Deep Neuro-Symbolic Weight Learning in Neural Probabilistic Soft Logic

Connor Pryor! Charles Dickens ! Lise Getoor '

Abstract

In this work, we extend the expressive power of
the neuro-symbolic framework Neural Probabilis-
tic Soft Logic (NEUPSL) (Pryor et al., 2023).
We introduce NEUPSL DEEP WEIGHTS, which
uses deep neural network predictions to parame-
terize the weights of symbolic rules. To demon-
strate NEUPSL DEEP WEIGHTS applicability,
we introduce a unique synthetic dataset specif-
ically designed to challenge learning methods
that do not utilize both data-driven learning (Sys-
tem 1) and deliberate symbolic reasoning (Sys-
tem 2). Across variations of this synthetic dataset,
we show how NEUPSL DEEP WEIGHTS outper-
forms traditional PSL rule weights and existing
joint System 1 and System 2 neural methods, such
as graph neural networks.

1. Introduction

The field of machine learning has witnessed remarkable
progress in recent decades, largely due to the combination
of data-driven learning (System 1) and the development
of sophisticated deep neural network architectures. These
developments have resulted in impressive breakthroughs
across various domains, particularly in the realms of natu-
ral language processing and computer vision. Models like
ChatGPT and DALL-E have emerged as notable examples,
finding extensive applications in academia, industry, and
among the general public. Despite their undeniable suc-
cess, these models still face challenges, including hallucina-
tions, inconsistent predictions, and the need for substantial
training data. Researchers are diligently working to tackle
these issues, and one promising avenue of research seeks
to integrate two complementary systems: System 1’s rapid
and automatic processing and System 2’s slower, deliberate
symbolic reasoning. A promising active subfield, neuro-

“Equal contribution 'Department of Computer Science, Uni-
versity of California, Santa Cruz, United States. Correspon-
dence to: Connor Pryor <cfpryor@ucsc.edu>, Charles Dickens
<cadicken@ucsc.edu>, Lise Getoor <getoor@ucsc.edu>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

symbolic computation (NeSy) (d’Avila Garcez et al., 2002),
aims to integrate symbolic reasoning (System 2) into the
training of low-level neural perception (System 1).

One of the key challenges within the NeSy community is
the effective integration of subsymbolic and symbolic meth-
ods. This integration is crucial to enable fast, expressive,
and differentiable neuro-symbolic systems. Our approach
extends the expressivity of Neural Probabilistic Soft Logic
(NEUPSL) (Pryor et al., 2023), a recently published NeSy
framework designed for scalable joint (structured) predic-
tion. NeuPSL combines state-of-the-art symbolic reasoning
with the perceptual capabilities of deep neural networks
through predicates in a Probabilistic Soft Logic (PSL) pro-
gram (Bach et al., 2017). By leveraging these deep pred-
icates (predicates parameterized by neural networks) and
traditional symbolic predicates, NeuPSL combines them
with constraints and weighted arithmetic or logical rules.
These weights represent relative importance for NEUPSL
predictions to satisfy instances of the rules. Every instance
of a rule with the same structure shares a single learnable
weight parameter. Weight sharing allows NEUPSL to gen-
eralize quickly in low-data settings and avoid overfitting.
However, in many domains, communities or even individual
entities may follow different symbolic structures, i.e., rules
should be weighted differently. Moreover, a modeler may
only have limited domain knowledge and a deep neural net-
work provided with enough data can be used to supplement
a model with a small set of rules.

This work extends the expressive power of NEUPSL with
NEUPSL DEEP WEIGHTS: deep neural network parame-
terized rule weights. NEUPSL DEEP WEIGHTS are neural
networks that are provided with features associated with
each instantiated predicate in a rule. The NEUPSL DEEP
WEIGHTS are trained to predict rule weights giving good
prediction performance on a training data set. We demon-
strate how NEUPSL DEEP WEIGHTS can be applied to
identify communities following different symbolic struc-
tures with a novel synthetic dataset.

Our key contributions are: 1) Extension of NeuPSL: We
introduce NEUPSL DEEP WEIGHTS, which extends the the-
oretical and expressive power of NeuPSL by incorporating
neural network outputs as weights within the symbolic rules.
2) Novel Synthetic Dataset: We introduce a unique synthetic

NeuPSL Deep Weight Learning

dataset that is specifically designed to challenge learning
methods that do not utilize both System 1 and System 2. 3)
Comprehensive Evaluation: We evaluate NEUPSL DEEP
WEIGHTS on three progressively challenging versions of
the synthetic dataset. Our evaluations demonstrate that NE-
UPSL DEEP WEIGHTS consistently outperforms powerful
joint System 1 and System 2 neural approaches, such as
GNNss, and additionally shows improved performance over
traditional PSL rule weights.

