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Abstract

The increasing automation of high-stakes decisions
with direct impact on the lives and well-being of
individuals raises a number of important consid-
erations. Prominent among these is strategic be-
havior by individuals hoping to achieve a more
desirable outcome. Two forms of such behavior
are commonly studied: 1) misreporting of indi-
vidual attributes, and 2) recourse, or actions that
truly change such attributes. The former involves
deception, and is inherently undesirable, whereas
the latter may well be a desirable goal insofar as
it changes true individual qualification. We study
misreporting and recourse as strategic choices by
individuals within a unified framework. In par-
ticular, we propose auditing as a means to in-
centivize recourse actions over attribute manipu-
lation, and characterize optimal audit policies for
two types of principals, utility-maximizing and
recourse-maximizing. Additionally, we consider
subsidies as an incentive for recourse over manip-
ulation, and show that even a utility-maximizing
principal would be willing to devote a considerable
amount of audit budget to providing such subsi-
dies. Finally, we consider the problem of optimiz-
ing fines for failed audits, and bound the total cost
incurred by the population as a result of audits.

1 Introduction

When the outcomes of algorithmic decision-making systems
are consequential to those who interact with such systems,
individuals receiving undesirable outcomes may take actions
to improve their lot. For example, an individual whose credit
card application has been denied may seek a means of im-
proving their odds of approval on the next try. This issue
has been studied from two perspectives: strategic classifica-

tion and actionable recourse. Strategic classification involves
manipulation of the reported features—that is, deception—
typically resulting in an erroneous prediction [Hardt et al.,
2016], (e.g., an individual could inflate their income in order
to qualify for a loan). As such, feature alterations in strate-
gic classification are viewed as undesirable from a model-
designer perspective; works in this area seek to dissuade indi-

viduals from performing manipulations, or reducing the im-
pact that manipulations have on model performance. Action-
able recourse, commonly termed recourse, on the other hand,
entails agents actually changing their attributes and, conse-
quently, the associated ground truth [Ustun et al., 2019], (e.g.,
an individual getting a second job in order to meet the income
requirements for a loan). In this case, the resulting change
in the prediction is likely correct. Consequently, changes in
features due to recourse tend to be viewed as beneficial even
from the perspective of a principal interested in making de-
cisions which maximize their own utility, maximize or so-
cial welfare. For example, by offering transparent recourse, a
bank may be able to grant a larger number of profitable loans.

However, making recourse options transparent introduces a
challenge for the principal, insofar as it is not necessarily evi-
dent whether attributes collected from individuals are a result
of actual recourse actions, or manipulation that is facilitated
by this added transparency. Consequently, there is a natural
tension between offering transparent recourse options and at
the same time being robust to strategic manipulations.

One way a principal can incentivize either truthful behavior
or appropriate recourse is through the use of a (publicly an-
nounced) audit policy, where individuals are made aware that
their declared attributes could be audited, and each individ-
ual may be subject to a penalty if found to be misrepresenting
their true attributes [Blocki et al., 2013]. While prior work
has looked at the problem of optimal auditing to induce fully
truthful behavior (i.e., incentive compatibility) [Estornell et

al., 2021], we initiate an investigation into the use of audits
specifically in settings where agents have access to recourse.
Model: We model strategic classification in the presence of
recourse as a game between a principal and a set of n agents
where the principal has the ability to audit agents. As usual,
each agent can be represented by an attribute (or feature) vec-
tor x 2 X . There is a fixed, common-knowledge function
f : X ! R that represents the expected value to the principal
of classifying as positive an agent represented by x. The prin-
cipal’s goal is to positively classify only those with a positive
expected value (f(x) � 0) (a bank wishes to only issue loans
to profitable customers). The central tension comes from the
fact that agents can both (1) lie about their features, and (2)
engage in costly actions that change their true features (the
structure of costs is common knowledge). The principal’s
main tool to combat this is through audits. An audit con-



stitutes a check of whether an individual misrepresented their
true feature vector. The principal can both impose fines and
change the classification of agents found to be misreporting
(e.g. individuals found to have over-reported their income are
denied a credit card or loan, and may be subject to a fine).

