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Abstract

We introduce a general time-series forecasting
method that extends classical seasonal autoregressive
models to incorporate exogenous and relational
information in an online setting. Our approach
is implemented using the probabilistic programming
language Probabilistic Soft Logic (PSL) [2]. We
leverage recent work that enables the scalable
application of PSL to online problems and propose
novel modeling patterns to leverage dependencies
between multiple time series. We demonstrate the
applicability and performance of our method for the
task of station level demand forecasting on three bike
sharing systems. We perform an analysis of the
demand time series and present evidence of relational
dependencies among the stations, motivating the need
for a forecasting model that leverages the rich relational
structure in the bike sharing networks. Our approach
significantly improves multi-step forecasting accuracy
of autoregressive time-series models on all three
datasets. Further, our approach is easily extendable and
we expect applicable to a variety of other time-series
forecasting problems.

Keywords: time-series, demand forecasting,
bike-sharing

1. Introduction

Shared mobility services are a cost effective and
sustainable method for supporting the adoption of public
transportation, thereby reducing traffic congestion and
carbon emissions [8]. A shared mobility service acts
as a solution for last mile transportation, conveniently
connecting users from bus and train stops to their final
destination [18]. A dock or station-based mobility

service hosts multiple stations positioned throughout an
urban area where users can check out and return a bike
or scooter. Examples of this type of shared mobility
service can be found in many major cities.

Adoption and retention of shared mobility services
relies heavily on their dependability. A central problem
for the service operators is continuously rebalancing the
amount of vehicles at each station [18]. Rebalancing
is crucial since a station with no open docks forces a
user to return a vehicle to a station that is not on their
intended route. Analogously, having too few vehicles
limits the number of users that can depart from a station.
Simply monitoring the station status, i.e., whether a
station is full or low on vehicles will lead to imbalances
and not allow for strategic planning to satisfy demand.
Thus, predictive analytics plays an important role in the
rebalancing problem.

Accurate forecasts of station-level arrival and
demand rates support the application of one of the
many existing algorithms for solving the rebalancing
problem. However, scalable and accurate station-level
forecasts are difficult to make. Each of the many
individual stations has its own complex demand pattern.
For instance, a station positioned at a busy train
stop will have a very different demand time-series
than one in a residential district, and both may
have long-term seasonal dependencies. Furthermore,
exogenouos factors and dependencies between stations
in the network can have a significant impact on the
demand. An exogenous factor such as abnormally hot or
cold weather will influence the demand on a given day.
Moreover, the demand and arrival rates for two stations
on a common route will be highly correlated. We aim
to fill this need in the shared mobility service literature
with a highly scalable and expressive framework for
providing station-level demand forecasts.



In this work, we introduce a novel framework that
extends traditional autoregressive models to capture a
variety of structural dependencies. Our approach makes
use of soft probabilistic dependencies, specified using
Probabilistic Soft Logic (PSL) [2], an expressive and
highly scalable probabilistic programming language.
The models we develop are interpretable and extendable
to a variety of temporal demand prediction tasks. We
show how to extend existing PSL work for online
inference to support the updates required to reproduce
classical autoregressive forecasts. We then extend
the model to reason with complex dependencies
between time series, long-term temporal seasonality,
and exogenous factors to collectively infer future
demand. We show that introducing this collective
reasoning achieves scalable and statistically-significant
improvements in both mean and median R2 and
RMSE performance for station level forecasts on
all datasets. Moreover, we find that, surprisingly,
an alternative multi-step forecasting technique our
proposed framework supports further improves
performance over classical autoregressive models.

2. Related Work

Improving the reliability of shared mobility
services has a positive impact on user experience
and participation, as shown by both Yu et al. (2018)
and Kabra et al. (2018). For this reason, operators
preemptively rebalance the distribution of the service’s
bicycles to ensure users have access when and where
they need it. Laporte et al. (2018) provides an excellent
description of rebalancing and other operations
problems that arise in shared mobility services
and surveys techniques for solving them. Notably,
the operations research community has contributed
effective formulations of rebalancing objectives and
scalable techniques for optimization [4, 23, 27, 12, 3].
In this work, we focus on improving the quality of
demand forecasts that can in turn be used to support
rebalancing solutions.

