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Abstract

The proliferation of new hardware designs makes it difficult to pro-
duce high-performance cryptographic implementations tailored at
the assembly level to each platform, let alone to prove such imple-
mentations correct. Hence we introduce Galapagos, an extensible
framework designed to reduce the effort of verifying cryptographic
implementations across different ISAs.

In Galapagos, a developer proves their high-level implementation
strategy correct once and then bundles both strategy and proof
into an abstract module. The module can then be instantiated and
connected to each platform-specific implementation. Galapagos
facilitates this connection by generically raising the abstraction of
the targeted platforms, and via a collection of new verified libraries
and tool improvements to help automate the proof process.

We validate Galapagos via multiple verified cryptographic im-
plementations across three starkly different platforms: a 256-bit
special-purpose accelerator, a 16-bit minimal ISA (the MSP430),
and a standard 32-bit RISC-V CPU. Our case studies are derived
from a real-world use case, the OpenTitan security chip, which is
deploying our verified cryptographic code at scale.
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1 Introduction

As Moore’s law slows, we have seen an explosion of new, cus-
tom hardware designs that aim to increase performance and/or
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reduce power consumption relative to general-purpose proces-
sors [33, 35, 36, 41]. In our IoT-entranced world, these devices are
inevitably connected to the Internet, and hence require crypto-
graphic implementations for tasks like checking firmware integrity
or establishing secure connections to remote servers. Such tasks
place the cryptographic implementation on the system’s critical
path, making high performance crucial.

Historically, cryptographic providers such as OpenSSL [47] have
met these performance demands via hand-written assembly code
that utilizes platform-specific optimizations (e.g. NEON [6] or AES-
NI [26]), capturing performance gains missed by generic compil-
ers. Emerging heterogeneous platforms reinforce this trend, since
compilers for them (including one of our case studies) may not
be developed until long after the platforms are deployed, making
hand-crafted low-level code a necessity.

Unfortunately, manually writing such low-level code invites
vulnerabilities; e.g., OpenSSL has reported 33 CVEs since 2021 [46],
of which 29 are memory safety or function correctness bugs. Formal
software verification can statically prove an implementation free
of entire classes of vulnerabilities, but prior work in this area is ill
suited to a world of heterogeneous hardware (§6).

When supporting heterogeneous platforms, verification cost and
specialization-based performance are at odds. A large swath of
work [5, 9, 21, 53, 59, 65, 68] verifies high-level source code and
then assumes a standard compiler produces correct assembly with-
out introducing vulnerabilities. This approach reduces verification
costs, but it sacrifices specialization-based performance gains [11];
it is also infeasible for platforms that lack a compiler. Other work
directly targets assembly implementations [2, 3, 11, 12, 14, 24, 54,
55, 61]. This approach retains performance but targets only specific
platforms. Hence the effort to verify a cryptographic algorithm (say,
ECDSA [32]) grows linearly with the number of platforms targeted.

Our Approach. We present the extensible Galapagos! frame-
work, which reconciles the need for low-cost verification with the
performance gains from specialization in the multi-platform set-
ting. Taking a cross-platform view emphasizes the importance of
creating reusable abstractions across platforms, amortizing devel-
opment costs. Galapagos supports such abstractions by allowing
the developer to write high-level implementations and proofs that
are parameterized by an abstract machine model, making them
machine-independent. Galapagos also generates a common high-
level interface for hardware ISAs, making it easier for the developer

The Galapagos finch and tortoise species are famous for adapting their bodies to the
different environments on each of the Galapagos Islands. In the same vein, the Gala-
pagos framework adapts cryptographic algorithms to the specifics of each supported
hardware model.


https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

CCS ’23, NOV. 26-30, Copenhagen, Denmark

to connect platform-specific reasoning to the machine-independent
proofs. These two forms of abstraction significantly reduce the
developer’s hardware-specific proof work, without compromising
the run-time performance of their code.

Abstract Implementation. A Galapagos developer initially
writes an abstract implementation that captures their machine-
independent decisions and proves them correct. They use as many
named variables as they wish (unconstrained by finite registers),
interact with immutable sequences of structured data (rather than
byte-level memory accesses), and can thus focus on proving the
algorithm’s mathematical correctness. For example, the developer
might decide to implement the Cooley-Tukey (CT) algorithm (Al-
gorithm 2) to realize the number theoretic transform (NTT). The
correctness of CT is justified by the properties of polynomial rings,
which can be proven independent of any specific platform.

The abstract implementation is bundled into a functor using sup-
port we added to Dafny (§3.1). A functor is a special type of module
(a collection of types, functions, and proofs) that takes one or more
modules as arguments and produces a new module. In our case, the
abstract-implementation functor is parameterized by an abstract
machine module that provides generic word-size operations, which
makes the functor reusable across architectures. For instance, the
classic Montgomery multiplication algorithm (Algorithm 1) is de-
scribed in terms of some unspecified radix (word size), and the core
operations (e.g., addition and multiplication), the various iteration
counts, and even the pre-computed constants all depend on the
radix. Nonetheless, the algorithm can be proven generically correct
given an abstract machine model.