Thus, we model the game as follows. The principal pub-
licly declares an audit policy, which is a mapping from sets
of n feature vectors to probabilities of auditing each of the n
agents (n is common knowledge, and each agent’s probability
of being audited depends on the self-reported features of each
agent in the whole set). A set of n agents each with private
feature vectors x (unknown to the principal and other agents),
arrives. Each agent then decides whether or not to perform re-
course to change their feature vector, and what feature vector
to report. Finally, the set of agents to be audited is decided
based on the audit policy, and then the classifier induced by f
is applied to the reports, less any agents caught misreporting,
and a final decision is made on this population.
Contributions: In addition to introducing the modeling
framework above that unifies manipulation and recourse, we
obtain several consequential results in this model. We show
that computing an optimal audit policy is tractable for both
a utility-maximizing principal and a principal who simply
wishes to maximize the number of agents choosing recourse
(recourse-maximizing). This is true both when the costs of
failing an audit are exogeneously specified and when the
costs are chosen by the principal. We prove that when fines
are exogeneously specified, the objectives of a recourse- and
utility-maximizing principal are aligned for any distribution
of agents, features, and cost of recourse.

We then turn our attention to studying a model of subsi-

dies, where the principal can allot part of their audit budget
to instead subsidize agents to choose recourse. We derive
necessary and sufficient conditions for the principal to use a
nonzero portion of their audit budget on subsidies. We show
that even with subsidies, the objectives of a recourse- and
utility-maximizing principal are again aligned when agents
value positive classifications equally. We then characterize
the relationship between auditing/subsidies, the total amount
of fines or cost of recourse imposed on a population, and the
fraction of individuals preferring recourse to manipulation.

2 Related Work

Recourse Recourse focuses on providing agents receiving
undesirable outcomes from a model, with the ability to con-
test or improve their outcome via a modification to their at-
tributes in a genuine manner (paying off debt to increase
creditworthiness) [Ustun et al., 2019; Karimi et al., 2022;
Karimi et al., 2021; Upadhyay et al., 2021; Gupta et al., 2019;
Venkatasubramanian and Alfano, 2020]. Our work makes use
of the general formulation of recourse proposed in [Ustun et

al., 2019], which frames recourse as an optimization prob-
lem of finding minimum cost feature modifications which an
agent can feasibly make and yield a desired outcome. Within
this framework, we explore the role of auditing as a means of
incentivizing recourse over manipulation.
Strategic Classification and Incentive Design Strategic
Classification focuses on the problem of how to effectively

make predictions in the presence of agents who behave strate-
gically in order to obtain desirable outcomes. In particu-
lar, [Hardt et al., 2016] first formalized strategic behavior in
classification tasks as a sequential two-player game (i.e. a
Stackelberg game) between a model designer and a strategic
agent. In contrast to recourse, agent behavior is viewed as
malicious in this context; model designers typically seek to
disincentivize this behavior or limit its effects on model ef-
ficacy. Other similar formulations of this game have been
studied [Levanon and Rosenfeld, 2021; Dong et al., 2018;
Milli et al., 2019; Tsirtsis et al., 2019]. Designing models
which are robust to strategic behavior typically amounts to
modifying the decision boundary of a classifier to be more
selective [Hardt et al., 2016; Milli et al., 2019]. Shifts in the
decision boundary of a classifier may increase agents’ cost of
recourse, leading to unnecessary cost for already qualified in-
dividuals. To avoid this issue in the context of recourse, we
make use of auditing as a means of achieving model robust-
ness (rather than modifying the classifier).

Another line of related work focuses on incentive design
in the presence of strategic agents [Kleinberg and Raghavan,
2020; Chen et al., 2020; Haghtalab et al., 2020; Shavit et al.,
2020; Barsotti et al., 2022], which aims to incentivize im-
proving behaviors (e.g. recourse) and suppress pure manipu-
lations. In particular, Barsotti et al. examines the relationship
between model transparency and the level of manipulation
detection which is required to promote improvements over
manipulations. Rather than construct the detection mecha-
nism, as is our focus, this work presumes the existence of a
fixed mechanism which is independent of agents’ choices.

Auditing Theory Auditing Theory examines problems in
which a system (e.g., a bank) possesses the ability to verify
(audit) information reported by an individual (e.g., a loan ap-
plicant). Auditing carries a negative consequence, such as a
fine, when the reported information is found to be inauthen-
tic. The work of [Blocki et al., 2013] formulates auditing as
a game between a defender attempting disincentivize manip-
ulations, and an attacker attempting to avoid detection while
obtaining a desired outcome (similar to a Stackelberg security
game). Other works have studied auditing in the context of
multiple individuals attempt to manipulate a classification or
allocation system in order to gain a desired resource [Lundy
et al., 2019; Estornell et al., 2021]. Auditing in the context of
Strategic Classification remains relatively underexplored with
the primary work being [Estornell et al., 2021] which exam-
ines auditing as a means of inducing incentive compatibility
(i.e. all agents truthfully report), but does not examine model
robustness outside of this narrow lens. Works in this domain
do not consider the ability for agents to perform recourse and
are typically agnostic to system utility.

