML far exceeded BCFS and FS
approaches especially when n, < 30. For example, with a sample size of n, =20
when n; =80, ML failed to converge over 20% of the time while BCFES failed to con-
verge just over 5% of the time (see the black markers in Figure 2A).

Convergence failure rate was also influenced by indicator weights (see Figure 3)
and number of indicators per latent variable (see Figure 4) but demonstrated no quali-
tative differences when the intraclass correlation coefficient of the outcome and med-
iator varied. Larger indicator weights decreased convergence failure rates especially
with ML. For example, the black markers in Figure 3B indicate convergence failure
rates diverge from zero with as many as 50 clusters when using ML. Conversely, in
Figure 3C, the convergence failure rates remained near O for all three estimators with
cluster sample sizes around 20 and individual per cluster sample sizes of 40.

Increasing the number of indicators for each latent variable also helped reduce
convergence failure rates (see Figure 4). Reading Figure 4 from left to right, we see
reduced convergence failure rates when using 10 indicators. This benefit is especially
pronounced for ML. However, this relationship can be influenced by non-normality
of the indicators. Reading Figure 4 from top to bottom, non-normal indicator resi-
duals had little effect on convergence rate in the four indicator conditions (compare
Figure 4A—C) but generally led to higher convergence failure rates in the 10-indicator
condition (compare Figure 4B—D). Unlike the previous factors under consideration,
non-normality in indicator residuals had a greater detrimental effect on BCFS and FS
approaches. It is important to note that convergence failure rates for the BCFS and
FS approach generally increased only a few percentage points.

Bias. We tracked bias in the estimates of all structural coefficients as the difference
between the estimated value and the true coefficient value in the generated data set.
Using these bias values, we calculated the average absolute bias for each estimation
approach across a 1000 data sets. Focusing on those conditions with reasonable con-
vergence rates, we found bias increased as sample size decreased for all three estima-
tors. Within this result we found, reductions in cluster sample size were more
detrimental to estimator accuracy than reductions in individual per cluster sample
size.

In Figure 2, white markers indicate the average absolute bias of the estimation
approach for each condition and are sized based on the standard deviation of the esti-
mates with larger markers indicating a greater SD or less precision (subsequently
detailed). Bias for each estimator actually held relatively steady when cluster sample
size was greater than 50 with BCFS and ML performing similarly and the FS
approach typically incurring the most bias. However, with extremely small individ-
ual per cluster sample sizes (n; =5 or 10), each estimator saw steep increases in bias
as cluster sample sizes fell below n, =80. With cluster sample sizes less than 50 and
individual per cluster sample sizes greater than 10, several factors influenced estima-
tor bias including indicator weight, and number of indicators per latent variable.
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The relationship between estimator bias and indicator weights was somewhat neb-
ulous. Under the small indicator weight condition, each estimator suffered increased
bias (see Figure 3). However, estimators generally incurred more bias in the large
indicator weight condition when compared to the mixed indicator condition. The
exception being the FS approach which was the most susceptible to influence by
indicator weights. For example, in the smaller indicator weight condition, the FS
approach suffered the greatest bias, but under the large indicator weight condition,
the FS approach suffered the least bias. The relationship between estimator bias and
the number of indicators and the distribution of their residuals was more apparent
(see Figure 4). Increasing from four indicators per latent variable to 10 reduced
bias—albeit minimally—while non-normal indicator residuals caused a slight
increase in bias for each estimator.

Interpretation of results involving bias requires consideration of convergence rates
and error variance of the estimates. Results suggest BCFS and ML often achieve sim-
ilar levels of bias with the FS approach generally incurring more bias. The strong per-
formance of ML in terms of bias is often overshadowed by high convergence failure
rates in the same conditions. For example, in Figure 2B when n, =20 and 10, ML
seems to outperform BCFS in terms of bias but under these conditions ML rarely con-
verged (e.g., convergence failure rate of 97% and 99%, respectively). Results involv-
ing estimator efficiency further call into question the performance of ML in terms of
bias.

Efficiency. We tracked the standard deviation (SD) of path coefficient estimates
across the 1000 data sets to understand the efficiency of each estimator. All of the
estimators were less efficient with smaller sample sizes (e.g., increased SD). ML per-
formed relatively well in terms of bias, but it consistently had the largest SD of esti-
mates. Conversely, the FS approach incurred the most bias but consistently had the
smallest SD results. The BCFS approach tended to balance these considerations. It
had relatively small amounts of bias and outperformed ML in terms of SD of esti-
mates, but it was typically less efficient than the FS approach.