Demand forecasting for bike-sharing services is an
active area of research and many modern machine
learning-based techniques, surveyed by Albuquerque
et al. (2021), have been proposed for the task.
Initial work on demand forecasting in shared mobility
services developed independent time-series forecasts for
each station depending purely on historical demand
observations. For instance, Schuijbroek et al. (2017)
forecasts bike availability using independent and
specialized Markov chain models. Schuijbroek
et al. (2017) fit the Markov chain models using
historical demand time series and apply the forecasts

to formulate a mixed-integer program to design a
rebalancing schedule. Similarly, Cagliero et al. (2017)
introduced station specialized Bayesian and associative
models to forecast critical events at stations in a bicycle
sharing service.

Recent research from Eren and Emre UZ (2020),
Kon et al. (2021), and Li et al. (2022) showed external
factors such as weather, geographic topology, and
other public transportation systems have a substantial
affect on a bike station’s demand. Thus improvements
in demand forecasting accuracy have been made by
considering exogenous variables. For instance, Hulot
et al. (2018) and Ruffieux et al. (2018) advanced
station level demand forecasting by training specialized
machine learning models for individual stations that
make use of temperature, humidity, and other
weather-based features. Moreover, Hulot et al. (2018)
overcame overfitting with dimensionality reduction
techniques, some of which leverage the observation
that stations can be organized into clusters with similar
demand patterns. Another line of work, exemplified by
Xu et al. (2018), applies deep learning techniques to
model demand time-series with exogenous effects. Xu
et al. (2018) use a long short-term memory (LSTM)
model that takes historical observations and weather
data to forecast demand in the station-free setting.
Motivated by the success of these methods, the model
we introduce is designed to consider multiple exogenous
variables to make forecasts in the station-based setting.

Beyond the historical demands and exogenous
information, shared mobility services have many
structural dependencies that provide a signal for
the future demand. For example, Rudloff and
Lackner (2014) identified if a nearby station is empty
then its demand will overflow to a nearby station.
This supply and demand dependency, along with
an exogenous variable, is applied to improve the
precision of distributions modelling the departure and
arrival rates at a station. Likewise, Faghih-Imani and
Eluru (2016) verified that nearby stations in the New
York CitiBike bicycle sharing service consistently have
correlated demand rates. The authors incorporated the
dependencies with spatial lag and error models. Work
by Lin et al. (2018) also aims to exploit structural
dependencies in the same CitiBike service network. The
authors propose the use of graph convolutional networks
(GCN) to learn pairwise correlations between bike
stations and techniques for defining the graph structure
of the model. Specifically, spatial distance between
stations, route frequency, route duration, and demand
correlation are used to define an adjacency matrix for
the GCN. Our proposed approach contributes to this line
of research with a framework that leverages complex



dependencies between stations, exogenous effects, and
historical observations.

3. Demand Forecasting in Bike Share
Services

We analyze the demand patterns and structural
properties of three active bike sharing services in the
San Francisco Bay Area [22], Boston [5], and Los
Angeles [21]. The bike share datasets follow a similar
data format, each containing both station information
(coordinates of the station and the number of docks)
and trip information (start and end station and times of
each trip). Table 1 shows the number of stations and the
minimum start and maximum end dates of the recorded
trips.

Dataset Number of Stations Start Date End Date
Bay Area 68 8/29/2013 5/1/2015
Boston 187 4/3/2013 4/3/2014

Los Angeles 272 2/1/2018 8/1/2019

Table 1: The number of stations and the start and end
dates of the trip data available in each of the three
datasets.

Figure 1: A normalized histogram plotting the average
difference of hourly arrivals and departures at stations
for three bike share services. Many stations are, on
average, imbalanced.