3 Model

We begin with a motivating example. A bank aims to maxi-
mize their expected profit by issuing fixed-rate credit cards
(with set spending limits and interest rates). Because of
the high volume compared with, say, corporate loans, credit
cards are a major area where banks use algorithmic decision-
making [Butaru et al., 2016]. Each applicant (with applica-



tion x) is approved for a fixed-rate card if the bank’s model
predicts that an applicant will offer a positive profit. While
the profitability comes from different channels, e.g. building
a relationship with a client who will then use the bank for
other services versus actual interest payments, the main risk
in issuing a card is that the customer will default after run-
ning up a balance [Khandani et al., 2010], so banks want to
filter out those applicants. IF the bank denies an application,
the bank’s utility is 0 as no money is exchanged. The bank
may offer denied applicants access to recourse, i.e., a plan for
making the applicant more creditworthy, such as paying off
outstanding debt or increasing income. However, when ap-
plicants have knowledge of recourse actions, they may report
that they have taken such actions in order to get approved,
without actually taking the actions (e.g. hiding debt or inflat-
ing income). The bank could audit applicants by verifying in-
formation in their applications. However, since this is costly,
the audit budget is limited.

We now present our formal model of auditing and recourse.
Let D be a distribution over features X ⇢ Rd with proba-
bility measure p. Consider a principal who aims to make a
binary decision ŷ(x) 2 {0, 1} for each input feature vector
x, for example, to approve or deny a loan. We refer to the
decision ŷ(x) = 1 as selection, with ŷ(x) = 0 correspond-
ing to x not being selected. For any actual feature vector x
(to distinguish from manipulated features we discuss below),
the principal receives a utility of up(x) whenever ŷ(x) = 1
(e.g., expected profit from a loan) and utility of 0 otherwise;
in other words, the principal’s utility is up(x)ŷ(x).
Prediction function We assume that the principal’s utility
from selecting x is based on an objective measure, such as
loan repayment rate, that is not known directly, but can be es-
timated from data. Thus, let f : X ! R be a model learned
from data that predicts up(x). For example, f can predict
the probability that a loan is repaid, multiplied by expected
profits conditional on repayment. Importantly, we assume
that f is fixed and common-knowledge, and is applied to the
reported features. The application of f is thus mechanistic
and not an action under the control of the principal in the
game-theoretic sense. This is consistent with our use cases
– bank regulators, for example typically require that a model
is demonstrably a valid predictor and that it should be used
consistently across the entire population of applicants for a
period of time. Thus, f is simply used to select all x that
yield a predicted utility above a given threshold ✓:

ŷ(x) = I
⇥
f(x) � ✓

⇤
.

If we set ✓ = 0, this has the natural interpretation in the con-
text of loans that all applications with positive expected utility
(based on the reported features) are approved.
Principal’s Actions: Auditing Agents can misreport their
feature vectors. The principal’s main tool to disincentivize
such misrepresentation is the use of audits. When the prin-
cipal audits an agent reporting features x0, the agent’s true
features x are revealed to the principal. Failing an audit, i.e.,
being audited when x0 6= x will result in the agent paying a
fine; we follow the models of auditing in [Blocki et al., 2013;
Estornell et al., 2021] and assume agents pay a constant fine

C when they are caught manipulating, in addition to not be-
ing selected. Before agents report their features, the principal
publicly declares its audit policy.
Definition 1. (Audit Policy) Given a set of n agents with

true features X and reported features X0
, an audit policy is a

mapping ↵ : X n+1 ! [0, 1] where ↵(x0;X0) corresponds to

the probability that an agent reporting features x0
is audited,

given the set of reports X0
for the n agents. The principal is

limited B audits on average, i.e., E
⇥ P
x02X0

↵(x0;X0)
⇤
 B.

An audit of a particular agent is a check whether I[x0 6= x],
which we assume to be reliable. Agents caught misreporting
their features are subject to a fine C 2 R�0.
Agents An agent with true features x gains utility ua(x)
when approved by the principal, and 0 otherwise. When re-
porting features x0, and not being caught by an audit, the
agent then obtains utility ua(x)ŷ(x0). In addition to the gen-
eral case, we also consider a special case where the utility of
being selected is a constant, i.e., ua(x) = ūa for all x. This
special case has received most attention in prior literature,
particularly in the context of recourse [Ustun et al., 2019].
Agents’ Actions: Recourse and Manipulation Formally,
n agents arrive i.i.d. with features x ⇠ D; we assume that D
is common knowledge. We use X ⇠ D to indicate a collec-
tion of n feature vectors thereby generated. Each agent has
an action space comprised of two qualitatively distinct types
of actions: recourse and manipulation. We allow arbitrary
composition of these, although prove below that such compo-
sitions are dominated by a choice of manipulation, recourse,
or neither (reporting true initial features x). Let z denote a
recourse choice, which we restrict to be in the set A(x) that
defines what is actionable [Ustun et al., 2019]. The agent al-
ways has the option to do nothing, i.e. x 2 A(x), and if the
agent elects this do-nothing action (which carries no cost),
then z = x. The cost of a recourse action z for an agent with
initial features x is denoted by cR(x, z). We use z0 to denote
reported (potentially manipulated) features.