The results involving SD of path coefficient estimates are illustrated in Figures 2
to 4 by the size of the symbols plotted for bias. For example, in Figure 4C when the
sample cluster size is 10, we see that the triangle marking bias for the estimates using
ML is at the highest point on the figure and is larger than the circle and square mark-
ing bias for BCFS and FS, respectively. This indicates that under these conditions,
ML suffered the largest amount of bias and was the least efficient. As for other fac-
tors, smaller indicator weights resulted in small decreases to efficiency across estima-
tors while increasing the number of indicators per latent variable increased efficiency
of each estimator. Interestingly, non-normality in indicator residuals had no discern-
ible influence on coefficient estimator efficiency. Reading Figure 4 from top to bot-
tom, we see the size of each marker maintain the same size when moving from a
normal distribution of indicator residuals to the non-normal condition.
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Figure 4. Bias and Convergence Failure Rate for Each Estimator by Cluster Sample Size
With Differing Numbers of Indicators and Normal (Norm) and Non-Normal (Non)
Residuals, Mixed Indicator Weights, and 40 Individuals Per Cluster.

Note. The size of each point marking bias reflects the average SD of the coefficient estimates for that
estimator under the model and conditions indicated. A larger SD results in larger points on the plot with
smaller SDs producing to smaller points.

Simulation Study I: Supplemental Investigations

The conditions considered in any simulation study are necessarily limited. To expand
the scope of this work and better guide future research, we considered three supple-
mental conditions representing initial investigations into areas of interest. To supple-
ment the first simulation study, we considered multilevel measurement invariance
(see Jak et al., 2013; Stapleton et al., 2016) through a scenario in which the assump-
tion of cross-level invariance on the factor loadings is not met. We set different indi-
cator weights for latent variable components on the within and between levels.
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Specifically, we set four within-level indicator weights as a mix of 1.0, 0.666, and
1.5, while the four between-level indicator weights were a uniform 0.666. Other con-
ditions and the MSEM from the first simulation study were retained. We examined
this cross-level invariance condition with n, =100, 80,50, 30,20, and 10 and an
individual per cluster sample size of n; =80. We also examined the cross-level invar-
iance scenario with non-normal distributions for the indicator residuals.

Estimating MSEMs with multilevel measurement noninvariance was found to be
more difficult (see the Supplement: noninvariance condition in Table 1 for select
results). All of the estimation methods incurred more bias, higher convergence failure
rates, and larger SDs of estimates when compared to similar simulation results with
cross-level invariance (Simulation I: normal condition in Table 1). However, these
increases were all relatively minor. For example, convergence failure rates began to
increase in the n, =50 condition as opposed to n; =30. Relative estimator perfor-
mance remained similar with BCFS still outperforming or paralleling FS and ML
approaches with multilevel measurement noninvariance. The combination of non-
normal data with multilevel measurement noninvariance lead to a slight deterioration
in estimator performance but still did not change relative estimator performance.

Our second supplemental simulation condition related to Simulation study I
focused on non-normal data. Specifically, we considered indicator residuals sampled
from a bimodal distribution to form a different type of non-normal data. We consid-
ered four and 10 indicators per latent variable with a mix of indicator weights, and
n, =100, 80, 50, 30,20, and 10 and an individual per cluster sample size of n; = 80.
The MSEM and other parameter values were retained from the first simulation study.
Estimator performance was very similar with both types of non-normal data (i.e.,
bimodal verse non-normal with skewness of 2 and kurtosis of 7) with select results
presented in Table 1.