2. Related Work

A related field of work, Neuro-Symbolic computing (NeSy)
(d’Avila Garcez et al., 2002; Bader & Hitzler, 2005; d’ Avila
Garcez et al., 2009; Serafini & d’Avila Garcez, 2016; Besold
et al., 2017; Donadello et al., 2017; Yang et al., 2017; Evans
& Grefenstette, 2018; Manhaeve et al., 2021; d’ Avila Garcez
etal., 2019; De Raedt et al., 2020; Lamb et al., 2020; Badred-
dine et al., 2022), is an active area of research that aims to
integrate logic-based reasoning with neural computation.
NeSy methods can be categorized into four major groups:
differentiable frameworks for logic reasoning, constrained
outputs, executable logic programs, and neural networks as
predicates. Although our approach does not fall directly into
any of these categories, it aligns closely with the concept
of neural networks as predicates. However, our approach
differs in a significant manner, as we connect the output of
neural networks with the weights of symbolic rules. For
readers interested in a more comprehensive introduction to
NeSy, we refer them to the excellent recent surveys: Besold
et al. (2017) and De Raedt et al. (2020).

3. Neural Probabilistic Soft Logic

Neural Probabilistic Soft Logic (NEUPSL) is a NeSy frame-
work designed for scalable joint reasoning (Pryor et al.,
2023). NEUPSL integrates the symbolic reasoning capabili-
ties of probabilistic soft logic (PSL) (Bach et al., 2017) and
the low-level perception of neural networks. Specifically, in
PSL, relations and attributes of entities are represented by
atoms, and dependencies between atoms are encoded with
first-order logical clauses and linear arithmetic inequalities
referred to as rules. The rules define a joint probability
distribution, and MAP inference is performed to obtain pre-
dictions.

More formally, Atoms are expressions of the form
q(t1,- -+ ,tx) where g is a predicate and each ¢; is a ferm. A
term in an atom is either a constant or a variable. A ground
atom is an atom with all constant terms and an associated
real value. Moreover, ground atoms are partitioned into
observed and unobserved sets where the value of observed
atoms are known while the value of unobserved atoms are
unknown. The observed atoms are mapped to a vector of nx

variables x,, while unobserved atoms are mapped to a vec-
tor of ny target variables y. All atoms in PSL have a value
in the range [0, 1]. NEUPSL extends PSL with deep pred-
icates, which create atoms that take values from a neural
network.

To illustrate, consider a citation network with nodes repre-
senting academic papers and edges representing a citation
link. Further, suppose each paper and citation is associated
with a set of features, perhaps the abstract, the location, and
the frequency of the citation in the paper. The task is to clas-
sify the topic of each paper in the network. NEUPSL can
represent a neural network’s prediction of a paper P’s topic
T given the paper features with the atom Neural(P,T).
Neural is a deep predicate associated with a single neural
model with neural weights w,,,,. The terms P and T are
variables that are substituted with constants to create ground
atoms. For instance, suppose the domain of constants as-
sociated with the variable P is {p1,--- , p1o} and with the
variable T is {t1, t2,t3}. The value of a ground instance of
the atom, e.g., Neural(pi, 1), is equal to the deep pred-
icate’s neural model’s prediction. Moreover, whether two
papers with the same domain of constants as P, P1 and
P2, are related by a citation can be captured by the atom
Cites(P1, P2). Finally, NEUPSL’s label classification
can be represented by the atom Topic(P,T).

A rule is a logical or arithmetic expression relating atoms,
and a ground rule is a rule with all ground atoms. Rules can
be parameterized with a symbolic weight representing the
relative importance of satisfying it in the model’s prediction.
The higher the weight of a rule relative to all other rules,
the more important it is to satisfy each instance of it. Rules
without weights are constraints that must be satisfied. For
citation network node classification, an example NEUPSL
model, i.e., a collection of rules, is:

wi : NEURAL(P,T) = Topric(P,T) (1)
wg : TOPIC(P1,T) A CITES(P1, P2) — Topic(P2,T) (2)
ToriCc(P,T1) + Topric(P,T2) + TopiCc(P,T3) = 1. 3)

The first rule above is weighted with w; and states that
the neural model’s topic prediction should be equal to NE-
UPSL’s prediction. The second rule above is weighted
with wo and represents the propagation of topic labels
across citation links. In other words, if both TopriC(P1,T')
and CITES(P1, P2) are 1, then that implies ToPIC(P2,T)
should also be 1. Finally, the third rule is unweighted and,
hence, is a constraint. The constraint states that the sum of
the topic predictions for a single paper should equal 1 and
is how NEUPSL makes categorical predictions.

Ground rules are created by realizing substitutions of
variables with constants in their domain. A ground in-
stance of the first rule above is w; : NEURAL(py,t1) =
TOPIC(p1, t1). Every ground rule NEUPSL creates is trans-
lated into one or more potential functions measuring the
satisfaction of the rule. Logical templates use a continuous

NeuPSL Deep Weight Learning

Deep Weights

Deep Predicates

PSL Program

—> — —>

I [

- > -

I

(T I [T T T

+[}-+ws|: TOPIC(P,T) = |NEURAL(P, T
opIc(P,T) (P,T)

D?D
DD*DEI

+[1-»lwso|: ToPiC(P1,T) A CITES(P1, P2) — Topric(P2,T
IZED() N () EIZEI()

Figure 1. NEUPSL DEEP WEIGHTS and NEUPSL Deep Predicates overview.