While selection decisions ŷ are implemented indepen-
dently for each reported feature vector z0, the audit policy
↵(z0;Z0) depends on the full collection of n reported feature
vectors of all agents, namely Z0. Let g(x) be the strategy of
an agent with true features x in the choice of both recourse z
and reported (and possibly untruthful) features z0. We restrict
attention to symmetric pure strategies, so that g deterministi-
cally returns a pair (z, z0). Given a symmetric strategy profile
g and an agent who reports a feature vector z0, the probability
of this agent being audited is E

⇥
↵(z0; g(X))

⇤
, where the ex-

pectation is with respect to X ⇠ D (here, it is only the final
reports induced by g that matter). We define the expected cost
of manipulation for an agent with true features z (possibly af-
ter recourse) and reported features z0, when all other agents
jointly follow strategy g as
cA(z, z

0; g) = E
⇥
↵(z0; g(X))

⇤
I
⇥
z0 6= z

⇤�
ua(z)ŷ(z

0) + C
�
.

Putting everything together, the expected utility of an agent
with initial features x, recourse z, and reported features z0,
given a symmetric strategy profile g followed by all others, is
Ua(z, z

0, g;x) = ua(z)ŷ(z
0)� cR(x, z)� cA(z, z

0; g). (1)



When all agents follow g, we simply write Ua(g;x), as
(z, z0) = g(x). Our solution concept for agent strategies is a
(pure-strategy symmetric) Bayes-Nash equilibrium.
Definition 2. A symmetric pure-strategy strategy profile g
is a Bayes-Nash equilibrium (BNE) if for all agents i with

initial features xi, the action g(xi) is a best response, i.e.,

Ua(g;xi) � Ua(z̄i, z̄0i, g;xi) for all z̄i 2 A(xi) and z̄0i. We

denote the BNE profile with the maximum number of manip-

ulations as gmax.

4 Optimal Auditing

In this section we investigate the audit polices of both a
recourse-maximizing principal and a utility-maximizing prin-
cipal. We begin by characterizing some key facts about
agents’ best responses given the principal’s audit policy.
Lemma 1. It is never a best response for an agent to perform

both recourse and manipulation i.e. either z = x or z = z0.

This result follows from the fact that agent utility is inde-
pendent of the report z0 whenever ŷ(z0) = 1; the full proof is
in Section A.1 of the Supplement.

Next we examine the best response of each agent x, with
recourse action z (z = x if no recourse occurs), given predic-
tion function f , decision making scheme ŷ, audit policy ↵,
and fine C. For any strategy g by other agents, the optimal
manipulation and recourse are given respectively by,

xM =argmax
z0 6=x

ua(x)� cA(x, z
0; g) s.t. ŷ(z0) = 1 (2)

xR =arg max
z2A(x)

ua(z)� cR(x, z) s.t. ŷ(z) = 1. (3)

For an agent x, let Ua,R(x) = ua(xR) � cR(x,xR) and
Ua,M (x) = ua(x)� cA(x,xM ; g), i.e. the agent’s respective
utility gain from recourse or manipulation. The next lemma
characterizes the structure of agent best response actions in
terms of their expected utility gain.
Lemma 2. The best response of an agent with features x has

the following form:

z⇤ =

8
>><

>>:

x if ŷ(x) = 1 (4a)
xR if Ua,R(x) � max (0, Ua,M (x)) (4b)
xM if Ua,M (x) � max (0, Ua,R(x)) (4c)
x otherwise (4d)

where Equations 4a, 4d correspond to truthful reporting,

Equation 4b corresponds to recourse, and Equation 4c corre-

sponds to manipulation.

Lemma 2 follows directly from each action’s definition.
Theorem 1. Let gmax be the BNE profile which has the max-

imum number manipulations. If an audit policy ↵ is recourse

(or utility) maximizing with respect to gmax, it is recourse (or

utility) maximizing for any other BNE profile g.

The proof of Theorem 1 is deferred to Section A.1 of the
Supplement. The intuition is that the efficacy of any audit
policy ↵ is monotonically decreasing in the number of agents
who manipulate. Henceforth, we leverage this result to only
consider the principal’s objective with respect to gmax.