Users experience a service failure when a station is
full and they cannot return a bike, or a station is empty
and they cannot check out a bike. Imbalance of available
bikes at a station occurs when the rate of arrivals and
departures of trips is unequal. We define the departure
demand and arrival demand at a station for a given
hour to be the total number of trips starting and ending
at the station in the hour if bikes and station docks
were not limited by availability. Observed departure
and arrival rates are used as proxy measurements of
demand for bikes and open docks, respectively. Figure
1 illustrates the level of demand imbalance occurring at

individual stations in the three bike share services. In a
self-balancing network, the difference between hourly
arrival and departure rates would be zero for every
station in the network. However, for many stations in
the networks, this is not the case.

To address the issue of demand imbalance, operators
regularly need to redistribute bikes in anticipation of
demand. Strategic rebalancing requires a forecast of
both the arrival and the departure demands for individual
stations. Figure 2 shows the demand time series of
a selected station from each of the three bike share
datasets. The results of a KPSS test indicate that
the majority of demand time-series are stationary [17].
Furthermore, there is significant autocorrelations at 1
and 2 hour lags and seasonal autocorrelations at 12,
24, and 168 hour lags. This analysis indicates that a
seasonal autoregressive model with no differencing at
the mentioned lags is an appropriate time-series model
for station demand.

Dataset Random Nearby Commute Cluster
Bay Area 0.193 0.328 0.394 0.376
Boston 0.330 0.498 0.451 0.512

Los Angeles 0.036 0.120 0.186 0.068

Table 2: Average time series correlation coefficient for
pairs of stations with different relations.

’

However, there is additional structure in bike
share networks that cannot be effectively leveraged by
independent autoregressive time-series models. Table
2 shows the average correlation coefficients for pairs
of stations with different types of relations. For
instance, correlation between the demand time series
of pairs of stations within a 0.5 KM radius (Nearby)
is considerably higher than the average correlation
between two randomly selected stations in the network
(Random). Furthermore, the departure demand for
a station is correlated with the arrival demand for
its most common destinations (Commute). In other
words, if many trips starting from one station have been
observed to end at a specific station, i.e. they have
been identified as a commute pair, then we observe
a correlation between the two stations’ departure
and arrival demands, respectively. Further, applying
hierarchical agglomerative clustering to stations based
on historical demand patterns (Cluster) results in groups
of above average correlated station pairs.

4. Online Probabilistic Soft Logic

Inspired by the structure revealed in the data
analysis, we introduce a model for jointly reasoning
with related time series. Our model is built using



Figure 2: Arrival and departure demand time series and autocorrelation plots of the departure rates recorded at selected
stations in the San Francisco Bay Area, Boston, and Los Angeles bike share services.

an expressive and scalable probabilistic programming
language called Probabilistic Soft Logic (PSL) [2].

4.1. Hinge-Loss Markov Random Fields

PSL instantiates a tractable class of graphical models
called hinge-loss Markov random fields (HL-MRF).
A collection of arithmetic and first-order logical
statements, referred to as rules, determine dependencies
between atoms: the attributes and relations present in a
domain. For instance, in PSL we represent the value of a
time series at at time T with the atom SERIES(T). Then,
multiple factors that have an influence on our forecast
of the time series are expressed as rules. We capture
exogenous factors, such as weather, with the atom
EXOG(T). Moreover, an existing time series predictor
is modeled with the atom SERIES(T). The following
are examples of a weighted logical and arithmetic rule
relating the atoms.

w1 : EXOG(T) → SERIES(T) (1)
w2 : PREDICTOR(T) = SERIES(T) (2)

The first rule forces values of the series to be greater
than or equal to the value of the exogenous effect at
the same time T. The second rule forces the value of
SERIES(T) to be equal to the value of PREDICTOR(T).
Sometimes the two rules cannot both be satisfied at the
same time. The weight of a PSL rule, denoted by the
variables w1, w2 in (1) and (2), is a non-negative value
representing the importance of satisfying the rule in the
model. The higher the relative value of a weight, the
more important the corresponding rule is to satisfy.