Platform-specific Instantiation. To target a new platform, as
with prior work, the programmer must obtain (or write) a specifica-
tion that defines the semantics of the hardware’s ISA. For example,
they might define a machine module with 256-bit words that sup-
ports addition and multiplication via hardware-specific instructions.
They can then apply the abstract implementation’s functor to this
machine-specific module to instantiate a machine-specific mod-
ule (containing a machine-specific algorithm and corresponding
proofs). Note that this instantiated module is obtained for free, and
it is now committed to the 256-bit word size.

Assembly Implementation. In the final step, the developer must
show that an assembly implementation is working as described by
the machine-specific algorithm in the instantiated module above.
The assembly can be hand-written, produced by a compiler, or
any combination thereof. Regardless, the developer must prove
that each assembly routine realizes an algorithmic step (typically
a fairly straightforward process). Crucially, however, they do not
need complex proofs showing why those algorithmic steps are
correct. Those proofs come for free from the instantiated module!

However, the instantiated module still operates over a high-
level structured memory, whereas a hardware-level ISA typically
operates over bytes. To manage this complexity, Galapagos sup-
plies tools to automatically raise the level of abstraction for each
platform. Specifically, Galapagos provides a functor-based, verified
abstraction layer that translates a machine’s low-level byte-oriented
memory interface into a memory with a structured heap and stack.

Tooling and Library. To help with proof reuse and automation,
Galapagos includes several improvements to the Dafny language
as well as its first standard library.
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Functors for Dafny. Creating and managing abstractions is
critical for Galapagos. Hence, we introduced verified, ML-style
functors to Dafny. This required adapting higher-order functional
concepts to Dafny’s imperative, first-order design.

Algebra Solver. Non-linear arithmetic is endemic to crypto-
graphic algorithms. However, the state-of-the-art SMT solvers,
which tools such as Dafny rely on, struggle to reliably handle non-
linear reasoning [22, 30]. Prior work has shown the effectiveness
of algebra solvers in the Coq interactive theorem prover [61]. We
added similar support to the Dafny automated theorem prover,
resulting in more concise proofs.

Standard Library. We developed the first standard library for
Dafny (now distributed and maintained by the Dafny engineer-
ing team at Amazon) with over 5,800 LoC, 80 definitions, and 381
lemmas providing extensive verified facilities for reasoning about
collections (e.g., sequences of bytes), translations between different
ways of representing large integers in word-sized chunks, and a
comprehensive collection of properties about non-linear arithmetic.

Case Studies. We base our validation of Galapagos (§4) on a
real-world use case: the OpenTitan security chip [49]. Designed
by partners including Google and lowRISC, OpenTitan is an open
source TPM-like [60] chip that can provide a hardware root of
trust for a wide variety of devices and applications. At the heart of
OpenTitan’s security architecture is a secure boot process [25, 50]
that loads and executes properly signed code only. The code im-
plementing OpenTitan’s secure boot (including the cryptographic
routines) is baked into the chip’s ROM, meaning that any flaws
must be addressed by physically recalling the flawed chips, printing
a new multi-million-dollar hardware mask, and then fabricating
and distributing new chips.

Further complicating the story, OpenTitan includes both a 32-
bit RISC-V [57, 63] main core and a custom 256-bit big-number
accelerator (dubbed the OTBN), and for extra resiliency, OpenTitan
aims to support secure booting with and without the OTBN enabled.
Hence, in our case studies, we have used Galapagos to produce
fully verified implementations of OpenTitan’s existing RSA-3072
signature verification routines for both RISC-V and OTBN. Our
verified code has been burnt into the mask ROM currently in use
for fabricating OpenTitan chips, the first instance, to our knowledge,
of formally verified cryptography baked into hardware at scale.

To further validate Galapagos’s ability to support heterogeneous
hardware, we developed (in less than a week) an implementation for
yet another architecture, the MSP430, a tiny 16-bit ISA with only 27
instructions, developed by TI for low-power embedded devices. We
intentionally avoided ARM and x86 since they are quite standard
and well studied in prior work [2, 3, 11, 12, 14, 54, 55].

To validate Galapagos’s algorithmic generality, and to support
OpenTitan’s ongoing exploration of possible post-quantum algo-
rithms, we have also produced verified implementations, for the
MSP430, RISC-V, and OTBN chips, of the post-quantum Falcon
signature algorithm [23] recently standardized by NIST. Falcon’s
mathematical underpinnings differ starkly from RSA’s. Falcon op-
erates over lattices, and at the heart of our Falcon implementations
is an NTT functor, parameterized by a polynomial ring, that can
be used independently for other post-quantum algorithms. To our
knowledge, our three implementations are the first verified Falcon
implementations.
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procedure times4()
requires a0 < 100;
reads a@; modifies al, a2;
ensures a2 == 4 x ao0;
{
add32(al, a@, aQ); // al <- a0d + a0
add32(a2, al, al); // a2 <- al + al
3

Figure 1: Sample RISC-V Code in Vale.