relaxation known as Lukasiewicz logic to define hinge-loss
potentials (Klir & Yuan, 1995), while arithmetic templates
are defined to be the distance to satisfaction of a linear in-
equality. The set of all potentials created from the grounding
process defines a probabilistic graphical model called a deep
hinge-loss Markov random field (deep HL-MRF):
Definition 3.1 (Deep Hinge-Loss Markov Random Field).
Let g = [g;];2, be functions with corresponding neural
weights Wy, = [Wyp)12, and inputs X, such that g; :
(Win,isXnn) — [0,1]. Lety € [0,1]™ and x,, € [0, 1]™>.
A deep hinge-loss potential is a function of the form:

¢/€ (y7 Xsy, g(xnn7 Wnn)) (4)
= (max{agkyyy + agkyxsyxsy + agk,gg +bg,,0})"*,

where pr, € {1,2}. Let T = [t;]{_; denote an
ordered partition of a set of m deep hinge-loss po-
tentials. Further, define ®(y,Xsy, 8(Xnn, Wnn))
[Zketi ¢k(ya Xsys g(xnm Wnn))]::1

Let w, be a vector of r non-negative symbolic weights

corresponding to the partition 7. Then, a deep hinge-loss
energy function is:

E(y, Xsy, Xnn, Wsy, Wnn) 1= WZ;{)()” Xsy, 8(Xnn, Wnn))~

&)

Leta,, y € R™,a. x € R",a. o € R",and b, € R
foreachk € 1,...,q and g > 0 be vectors defining linear
inequality constraints and a feasible set:

Q(Xsy, 8(Xnn, Wnn)) := {y €[0,1]" - (6)
al, vy +al Xe +al gg+be, <OVEk= 1,...,q},

Then a deep hinge-loss Markov random field defines the
following conditional probability density:

exp(—E(¥,Xsy Xnn,Wsy,;Wnn))

P(y|Xsy, Xnn) := { Tyea) exp(=E()dy
0

y € Q()

@)

Each hinge-loss potential is convex. Furthermore, NE-
UPSL typically enforces an additional constraint that the
rule weights are all non-negative. With this, MAP inference
is a convex problem and scalable algorithms are used to find
globally optimal solutions. More formally, neural inference
is computing the output of the neural networks given the
input X, i.e., cCOMputing g i (Xpnn, Wnn i) for all i. NE-
UPSL symbolic inference minimizes the energy function
overy:

*

y = arg min E(ya Xsys Xnns Wnn, Wsy) (8)

YI(y,xsy)EQ

NEUPSL learning is the task of fitting both neural and
symbolic weights. Learning objectives map neural weights
Wnn, Symbolic weights w,,, and a set of training examples
S = {(yi, Xsy,i»Xnni) 1 @ = 1,---, P} to a real-valued
loss: £(S, Wy, Wy). Learning objectives follow the stan-
dard empirical risk minimization framework and are sums
of per-sample loss functions L;(y;,Xi, Xnn,is Wnn, Wsy)-
Concisely, NEUPSL learning is:

arg min £(Wi,p, Wey, S)

Win,Wsy

P
= arg min Z L; (yia Xsy,iy Xnn,is Wnn, Wsy))

Wnn,Wsy ;1

Gradient-based learning algorithms use the following partial
derivatives:

0E()
8wsy[z] = ¢Z(Y7Xsy7 Xnvuwnn) (10)
aE() _ w7 aq)(yaxsyvxnnawnn) (11)
D] T Owanl]

(Y, X5y Xnn, Wnn)
OW oy, [1]

of the aggregated potentials with respect to wy,,[i]. Stan-
dard backpropagation-based algorithms for computing gra-
dients are applied for neural and symbolic parameter learn-

ing.

where is the vector of partial derivatives

NeuPSL Deep Weight Learning

4. Neural Probabilistic Soft Logic Deep
Weights

NEUPSL defines its energy function such that every deep
hinge-loss potential instantiated by a rule shares a sym-
bolic weight. Although there are positive effects of weight
sharing, this parameterization limits the model expressivity.
We propose Neural Probabilistic Soft Logic Deep Weights
(NEUPSL DEEP WEIGHTS), a natural generalization of
NEUPSL’s neural and symbolic connection that improves
the expressivity of the framework. The neural and sym-
bolic connection of NEUPSL deep predicates and NEUPSL
DEEP WEIGHTS is illustrated in Figure 1.

Consider the citation network node classification setting and
NEUPSL model introduced in the previous section. Tradi-
tionally, every instance of the label propagation rule, (2),
has the same weight, allowing NEUPSL to avoid overfitting
and perform in low-data settings. However, in many prob-
lems, there are groups of variables with different symbolic
structures. In the citation network example, there may exist
a community of papers that commonly cite papers from a
diverse range of topics, while another community is more fo-
cused on a single topic. In this case, the weight of (2) should
be different depending on the community membership of
the papers in a rule instance. NEUPSL can capture this
dependency by explicitly creating a new atom representing
the community membership of papers and creating multiple
variants of (2). However, this puts a burden and expectation
on the modeler to define a finite number of communities
that are going to be represented as well as creating variants
of the symbolic rules to capture the dependency. Moreover,
community structure was only used for motivation and the
weight of a rule instance may additionally depend on more
complex relationships between features associated with each
atom in a rule.

