
Original Research Article

Educational and Psychological
Measurement

1–25
� The Author(s) 2022
Article reuse guidelines:

sagepub.com/journals-permissions
DOI: 10.1177/00131644221080451

journals.sagepub.com/home/epm

Croon’s Bias-Corrected
Estimation for Multilevel
Structural Equation Models
with Non-Normal Indicators
and Model Misspecifications

Kyle Cox1 and Benjamin Kelcey2

Abstract

Multilevel structural equation models (MSEMs) are well suited for educational
research because they accommodate complex systems involving latent variables in
multilevel settings. Estimation using Croon’s bias-corrected factor score (BCFS) path
estimation has recently been extended to MSEMs and demonstrated promise with
limited sample sizes. This makes it well suited for planned educational research which
often involves sample sizes constrained by logistical and financial factors. However,
the performance of BCFS estimation with MSEMs has yet to be thoroughly explored
under common but difficult conditions including in the presence of non-normal indi-
cators and model misspecifications. We conducted two simulation studies to evaluate
the accuracy and efficiency of the estimator under these conditions. Results suggest
that BCFS estimation of MSEMs is often more dependable, more efficient, and less
biased than other estimation approaches when sample sizes are limited or model
misspecifications are present but is more susceptible to indicator non-normality.
These results support, supplement, and elucidate previous literature describing the
effective performance of BCFS estimation encouraging its utilization as an alternative
or supplemental estimator for MSEMs.
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Multilevel structural equation models (MSEMs) are well suited for research in educa-

tion because they accommodate hierarchical structures (e.g., teachers nested within

schools, students nested within classrooms, and principals nested within districts),

complex theories relating individuals and groups and variables that are latent (i.e.,

not directly observable). With large sample sizes, MSEMs have proven effective in

evaluating theses complex multilevel systems while accounting for the measure-

ment error associated with latent variables (e.g., Cheung & Lau, 2017; Hox et al.,

2010; Li & Beretvas, 2013). However, educational research often has financial and

logistical constraints that limit feasible sample sizes. For example, large experi-

mental multilevel studies can be expensive while budgets are limited (e.g., Kelcey

& Phelps 2013a, 2013b), and recruiting large sample sizes is difficult (e.g., Autio

& Deussen, 2017).

These constraints are somewhat intractable, but several methodological solutions

have been proposed in literature. MSEM are typically estimated using maximum

likelihood (ML) estimation, but it requires large sample sizes at each level to provide

accurate and dependable parameter estimates (e.g., Hox et al., 2010; Li & Beretvas,

2013; Meuleman & Billiet, 2009; van de Schoot & Miocević, 2020). Multilevel path

analysis using factor scores (FSs) in place of measurement models (i.e., uncorrected

FS approach) provides an alternative method to examine complex multilevel systems

connecting latent variables. While this approach typically requires smaller sample

sizes, it ultimately provides biased results because it disregards the measurement

error associated with the latent variables (e.g., Devlieger et al., 2016; Devlieger &

Rosseel, 2017). Croon’s bias-corrected factor score (BCFS) path estimation tracks

and corrects for the bias introduced in a typical FS path analysis using key measure-

ment model properties (Croon, 2002).

BCFS has shown promise in select settings and conditions. It provided nearly

unbiased coefficient estimates for a variety of MSEMs with various cluster and indi-

vidual per cluster sample sizes (Devlieger & Rosseel, 2019; Kelcey et al., 2021) and

outperformed ML in terms of bias, efficiency, convergence rate, and robustness to

model misspecification. The performance of BCFS estimation was influenced by

sample size, indicator weights, and type of model misspecification. While these

results are encouraging, it is important to establish the relative and absolute perfor-

mance of BCFS estimation of MSEMs under a more complete range of conditions

that are common in planned educational research. We expand on work by Kelcey

et al. (2021) and Devlieger and Rosseel (2019) by considering BCFS with a fully

crossed combination of factors that influence the estimation of MSEMs including

non-normal indicators, the number of indicators per factor, model misspecifications,

and limited sample sizes. The influence of these factors on BCFS estimation is con-

sidered in an MSEM similar to the model employed by Kelcey et al. (2021) but with

additional indicators per factor. This multilevel mediation model reflects a complex

theory of action examined in an experimental study likely to have a limited sample

size (e.g., Schochet, 2011; Spybrook et al., 2016).
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We also consider the performance of BCFS estimation with various model misspe-

cifications. Misspecified measurement and structural models are common in social

science research, and these misspecifications can bias estimates of MSEM parameters

when using ML (e.g., Bollen et al., 2007; Ropovik, 2015). Previous research has

found BCFS estimation to be more robust to structural misspecifications and perform

similarly or better than ML under misspecified measurement models (Devlieger &

Rosseel, 2017, 2019; Hayes & Usami, 2020a; Kelcey et al., 2021). However, it is

unclear if these results hold with additional complexity in the measurement model

and increasingly severe model misspecifications (e.g., two misspecified indicators in

the measurement model).