Our evaluation (§5) finds that Galapagos reduces the effort to de-
fine a new ISA by 30-50%, and the proof burden for target-specific
implementations by 30-60%. Further, Galapagos’s approach pro-
duces implementations with speed comparable to (and in some
cases faster than) our unverified reference implementations.

Altogether, our case studies consist of approximately 36K lines
of specification, code, and proofs, which, along with our tool im-
provements, are available online as open source [66].

Limitations. Galapagos still requires the developer to produce
low-level implementations of their algorithms; for scenarios where
compilers exist and performance is not essential, other approaches
may require less developer effort. Our case studies focus on signa-
ture verification, where side channels are irrelevant, so Galdpagos
concentrates on functional correctness; standard extensions from
prior work [11] could support reasoning about side channels. Like
any verification effort, the soundness of our results depends on the
correctness of our specifications (both of the cryptography and the
machine semantics) and of our verification tool (Dafny).

Contributions. In summary, this research:

o Presents the Galapagos framework, which reduces developer
effort for cross-platform cryptographic implementations.

o Introduces functor support into an SMT-based automated
theorem prover, and shows how to use functors to abstract
algorithms and heterogeneous platforms.

o Evaluates the reuse enabled by Galapagos on six verified im-
plementations covering classical and post-quantum crypto-
graphic algorithms and three disparate hardware platforms.

e Contributes a new verified Dafny standard library, now up-
streamed, to facilitate future verification efforts.

e Produces the first formally verified cryptographic routines
baked into hardware for large scale deployment.

2 Background

Vale. Galapagos builds atop the Vale framework [11], which sup-
ports the verification of low-level, high-performance code. Figure 1
shows a sample Vale procedure that quadruples its input. The proce-
dure’s signature declares that it reads from register a@ and modifies
registers a1 and a2. It also claims that if the input satisfies its pre-
condition (the requires clause), then the output in a2 will satisfy
the postcondition (the ensures clause). It makes two procedure
calls, which here correspond to individual assembly instructions.

Vale discharges proof obligations (e.g., that the preconditions
imply the postconditions) by embedding the implementation code
in a backend verifier (in our case, Dafny) which reasons about the
implementation using a model of the target machine’s hardware
semantics. The verifier produces mathematical formulas and checks
their validity with an SMT solver (in our case, Z3 [17]).

datatype reg32_t =
| A0
| A1
[ ...

type mem_t = map<int, uint8>

datatype state = state(
regs: regs_t, // 32-bit registers
mem: mem_t, // Linear memory
ok: bool) // Not crashed

// base integer instruction set, 32-bit

datatype Ins32 =
| RV_ADD (rd: reg32_t, rsl: reg32_t, rs2: reg32_t)
| RV_LW (rd: reg32_t, rsl1: reg32_t, imm12: uint32)
(.

predicate eval_ins32(ins: Ins32, s: state, r: state) {
match ins
case RV_LW(rd, rs, imm) =
// load word from s.mem[rs + imm], set ok to false if unaligned

3

predicate eval_code(c: code, s: state, r: state) {
match ¢
case Ins32(ins) = eval_ins32(ins, s, r)
case Block(block) = eval_block(block, s, r)

Figure 2: Sample RISC-V Semantics in Dafny.

Thus, Vale proofs of correctness require a formal semantics for
the underlying hardware. These may come from the hardware man-
ufacturer (e.g., from ARM [56]), from prior academic work [7, 16],
or the developer can write their own. Figure 2 shows a simplified
sample of such a definition. It declares that the machine’s state con-
sists of a collection of named 32-bit registers, a memory that maps
integer addresses to bytes, and an ok flag that indicates whether
code has executed successfully without crashing. The eval_code
predicate defines the semantics, i.e., it dictates how the execution
of code ¢ causes the machine to transition from state s to state r.

To aid proofs about their implementation, the Vale developer typ-
ically writes and proves additional lemmas directly in the backend
verifier and invokes them from Vale.

Dafny Abstract Modules. Galapagos exploits proof reuse, which
standard Dafny supports (to a degree) through abstract modules. An
abstract module declares an interface, which can be implemented
by concrete modules. Dafny generates verification conditions that
ensure the concrete module adheres to the interface.

Consider the example in Figure 3. The abstract module ring
declares an elem type and functions over it. The int_ring module
refines the interface by declaring that elem has type int and
providing bodies to the functions. Importantly, add’s body must
satisfy the idempotency property specified in the abstract module.

Dafny also allows an abstract module to import other abstract
modules, allowing access to their contents. Continuing with our
example, suppose we want to implement a forward NTT generically
over any ring. In FNTT, we can use the syntax import R: ringto
use an unspecified module R that promises to implement the ring
interface. Now we can use functions in R to perform more complex
operations without assuming a particular implementation of R. add.