Rather than relying solely on the modeler to fully specify the
dependencies of the weights, we train a deep neural network
to use the low-level features associated with all the atoms
to specialize the weights of each rule instance. This spe-
cialization allows NEUPSL to seamlessly model domains
with communities following a different symbolic structure.
Formally, the Deep HL-MRF definition is generalized to
support a deep parameterization of a subset of rule weights.
Suppose the NeuPSL model is made up of r weighted rules
defining 7 = [t;]7_, an ordered partition of a set of m
deep hinge-loss potentials {¢1, - - - , ¢, }. Without loss of
generality, suppose the first r, < r weighted rules are pa-
rameterized by a neural network. For each partition ¢; such
that ¢ < rg let g; ,(Xpnn, Wny,) denote the vector of neural
weight predictions for each potential instantiated by the rule
and let g, (Xnn, Wnn) = ||7—18i.r(Xnn, Wnn) be the con-
catenation of the vectors of predictions. Furthermore, define
I;, to be an ordering of the indexes of potentials created by

t;. Then, define:

(I)i()’axsyvg(xnnawnn)) (12)

= {[% 6107 X 8% W)
Zj@fi ¢j (y7 Xsy» g(xn'm Wnn)) 0.W.
(13)

Further, let w,, be the vector of non-negative symbolic
weights corresponding to the rules not parameterized by
neural networks. Then the deep HL-MRF energy function
with neural parameterized weights is:

E(yaxswxnnawsyzwnn) (]4)

T
= l:gr(xnmwnn)] (I)(yvxsyvg(xnmwnn))' (15)

Wiy

With this energy function, symbolic inference is still convex
and the same inference algorithms used to solve (8) are
applicable. Learning, on the other hand, is affected by the
new parameterization. Specifically, the gradient with respect
to the neural parameters needs to be generalized. Using the
product rule of differentiation, we have:

OE(-) 00 Ctnmawan) | T
- 7 - OWnn ['L] @ sy dnnsy Wnn
8Wnn [7/] (y7 ot ")

T
+ |:gr(xnnawnn):| 8<I)(Y7X5yaxnn7wnn) , (16)

98+ (Xnn,Wnn)
OW 1, [1]

the neural weight predictions with respect to w,,[¢]. With
(16) gradient-based learning algorithms for NEUPSL are
applicable.

where is the vector of partial derivatives of

The NEUPSL DEEP WEIGHTS framework is general and
there are many ways a modeler may choose to design the
neural architecture and rules. However, a powerful model-
ing pattern we introduce is demonstrated in Figure 1. Here,
the neural network parameterizing the rule weight is given
access to features associated with each atom present in the
rule, the two papers and the citation link in the label prop-
agation example. This differs from the typical modeling
pattern for deep predicates, which only gives the neural
model access to features associated with a single atom, re-
ferring to a single paper in (1). Giving a neural network
access to features for each atom in the rule allows it to learn
and model complex interactions between the atoms. For
instance, the features may provide a signal identifying the
community membership of a paper where some communi-
ties adhere to the label propagation rule while others do not.
This information can be used to increase or decrease the
weights of the rules. In the following section, we introduce
a synthetic dataset that exemplifies communities following
different symbolic structures.

NeuPSL Deep Weight Learning

RUZeFeatures
11

RuzeCommunity
L

- F

(RN 1
Name H Symbolic Meaning
Rulepeatures FEATURES(Node, Class) — LABEL(Node, Class)
Rulecommunity || COMMUNITY (Node, ID) A COMMUNITYLABEL(ID,Class) — LABEL(Node,Class)

Figure 2. Rules, symbolic meaning, and graphical representation used to generate features and labels for the synthetic datasets.

5. Synthetic Dataset

To study the effectiveness of NEUPSL DEEP WEIGHTS, we
introduce a synthetic dataset that will be examined alongside
other System 1 and System 2 methods in Section 6. This
synthetic dataset has been carefully designed to challenge a
system’s ability to reason effectively with both local features
and the overall structure. It requires the utilization of both
System 1 and System 2 during the learning process.

5.1. Definition and Generation

At a high level, the synthetic dataset is defined as a set of dis-
joint vertex and edge communities that are fully connected.
Each community adheres to an underlying rule governing
its node’s labels and features. Figure 2 summarizes the
underlying rules, their symbolic interpretations, and a graph-
ical example of each. Communities generated according
to Rulepeatures Will have random node labels but features
directly correlating to these labels. On the other hand, com-
munities generated based on Rulecommunity Will have a
single common label, but node features are not correlated
with the community label.

Dataset Definition: Define dataset D to be a finite
graph G = (V,E) with node features Xy, labels Yy,
and k disjoint and fully connected communities {S; =
V1, E1),-+,Sx = (Vk,Ex)} such that |JS; = G,
Uvi=V.UE,=E.NVi=0,and E; = 0.

Dataset Generation: Let & € Z™ be the number of com-
munities for dataset D, Gymin, Gmaz € ZT be the minimum
and maximum number of nodes a community can have, and
L=/{ly, - ,l.} be the label space.