Therefore, the purpose of this study is to extend understanding of BCFS estimation

in MSEMs with limited sample sizes when also facing indicator non-normality or a

misspecified model. Specifically, we examine the performance of BCFS estimation

with MSEMs when sample size is limited, the number, normality, and factor weights

of measurement model indicators vary, and the structural and measurement models

include misspecifications. We accomplish this through two simulation studies focus-

ing on the estimation of MSEM path coefficients using Croon’s BCFS approach, ML

estimation, and an uncorrected FS approach. The first simulation focuses on small

sample size conditions and various measurement model indicator complications,

while the second simulation includes three types of structural model misspecifications

and two types of measurement model misspecifications. Criteria for evaluating esti-

mator performance include convergence failure rate, bias, and efficiency. Preceding

the two simulations is a description of BCFS estimation, and the MSEM used in the

simulation studies. Following each simulation study are supplemental studies to

investigate specific areas of interest and guide future research. To conclude, we sum-

marize results then discuss their implications, limitations, and future research

possibilities.

BCFS Path Estimation

Croon’s BCFS path estimation has been developed for single-level mediation,

single-level moderation, sequential mediation, multilevel mediation, and other

MSEMs (e.g., Cox & Kelcey, 2021; Devlieger & Rosseel, 2017, 2019; Kelcey, 2019;

Kelcey et al., 2021) and is applicable in a variety of MSEMs including those with

more complex multidimensional factor structures, multiple outcome models, models

with multiple endogenous variables (e.g., treatments), and models incorporating sev-

eral of these features (e.g., Devlieger et al. 2019; Hayes & Usami, 2020b). The

BCFS process begins with the estimation of factor models for each latent variable

and subsequent calculation of FSs. A variance–covariance matrix is constructed

using these FSs and values from any observed variables under consideration.

Parameter estimates based on this variance–covariance matrix are biased because

latent variable unreliability has been disregarded. The correction of BCFS uses

results from the measurement models to adjust the variance–covariance matrix to
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account for this unreliability. Finally, the corrected variance–covariance matrix is

used to estimate the structural model. If inferential testing is of interest, bootstrap

methods are applicable and appropriate for determining standard errors with BCFS

results (see Kelcey et al., 2021 for details).

In our examination of BCFS, we employ a modified version of the multilevel

mediation model seen in Kelcey et al. (2021) with more indicators per latent factor.

The modified multilevel mediation model with four indicators per latent factor is

illustrated in Figure 1 (adapted from part of Figure 1 by Kelcey et al., 2021). The

model includes a treatment (T) that is assigned at the cluster-level and influences an

outcome (Y), through an individual-level mediator (M) and includes covariates at the

cluster level (W) and individual level (X). BCFS with this model begins with

the single-level and multilevel factor models representing the latent variables. The

Figure 1. Conceptual Representation of a MSEM With a Manifest Variable (T) and Latent
Variables Y, X, W, and M Measured by Four Indicators.
Note. MSEM = multilevel structural equation model.
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individual-level latent variables (i.e., hM , hY , and hX ) require a multilevel measure-

ment model to properly account for variance among and within clusters while the

cluster-level latent covariate (hW ) only varies between clusters enabling the use of a

single-level measurement model. The factor models are estimated using ML with

FSs obtained using the regression predictor method.

BCFS utilizes a Croon (2002) method of moments correction to adjust the FS cov-

ariance matrix to account for attenuation brought about by additional uncertainty in

the FSs. Measurement model error indicates the magnitude of the bias and correction

necessary for each latent variable (Croon, 2002). These corrections are the crucial

component of BCFS and are required for each variable pairing that includes a latent

variable. For example, when estimating the mediation model (see Figure 1), there is

a cluster-level covariance between two latent variables measured at the individual-

level (cov(hL2
Y ,hL2

M )). The measurement step provides the necessary values to deter-

mine the covariance between the cluster-level latent variable FSs (cov[~YL2, ~ML2]).

The corrected covariance between the latent variables (cov(hL2
Y ,hL2

M )) is a function of

(cov(~YL2, ~ML2) and their FSs and factor loading values (Devlieger et al., 2016;

Kelcey et al., 2021). The corrections for other latent variable pairings operate in a

similar fashion. Following these corrections, a bias-corrected path analysis is con-

ducted using the corrected covariance matrixes (see Devlieger & Rosseel, 2019 and

Kelcey et al., 2021 for a more detailed explanation of BCFS for MSEMs).

Measurement and Structural Models

Our investigation of BCFS utilizes the MSEM depicted in Figure 1 and a similar

model with 10 indicators for each latent variable. The single-level common factor

model used for the cluster-level latent covariate (hW ) was

wj =mW +LWhWj
+ «Wj ð1Þ

with j indexing clusters, wj representing observed indicators, LW for factor loadings,

mW capturing indicator intercepts, with error terms «Wj . We fixed the variance of hWj

to one to set the scale, used ML estimation to fit the model, and the regression predic-

tor method to obtain FSs.