However, Dafny’s basic module system falls short in a subtle but
important case. Suppose now we want to implement an inverse
NTT, and then use the two NTT modules to implement polynomial
multiplication, all generically over some ring. The issue arises with
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abstract module ring {
type elem
function unit(): elem
function add(a: elem, b: elem): (c: elem)
ensures b == unit() ==c == a // Specifies idempotency

module int_ring refines ring {
type elem = int
function unit(): elem { @ }
// Success: idempotency maintained
function add(a: elem, b: elem): elem { a + b }
// Error: idempotency violated
// function add(a: elem, b: elem): elem { b - a }
}
abstract module FNTT {
import R: ring
function double(a: R.elem): R.elem { R.add(a, a) }
// Other generic implementations elided

abstract module INTT {
import R: ring /* Generic implementations elided */

abstract module poly_mul {
import F: FNTT
import I: INTT
// Problem: cannot express that F.R is the same module as I.R
function problematic(a: F.R.elem, b: I.R.elem): F.R.elem {
F.R.add(a, b) // Error: this does not type check
}
}

Figure 3: Example Abstract Modules in Standard Dafny.

poly_mul, where Dafny has no way to specify that the imported
modules F and I are parameterized by the same underlying ring.

3 The Galapagos Framework

Galapagos is an extensible framework for developing high-performance

cryptographic implementations on different platforms. As shown
in Figure 4, the developer proves an abstract implementation (§3.2)
correct once and then reuses it across different platforms. For each
platform ISA, Galapagos automatically generates a proven-correct,
higher-level interface (§3.3). The concrete assembly implementa-
tion (§3.4) can thus be written on top of this interface, allowing
easier access to the proofs provided by the abstract implementation.

To support an existing crypto primitive on a new platform, the
developer supplies a new ISA specification and a corresponding as-
sembly implementation. To support a new cryptographic primitive
on existing platforms, the developer adds a new cryptographic spec-
ification, along with corresponding assembly implementations. The
remainder (shown in purple) comes automatically from Galapagos.

To provide the abstractions needed to achieve code reuse and
amortize development costs, Galapagos relies on our introduction
of functor support to Dafny (§3.1). Proof automation is further aided
by new solver support (§3.5) and standard libraries (§3.6) that we
added to Dafny.

3.1 Adding Functor Support to Dafny

Galapagos relies on abstraction to reduce developer effort. Dafny’s
existing module system was too limited for Galapagos (§2), so we
expanded its expressivity by introducing ML-style functors [20].
Functors are functions from modules to modules. In our im-
plementation, a functor is a module that takes other modules as
arguments (each argument is given a type defined by an abstract
module), and the code and proofs in the functor are written in terms
of the module arguments. The developer can instantiate the functor
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Figure 4: Galapagos Overview. An abstract implementation and
proof (I1) parameterized by generic machine operations (S8) is
proven to refine a crypto spec (S0). An assembly implementation (I3)
is proven to refine a width-specific instance (I2) of the abstract
impl (I1). The assembly implementation (I3) is written on top of an
automatically generated instance (A4) of a higher-level hardware
interface (A7), which is proven sound against the low-level ISA
spec (S5). The ISA spec, in turn, is defined using an instance (S6) of
the generic machine operations (S8). Given S0, I1 is written once;
I3 and S5 are written once per-platform; and Galapagos provides
12, A4, S6, A7, and S8. Figure 12 shows how our case studies apply
this workflow.

by applying it to concrete modules that refine the formal arguments’
types. A functor thus allows a collection of code and proofs to be
reused when instantiated with different module arguments.

Using functors, we can now successfully implement the polyno-
mial multiplication example from §2. As shown in Figure 5, FNTT is
now a functor that takes a module R of type ring as an argument
and returns an instantiation of the FNTT code and proofs specific to
that concrete argument. Applying FNTT to a different ring module
produces a different concrete instantiation. The crucial benefit of us-
ing functors (as opposed to Dafny’s existing module system) is that
when two functors are applied to the same argument (e.g., the ring
module in poly_mul), we can successfully unify the types coming
from the two different instantiated modules. Below, we expand on
our functor design choices using Dreyer’s terminology [20].

Applicative. Our functors are applicative, meaning that applying
the same functor to the same argument(s) in two different contexts
still produces the same concrete module. This is crucial for unifying
types in examples like Figure 5. Our design contrasts with SML’s
generative functors, where each application generates a fresh copy
of types, even with the same argument module(s). For example, in A
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abstract module ring { type elem /x details elided */ }
abstract module FNTT(R: ring) { /* details elided %/ }
abstract module INTT(R: ring) { /* details elided */ }
abstract module poly_mul(R: ring, F: FNTT(R), I: INTT(R)) {
// Functions in F and I can interop since R is the same in both

3

Figure 5: Functor Example in Galapagos.