Simulation Study II: Limited Sample Sizes and Misspecified
Models

The second simulation study again considered bias, efficiency, and convergence fail-
ure rates for BCFS, ML, and FS estimation but under a misspecified MSEM. BCFS
has been considered with misspecified MSEMs with encouraging initial results
(Devlieger & Rosseel, 2019; Hayes & Usami, 2020a; Kelcey et al., 2021). This simu-
lation develops a more comprehensive understanding of BCFS performance in the
presence of model misspecifications by considering two measurement model misspe-
cifications and three structural model misspecifications (see Figure 5). Simulation
study conditions are again guided by previous literature (e.g., Devlieger & Rosseel,
2019; Kelcey et al., 2021) and adapted based on the first simulation study. For exam-
ple, sample sizes of n, =10, and often n; =20, were not feasible for any of the esti-
mators with correctly specified models so they were excluded from the second
simulation study. We also found that as n; exceeded 20, there was relatively little
change in estimator performance so to match previous literature and avoid excessive
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Misspecified
Structural Models

i Individual-level |

B 4 Misspecified A Misspecified
¢ Measurement Model 1 i Measurement Model 2

Individual-level Mediator Individual-level Mediator

Figure 5. Conceptual Representation of (A) Structural and (B) Measurement Model
Misspecifications in a MSEM With a Manifest Variable (T) and Latent Variables Y, X, W, and M

Measured by Four Indicators.
Note. MSEM = multilevel structural equation model.

simulation conditions, we set two small n; conditions. The structural and measure-
ment models from the first simulation are employed with model coefficient values of
a=0.5, b=04, b1=0.1 ¢=0.1, m=0.2, m;=0, v,=0.3, y,=0, {;=0.2 and



Cox and Kelcey 17

B1=0.2 and the intraclass correlation coefficients of the mediator and outcome set at
0.2. We include cluster sample sizes of n, =200, 100, 50, and 30 and the individual
per cluster sample sizes of n; =20 and 5. As for measurement conditions, four indi-
cators were assigned to each latent factor with the three weight conditions noted in
the first simulation.

The first measurement misspecification involved swapped indicators in which x4
was set to measure m,, while indicator m4 was set to measure my (see Figure 5B).
The second measurement misspecification involved a missing cross-loading. Data
for this analysis were generated with my loading on both m,, and v, while analytic
model matched the original measurement model (see Figure 1 and Equation 2). The
misspecified structural models all involve a missing path but at various levels and
with varying coefficient magnitudes. Specifically, ¢’ =0, 5=0, and 3, =0 in the first,
second, and third misspecified structural models, respectively (see Figure 5A). We
generated 1000 data sets for each of the 24 conditions described and analysed these
data using six MSEM specifications: the true MSEM (i.e., correctly specified model),
two models with measurement misspecifications, and three models with structural
misspecifications.

Results

We again start by considering the convergence failure rate of each estimation
approach. These results along with bias and efficiency results are illustrated in
Figure 6 with n, =50 and n; =20 across different indicator weight conditions.
Similar to the previous simulation, the convergence failure rate increased as both
cluster and individual per cluster sample size decreased. This was true for each esti-
mator and under each model specification. Overall, we found BCFS generally had
the lowest convergence failure rate followed closely by the FS approach (see black
markers in Figure 6). Conversely, the convergence failure rate for ML was >25%
in several conditions. Differences in estimator performance dissipated and eventually
became indistinguishable as sample size increased.

The influence of model misspecification type on convergence failure rate varied
by estimation approach. Overall, the measurement misspecifications undermined
estimator convergence more than structural misspecifications (see Meal and Mea2
in Figure 6). The limited information approaches (e.g., BCFS and FS) were fairly
robust to all three types of structural misspecifications as their convergence failure
rates under the true model and misspecified structural models were nearly equal.
Measurement misspecifications substantially increased convergence failure rates
across all estimators but the BCFS approach was the most robust to these misspecifi-
cations. There were specific conditions in which the structural misspecifications
actually reduced the convergence failure rate of ML. For example, the convergence
failure rate for ML was less under the structural misspecifications with ¢/ =0 and
b=0 (ie., strl and str2) when indicator weights were 0.66 compared to its
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convergence failure rate under the true model. This is likely due to the misspecified
model being less complex.

The relationships between model misspecification, estimation approach, and con-
vergence failure rate were further complicated by changes in indicator weighting
(see Figure 6A—C). As noted in the first simulation, convergence rates for ML bene-
fited from increased indicator weights. This relationship held true for BCFES and FS
approaches but was moderated by the individual-level sample size (n;). For example,
when n; =5 both the BCFS and FS approach suffered higher convergence failure
rates under the strongest indicator weights condition.