Next we formalize the objective of the principal. We con-
sider two types of principals: a population-oriented princi-
pal who aims to maximize the proportion of agents that pre-
fer recourse to manipulation (dubbed recourse-maximizing)
and a principal who aims to maximize the total utility gain of
the decisions made by ŷ (dubbed utility-maximizing). These
objectives respectively represent a principal who is socially-
oriented (we treat recourse as a kind of social good, as it ben-
efits participants), or solely self interested.
Definition 3. (Recourse-Maximizing Principal): A princi-

pal is recourse-maximizing if their objective is to select an

audit policy ↵ which maximizes the proportion of agents who

prefer recourse over manipulation:

↵⇤ = argmax
↵

PX

�
Ua,R(x) � Ua,M (x)

�
(5)

s.t. E↵

⇥ X

z02Z0

↵(z0;Z0)|Z0⇤  B 8 Z0

Definition 4. (Utility Maximizing Principal): A principal is

utility maximizing if their objective is to select an audit policy

↵ which maximizes the principal’s utility. For an agent with

true features x, let z = xR if the agent performs recourse

and z = x otherwise, and let z0 be the agent’s report. This

objective can be framed as,

↵⇤ = argmax
↵

E
⇥
ŷ(z0)f(z)

�
↵(z0;Z0)I [z 6= z0] + I[z = z0]

�⇤
(6)

s.t. E↵

⇥ X

z02Z0

↵(z0;Z0)|Z0⇤  B 8 Z0

We now turn to the characterization of optimal audit poli-
cies. We demonstrate the somewhat counter-intuitive result
that for both a recourse-maximizing and utility-maximizing
principal, uniformly auditing all positively classified agents
is optimal under any distribution of agent types, recourse cost
function, prediction model, and agent utility function.
Theorem 2. For any recourse cost function cR(x, z), agent

utility function ua(x), feature distribution D, a recourse max-

imizing principal with budget B and fine C has optimal policy

↵(z0;Z0) = B/|Z0(1)|, 8 z0 2 Z0(1), 8 X

when agent reports Z0
are induced the BNE profile gmax;

Z0(1)
is the set of all reports z0 with ŷ(z0) = 1.

Proof Sketch. The full proof is deferred to Section A.1 of the
Supplement. A recourse maximizing principal aims to select
an audit policy ↵ in order to maximize the expected number
of agents performing recourse. Only agent with ŷ(x) = 0
have incentive to perform recourse or manipulation, and will
select the actions with highest expected payoff. Despite the
fact that the selection of ↵ depends on agents’ actions, which
themselves depend on ↵ as well as the actions of other agents,
we can express the condition that an agent with true feature x
will not manipulate as,
ua(x)�ua(xR)+cR(x,xR)

ua(x)+C  min
z02X (1)

EX

⇥
↵(z0; g(X))

⇤
(7)

A recourse maximizing principal aims to select ↵ such that
the above condition holds for as large a fraction of agents as is



possible in expectation. Since the left-hand side of Inequality
7, is independent of ↵ and g, and the right-hand side is a
minimization over all features in X (1), the optimal solution
has ↵(z01; g(X)) = ↵(z02; g(X)) for all z01, z02 2 X0(1), i.e.
↵(z0; g(X)) = B/|X0(1)| for all z0 2 X0(1).

Theorem 3. For any recourse cost function cR(x, z), agent

utility function ua(x), feature distribution D, the policy in

Theorem 2 (uniform auditing) is a utility maximizing policy,

when the induced BNE profile of agents is gmax.

Proof sketch. The full proof of this theorem is deferred to
Section A.1 of the Supplement. The proof strategy is sim-
ilar to that of Theorem 2; we can formulate the principal’s
objective as maximizing the minimum ↵(z0; g(X)) such that
a condition similar to Inequality 7 holds for the largest frac-
tion of agents. The key difference being that not all agents
contribute equality to the principal’s objective; agent x yields
utility f(x). However, this formulation requires only two ob-
servations: 1.) an agent x with ŷ(x) = 0 (x has incentive to
manipulate) yields negative utility, and 2.) agents performing
recourse offers nonnegative utility, which is at least as good
as successfully auditing a manipulation (utility 0). Recourse
(manipulations) offers nonnegative (nonpositive) utility, and
the principal’s utility is monotone increasing in the number of
agents performing recourse. Combining these observations,
the principal’s objective becomes precisely recourse maxi-
mization, and the proof follows from Theorem 2.