A multilevel factor model was utilized for the individual-level latent variables

with each decomposed into a cluster- and individual-level components (see config-

ural constructs in Stapleton et al., 2016). For example, M is decomposed into cluster-

and individual-level components hL2
M and hL1

M with

mij =mMj
+LL2

M hL2
Mj
+LL1

M hL1
Mij

+ «M
L2

j + «M
L1

ij ð2Þ

where mij represents the latent variable indicators of the mediator for individual i in

cluster j, with cluster- and individual-level factor loadings LL2
M and LL1

M , intercepts

mMj
, and cluster- and individual-level error terms «M

L2

j and «M
L1

ij . The variance of the

cluster- and individual-level factors is again set to one to establish the scale. Parallel
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model formulations were utilized for the other latent variables requiring multilevel

factor models (hL2
X and hL1

X for X and hL2
Y , and hL1

Y for Y).

We connect the latent and manifest variables under consideration (i.e., T, W, X, M,

and Y) with multilevel structural models (e.g., Preacher et al., 2010) such that the path

model forM is

hL1
Mij

= z0 + z1h
L1
Xij
+ eMij eMij ;N (0,s2

Mj
)

hL2
Mj
=p0 + aTj +p1hWj

+p2h
L2
Xj
+ uMj uMj ;N (0, t2Mj

)
ð3Þ

At the individual-level (hL1
Mij
), z0 represents the intercept with an individual-level

error term of eMij , the only path coefficient, z1, captures the relationship between the

mediator and the individual-level component of the individual-level covariate (hL1
Xij
).

At the cluster-level, p0 represents the intercept with a random effect of uMj , the treat-

ment indicator for each cluster is Tj, the path coefficient, a, captures the relationship

between the treatment and mediator (M), the remaining path coefficients at the clus-

ter-level, p1 and p2, capture the relationship between the mediator and latent cluster-

level covariate (hWj
) and the cluster-level component of the individual-level covari-

ate (hL2
Xj
).

The corresponding multilevel structural model for the outcome, Y, is similar with

hL1
Yij
=b0 + b1h

L1
Mij

+b1h
L1
Xij
+ eYij eYij;N (0,s2

Yj
)

hL2
Yj
= g00 + bh

L2
Mj
+ c

0
Tj + g1hWj

+ g2h
L2
Xj
+ uYj uYj ;N (0, t2Yj

)
ð4Þ

b0 represents the intercept at the individual-level (hL1
Yij
), the b1 coefficient captures

the relationship between the individual-level component of M (hL1
Mij
) and the outcome

while the b1 coefficient captures the relationship between the individual-level com-

ponent of the individual-level latent covariate (hL1
Xij
) and the outcome, and the error

term at the individual-level error is eYij . At the cluster-level, g00 represents the inter-

cept with a cluster-level random effect of uYj , b is paired with the cluster-level com-

ponent of M (hL2
Mj
) capturing its relationship to the outcome, the direct effect of the

treatment on the outcome is represented by c0, coefficients paired with the cluster-

level latent covariate (hWj
) and the cluster-level component of the individual-level

covariate (hL2
Xj
) are g1 and g2. Note that in our multilevel structural models for both

the mediator and outcome, we do not specify random slopes. This is a necessary

restriction because BCFS cannot currently accommodate MSEMs with random

slopes.

Simulation Study I: Limited Sample Size and Measurement
Model Factors

The first simulation study seeks to better understand BCFS performance when sam-

ple size is limited and the number, normality, and factor weights of measurement
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model indicators vary. We estimate the MSEM with BCFS, ML, and an uncorrected

FS approach and capture convergence failure rate, bias, and efficiency of coefficient

estimates as performance criteria. ML is a prevalent estimation approach often ser-

ving as the default for MSEM (e.g., Mplus and the lavaan package in R). As a full

information method, it estimates the measurement and structural components of the

MSEM simultaneously. While ML is both efficient and consistent, its simultaneous

approach to highly parameterized MSEMs has been found to produce biased esti-

mates and high convergence failure rates when sample sizes are limited (Rosseel,

2020). An alternative to ML is the FS approach which estimates the measurement

models and then the structural components similar to BCFS but does not include a

correction step to address measurement error related to any latent variables.

Data Generation

Data for the first simulation were generated based on the depiction in Figure 1, the

structural models in Equations 3 and 4, and the measurement models in Equations 1

and 2. We began by generating the manifest treatment indicator Tj coded as 60:5
and the exogenous latent covariates hW and hX such that ~N(0,1). The intraclass cor-

relation coefficients of M and Y were set to be equal and included two conditions

r = 0:2 and 0:4. The remaining endogenous latent variables were generated using

Equations 3 and 4 with a = 0:5, b= 0:4, b1 = 0:1, c
0 = 0:1, p1 = 0:2, p2 = 0, g1 = 0:3,

g2 = 0, z1 = 0:2, and b1 = 0:2. We based our limited sample sizes on previous simula-

tion literature (e.g., Devlieger & Rosseel, 2019; Kelcey et al., 2021) with cluster sam-

ple sizes of n2 = 100, 80, 50, 30, 20, and 10 and individual per cluster sample sizes

of n1 = 80, 40, 20, 10, and 5.

We varied three measurement model factors with these limited sample sizes: the

number of indicators per latent variable, indicator weights, and distribution of indica-

tor residuals. We included four indicators per latent trait reflecting typical values

from past simulation literature (e.g., Devlieger et al., 2016; Devlieger & Rosseel,

2019; Kelcey, 2019; Kelcey et al., 2021) and also 10 indicators per latent trait to

examine estimator performance under a novel large number of indicators condition.