For each community, .S;, generation begins by randomly
sampling a rule 7; €r {Rulepecaturess RuleCommunity s
community label s; €r L and the number of nodes within

the community n; €g {@min,*** » Gmaz -

Then, n;, nodes are iteratively created by sampling a label:

y= {GR L Ty = RUZeFeatures

Sq Ty = RuzeC’ommunity
and features:

% = E(y) r; = Rulepeatures
u(fmv m) Ty = RuzeCommunity

where /(y) € R? is a function that will depend on the
type of features (Gaussian or One-Hot) and U (—m, m) is a
uniform distribution. Finally, a cross-product of all nodes
V;, within the community S;, creates the set of edges F;,
i.e., each community is a fully connected subgraph.

5.2. Inductive vs. Transductive

The synthetic dataset can be utilized to generate settings that
fall into two categories: inductive and transductive (Figure
3) (Hamilton et al., 2017). In the inductive setting, the
nodes and edges present in the graph during training may
be a subset or entirely different from the test graph. In other
words, a model must generalize to unseen data. On the other
hand, in transductive settings, the training and test graph
are the same and only the test node labels are unavailable
during training.

In our empirical evaluations, we focus on the inductive
setting. Specifically, we introduce new nodes to existing
communities. This setting is illustrated in the left-hand pane
of Figure 3. In this inductive data setting, models have
the opportunity to identify an unseen node’s community
membership and, thus, the symbolic structure it follows.

NeuPSL Deep Weight Learning

Inductive

Transductive

Test

Figure 3. Example of inductive and transductive settings for the synthetic dataset.

5.3. Features

In Section 6, we evaluate this synthetic dataset with
three sets of features: One-Hot Rule Features + One-Hot
Community Features (Featsog+om), Gaussian Rule Fea-
tures + One-Hot Community Features (Featsg+om), and
Gaussian Rule Features + Gaussian Community Features
(Featsg+a)-

Featsopy+omn: Features £(y) are a concatenation of a one-
hot encoding of the label y and a one-hot encoding of the
community id 4.

Featsgion: Features ¢(y) are a concatenation of a sample
from a multivariate Gaussian with a mean and covariance
defined for each class label in L and a one-hot encoding of
the community id i.

Featsg: Features £(y) are a concatenation of a sample
from a multivariate Gaussian with a mean and covariance
defined for each class label in L and a concatenation of
a sample from a multivariate Gaussian with a mean and
covariance defined for each community id.

6. Experimental Evaluation

We investigate the following questions: Q1) How does NE-
UPSL DEEP WEIGHTS perform against traditional PSL
rule weights? Q2) Can NEUPSL DEEP WEIGHTS provide
a boost over conventional purely data-driven neural mod-
els (System 1)? Q3) How does NEUPSL DEEP WEIGHTS
perform as features become less representative of the under-
lying label?'.

'All code and data will be made publicly available upon accep-
tance.

6.1. Models

We compare NEUPSL DEEP WEIGHTS with one System
1 method and two joint System 1 and System 2 methods:
MLP (System 1), GNN (System 1 and System 2), and PSL
(System 1 and System 2).>

MULTI-LAYER PERCEPTION (MLP): The MLP baseline
consists of an input layer, a single hidden layer, and an
output layer. Since this method relies solely on low-level
perceptual features as input, we classify it as a System 1
approach.

GRAPH NEURAL NETWORK (GNN): The GNN model
follows the GraphSAGE framework proposed by (Hamilton
et al., 2017). Although the aggregation of node features
and the concatenation of this aggregated information may
initially appear as System 2 knowledge, in the synthetic data
scenario outlined in Section 5, such simplistic aggregation
and concatenation approaches represent considerably weak
symbolic knowledge.

PROBABILISTIC SOFT LOGIC (PSL): The baseline PSL
model uses traditional single-parameter rule weights. Figure
4 summarizes the rules used within the PSL baseline. A
local MLP model trained on only rule features (no com-
munity features) is used for the neural predicate within the
local information rule. This local MLP consists of an input
layer, a single hidden layer, and an output layer. While
PSL is a joint System 1 and System 2 approach, the weight-
sharing mechanism employed in the symbolic rules allows
for reduced data requirements, making it more aligned with
System 2. As we will see in the following section, System 1
is leveraged in a limited capacity to enhance performance.

*Hyperparameter ranges and final values can be found in the
Appendix.

NeuPSL Deep Weight Learning

Local Information

wy : NEURAL(Node,Class) = LABEL(Node,Class)

Label Propagation

Simplex Constraints
LABEL(Node, +Class) = 1.

ws : EDGE(Nodel,Node2) A LABEL(Nodel,Class) — LABEL(Node2,Class)

Figure 4. Rules used for PSL and NeuPSL in all synthetic settings.

Method Featsog+on Featsgrom Featsgya

MLP 99.09 +1.82 88.10+5.69 89.04+2.72
GNN 98.43 +1.94 9456 +198 81.75+2.65
PSL 81.07 +5.14 87.06+561 86.71+5.46
NEUPSL DEEP WEIGHTS | 100.00 £ 0.00 100.00 £ 0.00 93.35 +2.23

Table 1. Average categorical accuracy on the highest correlation between features and labels for Featson+on, Featsg+omn, and

Featsgyc data settings. Best-performing methods are in bold.