= FNTT(IntRing) and B = FNTT(IntRing), A.elem and B.elem
will not be of the same type with generative functors.
Second-Class, First-Order. Similar to most ML dialects, our
functors are second class, meaning the module system exist in a
different plane from ordinary functions and types. Specifically, a
module cannot be passed to or returned from ordinary functions,
nor can it be stored in datatypes. Our functors are close to being
first-order, since they cannot be partially applied, but they can be
parameterized by other functors, which is a higher-order property.
Proof Obligations. Unlike most other functor-supporting lan-
guages such as OCaml or ML, Dafny’s types and methods come with
verification obligations. Hence, when extending Dafny to support
functors, we had to carefully ensure that the proof of a functor’s
correctness relies only on the properties promised by the abstract
module “types” of its formal parameters, not any details of the con-
crete instantiations. In exchange, we gain verification efficiency:
we need only verify the abstract implementation once; i.e., no addi-
tional verification work is required when instantiating the functor
with concrete module arguments, since those arguments have al-
ready been proven to refine the corresponding abstract modules.

3.2 Writing an Abstract Implementation

A key aspect of the Galapagos framework is that the developer
initially writes an abstract implementation of their desired crypto-
graphic primitive. This implementation captures their algorithmic
decisions and optimizations. Since it is written against a generic,
high-level machine model, proving these decisions and optimiza-
tions is much simpler than it would be for a concrete implemen-
tation cluttered with hardware-specific details like finite registers,
byte-level memory access, etc. Once the developer instantiates the
generic machine module for a concrete hardware platform, Galapa-
gos provides a hardware-specific version of the correctness proofs.
To illustrate this process, we first introduce the generic machine
model and then show how the developer uses it to write their
abstract implementation and prove it correct.

Generic Machine Operations. As shown in Figure 6, the Gala-
pagos generic machine model is provided as an abstract module
in Dafny. An abstract module (§2) omits implementations, so that
other modules can provide those details by refining the abstract
module in different ways. For instance, in the generic machine, uint
represents the architecture’s word size, but it is defined in terms of
the upper bound BASE (), which deliberately omits a definition.

Within this module, Galapagos then provides various common
hardware operations, including arithmetic operations, bit shifts, etc.
These are defined in terms of uint words, without any knowledge
of what the actual value of uint will be, other than the information
from the ensures clauses, i.e., that BASE() will be even and larger
than 1, which is convenient, for example, when defining msb.

abstract module generic_machine_ops {
// Symbolic upper bound on word size
// Concrete instantiations must satisfy the ensures clauses
function BASE(): (v: nat)
ensures (v > 1)
ensures (v % 2 == @)

// Defines an unsigned integer type upper-bounded by BASE()
type uint = i: int | @ < i < BASE(Q)

/* Generic operations obtained "for free" by concrete
* instantiations when they define BASE() */

// Word-sized addition with carry

function addc(x: uint, y:uint, cin:uint1): (uint, uint1) {
var sum : = x +y + cin;
// Handle possible overflow
var sum' := if sum < BASE() then sum else sum - BASE();
var cout := if sum < BASE() then 0 else 1;
(sum', cout)

3

// Extract the most-significant bit
function msb(x: uint): uintl {

if x > BASE()/2 then 1 else @
3

// Interpret a sequence of uint as a natural number
function to_nat(xs: seg<uint>): nat {

// Details elided
}

// More operations elided

Figure 6: Snippet of Galapagos Generic Machine Operations
in Dafny. Operations are defined with respect to an unknown word
size uint; e.g., addition with carry wraps when the sum overflows.

To target a new platform, the Galapagos developer starts with a
concrete module that refines the generic module above by filling
in the missing definitions; for example, here is an excerpt of the
definition for the 16-bit operations.

module bw16_ops refines generic_machine_ops {
function BASE(): (v: nat) { 0x10000 }
// addc, msb and to_nat are obtained for free!

}

Dafny checks that the refinement is valid (e.g., that the definition
of BASE() is even and greater than 1 in this case) and then auto-
matically fills in concretized versions of the abstract operations.
In other words, we can now invoke bw16_ops.addc to talk about
add-with-carry over 16-bit words.

Abstract Implementation. With Galapagos, a developer aims
to capture the essence of their implementation strategy while ab-
stracting away the complexities of a low-level executable. This
makes proofs of correctness far simpler. The abstraction of imple-
mentation details takes several forms.