The measurement model had three conditions for indicator weights because they

have been shown to influence estimator performance in MSEMs (e.g., Devlieger &

Rosseel, 2019; Kelcey et al., 2021). The first condition was a mix of 1.0, 0.666, and

1.5, while the second and third conditions had uniform indicator weights of 0.666

and 1.5, respectively. We imposed cross-level invariance on the factor loadings (e.g.,

LL2
M and LL1

M ) by setting indicator weights at the cluster- and individual-level equal

with variability of cluster-level components set at 0.2 and individual-level compo-

nents at 0.8 such that ICC(1) = 0.2 (see Shrout & Fleiss, 1979; Stapleton et al.,

2016).

We also considered non-normal distributions for the indicator residuals by gener-

ating residuals with distributions having skewness of 2 and kurtosis of 7 (Fleishman,

1978). Considering non-normal indicator distributions while varying other
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measurement model factors (e.g., indicators per factor and factor weights) properly

reflects the conditions in which BCFS is likely to be applied (e.g., Blanca et al.,

2013; Micceri, 1989). Literature has indicated ML is somewhat robust to indicator

non-normality, but it is unclear if these results hold under the conditions considered

here and extend to BCFS with MSEMs (e.g., Lei & Lomax, 2005).

To summarize, we conducted a simulation study to investigate BCFS, ML, and

FS estimation of MSEMs when sample sizes are limited and several influential fac-

tors vary. Performance criteria included convergence rate, bias, and efficiency. We

considered novel conditions with non-normal indicator residuals and 10 indicators

per latent trait while also developing a more comprehensive understanding of BCFS

performance in MSEMs by employing a fully crossed design with more than 720

conditions. In total, 1000 data sets were generated for each condition using R (R

Core Team, 2019) with estimation conducted in the lavaan (Rosseel, 2012) and lme4

(Bates et al., 2015) packages.

Results

Select results are presented by performance criteria with sections below detailing

convergence rate, bias, and efficiency. The general results were not substantially

influenced by the intraclass correlation coefficient of M and Y, so we focus on the

r = 0:2 condition. Given the variety of conditions, we rely on several figures to effi-

ciently communicate these results. Unless specifically identified, the default condi-

tions for Simulation study 1 figures were four indicators per latent trait, mixed

indicator weights (i.e., a mix of 1.0, 0.666, and 1.5), indicator residuals with normal

distributions, correctly specified MSEMs, intraclass correlation coefficients of M and

Y of,r = 0:2, and 40 individuals per cluster (n1 = 40). Complete results and simulation

code are available upon request.

Convergence Rate. We tracked the convergence rate or more specifically the failure

of an estimation method to provide a solution across all conditions. Convergence

failure rates increased for each estimator as sample sizes decreased. This relationship

is illustrated in Figure 2 by the black markers identifying the convergence failure rate

of each estimation approach by cluster sample size with different individual per clus-

ter sample sizes (Figure 2A–C). Any condition missing a black marker indicates the

estimation approach failed to converge in more than 50% of the replications.

Convergence failure rate was influenced by the sample of individuals per cluster (n1)

but driven more by the sample of clusters (n2) such that all approaches had unaccep-

table convergence failure rates (e.g., . 25%) at the lowest cluster sample size con-

sidered (n2 = 10).

While the relationship between sample size and convergence failure rate was sim-

ilar for each estimator, the convergence failure rate did vary substantially. BCFS had

the smallest convergence failure rate in almost every condition followed closely by

the FS approach with ML often incurring the largest convergence failure rate. It
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should be noted that the convergence failure rate for ML far exceeded BCFS and FS

approaches especially when n2 � 30. For example, with a sample size of n2 = 20

when n1 = 80, ML failed to converge over 20% of the time while BCFS failed to con-

verge just over 5% of the time (see the black markers in Figure 2A).

Convergence failure rate was also influenced by indicator weights (see Figure 3)

and number of indicators per latent variable (see Figure 4) but demonstrated no quali-

tative differences when the intraclass correlation coefficient of the outcome and med-

iator varied. Larger indicator weights decreased convergence failure rates especially

with ML. For example, the black markers in Figure 3B indicate convergence failure

rates diverge from zero with as many as 50 clusters when using ML. Conversely, in

Figure 3C, the convergence failure rates remained near 0 for all three estimators with

cluster sample sizes around 20 and individual per cluster sample sizes of 40.

Increasing the number of indicators for each latent variable also helped reduce

convergence failure rates (see Figure 4). Reading Figure 4 from left to right, we see

reduced convergence failure rates when using 10 indicators. This benefit is especially

pronounced for ML. However, this relationship can be influenced by non-normality

of the indicators. Reading Figure 4 from top to bottom, non-normal indicator resi-

duals had little effect on convergence rate in the four indicator conditions (compare

Figure 4A–C) but generally led to higher convergence failure rates in the 10-indicator

condition (compare Figure 4B–D). Unlike the previous factors under consideration,

non-normality in indicator residuals had a greater detrimental effect on BCFS and FS

approaches. It is important to note that convergence failure rates for the BCFS and

FS approach generally increased only a few percentage points.