Remark: Theorems 2 and 3 show an equivalence between

a recourse-maximizing and utility-maximizing principal. The

significance of which is threefold: (1) the actions of a self-

interested (utility-maximizing) principal are as beneficial to

the population as the actions of a recourse-maximizing prin-

cipal directly trying to maximize for population benefit, (2)

self-interested auditing decreases the percentage of agents

which engage in “risky” and potentially socially detrimen-

tal behavior (manipulation), and (3) optimal auditing does
not require any knowledge of dynamics of agents recourse

actions (e.g. solving Program 3, or even knowing cR).

5 Auditing With Subsides

Audits provide a punitive measure for incentivizing recourse
over manipulation. Another natural option is to offer sub-
sidies that make recourse cheaper to implement for agents.
Here we investigate how the principal optimally splits the
limited budget between auditing and subsidies. For exam-
ple, a bank may choose to allocate a fraction of their bud-
get from application verification to the development of edu-
cational material to help increase financial literacy. Our key
result is that in the important special case of constant utili-
ties, both recourse-maximizing and (own) utility-maximizing
principals choose the same fraction of budget for subsidies.
Moreover, we show that despite the complex interdependen-
cies of the problem, when agent utilities are constant, the
objective of both principals can be formulated as a single-
dimensional optimization problem, depending only on the
impact of subsidies on the cost of recourse and audit budget.
We begin by formalizing subsidies in our model.

Definition 5. A subsidy function s : [0, B] ! [0, 1] yields a

multiplicative decrease in the cost of recourse, such that for a

subsidy budget b, the cost of recourse becomes s(b)cR(x, z),
and the remaining budget B � b is then used for auditing.

Subsidy functions s(b) are decreasing in b and s(0) = 1 (al-

locating no subsidies recovers the original recourse cost).

Remark: For any subsidy trade-off b⇤ with s(b⇤) = 0, the

cost of recourse is s(b⇤)cR(x, z) = 0 for all x, z. When such

a trade-off exists, it is always optimal for the principal to se-

lect b⇤ as their subsidy allocation (i.e., their objective reduces

to univariate root finding of s(b)). Consequently, we hence-

forth assume that s(b) > 0.

Next, we present our key result showing that when agent
utilities are constant, optimal subsidy characterization is iden-
tical for either recourse- or utility-maximizing principal, and
amounts to solving a one-dimensional optimization problem.
Theorem 4. Suppose that agent utilities are constant, i.e.,

ua(xi) = ūa, and the induced BNE profile of agents is gmax.

Then, for both a recourse-maximizing and utility-maximizing

principal, the optimal subsidy is given by

b⇤ = arg max
b2[0,B]

B � b

s(b)
(8)

Proof Sketch . The proof is deferred Section A.2 of the Sup-
plement. The strategy for this proof is again to induce an
ordering on agents via the difference in their expected utility
gain from either recourse or manipulation. The key challenge
in the case of subsidies is that the subsidy function s(b) af-
fects this difference in utility. In the case of constant agent
utility the optimal recourse action xR, for agent x, is invari-
ant w.r.t. b (although the cost changes w.r.t. b). For any fixed
b, uniformly auditing with the remaining B � b budget is op-
timal. Thus, the condition that agent x prefers recourse is

cR(x,xR)�
C + ūa

�
EX

⇥
1/|X(1)|

⇤  B � b
s(b)

,

Similar to Theorem 2, the left-hand side is independent of
b, and maximizing (B � b)/s(b) maximizes the number of
agents preferring recourse. The argument for utility maxi-
mization follows a similar line of reason to Theorem 3.

Illustration: To gain some intuition into the result of Theo-

rem 4, consider s(b) = 1
b+1 , where the impact of subsidies on

recourse costs exhibits diminishing returns in the subsidy al-

location. In this case, the objective can be solved analytically,

obtaining the optimal subsidy b⇤ = B�1
2 . Thus, the princi-

pal, whether maximizing overall welfare or their own utility,

would allocate nearly half of the audit budget to subsidies.

The reason is that even a self-interested principal actually

benefits from providing subsidies and thereby incentivizing

recourse, as such actions also increase the principal’s profits,

whereas manipulation results in an expected loss.

Corollary 1. When agent utility is constant, both a recourse-

maximizing and utility-maximizing principal will allot a

nonzero portion of their budget to subsides if and only if there

exists some b s.t. s(b)  1� b/B, i.e. s has better than linear

scaling for at least one value of b.



In contrast to the case of constant agent utilities, however,
optimal subsidy becomes non-trivial for general agent utili-
ties. Moreover, the alignment between recourse- and utility-
maximizing principal no longer obtains.
Theorem 5. For general agent utilities, recourse maximiza-

tion and utility maximization are no longer aligned.

The full proof, and further details on subsides for general
agent utility, are provided in the Supplement Section A.2.