Weighted rules in PSL are not strict constraints.
Rather, each weighted rule is a template for instantiating
soft constraints, or hinge-loss potentials. The variables
in the atom arguments are replaced by constants in the

data to create ground rules. For instance, consider a
dataset containing entries for the atoms referenced in (1)
and (2) for times T ∈ {t1, t2}. The following ground
rules will be instantiated for the the rule (1):

w : EXOG(t1) → SERIES(t1)

w : EXOG(t2) → SERIES(t2)

Ground rules are translated into potentials using
Łukasiewicz logic. The potentials are defined using
variables which map to the unique instantiations of the
atoms. Specifically, the vectors of all unobserved and
observed variables are denoted by y = [yi]

n
i=1 and

x = [xi]
n′

i=1, respectively. In PSL, atoms and their
corresponding variables, take on continuous values in
the closed interval [0, 1]. All potentials in an HL-MRF
have the following functional form:

ϕ(y,x) = (max {ℓ(y,x), 0})q (3)

where ℓ(y,x) is a linear function of the variables y
and x, and the exponential term, q ∈ {1, 2}, is a
hyperparameter set by the modeler.

The set of all m potentials, (ϕ1, · · · , ϕm) created
during grounding with corresponding weights w =
(w1, · · · , wm) are used to define the HL-MRF energy
function.

f(y,x,w) =
m∑
i=1

wiϕi(y,x) (4)

The energy function then defines the HL-MRF
conditional distribution.

P (y|x;w) =
1

Z(w,x)
exp(−f(y,x,w)) (5)



where Z(w,x) =
∫
y
exp(−f(y,x,w))dy is the

partition function.
Maximum a posteriori (MAP) estimation is used to

obtain a joint prediction of the unobserved variables.

argmax
y∈[0,1]n

P (y|x;w) = argmax
y∈[0,1]n

m∑
i=1

wiϕi(y,x) (6)

A key advantage of HL-MRFs is that MAP inference is
a tractable convex problem [2].

4.2. Online Collective Inference

Recent work enabled the application of PSL in
online settings where new observed and unobserved
atoms are revealed sequentially [9, 24]. For HL-MRFs,
the task of maintaining and performing inference over a
sequence of evolving graphical models is referred to as
online collective inference, shown in Algorithm 1.

Algorithm 1: Online Collective Inference
Data: x0,y0,w, T

1 for t = 0, 1, 2, · · · do
2 Ground P (yt|xt;w)
3 Predict y∗

t ∈ argmaxy∈[0,1]nt P (y|xt;w)

4 Receive model updates to obtain xt+1,yt+1

5 end

The evolution of the graphical model is encoded
by sequences of model updates. In general, a model
update can be classified into one of the following three
categories: value update of an observed variable xi ∈
X , addition or deletion of a random variable xi ∈ X or
yi ∈ Y , or the addition or deletion of a rule. We develop
the online PSL framework by extending the set of
supported model updates. Specifically, we implemented
a command, FixAtom, for moving a variable from the
unobserved set Y to the observed set X with its inferred
MAP value. This command circumvents the expensive
process of first deleting variables in yi ∈ Y , then
adding to xi ∈ X with inferred values, and re-grounding
the rules. The FixAtom command makes preforming
multi-step forecasts highly efficient. Details on the
process of obtaining multi-step forecasts are provided
in the following section.

5. Collective Time-Series Forecasting

We propose a novel framework for performing
collective time-series forecasting using HL-MRFs. We
present our approach in the context of forecasting
the arrival and departure rates at stations in a bike

sharing network. Thus, the two target atoms in
the PSL model are ARRIVE(S,T) and DEPART(S,T),
which represent the normalized count of arrivals and
departures, respectively, for a station S during a period
of time T. We organize the presentation of the PSL
rules into four subsections to highlight their modeling
contribution: 1) seasonal autoregression, 2) exogenous
factors, 3) collective reasoning, 4) local prediction, and
5) regularizers. We emphasize that the rules presented
here are also applicable as general modeling patterns for
time-series forecasting problems.