Bias. We found some similarities between estimator performance in terms of bias
and convergence failure rate. Once again, larger individual sample sizes improved
the performance of all three estimators, measurement misspecifications were more
detrimental than structural misspecifications, and bias was greater with the small
indicator weights. In Figure 6, we again use white markers sized by the SD of the
estimates to mark bias for each estimation approach but track bias across the differ-
ent model misspecifications. Relative performance of the estimators in terms of bias
was dependent on indicator weights (see Figure 6A—C). The FS approach generally
incurred the most bias with ML incurring the least bias followed closely by BCFS.
However, under the largest indicator weight condition, the FS approach often had the
least amount of bias.

As with the first simulation, results involving bias and ML are somewhat mislead-
ing. First, the advantages of ML in terms of bias tended to be reduced and reversed
with misspecified models and smaller sample sizes. Under these conditions BCFS
estimation incurred the same or less bias than ML. Second, the small amount of bias
achieved by ML was accompanied by inefficiencies. The inflated triangles in Figure
6 marking the bias in ML estimates illustrate that under many of the conditions in
which ML had the least amount of bias it was also the most inefficient. In addition,
across several conditions in which ML demonstrated little bias or performed well
relative to the other estimators, it had the highest convergence failure rate. The BCFS
approach consistently incurred similar amounts of bias compared to ML but avoided
inflated SDs and high convergence failure rates.

Efficiency. We again tracked the SD of path coefficient estimates for each method
across the 1000 data sets to evaluate estimator efficiency. Results involving the SD
of the estimates were unambiguous. We found improved estimator performance with
larger sample sizes, more detrimental effects when the measurement model was mis-
specified, and generally more efficient estimation with larger indicator weights.
Results by estimator approach followed a consistent pattern across conditions and
model misspecifications with SD of FS estimates being the smallest followed closely
by BCEFS estimates. The largest SD results consistently came from ML. These results
reflect the trade-off between accuracy and precision in the limited information
approaches (e.g., Kelcey et al., 2021). The BCFS approach consistently provides
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less-biased estimates but proper consideration of the measurement error associated
with the latent variables in the model led to decreased efficiency.

Simulation Study II: Supplemental Investigation

Our third and final supplemental simulation condition extended Simulation study II
by combining model misspecifications and non-normal data considerations. We sepa-
rated these areas of focus in our two primary simulation studies to better understand
the specific detrimental effects of both. However, a supplementary investigation of
this combination was conducted to investigate any compounding detrimental effects.
In the combination model misspecification-non-normal data supplemental simulation,
we paralleled Simulation study II and its misspecified model conditions but utilized
non-normal indicator residuals using the approach from simulation study I (i.e., non-
normal indicator residuals with distributions having skewness of 2 and kurtosis of 7).
We included cluster sample sizes of n, =200, 100, 50, and 30 and the individual per
cluster sample sizes of n; =20. The measurement models were limited to four indica-
tors per latent variable with mixed indicator weights.

Results were similar between the combination supplemental condition and parallel
misspecified model conditions in Simulation study II without non-normal data (see
Figure 7). Overall, BCFS and FS had minor increases in convergence failure rates
but almost no change in bias when estimating misspecified models with non-normal
data. While ML also avoided major increases to bias, the model misspecification-
non-normal data condition did lead to decreases in efficiency (i.e., increases in the
SD of ML estimates). The primary takeaway from this supplemental simulation is
that the detrimental effect of model misspecification far exceeds the detrimental
effects of the non-normal data considered here. Put differently, estimators performed
relatively well with non-normal data and struggled against specific model misspecifi-
cation conditions (e.g., the first measurement model misspecification and model mis-
specifications in the 0.666 indicator weight condition), so the combination of the two
conditions mostly reflects estimator difficulty with model misspecifications.

Discussion

Multilevel structural equation modeling serves as an appropriate and effective
approach to delineate and test complex theories involving multiple latent variables in
multilevel settings. These conditions are common in educational research but the
scope of even well-designed and well-resourced studies is often limited. The highly
parameterized nature of MSEMs require large sample sizes at each level to be esti-
mated using ML methods. Under the limited sample sizes common in educational
research (e.g., less than 100 clusters and 20 individuals per cluster), ML estimation
can suffer convergence issues and produce biased parameter estimates. The more
recently developed Croon’s BCFS approach has shown promise in estimating
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Note. The cluster sample size was 50 with 20 individuals per cluster. The size of each point reflects the
average SD of the coefficient estimates for that estimator under the model and conditions indicated. A
larger SD results in larger points on the plot with smaller SDs leading to smaller points.