6 Optimal Fines

Thus far, our analysis has assumed exogenously specified
fines C from failing an audit. We now consider a princi-
pal who jointly optimizes ↵ and C. We adopt the model
of Blocki et al. [2013] in which the principal can select the
value of C and suffers a cost L(C) as a result, which can cap-
ture public concerns about unfairly high penalties, regulatory
pressures, etc. For ease of exposition we restrict attention
to L(C) = �C for exogenously specified �; however, our
results hold for an arbitrary monotone function L(C). The
optimal fine and audit policy can then be found via

max
↵,C

V (C,↵) - �C, s.t. E↵

⇥ X

z02Z0

↵(z0;Z0)| Z0⇤  B

where V (C,↵) is the principal’s utility (Equations (5), (6)).
In Section A.3 of the Supplement we discuss the alignment of
these objectives. Here, we show that for constant agent utility,
uniform auditing is again optimal and the optimal fine can be
formulated as a one-dimensional optimization problem solely
in terms of the CDF of cR(x,xR) and the penalty on C.
Theorem 6. Let FR be the CDF of the cost of recourse, i.e.,

FR(k) = Px

�
cR(x,xR)  k

�
. Suppose agent utility is con-

stant, ua(x) = ūa, and the induced BNE profile of agents is

gmax. Then uniform auditing is optimal for both recourse and

utility maximization and the optimal fine is,

C⇤ = argmax
C

nFR

�
B(C + ūa)/n

�
� �C

The full proof is provided the Supplement, Section A.3.
This result again demonstrates the ease of optimal audit-
ing, as the principal’s objective reduces entirely to finding
C⇤. Although the difference of two monotonic functions
(the CDF and the penalty) may be intractable to optimize
in general, there exists a wide array of technique for opti-
mizing such functions efficiently in practice [Sergeyev, 1998;
Locatelli, 1997; Hansen, 1979]. If FR is Lipschitz smooth in
C, then these methods yield arbitrarily good approximations
of C⇤, this holds for any Lipschitz smooth monotonic L(C).

7 Costs of Auditing to the Population

In domains where recourse is a salient consideration, it is
natural to examine the average cost suffered by a popula-
tion when performing recourse [Ustun et al., 2019]. With
the introduction of auditing and subsides into such domains,
it becomes imperative to consider costs/fines imposed on the
population as both a function of auditing and subsides.

We first describe the differences between the impact on the
utility of the principal and that of the agents. In particular, as

the auditing budget B and fine C increase, the principal’s util-
ity gain is monotonically increasing, while the agents’ utility
gain is monotonically decreasing.
Theorem 7. Average agent utility is monotonically decreas-

ing in B and C. In contrast, the principal’s expected utility is

monotonically increasing in B and C.

Proof Sketch. The expected utility of and agent x misreport-
ing z0 can be expressed as

ua(x)� E
⇥
B/|Z0(1)|

⇤
(ua(x) + C)

which is monotonically decreasing in both B and C. The util-
ity of recourse is invariant w.r.t. B and C. Agents only per-
form recourse if manipulation yields lower utility gain, thus
agent utility gain is monotone decreasing in B and C. A sym-
metric argument can be made for the principal’s utility.

Theorem 8. When agent utility is constant, the expected

number of agents who either choose to perform recourse or

truthfully report is nFR

⇣
min

�
ūa,

B(C+ūa)
n

�⌘
.

Proof. This follows directly from Theorem 2.

Lastly, we bound the fines paid by agents when the princi-
pal has budget B and the fine is C.
Theorem 9. Let FR(k) = P

�
cR(x,xR)  k

�
(CDF of cR).

Suppose agent utility is constant, define C 0 ⌘ C+ ūa, and let

AM be the expected fines paid by agents. Then,

BC
�
1� FR(2BC 0/n)

�
 AM  BC2

�
1� FR(BC 0/n)

�

Theorem 9 can be interpreted as quantifying the fines paid
by the population in terms of how costly recourse is (i.e., the
growth rate of FR). If the principal audits B manipulating
agents, the population pays C ·B. The terms 1�FR(2BC 0/n)
and 2(1� FR(BC 0/n)), in turn, approximate the probability
that a given audit was conducted on a manipulating agent.

These bounds also express the parabolic nature of the
fines paid by agents. For small B and C, the fines paid
by agents are small (even if all agents manipulate). For
large B and C, the cost of manipulation is sufficiently high
that few agents will manipulate, and thus, average fines are
small. It is the intermediate range of values of B and C for
which both BC (fines paid when all audits are successful) and
1� FR(BC 0/n) (probability of a successful audit) are large.