Bias. We tracked bias in the estimates of all structural coefficients as the difference

between the estimated value and the true coefficient value in the generated data set.

Using these bias values, we calculated the average absolute bias for each estimation

approach across a 1000 data sets. Focusing on those conditions with reasonable con-

vergence rates, we found bias increased as sample size decreased for all three estima-

tors. Within this result we found, reductions in cluster sample size were more

detrimental to estimator accuracy than reductions in individual per cluster sample

size.

In Figure 2, white markers indicate the average absolute bias of the estimation

approach for each condition and are sized based on the standard deviation of the esti-

mates with larger markers indicating a greater SD or less precision (subsequently

detailed). Bias for each estimator actually held relatively steady when cluster sample

size was greater than 50 with BCFS and ML performing similarly and the FS

approach typically incurring the most bias. However, with extremely small individ-

ual per cluster sample sizes (n1 = 5 or 10), each estimator saw steep increases in bias

as cluster sample sizes fell below n2 = 80. With cluster sample sizes less than 50 and

individual per cluster sample sizes greater than 10, several factors influenced estima-

tor bias including indicator weight, and number of indicators per latent variable.
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The relationship between estimator bias and indicator weights was somewhat neb-

ulous. Under the small indicator weight condition, each estimator suffered increased

bias (see Figure 3). However, estimators generally incurred more bias in the large

indicator weight condition when compared to the mixed indicator condition. The

exception being the FS approach which was the most susceptible to influence by

indicator weights. For example, in the smaller indicator weight condition, the FS

approach suffered the greatest bias, but under the large indicator weight condition,

the FS approach suffered the least bias. The relationship between estimator bias and

the number of indicators and the distribution of their residuals was more apparent

(see Figure 4). Increasing from four indicators per latent variable to 10 reduced

bias—albeit minimally—while non-normal indicator residuals caused a slight

increase in bias for each estimator.

Interpretation of results involving bias requires consideration of convergence rates

and error variance of the estimates. Results suggest BCFS and ML often achieve sim-

ilar levels of bias with the FS approach generally incurring more bias. The strong per-

formance of ML in terms of bias is often overshadowed by high convergence failure

rates in the same conditions. For example, in Figure 2B when n2 = 20 and 10, ML

seems to outperform BCFS in terms of bias but under these conditions ML rarely con-

verged (e.g., convergence failure rate of 97% and 99%, respectively). Results involv-

ing estimator efficiency further call into question the performance of ML in terms of

bias.

Efficiency. We tracked the standard deviation (SD) of path coefficient estimates

across the 1000 data sets to understand the efficiency of each estimator. All of the

estimators were less efficient with smaller sample sizes (e.g., increased SD). ML per-

formed relatively well in terms of bias, but it consistently had the largest SD of esti-

mates. Conversely, the FS approach incurred the most bias but consistently had the

smallest SD results. The BCFS approach tended to balance these considerations. It

had relatively small amounts of bias and outperformed ML in terms of SD of esti-

mates, but it was typically less efficient than the FS approach.

The results involving SD of path coefficient estimates are illustrated in Figures 2

to 4 by the size of the symbols plotted for bias. For example, in Figure 4C when the

sample cluster size is 10, we see that the triangle marking bias for the estimates using

ML is at the highest point on the figure and is larger than the circle and square mark-

ing bias for BCFS and FS, respectively. This indicates that under these conditions,

ML suffered the largest amount of bias and was the least efficient. As for other fac-

tors, smaller indicator weights resulted in small decreases to efficiency across estima-

tors while increasing the number of indicators per latent variable increased efficiency

of each estimator. Interestingly, non-normality in indicator residuals had no discern-

ible influence on coefficient estimator efficiency. Reading Figure 4 from top to bot-

tom, we see the size of each marker maintain the same size when moving from a

normal distribution of indicator residuals to the non-normal condition.

12 Educational and Psychological Measurement 00(0)



Simulation Study I: Supplemental Investigations

The conditions considered in any simulation study are necessarily limited. To expand

the scope of this work and better guide future research, we considered three supple-

mental conditions representing initial investigations into areas of interest. To supple-

ment the first simulation study, we considered multilevel measurement invariance

(see Jak et al., 2013; Stapleton et al., 2016) through a scenario in which the assump-

tion of cross-level invariance on the factor loadings is not met. We set different indi-

cator weights for latent variable components on the within and between levels.

Figure 4. Bias and Convergence Failure Rate for Each Estimator by Cluster Sample Size
With Differing Numbers of Indicators and Normal (Norm) and Non-Normal (Non)
Residuals, Mixed Indicator Weights, and 40 Individuals Per Cluster.
Note. The size of each point marking bias reflects the average SD of the coefficient estimates for that

estimator under the model and conditions indicated. A larger SD results in larger points on the plot with

smaller SDs producing to smaller points.
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Specifically, we set four within-level indicator weights as a mix of 1.0, 0.666, and

1.5, while the four between-level indicator weights were a uniform 0.666. Other con-

ditions and the MSEM from the first simulation study were retained. We examined

this cross-level invariance condition with n2 = 100, 80, 50, 30, 20, and 10 and an

individual per cluster sample size of n1 = 80. We also examined the cross-level invar-

iance scenario with non-normal distributions for the indicator residuals.