MSEMs with the smaller sample sizes common in planned educational research
(e.g., Schochet, 2011).

This study sought to better map out the performance of BCFS for MSEMs in
terms of bias, efficiency, and convergence failure rate under a combination of diffi-
cult conditions. Specifically, we examined the performance of BCFS with MSEMs
when limited sample sizes were combined with non-normal indicators and model
misspecifications. To complete this investigation, we employed two simulation stud-
ies. In the first simulation, we focused on the estimation of MSEMs with limited
sample sizes while varying measurement model conditions, and in the second simu-
lation study, we focused on estimation of MSEMs with different measurement and
structural model misspecifications. We evaluated BCFS, in comparison with the
(uncorrected) FS approach, and ML to gauge relative and absolute performance.
BCFS provided results more often (i.e., high convergence rate) than the FS or ML
estimators while balancing bias and efficiency.

Through improved dependability, increased efficiency, and reductions in bias,
BCEFS increases the feasibly of planned studies that utilize an MSEM. Utilization of
MSEMs in educational research brings about better alignment between theory and
research. For example, a cluster-randomized study on the effect of a school-wide
teacher professional development program on student achievement is best operatio-
nalized using an MSEM. This model allows considerations for the hierarchical struc-
ture of the educational setting and the many latent variables involved in theories of
teaching and learning. A sample of 100 schools may not be feasible, but employing
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BCFS estimation reduces the scale of schools needed to ensure consistent and accu-
rate results. In other words, an MSEM more appropriately reflects the structure of
the educational setting, latent nature of many variables in educational research, and
the complexity of teaching and learning theory while utilizing BCFS makes the study
more feasible.

The fully crossed structure of our simulation studies produced results supporting
and supplementing previous literature investigating BCFS with MSEMs. BCFS per-
formed relatively well with smaller sample sizes but no estimation approach worked
well with cluster sample sizes less than 10, and ideal conditions were needed for any
estimation approach to work with cluster sample sizes around 20. BCFS was more
feasible with cluster sample sizes around 30 when large individual per cluster sample
sizes and larger indicator weights were present. Relatedly, BCFS, like the other esti-
mation approaches, incurred substantial bias and had high convergence failure rates
when individual per cluster sample sizes were very limited. We caution against
BCEFS with n; < 10. BCFS has increased potential as cluster sample sizes approach
50. Here, ML estimation was still problematic, but BCFS performed consistently
well both relative to other approaches and in an absolute sense.

We considered four and 10 indicators per latent variable, various indicator
weights, and a non-normal distribution of indicator residuals and found increasing
the number of indicators per latent trait up to 10 can be beneficial to BCFS, but a
large number of indicators was not necessary. Relatedly, we found BCFS to be more
susceptible to non-normal indicator residuals as the number of indicators per latent
variable increased. The detrimental effects were relatively small but the result is
worth noting because the influence of non-normal indicator residuals on BCFS has
not been previously considered, and it was one of the few conditions in which BCFS
was more susceptible to detrimental conditions.

The other novel contribution of this work involved BCFS estimation with limited
samples sizes and model misspecifications. Broadly, we found BCFS was more
robust than the other estimation approaches to several measurement and structural
misspecifications. This is a noteworthy result as previous research has indicated
BCFS performs relatively well only under structural model misspecifications
(Devlieger & Rosseel, 2019; Kelcey et al., 2021).

Of course, BCFS is not a universal solution for problems estimating MSEMs.
Under the most difficult conditions considered here, BCFS estimation still failed to
converge at a high rate, incurred bias, and was inefficient. There was also a notable
trade-off between accuracy and efficiency in BCFS. BCFS estimates incurred less
bias across most of the simulation conditions but were often less precise than those
of the FS approach. BCFS is also currently limited to multilevel models without ran-
dom slopes. We see the extension of BCFS to structural models that include random
slopes as an important area of future research with considerations of estimator robust-
ness an important follow-up investigation. Our supplemental investigations of BCFS
with multilevel measurement invariance, varying types of non-normal indicator resi-
duals, and combinations of difficult conditions (e.g., model misspecification and
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non-normal data) also deserve more comprehensive examinations. Despite these
shortcomings, the results here support, supplement, and elucidate the effective perfor-
mance of BCFS further encouraging its utilization with MSEMs.
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