Proof Sketch of Theorem 9. The full proof is deferred to the
Supplement, Section A.4. Given a set of reports Z0, let nM

be the number of reports which are manipulations. Each re-
port in Z0(1) has equal probability of being audited, namely
B/|Z0(1)|, implying that agents pay fines E

⇥
BCnM/|Z0(1)|

⇤
.

We can bound E
⇥
nM/|Z0(1)|

⇤
as

E
⇥
nM/n

⇤
 E

⇥
nM/|Z0(1)|

⇤
 E

⇥
nM/|X(1)|

⇤
(9)

The left-hand side follows from there being at least as many
approved reports |Z0(1)| as agents n. The right-hand side fol-
lows from |Z0(1)| being greater than the number of approved
truthful reports |X(1)|. Inequality 9 can be rewritten as,

1� FR

�
2BC 0/n

�
 E

⇥
nM/|Z0(1)|

⇤
 2

�
1� FR(BC 0/n)

�

Multiplying each side by BC completes the proof.



Figure 1: Fraction of agents choosing recourse or manipulation (green and red), average cost paid for each action (orange and blue), and
system utility (black), for a fixed fine of C = 1 (left) or designed fines with audit budget B = n/10 (right). ’ To estimate utility the principal
uses Logistic Regression (top row) and 2-layer Neural Networks (bottom row).

8 Experiments

We conduct experiments using four common datasets: Adult

Income [Kohavi and others, 1996], Law School [Wightman
and Council, 1998], German Credit [Dua and Graff, 2019],
and Lending Club [LendingClub, 2018], in which the objec-
tive is binary prediction. In the Adult Income and Law School
datasets, agents have constant utility over approved features,
i.e., the conventional recourse setting where ua(x) = 1 for all
x; the principal (system) has utility up(x) = 1 when y = 1
and up(x) = �1 when y = 0. In the German Credit and
Lending Club datasets, agents have utility which is inversely
proportional to their income and savings (credit is more valu-
able to those with lower existing capital); the principal’s util-
ity is equal to the total repayment of approved agents. The
cost of recourse is cR(x, z) = kx � zk2. Full experimental
details are provided in the supplement Section A.5.

We measure the fraction of the population performing re-
course or manipulation, as well as the average cost incurred
by agents for either action (Figure 1). In this figure three in-
teresting phenomena occur. First, the average fines paid by
agents is roughly parabolic in the audit budget B (Figure 1
left), and in the penalty � which controls the size of the fine
C⇤ (Figure 1 right). Thus, it is the intermediate values of
B and C for which agents are most heavily fined. In these
cases, B and C are not large enough to effectively dissuade
manipulations, but are large enough to frequently catch and
fine agents manipulating. This parabolic relationship is an-
ticipated by Theorem 9. Second, the maximum cost spent on
recourse exceeds the maximum fines paid. This is due to the
fact that agents will only select recourse once the cost of ma-
nipulation is sufficiently high. Third, as the number of agents
choosing recourse increases, so to does system utility. When
an agent performs recourse, their true qualification improves
(e.g., greater loan repayment), thus increasing the principal’s
utility when approving that agent.

Additionally, we measure the fraction of the audit budget
which the principal allocates to subsides for varying subsidy
functions (Figure 3 in Supplement Section A.5). As predicted
by Theorem 4, we observe that when the subsidy function
more effectively decrease recourse costs, both the allocation
of subsides and the principal’s utility increases. Thus, settings
in which the cost of recourse is more easily offset give rise to
a mutual benefit for both the system and individuals.

9 Conclusion

We investigated the relationship between manipulation and
recourse when the principal possesses the ability to audit
agent reports. We demonstrated that auditing can be used as
an effective tool in preventing agent manipulation while still
allowing the principal to offer recourse and maintain their de-
sired classifier ŷ. For both a recourse-maximizing and utility-
maximizing principal, the optimal audit policy is straightfor-
ward to execute, despite the seemingly complex nature of the
problem. In particular, given a set of report X0 the princi-
pal’s best strategy is to uniformly audit all positively clas-
sified reports. Additionally we studied subsides, which al-
low the principal to allot a portion of their audit budget in
order to decrease the cost of recourse. In this case, we find
that when agent utility is constant, both objectives of recourse
maximization and utility maximization are aligned; however,
this is not the case for general agent utilities. Moreover, when
agent utility is constant, the principal is guaranteed to spend a
nonzero fraction of their audit budget on subsides, so long as
the subsidy function s(b) has better than linear scaling in b.
Additionally we looked at the case when the principal posses
the ability to select the fine for failing an audit, and again
found that the objectives of recourse and utility maximization
are aligned. Lastly we examined this problem from an empir-
ical perspective and found that auditing can successful induce
recourse as well as maximize system utility in practice.
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