Estimating MSEMs with multilevel measurement noninvariance was found to be

more difficult (see the Supplement: noninvariance condition in Table 1 for select

results). All of the estimation methods incurred more bias, higher convergence failure

rates, and larger SDs of estimates when compared to similar simulation results with

cross-level invariance (Simulation I: normal condition in Table 1). However, these

increases were all relatively minor. For example, convergence failure rates began to

increase in the n2 = 50 condition as opposed to n2 = 30. Relative estimator perfor-

mance remained similar with BCFS still outperforming or paralleling FS and ML

approaches with multilevel measurement noninvariance. The combination of non-

normal data with multilevel measurement noninvariance lead to a slight deterioration

in estimator performance but still did not change relative estimator performance.

Our second supplemental simulation condition related to Simulation study I

focused on non-normal data. Specifically, we considered indicator residuals sampled

from a bimodal distribution to form a different type of non-normal data. We consid-

ered four and 10 indicators per latent variable with a mix of indicator weights, and

n2 = 100, 80, 50, 30, 20, and 10 and an individual per cluster sample size of n1 = 80.

The MSEM and other parameter values were retained from the first simulation study.

Estimator performance was very similar with both types of non-normal data (i.e.,

bimodal verse non-normal with skewness of 2 and kurtosis of 7) with select results

presented in Table 1.

Simulation Study II: Limited Sample Sizes and Misspecified
Models

The second simulation study again considered bias, efficiency, and convergence fail-

ure rates for BCFS, ML, and FS estimation but under a misspecified MSEM. BCFS

has been considered with misspecified MSEMs with encouraging initial results

(Devlieger & Rosseel, 2019; Hayes & Usami, 2020a; Kelcey et al., 2021). This simu-

lation develops a more comprehensive understanding of BCFS performance in the

presence of model misspecifications by considering two measurement model misspe-

cifications and three structural model misspecifications (see Figure 5). Simulation

study conditions are again guided by previous literature (e.g., Devlieger & Rosseel,

2019; Kelcey et al., 2021) and adapted based on the first simulation study. For exam-

ple, sample sizes of n2 = 10, and often n2 = 20, were not feasible for any of the esti-

mators with correctly specified models so they were excluded from the second

simulation study. We also found that as n1 exceeded 20, there was relatively little

change in estimator performance so to match previous literature and avoid excessive

14 Educational and Psychological Measurement 00(0)
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simulation conditions, we set two small n1 conditions. The structural and measure-

ment models from the first simulation are employed with model coefficient values of

a = 0:5, b = 0:4, b1 = 0:1 c0 = 0:1, p1 = 0:2, p2 = 0, g1 = 0:3, g2 = 0, z1 = 0:2 and

Figure 5. Conceptual Representation of (A) Structural and (B) Measurement Model
Misspecifications in a MSEM With a Manifest Variable (T) and Latent Variables Y, X, W, and M
Measured by Four Indicators.
Note. MSEM = multilevel structural equation model.
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b1 = 0:2 and the intraclass correlation coefficients of the mediator and outcome set at

0.2. We include cluster sample sizes of n2 = 200, 100, 50, and 30 and the individual

per cluster sample sizes of n1 = 20 and 5. As for measurement conditions, four indi-

cators were assigned to each latent factor with the three weight conditions noted in

the first simulation.

The first measurement misspecification involved swapped indicators in which x4
was set to measure hM while indicator m4 was set to measure hX (see Figure 5B).

The second measurement misspecification involved a missing cross-loading. Data

for this analysis were generated with m4 loading on both hM and hX while analytic

model matched the original measurement model (see Figure 1 and Equation 2). The

misspecified structural models all involve a missing path but at various levels and

with varying coefficient magnitudes. Specifically, c0 = 0, b = 0, and b1 = 0 in the first,

second, and third misspecified structural models, respectively (see Figure 5A). We

generated 1000 data sets for each of the 24 conditions described and analysed these

data using six MSEM specifications: the true MSEM (i.e., correctly specified model),

two models with measurement misspecifications, and three models with structural

misspecifications.

Results

We again start by considering the convergence failure rate of each estimation

approach. These results along with bias and efficiency results are illustrated in

Figure 6 with n2 = 50 and n1 = 20 across different indicator weight conditions.

Similar to the previous simulation, the convergence failure rate increased as both

cluster and individual per cluster sample size decreased. This was true for each esti-

mator and under each model specification. Overall, we found BCFS generally had

the lowest convergence failure rate followed closely by the FS approach (see black

markers in Figure 6). Conversely, the convergence failure rate for ML was . 25%

in several conditions. Differences in estimator performance dissipated and eventually

became indistinguishable as sample size increased.