First, the developer can use an unlimited number of named vari-
ables, rather than worry about finite registers. Second, rather than
reason about byte-level memory operations, they instead write their
implementation by reading and updating immutable sequences of
structured data (e.g., word-sized values). When a sequence is up-
dated, it produces a copy of the original sequence with the corre-
sponding element changed (similar in spirit to copy-on-write files).
Hence every sequence is unique and unchanging, making reasoning
far simpler since it, among other benefits, eliminates any aliasing
concerns. Finally, the developer writes their implementation using
the operations from the generic machine model (Figure 6).
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abstract module generic_big_add_impl(ops: generic_machine_ops)
{
function big_add(xs: seq<uint>, ys: seg<uint>, cin: uint1)
: (seg<uint>, uintl)
requires |xs| == |ys|
{
var len : = |xs|;
if len == @ then
([1, cin)
else
var (zs, cin') := big_add(xs[..len-1], ys[..len-1], cin);
var (z, cout) := ops.addc(x[len-1], y[len-1], cin');
(zs + [z], cout)

}

lemma big_add_correct(xs: seq<uint>, ys: seq<uint>,
zs: segq<uint>, cout: uint1)

requires |xs| == |ys|
requires (zs, cout) == big_add(xs, ys, @)
ensures |zs| == |xs|

ensures ops.to_nat(xs) + ops.to_nat(ys) ==
ops.to_nat(zs) + cout * pow(BASE(), [xs]|)

// Proof code here
}
)

module some_client {

import bw16_big_add = generic_big_add_impl(bw16_ops)

// Free to use the 16-bit version of big_add and big_add_correct
}

Figure 7: Generic Dafny Multi-Word Addition Code & Proof

To illustrate this process, Figure 7 shows an example of an ab-
stract implementation of multi-word addition. Algorithms like RSA
operate over large integers that cannot fit into a single machine
word and must instead be represented by a sequence of words (or
“limbs”) stored in memory. In the example, when we define addition
(big_add) over large integers, instead of explicitly referencing the
memory, xs and ys are each represented using an immutable se-
quence of machine-words. Because sequences are ordinary values
(just like integers), Dafny can trivially see that modifications to xs
have no effect on ys (and vice versa), whereas a low-level imple-
mentation would have to worry about potential pointer aliasing.
The implementation defines multi-word addition recursively, using
variables like 1en and z to represent intermediate values. It also in-
vokes the generic addc operation from the generic_machine_ops
module to propagate the carry bit.

Given the abstract definition of multi-word addition, the devel-
oper can then generically prove its correctness, as shown with
the big_add_correct lemma. Notice that the first ensures clause
says that the result has the expected number of elements, while the
second one shows that the addition is computed correctly if each
sequence of words is converted into a single big integer value.

As shown in Figure 7, the abstract implementation is a functor
parameterized by a machine module. This functor can be instanti-
ated by applying it to a module that refines the formal argument’s
type. For example, generic_big_add_impl(bw16_ops) instanti-
ates a concrete module, which has 16-bit definitions of big_add
and corresponding 16-bit lemmas such as big_add_correct.

3.3 Memory Abstraction

Having written an abstract implementation (§3.2) and instantiated
it to specific platforms using functors (§3.1), the Galapagos devel-
oper must use the resulting platform-specific proofs to show the
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correctness of their concrete, hardware-specific implementation.
The concrete implementation is ultimately written using the hard-
ware’s ISA, formalized in Dafny. As discussed in §2 and shown
in Figure 2, the ISA and its formalization operate at a very low-
level compared to the abstract implementation and proofs. One
particularly challenging aspect is that an ISA typically defines a
flat, byte-level memory model. For example, the RISC-V model in
Figure 2 maps integer addresses to bytes; this means that a 32-byte
write to address, say, 0x400, affects the four bytes at addresses
0x400, 0x401, 0x402, and 0x403. Such a model is much harder
to reason about than the high-level immutable sequences used in
the abstract implementation, since the developer must carefully
maintain invariants about which memory regions contain which
data, and carefully prove at every memory operation that they are
accessing the intended data.

To simplify this reasoning and bring the concrete implementa-
tion closer to the abstract implementation, Galdpagos generalizes
prior one-off memory abstraction techniques [11] by providing
automatic support for abstracting an ISA’s memory model. Specif-
ically, Galapagos uses a functor to define a generic higher-level
interface with a structured heap and stack.

As shown in Figure 8, the abstract heap maps an address to a
sequence of uint words, whose size is specified by the developer.
Similarly, the abstract stack is a sequence of frames, where each
frame is also a sequence of words. The abstraction layer soundly pre-
serves invariants showing that operations over structured memory
are accurately reflected in the underlying byte-oriented memory.

As with the abstract implementation, the developer instantiates
Galapagos’ abstraction layer by defining the size of the memory
entries they want to reason about. As we illustrate below for RISC-V,
this instantiation enables a richer interface for memory instructions.

Accessing Heap Buffers. Many cryptographic implementa-
tions iterate over fixed-size buffers, e.g., while reading a plaintext
message. Galdpagos’s memory abstraction provides an iterator in-
terface to support such access patterns. This interface allows the
programmer to reason in terms of word-sized (or larger) reads and
writes made to immutable sequences of data. As a result, the devel-
oper can directly invoke the definitions and lemmas instantiated
from the abstract implementation (§3.1), which is conveniently
written in terms of sequences of structured data.