5.1. Seasonal Autoregression

Classical autoregressive (AR) models represent
time-series variables as functions of its lagged values
[6, 14]. Seasonal-AR (S-AR) models are an AR
extension that additionally regress onto seasonal lags of
the time-series. Formally, given time-series data y =
[yt]

T
t=1, an S-AR model with AR order p and seasonal

order P at a period s is given by:

yt =

p∑
i=1

αiyt−i +
P∑
i=1

βiyt−i·s + γ + ϵt (7)

where α = (α1, · · · , αp), β = (β1, · · · , βP ), and γ
are the parameters of the model and ϵt is a mean 0
error term. One prevalent approach to fitting the model
parameters is by minimizing the total squared error of
the process.

min
α,β,γ

T∑
t=1

(yt−(α1yt−1 + · · ·+ αpyt−p

+ β1yt−s + · · ·+ βP yt−P ·s + γ))2

(8)

With parameters fit on an observed portion of a
time-series, multi-step forecasts are made incrementally.
Precisely, an h step forecast begins with computing
yT+1 using (7). Then, the forecasted value of yT+1 is
used to obtain yT+2, and so on, until all h steps are
computed.

The described S-AR model for a normalized
time-series can be implemented and extended with
online PSL. The rules for expressing auto-regressive



relations take the following form:

wk1 : DEPART(S,T1)

= DEPART(S,T2){LAGk(T1,T2)} (9)

wk2 : − DEPART(S,T1)

= DEPART(S,T2){LAGk(T1,T2)} (10)

wk3 : DEPART(S,T) (11)

wk4 : !DEPART(S,T) (12)

The LAGk(T1,T2) atom is binary valued and
represents whether the time T1 is a fixed lag k of
the time T2. Only the groundings of the rule such
that LAGk(T1,T2) is true will be instantiated. Then,
for the triple of arguments (s, t, t − k) such that
LAG(t - k,t)k = 1.0 let yt = DEPART(s,t) and
yt−k = DEPART(s,t - k). The following potentials
are instantiated from the rules for the variables yt and
yt−k:

ϕk1(yt, yt−k) = (yt − yt−k)
q1 (13)

ϕk2(yt, yt−k) = (yt + yt−k)
q2 (14)

ϕk3(yt, yt−k) = (1− yt)
q3 (15)

ϕk4(yt, yt−k) = yq4
t (16)

Therefore, a PSL model of purely autoregressive rules
with q1 = q2 = 2 and q3 = q4 = 1 and a single target
variable yt instantiates the HL-MRF energy function:

f(yt) =
∑
i

(
wki,1(yt − yt−ki)

2 + wki,2(yt + yt−ki)
2
)

+ wk3
(1− yt) + wk4

yt (17)

Then, first order optimality conditions for this convex
function with weights W ∈ ∆r implies that

argmax
yt

f(yt)

=

(∑
i

(wki,1
− wki,2

)yt−ki

)
+

wk4
− wk3

2
(18)

Thus, the MAP state of the HL-MRF has a closed
form solution that is a linear combination of its lags.
Further, observe that although weights are restricted
to non-negative values to preserve the convexity of
inference, negative correlations and constants can still
be expressed.

The FixAtom command is used to perform
multi-step predictions via incremental forecasting.

Precisely, an h step incremental forecast in online PSL
begins with adding a single target atom yT+1 and setting
it to the MAP state of the HL-MRF. Next, the target atom
yT+1 is fixed to its current value and the next target atom
yT+2 is added. This process is repeated until all h steps
are computed.

Alternatively, the multi-step forecast can be
computed all at once. This is achieved by adding all
the target atoms yT+1, · · · , yT+h and finding the joint
MAP state of the HL-MRF. We refer to this method
as batch forecasting. Note that batch forecasting does
not have a closed form solution as does the incremental
approach.

5.2. Exogenous Factors

Exogenous factors are external variables that
influence the time-series. For instance, in the bikeshare
setting, a rainy day can have a negative effect on the
demand level, and hence decrease both the arrival and
departure rates. Conversely, busy commute hours on
weekdays typically see higher demand. The PSL rules
expressing these relations for departure rates are shown
below:

w : RAINING(S,T) → ¬DEPART(S,T) (19)

w : COMMUTEHOUR(S,T) → DEPART(S,T) (20)

In these rules, RAINING and COMMUTEHOUR(S,T)
are binary valued atoms reflecting whether or not there
is rainy weather at station S at a time T and whether time
T is a commute hour, respectively.