NEUPSL DEEP WEIGHTS: Figure 4 summarizes the rules
used within all synthetic settings for the NEUPSL DEEP
WEIGHTS model. For each of these symbolic rules, a neural
model is created to predict the weight of the rule. Two
MLPs are used for the deep weights models, one for each
rule. A local MLP model trained on only rule features (no
community features) is used for the neural predicate within
the local information rule. All MLP models have an input
layer, a single hidden layer, and an output layer.

6.2. Experimental Results

We conducted two experiments using the four models de-
scribed above. The first assesses the ability of each model
to reason about the problem when the features for com-
munities generated from Rulepeqiyres directly represent
the underlying labels. This direct representation is evalu-
ated using the Featsomom setting and the Featsgron
and Featsg+q settings when the covariance identity ma-
trix is multiplied by a small scalar value of 0.1. In this
setting, most node labels are identifiable from the features
and graph structure. The second experiment examines each
model’s performance as the set of features for the commu-
nity generated from Rule peqtyres becomes less correlated
with the node label. This situation is simulated by gradu-
ally increasing covariance for Featsgi+om and Featsg+a.
The covariance values in this experiment are from the range:
{0.1,1.0,10.0,50.0,100.0}.

In all experiments the number of communities is k£ = 25,
and the node label space is L = {0, 1,2, 3}. The minimum

and maximum community sizes were set t0 G, = 10
and a4, = 15, respectively. It was ensured that an equal
number of communities generated from Rulepeqtyres and
Rulecommunity Were present. Each experiment was per-
formed on 5 splits using 60/30/10 train-test-valid partitions
of the inductive setting. Every community was generated to
contain at least two nodes within the train set.

Table 1 reports the average and standard deviation of the
categorical accuracy of each model in the first experimental
setting. In all cases, NEUPSL DEEP WEIGHTS performs
the best (Q1 and Q2) and only lose a few percentage points
with the most challenging features (F'eatsgyc). Notably,
PSL seems unable to simultaneously model the symbolic
structure of the two node community types, motivating the
application of NEUPSL DEEP WEIGHTS (Q1). Addition-
ally, while GNNs generalize, without explicit encodings
of rules (System 2), it still makes mistakes that NEUPSL
DEEP WEIGHTS can overcome (Q2).

Table 2 reports the average and standard deviation of the
categorical accuracy obtained by each model in the sec-
ond experimental setting. It is evident that as the features
become less representative of the underlying label (i.e., in-
creasing covariance), the performance across all models is
negatively affected. However, it is crucial to note that the un-
derlying graph structure, specifically the edges and observed
node labels, remains unchanged. Consequently, methods
that employ symbolic label propagation, such as PSL and
NEUPSL DEEP WEIGHTS, can still achieve reasonably
accurate predictions for approximately half of the nodes,

NeuPSL Deep Weight Learning

Features Covariance MLP GNN PSL NEUPSL DEEP WEIGHTS
0.1 88.10+569 9456+198 87.06+5.61 100.00 £ 0.00
1.0 88.50+587 9591+235 87.06+5.61 100.00 £+ 0.00

Featsgromg 10.0 81.71+7.31 9091 £4.38 85.23+5.25 96.35 +2.23
50.0 7692 +5.63 71.30+796 76.11 +£3.21 78.85 £ 6.27
100.0 69.70 £3.22 60.53 +£8.58 69.47 +£5.06 62.44 £5.70
0.1 89.04 +272 81.75+2.65 86.71+5.46 93.36 + 5.06
1.0 80.27+244 8242 +6.40 86.71+5.46 92.48 + 3.99

Featsgic 10.0 78.84+1.71 80.15+3.17 84.44 +4.69 91.36 = 2.61
50.0 53.00+4.08 5830+3.37 74.18+491 72.57 £6.58
100.0 42.10+4.63 54.14+6.19 69.39 +£5.09 51.66 +6.89

Table 2. Average categorical accuracy on varying covariance matrices used for synthetic data generation in the Featsg+on and
Featsayc data settings. Higher covariance results in a lower correlation between features and labels. Best-performing methods are in

bold.

considering that half of the communities are generated from
Rulecommunity. One particularly exciting observation is
that NEUPSL DEEP WEIGHTS consistently outperforms
other models or performs comparably within the standard
deviation of the best models across most settings (Q3). This
finding highlights a notable strength of our approach. Re-
gardless of the presence of noise in the low-level features,
if a strong signal exists within the problem’s structure, NE-
UPSL DEEP WEIGHTS will leverage the standard PSL sym-
bolic performance to overcome the limitations posed by the
noise.

7. Conclusion

This paper presents NEUPSL DEEP WEIGHTS, an extended
version of the scalable joint neuro-symbolic framework Ne-
uPSL. NEUPSL DEEP WEIGHTS incorporates the outputs
of deep neural networks into the symbolic potential weights
of a NeuPSL program. We conduct an investigation on a
newly created synthetic dataset designed to evaluate joint
learning between System 1 and System 2. We demonstrate
that the increased expressiveness introduced by NEUPSL
DEEP WEIGHTS surpasses traditional PSL weight learning
methods. Moreover, it outperforms established joint System
1 and System 2 neural techniques such as GNNs.