The main iterator type is iter_t, which abstracts over a struc-
tured heap entry. Its invariant, iter_inv, guarantees that the it-
erator is well formed; for example, it ensures that the heap entry
exists, that the current index is within the buffer’s bounds, that the
buffer’s view of that region of memory as a sequence of uint words
is consistent with the heap’s state, and that a given address, addr,
is consistent with the iterator’s index.

Once the generic memory layer is instantiated for a hardware
platform, Galapagos wraps the iterator interface around low-level
memory accesses. Figure 9 shows the Vale procedure 1w_heap that
corresponds to the underlying hardware’s load word instruction
(RV_LW ) from Figure 2. In addition to the underlying instruction’s
three arguments (dst, src, of fset), the wrapped version takes two
additional arguments, namely inc and iter_t. As shown in the
ensures clauses, the inc flag controls whether the iterator should
be advanced upon return. The caller of 1w_heap must show that
the iterator is safe (i.e., within its buffer’s bounds) and well formed
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// The abstract heap is a collection of disjoint buffers,
// each accessed in the map by its base address
type heap_t = map<nat, seq<uint>>

datatype frame_t = frame(fp: nat, content: seq<uint>)

// The stack is a sequence of frames

datatype stack_t = stack(sp: nat, fs: seq<frame_t>)

// relation between the byte level memory and structured heap/stack
predicate mem_inv(mem: map<int, uint8>, h: heap_t, s: stack_t)

{
}

datatype iter_t = iter_t(

base_ptr: nat, // Start of the heap buffer

index: nat, // Current index

buff: seq<uint> // Abstract view of the heap buffer
)

predicate iter_inv(iter: iter_t, heap: heap_t, addr: nat)
{
iter.base_ptr in heap
A heapliter.base_ptr] == iter.buff
A iter.index < |iter.buff]|
A addr == iter.base_ptr + BASE() * index
VAN

Figure 8: Generic Memory Interface. Dafny types for the struc-
tured heap, stack, and iterators over the heap’s buffers, plus an
invariant that connects an iterator to the contents of the heap.

procedure lw_heap(dst: reg32, src: reg32, offset: imm12,
inc: bool, iter: iter_t) returns (iter': iter_t)
{: instruction Ins32(RV_LW(dst, src, offset))}
requires
iter.index != |iter.buff]|; // Not at the end of the buffer
// heap is a global state variable of type heap_t
iter_inv(iter, heap, src + offset);
ensures
dst == heapliter.base_ptr][iter.index]
== iter.buff[iter.index];
inc =iter_inv(iter', heap, src + offset + 4);
!(inc) =iter_inv(iter', heap, src + offset);

Figure 9: RISC-V Load from Structured Heap. The untrusted
1w_heap Vale procedure offers a friendlier interface that is proven
sound against the trusted ISA-level RV_LW instruction (from Fig-
ure 2). The proof relies on invariants maintained about iterator
validity (shown in Figure 8).

(satisfies iter_inv). In exchange, the caller learns (from the first
ensures clause) that the destination’s value has been updated to
reflect the value in the structured heap.

In other words, the caller can reason about the contents of the
immutable sequences of uint words, without worrying about the
underlying bytes in the flat memory model. The 1w_heap procedure
returns an updated iterator that is guaranteed to be well formed.
This programming style also means that despite all of the com-
plexities in iter_inv, the full definition is irrelevant for callers
of 1w_heap, since 1w_heap maintains the invariant “for free”. Fig-
ure 10 shows this in action. The procedure buff_sum computes
the sum of the contents in the buffer pointed at by a1. It does so
via pointer manipulation (e.g., incrementing a1 by four on each
loop iteration), but the correctness of these memory operations is
maintained by the iterator iter', which 1w_heap updates.

Galapagos offers a similar interface, sw_heap, that wraps RISC-
V’s store word instruction. Like 1w_heap, it takes in and returns

procedure buff_sum(iter: iter_t) returns (iter': iter_t)
requires
iter.index == @ A |iter.buff| == 10;
iter_inv(iter, heap, al);
modifies t1, t2, al, a2;
ensures
iter'.index == 10 A iter_inv(iter', heap, al);
al == old(al) + 40;
a2 == old(a2) + sum(iter.buff);
{
iter' := iter;
addi(t1, al, 40); // t1 points to the end of the buffer
while (al < t1)
invariant a2 == old(a2) + sum(iter'.buff[..iter'.index]);
// Automatically maintained by lw_heap
invariant iter_inv(iter', heap, al);
{
iter' := lw_heap(t2, al, 0, true, iter');
add(a2, a2, t2); // a2 += t2
addi(al, al, 4); // al += 4
}
3

Figure 10: Looping Over a Structured Memory Buffer. A Vale
procedure illustrating the use of the iterator interface to ergonomi-
cally process heap buffers. The iter_inv is maintained for free due
to Galapagos abstraction layer design. Slightly elided detail: sum is
a wrapped sum rather than mathematical sum due to overflow.

an iterator, guarding the heap-buffer writes and maintaining the
well-formed property of the iterator.