5.3. Collective Forecasting

Collective predictions are made jointly, rather than
independently, allowing the model to capitalize on the
relational information and structure present in the data.
Atoms that are connected by rules appear together in
HL-MRF potential functions. Then, a MAP state of the
HL-MRF density function is found by jointly optimizing
over the unobserved variables to minimize the total sum
of the potentials. In other words, a state of the random
variables is found that most satisfies the rules.

For instance, spatial relations and data-driven
techniques can cluster stations with positively correlated
demands. For example, geographically nearby stations
tend to have similar patterns of utilization. Moreover,
employing a clustering algorithm (e.g., hierarchical
agglomerative clustering) provides clusters of stations
with correlated historical demand time series, which
also can be utilized. Let the atom ADJ(S1,S2) and
CLUSTER(S1,S2) be binary valued variables indicating
if the stations S1 and S2 are within a 0.5 kilometer
radius and within the same cluster, respectively. The



relationships are captured with the following rules:

w : ADJ(S1,S2) ∧ DEPART(S1,T) (21)

→ DEPART(S2,T) (22)

w : CLUSTER(S1,S2) ∧ DEPART(S1,T) (23)

→ DEPART(S2,T) (24)

If the ADJ(S1,S2) or CLUSTER(S1,S2) relation is
symmetric, then these rules will forecast the demand at
the two stations in the ground rules to be nearly equal.

Commuting patterns are also captured via collective
modeling. Suppose a station S1 is forecasted to have a
high arrival rate at a time T. If we observe that S2 is a
common source for S1, then we can infer that S2 should
have a higher departure rate at a time T. The inverse
dependency is also true. This relation is captured by the
rules:

w : DEST(S1,S2) ∧ DEPART(S1,T) (25)

→ ARRIVE(S2,T) (26)

w : SOURCE(S1,S2) ∧ ARRIVE(S1,T) (27)

→ DEPART(S2,T) (28)

The atoms DEST(S1,S2) and SOURCE(S1,S2)
represent whether station S2 is among the top
destinations and sources for the station S1, respectively.

5.4. Regularizers

In general, both arrival and departure demand at any
given station will tend to be low. We include this notion
as a prior by adding the following rules to our PSL
model:

w : ¬ARRIVE(S,T) (29)
w : ¬DEPART(S,T) (30)

Intuitively, negative prior rules can be interpreted as
encouraging PSL to make predictions near 0. More
formally, the rules result in a regularized MAP inference
objective function.

6. Experiments

We evaluate our proposed framework on station level
hourly forecasts for both arrival and departure demands.
We compare two approaches: autoregressive rules with
exogenous information (AR+X) and a collective model
that combines autoregressive rules, collective rules,
exogenous information, and regularizers (Collective).
Furthermore, both incremental (INC) and batch
(BATCH) multi-step forecasting methods, discussed in
Section 5.1, are examined for predicting the next 24
hours of demand.

The AR+X model captures dependencies on 1, 2,
12, 24, and 168 hour lags, motivated by Figure 2. The
weights for the autoregressive rules were determined via
a minimum square error fit on an observed set of the
demand time series. Moreover, a restricted search over
the weight values of 0.01 and 0.001 was performed on
the exogenous rules and we report the best performing
configuration. The INC-AR+X model reproduces the
forecast of a traditional seasonal autoregressive model.

The Collective model extends AR+X with rules to
capture dependencies identified via clustering, spatial
distance, and commuting relations. Clustering
is performed using Scikit-learn’s hierarchical
agglomerative clustering algorithm over every stations’
demand series. For the spatial rule, two stations are
adjacent if they are within a 0.5 kilometer radius and
for the commuting patterns, the top three sources and
destinations for each station are considered. Again, a
restricted search over configurations where rule clusters
were assigned weights of either 0.01 or 0.001 was
performed for the rule weights. We also analyze the
performance of collective models created by adding
one relational rule at a time to the AR+X model, these
models are labeled Cluster, Spatial, and Source-Dest.