The influence of model misspecification type on convergence failure rate varied

by estimation approach. Overall, the measurement misspecifications undermined

estimator convergence more than structural misspecifications (see Mea1 and Mea2

in Figure 6). The limited information approaches (e.g., BCFS and FS) were fairly

robust to all three types of structural misspecifications as their convergence failure

rates under the true model and misspecified structural models were nearly equal.

Measurement misspecifications substantially increased convergence failure rates

across all estimators but the BCFS approach was the most robust to these misspecifi-

cations. There were specific conditions in which the structural misspecifications

actually reduced the convergence failure rate of ML. For example, the convergence

failure rate for ML was less under the structural misspecifications with c0 = 0 and

b = 0 (i.e., str1 and str2) when indicator weights were 0.66 compared to its
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convergence failure rate under the true model. This is likely due to the misspecified

model being less complex.

The relationships between model misspecification, estimation approach, and con-

vergence failure rate were further complicated by changes in indicator weighting

(see Figure 6A–C). As noted in the first simulation, convergence rates for ML bene-

fited from increased indicator weights. This relationship held true for BCFS and FS

approaches but was moderated by the individual-level sample size (n1). For example,

when n1 = 5 both the BCFS and FS approach suffered higher convergence failure

rates under the strongest indicator weights condition.

Bias. We found some similarities between estimator performance in terms of bias

and convergence failure rate. Once again, larger individual sample sizes improved

the performance of all three estimators, measurement misspecifications were more

detrimental than structural misspecifications, and bias was greater with the small

indicator weights. In Figure 6, we again use white markers sized by the SD of the

estimates to mark bias for each estimation approach but track bias across the differ-

ent model misspecifications. Relative performance of the estimators in terms of bias

was dependent on indicator weights (see Figure 6A–C). The FS approach generally

incurred the most bias with ML incurring the least bias followed closely by BCFS.

However, under the largest indicator weight condition, the FS approach often had the

least amount of bias.

As with the first simulation, results involving bias and ML are somewhat mislead-

ing. First, the advantages of ML in terms of bias tended to be reduced and reversed

with misspecified models and smaller sample sizes. Under these conditions BCFS

estimation incurred the same or less bias than ML. Second, the small amount of bias

achieved by ML was accompanied by inefficiencies. The inflated triangles in Figure

6 marking the bias in ML estimates illustrate that under many of the conditions in

which ML had the least amount of bias it was also the most inefficient. In addition,

across several conditions in which ML demonstrated little bias or performed well

relative to the other estimators, it had the highest convergence failure rate. The BCFS

approach consistently incurred similar amounts of bias compared to ML but avoided

inflated SDs and high convergence failure rates.

Efficiency. We again tracked the SD of path coefficient estimates for each method

across the 1000 data sets to evaluate estimator efficiency. Results involving the SD

of the estimates were unambiguous. We found improved estimator performance with

larger sample sizes, more detrimental effects when the measurement model was mis-

specified, and generally more efficient estimation with larger indicator weights.

Results by estimator approach followed a consistent pattern across conditions and

model misspecifications with SD of FS estimates being the smallest followed closely

by BCFS estimates. The largest SD results consistently came from ML. These results

reflect the trade-off between accuracy and precision in the limited information

approaches (e.g., Kelcey et al., 2021). The BCFS approach consistently provides
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less-biased estimates but proper consideration of the measurement error associated

with the latent variables in the model led to decreased efficiency.

Simulation Study II: Supplemental Investigation

Our third and final supplemental simulation condition extended Simulation study II

by combining model misspecifications and non-normal data considerations. We sepa-

rated these areas of focus in our two primary simulation studies to better understand

the specific detrimental effects of both. However, a supplementary investigation of

this combination was conducted to investigate any compounding detrimental effects.

In the combination model misspecification-non-normal data supplemental simulation,

we paralleled Simulation study II and its misspecified model conditions but utilized

non-normal indicator residuals using the approach from simulation study I (i.e., non-

normal indicator residuals with distributions having skewness of 2 and kurtosis of 7).

We included cluster sample sizes of n2 = 200, 100, 50, and 30 and the individual per

cluster sample sizes of n1 = 20. The measurement models were limited to four indica-

tors per latent variable with mixed indicator weights.

Results were similar between the combination supplemental condition and parallel

misspecified model conditions in Simulation study II without non-normal data (see

Figure 7). Overall, BCFS and FS had minor increases in convergence failure rates

but almost no change in bias when estimating misspecified models with non-normal

data. While ML also avoided major increases to bias, the model misspecification-

non-normal data condition did lead to decreases in efficiency (i.e., increases in the

SD of ML estimates). The primary takeaway from this supplemental simulation is

that the detrimental effect of model misspecification far exceeds the detrimental

effects of the non-normal data considered here. Put differently, estimators performed

relatively well with non-normal data and struggled against specific model misspecifi-

cation conditions (e.g., the first measurement model misspecification and model mis-

specifications in the 0.666 indicator weight condition), so the combination of the two

conditions mostly reflects estimator difficulty with model misspecifications.