Although NEUPSL DEEP WEIGHTS exhibits remarkable
success in this synthetic scenario, it is important to consider
two limitations. Firstly, NEUPSL DEEP WEIGHTS was
trained exclusively on supervised data, which may lead to
challenges in generalization when introducing unsupervised
latent variables. To address this, future research can draw
inspiration from the success of attention mechanisms in neu-
ral networks or explore alternative learning algorithms that
handle gradients for latent variables differently. Secondly,
the results presented in this paper are based solely on syn-
thetic datasets. Investigating the applicability of NEUPSL

DEEP WEIGHTS to real-world problems is a compelling
avenue for future exploration.

Acknowledgments

This work was partially supported by the National Science
Foundation grant CCF-2023495 and a Google Faculty Re-
search Award.

References

Bach, S., Broecheler, M., Huang, B., and Getoor, L. Hinge-
loss Markov random fields and probabilistic soft logic.
JMLR, 18(1):1-67, 2017.

Bader, S. and Hitzler, P. Dimensions of neural-symbolic
integration - A structured survey. arXiv, 2005.

Badreddine, S., d’Avila Garcez, A., Serafini, L., and
Spranger, M. Logic tensor networks. Al, 303(4):103649,
2022.

Besold, T. R., d’Avila Garcez, A. S., Bader, S., Bowman, H.,
Domingos, P. M., Hitzler, P., Kiihnberger, K., Lamb, L. C.,
Lowd, D., Lima, P. M. V., de Penning, L., Pinkas, G.,
Poon, H., and Zaverucha, G. Neural-symbolic learning
and reasoning: A survey and interpretation. arXiv, 2017.

d’Avila Garcez, A., Gori, M., Lamb, L. C., Serafini, L.,
Spranger, M., and Tran, S. N. Neural-symbolic comput-
ing: An effective methodology for principled integration

of machine learning and reasoning. Journal of Applied
Logics, 6(4):611-632, 2019.

d’ Avila Garcez, A. S., Broda, K., and Gabbay, D. M. Neural-
Symbolic Learning Systems: Foundations and Applica-
tions. Springer, 2002.

NeuPSL Deep Weight Learning

d’Avila Garcez, A. S., Lamb, L. C., and Gabbay, D. M.
Neural-Symbolic Cognitive Reasoning. Springer, 2009.

De Raedt, L., Dumancié, S., Manhaeve, R., and Marra,
G. From statistical relational to neuro-symbolic artificial
intelligence. In IJCAI, 2020.

Donadello, L., Serafini, L., and d’Avila Garcez, A. S. Logic
tensor networks for semantic image interpretation. In
IJCAL 2017.

Evans, R. and Grefenstette, E. Learning explanatory rules
from noisy data. JAIR, 61:1-64, 2018.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In NeurIPS, 2017.

Klir, G.J. and Yuan, B. Fuzzy Sets and Fuzzy Logic - Theory
and Applications. Prentice Hall, 1995.

Lamb, L. C., d’Avila Garcez, A., Gori, M., Prates, M. O. R.,
Avelar, P. H. C., and Vardi, M. Y. Graph neural net-
works meet neural-symbolic computing: A survey and
perspective. In IJCAI, 2020.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T.,
and De Raedt, L. Neural probabilistic logic programming
in DeepProbLog. Al, 298:103504, 2021.

Pryor, C., Dickens, C., Augustine, E., Albalak, A., Wang,
W., and Getoor, L. Neupsl: Neural probabilistic soft logic.
In 1JCAI 2023.

Serafini, L. and d’ Avila Garcez, A. S. Learning and reason-
ing with logic tensor networks. In AT*IA, 2016.

Yang, F.,, Yang, Z., and Cohen, W. W. Differentiable learning
of logical rules for knowledge base reasoning. In NeurIPS,
2017.

A. Appendix

The appendix includes the following sections: Computa-
tional Hardware Details and Hyperparameters.

B. Computational Hardware Details

All experiments were performed on an Ubuntu 22.04.1
Linux machine with Intel Xeon Processor E5-2630 v4 at
3.10GHz.

C. Hyperparameters

Table 3 and Table 4 summarize the hyperparameters, tun-
ing ranges, and final values for the settings using fea-
tures Featsom+om, and the features Featsgyopm and
Featsgq, respectively.

NeuPSL Deep Weight Learning

Model Hyperparameter Tuning Range ‘ Final Value
Units (32,64, 128} 32
MLP Learning Rate {le-2, 1e-3} le-2
Epochs {1000, 2000} 1000
Dropout {0.0,0.2} 0.0
Weight Reg. {1e-3, 1e-6} le-6
Units {32, 64, 128} 64
Layers 1 1
Learning Rate {5e-2, le-2, le-3} le-2
GNN Epochs {2000, 2500, 3000} 2000
Dropout {0.0, 0.2} 0.0
Weight Reg. {1e-3, 1e-6} le-6
Aggregation {sum} sum
Combination {concat} concat
Units {32, 64, 128} 64
Local Rule Learning Rate {1e-3, le-4} le-3
NEURAL MLP Epochs {250, 350, 450, 550} 350
Dropout {0.0,0.2} 0.0
Weight Reg. {le-3, le-6} le-6
Units {32, 64, 128} 64
Local Rule Learning Rate {le-3, le-4} le-3
Deep Weight MLP Epochs {500, 1500, 2500} 500
Dropout {0.0, 0.2} 0.0
Weight Reg. {1e-3, 1e-6} le-6
Units {32, 64, 128} 64
Label Prop. Rule Learning Rate {1e-3, le-4} le-3
Deep Weight MLP Epochs {500, 1500, 2500} 500
Dropout {0.0, 0.2} 0.0
Weight Reg. {le-3, le-6} le-6