All models are evaluated on a consecutive 30 days
of 24 hour multi-step forecasting. Demand time series
are scaled to the range [0, 1] by dividing 6 times the
station’s standard deviation and re-scaled for evaluation.
Table 3 shows the mean and median daily RMSE and R2

of all the methods. The metric mean and medians are
computed over both arrival and departure demands for
most stations in the network. We found some stations
to be extreme outliers (perhaps due to outages) skewing
both metrics. Thus, if no trips departed from or arrived
at a station on a particular day, evaluations of its forecast
on that day are omitted.

The collective model improves on AR+X in mean
and median R2 and RMSE in both INC and BATCH
forecasting on all three datasets. Though some
differences are not visible in the table due to rounding,
a paired t-test of the per-day means/medians of these
metrics indicate that the improvement is statistically
significant. Collective reasoning is most effective
on the Boston network where the correlation signal
from the collective relationships is strongest (see Table
2). Moreover, sources of relational information in
isolation appear to have little effect on performance.
In fact, in some cases the models do worse than pure
AR+X. However, in conjunction, collective information
consistently provides performance gains.

Lastly, we see that Batch forecasting provides a
substantial improvement in forecast quality over Inc
forecasting on all datasets and models. The performance



Boston Bay Area Los Angeles
R2
Mean

R2
Med.

RMSE
Mean

RMSE
Med.

R2
Mean

R2
Med.

RMSE
Mean

RMSE
Med.

R2
Mean

R2
Med.

RMSE
Mean

RMSE
Med.

INC AR+X -0.17 0.11 1.33 1.18 -0.34 0.10 0.97 0.85 -0.34 -0.06 0.64 0.57
Cluster -0.19 0.10 1.34 1.19 -0.34 0.10 0.98 0.85 -0.33 -0.06 0.64 0.57
Spatial -0.20 0.10 1.34 1.19 -0.34 0.10 0.98 0.85 -0.35 -0.07 0.65 0.58
Source-Dest. -0.20 0.10 1.34 1.19 -0.34 0.10 0.98 0.85 -0.35 -0.07 0.65 0.58
Collective -0.16 0.12 1.32 1.18 -0.32 0.11 0.97 0.85 -0.30 -0.05 0.64 0.57

BATCH Cluster -0.10 0.15 1.31 1.17 -0.20 0.15 0.96 0.82 -0.22 -0.02 0.63 0.56
Spatial -0.11 0.15 1.31 1.17 -0.21 0.15 0.96 0.82 -0.23 -0.02 0.63 0.56
Source-Dest. -0.11 0.15 1.31 1.17 -0.21 0.15 0.96 0.82 -0.23 -0.02 0.63 0.56
Collective -0.08 0.16 1.30 1.16 -0.19 0.16 0.96 0.82 -0.21 -0.01 0.62 0.55

Figure 3: Mean and median daily R2 and RMSE for 30 consecutive days of hourly station level demand forecasts.

gain of Batch over Inc forecasting can be explained
by the power of collective prediction. Batch forecasts
are made for a full 24 hour period for all of the
stations, allowing the model to make a prediction that
most satisfies the rules presented in Section 5. On
the other hand, Inc forecasts are made incrementally,
1 hour at a time for all the stations. The Inc forecasts
are also maximizing the satisfaction of the rules in
the model, however the incremental forecasting process
is akin to making a greedy approximation. This
surprising outcome is made possible by scalability of
MAP inference in PSL.

7. Conclusion

Shared mobility services, such as bicycle sharing
services, are likely to continue to grow in significance,
necessitating research that addresses the significant
and novel challenges associated with their operation.
Service operators need high-quality demand forecasts
to support a variety of important decisions, including
when to rebalance bicycles to avoid service failures. In
this work, we leverage the relational structure in bicycle
sharing networks. In doing so, we introduce a highly
scalable, efficient framework for effectively unifying
a heterogeneous array of signals to extend classical
autoregressive time-series modelling. Our framework is
able to effectively reason with historical observations,
relational information, and exogenous information. In
an experimental evaluation, our models achieve more
accurate forecasts than standard autoregressive models.
Future directions for this research include exploring
better weight learning techniques, experimenting with
other sources of relational and exogenous information,
and extending our models to additional demand
forecasting domains.
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