Discussion

Multilevel structural equation modeling serves as an appropriate and effective

approach to delineate and test complex theories involving multiple latent variables in

multilevel settings. These conditions are common in educational research but the

scope of even well-designed and well-resourced studies is often limited. The highly

parameterized nature of MSEMs require large sample sizes at each level to be esti-

mated using ML methods. Under the limited sample sizes common in educational

research (e.g., less than 100 clusters and 20 individuals per cluster), ML estimation

can suffer convergence issues and produce biased parameter estimates. The more

recently developed Croon’s BCFS approach has shown promise in estimating
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MSEMs with the smaller sample sizes common in planned educational research

(e.g., Schochet, 2011).

This study sought to better map out the performance of BCFS for MSEMs in

terms of bias, efficiency, and convergence failure rate under a combination of diffi-

cult conditions. Specifically, we examined the performance of BCFS with MSEMs

when limited sample sizes were combined with non-normal indicators and model

misspecifications. To complete this investigation, we employed two simulation stud-

ies. In the first simulation, we focused on the estimation of MSEMs with limited

sample sizes while varying measurement model conditions, and in the second simu-

lation study, we focused on estimation of MSEMs with different measurement and

structural model misspecifications. We evaluated BCFS, in comparison with the

(uncorrected) FS approach, and ML to gauge relative and absolute performance.

BCFS provided results more often (i.e., high convergence rate) than the FS or ML

estimators while balancing bias and efficiency.

Through improved dependability, increased efficiency, and reductions in bias,

BCFS increases the feasibly of planned studies that utilize an MSEM. Utilization of

MSEMs in educational research brings about better alignment between theory and

research. For example, a cluster-randomized study on the effect of a school-wide

teacher professional development program on student achievement is best operatio-

nalized using an MSEM. This model allows considerations for the hierarchical struc-

ture of the educational setting and the many latent variables involved in theories of

teaching and learning. A sample of 100 schools may not be feasible, but employing

Figure 7. Bias and Convergence Failure Rate for Each Estimator by Model Misspecification
With Four Indicators Per Latent Variable that Have Non-Normal Indicator Residuals and
Mixed Indicator Weights.
Note. The cluster sample size was 50 with 20 individuals per cluster. The size of each point reflects the

average SD of the coefficient estimates for that estimator under the model and conditions indicated. A

larger SD results in larger points on the plot with smaller SDs leading to smaller points.
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BCFS estimation reduces the scale of schools needed to ensure consistent and accu-

rate results. In other words, an MSEM more appropriately reflects the structure of

the educational setting, latent nature of many variables in educational research, and

the complexity of teaching and learning theory while utilizing BCFS makes the study

more feasible.

The fully crossed structure of our simulation studies produced results supporting

and supplementing previous literature investigating BCFS with MSEMs. BCFS per-

formed relatively well with smaller sample sizes but no estimation approach worked

well with cluster sample sizes less than 10, and ideal conditions were needed for any

estimation approach to work with cluster sample sizes around 20. BCFS was more

feasible with cluster sample sizes around 30 when large individual per cluster sample

sizes and larger indicator weights were present. Relatedly, BCFS, like the other esti-

mation approaches, incurred substantial bias and had high convergence failure rates

when individual per cluster sample sizes were very limited. We caution against

BCFS with n1 � 10. BCFS has increased potential as cluster sample sizes approach

50. Here, ML estimation was still problematic, but BCFS performed consistently

well both relative to other approaches and in an absolute sense.

We considered four and 10 indicators per latent variable, various indicator

weights, and a non-normal distribution of indicator residuals and found increasing

the number of indicators per latent trait up to 10 can be beneficial to BCFS, but a

large number of indicators was not necessary. Relatedly, we found BCFS to be more

susceptible to non-normal indicator residuals as the number of indicators per latent

variable increased. The detrimental effects were relatively small but the result is

worth noting because the influence of non-normal indicator residuals on BCFS has

not been previously considered, and it was one of the few conditions in which BCFS

was more susceptible to detrimental conditions.

The other novel contribution of this work involved BCFS estimation with limited

samples sizes and model misspecifications. Broadly, we found BCFS was more

robust than the other estimation approaches to several measurement and structural

misspecifications. This is a noteworthy result as previous research has indicated

BCFS performs relatively well only under structural model misspecifications

(Devlieger & Rosseel, 2019; Kelcey et al., 2021).

Of course, BCFS is not a universal solution for problems estimating MSEMs.

Under the most difficult conditions considered here, BCFS estimation still failed to

converge at a high rate, incurred bias, and was inefficient. There was also a notable

trade-off between accuracy and efficiency in BCFS. BCFS estimates incurred less

bias across most of the simulation conditions but were often less precise than those

of the FS approach. BCFS is also currently limited to multilevel models without ran-

dom slopes. We see the extension of BCFS to structural models that include random

slopes as an important area of future research with considerations of estimator robust-

ness an important follow-up investigation. Our supplemental investigations of BCFS

with multilevel measurement invariance, varying types of non-normal indicator resi-

duals, and combinations of difficult conditions (e.g., model misspecification and

22 Educational and Psychological Measurement 00(0)



non-normal data) also deserve more comprehensive examinations. Despite these

shortcomings, the results here support, supplement, and elucidate the effective perfor-

mance of BCFS further encouraging its utilization with MSEMs.
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