Table 3. Hyperparameters for Featson+om-

10

NeuPSL Deep Weight Learning

. Covariance
Model Hyperparameter ~ Tuning Range 01 1.0 10.0 50.0 100.0
Units {32, 64, 128} 32 32 2 32 32
MLP Learning Rate {le-2, 1e-3} le-2 le-2 le-2 le-2 le-2
Epochs {1000, 2000} 1000 1000 1000 1000 1000
Dropout {0.0, 0.2} 0.2 0.2 0.2 0.2 0.2
Weight Reg. {1e-3, 1e-6} le-6 le-6 le-6 le-6 le-6
Units {32, 64, 128} 64 64 64 64 64
Layers 1 1 1 1 1 1
Learning Rate {5e-2, le-2, le-3} 5e-2 Se-2 Se-2 5e-2 Se-2
GNN Epochs {2000, 2500, 3000} 3000 3000 3000 3000 3000
Dropout {0.0, 0.2} 0.2 0.2 0.2 0.2 0.2
Weight Reg. {1e-3, 1e-6} le-6 le-6 le-6 le-6 le-6
Aggregation {sum} sum sum sum sum sum
Combination {concat} concat concat concat concat concat
Units {32, 64, 128} 64 64 64 64 64
Local Rule Learning Rate {1e-3, le-4} le-3 le-3 le-3 le-3 le-3
NEURAL MLP Epochs {250, 350, 450, 550} 350 350 350 350 350
Dropout {0.0,0.2} 0.0 0.0 0.0 0.0 0.0
Weight Reg. {1e-3, le-6} le-6 le-6 le-6 le-6 le-6
Units {32, 64, 128} 64 64 64 64 64
Local Rule Learning Rate {1e-3, le-4} le-4 le-4 le-4 le-4 le-4
Deep Weight MLP Epochs {500, 1500, 2500} 2500 2500 2500 2500 2500
Dropout {0.0,0.2} 0.0 0.0 0.0 0.0 0.0
Weight Reg. {le-3, le-6} le-6 le-6 le-6 le-6 le-6
Units {32, 64, 128} 64 64 64 64 64
Label Prop. Rule Learning Rate {1e-3, le-4} le-4 le-4 le-4 le-4 le-4
Deep Weight MLP Epochs {500, 1500, 2500} 2500 2500 2500 2500 2500
Dropout {0.0, 0.2} 0.0 0.0 0.0 0.0 0.0
Weight Reg. {1e-3, le-6} le-6 le-6 le-6 le-6 le-6
Units {32, 64, 128} 32 32 64 128 32
MLP Learning Rate {1e-2, 1e-3} le-2 le-2 le-2 le-2 le-2
Epochs {1000, 2000} 1000 1000 1000 1000 1000
Dropout {0.0,0.2} 0.0 0.0 0.2 0.0 0.2
Weight Reg. {1e-3, 1e-6} le-6 le-6 le-6 le-6 le-6
Units {32, 64, 128} 64 64 64 64 64
Layers {1} 1 1 1 1 1
Learning Rate {5e-2, le-2, le-3} 5e-2 Se-2 Se-2 5e-2 Se-2
GNN Epochs {2000, 2500, 3000} 2500 2500 2500 2500 2500
Dropout {0.0,0.2} 0.0 0.0 0.0 0.0 0.0
Weight Reg. {le-3, le-6} le-6 le-6 le-6 le-6 le-6
Aggregation {sum} sum sum sum sum sum
Combination {concat} concat concat concat concat concat
Units {32, 64, 128} 64 64 64 64 64
Local Rule Learning Rate {le-3, le-4} le-3 le-3 le-3 le-3 le-3
NEURAL MLP Epochs {250, 350, 450, 550} 350 350 350 350 350
Dropout {0.0, 0.2} 0.0 0.0 0.0 0.0 0.0
Weight Reg. {1e-3, 1e-6} le-6 le-6 le-6 le-6 le-6
Units {32, 64, 128} 64 64 64 64 64
Local Rule Learning Rate {le-3, le-4} le-4 le-4 le-4 le-4 le-4
Deep Weight MLP Epochs {500, 1500, 2500} 2500 2500 2500 2500 2500
Dropout {0.0,0.2} 0.0 0.0 0.0 0.0 0.0
Weight Reg. {le-3, le-6} le-6 le-6 le-6 le-6 le-6
Units {32, 64, 128} 64 64 64 64 64
Label Prop. Rule Learning Rate {1e-3, le-4} le-4 le-4 le-4 le-4 le-4
Deep Weight MLP Epochs {500, 1500, 2500} 2500 2500 2500 2500 2500
Dropout {0.0, 0.2} 0.0 0.0 0.0 0.0 0.0
Weight Reg. {1e-3, 1e-6} le-6 le-6 le-6 le-6 le-6

Table 4. Hyperparameters for Featsg+on and Featsg+a.

11