Accessing Stack Variables. Galapagos’ memory abstraction
layer also provides a structured stack as a generically-proven ab-
straction over the byte-level memory. The stack is a sequence of
frames, each containing several slots for local variables. This makes
it simpler for the implementation to prove that variables spilled
from registers to the stack retain their value until the next access.
Variables in the current frame can be read through the procedure
1w_stack, which is another wrapper around the load word instruc-
tion (RV_LW), except the source-address register is hard-coded to be
the stack pointer (SP). Stack frames can be added and removed using
the procedures push_stack and pop_stack, which are wrappers
around subtraction from and addition to the stack pointer.

3.4 Assembly Implementation

With Galapagos, the developer provides, in Vale, a hardware-specific
implementation of their cryptographic primitive. They can do this
by transcribing the assembly output by a compiler (e.g., when run
on C reference code), by handcrafting the Vale assembly to exploit
optimization opportunities missed by a generic compiler, or any
mix of these strategies.

As they write their implementation, they interact with memory
via the high-level, structured memory interfaces provided by Gala-
pagos (§3.3). This makes it straightforward to invoke the definitions
and proofs from the hardware-specific instantiation of the abstract
implementation (§3.2). For example, because Galapagos’ iterators
abstract the ISA’s byte-level memory into sequences of structured
data, the iterators’ sequences can be passed directly to the lemmas
proven about the abstract implementation.

To illustrate this process, Figure 11 shows an excerpted version of
the concrete RISC-V implementation of multi-word addition. It takes
in an iterator for each of the x, y, and z buffers. Internally, it uses
the 1w_heap and sw_heap procedures to interact with these buffers
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procedure big_add(x_iter: iter_t, y_iter: iter_t, z_iter: iter_t)
returns (z_iter': iter_t)

requires
x_iter.index == y_iter.index == z_iter.index == 0;
|x_iter.buff| == |y_iter.buff| == |z_iter.buff| == 96;

iter_inv(x_iter, heap, al);
iter_inv(y_iter, heap, a2);
iter_inv(z_iter, heap, a3);
modifies
t1; t2; al; a2; a3; a4;
ensures
iter_inv(z_iter', heap, a3);
a4 == @ Va4 == 1; // Carry out bit
to_nat(x_iter.buff) + to_nat(y_iter.buff) ==
to_nat(z_iter'.buff) + a4 * pow(BASE(), 96);

// Implementation code here with loops maintaining iter_inv
// Invoke concretized lemma from the abstract impl's proof

big_add_correct(x_iter.buff, y_iter.buff, z_iter'.buff, a4);
3

Figure 11: A Concrete Vale Implementation of Multi-
Word Addition. By writing the implementation’s pre- and post-
conditions in terms of the abstract implementation’s definitions
(from Figure 7), the developer can easily invoke the corresponding
generic lemma concretized to the this platform.

in terms of the immutable sequences contained in the iterators
(e.g., in x_iter.buff). This allows the implementation to easily
invoke the concretized proof from the abstract implementation (i.e.,
big_add_correct from Figure 7), since both operate over the same
high-level sequences. The proof demonstrates that the assembly
implementation has successfully computed a step of the abstract
implementation (namely computing the sum).

3.5 Algebra Solver Support

Algebraic reasoning is a common theme in cryptographic proofs.
The highly parameterized nature of Galapagos also means that
many architecture-specific constants cannot be assumed, resulting
in formulas with more symbolic components.

Due to the undecidable nature [42] of general non-linear prob-
lems, SMT solvers (including Z3, the solver Dafny relies on), while
quite effective at many logical theories, often struggle with non-
linear reasoning. However, certain sub-classes of non-linear formu-
las such as congruence relations have been shown to be decidable
and robustly handled by dedicated algebra solvers [28].

Inspired by prior work [61] in the interactive theorem prover
setting, we have extended Dafny to offer similar support for the
Singular algebra solver [18]. A developer can provide a proof goal
and relevant facts (proven in standard Dafny) and then explicitly
invoke the solver via the new gbassert keyword. We provide more
details on our encoding in Appendix A.

3.6 Dafny Standard Library Support

Dafny provides a basic set of language features (e.g., sequences or
maps) for defining and proving the correctness of an implemen-
tation. However, any additional properties must be proven from
scratch by the developer. As a result, previous Dafny projects [11,
13, 22, 27, 29, 30, 39, 40] have each developed their own project-
specific libraries. This has contributed to significant duplication of
effort across projects and even across time, as these project-specific
libraries are typically not maintained as Dafny actively evolves.
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Early in Galapagos’s development, we observed that we would
need many of the same properties proven by previous projects,
so rather than adding yet another project-specific collection, we
have created the first Dafny standard library. The library offers a
collection of definitions and lemmas, all fully verified with the latest
version of Dafny. They cover data structures (e.g., maps, sequences,
and sets), parameterized big integers represented as multi-limb
sequences, and an extensive non-linear algebraic properties for
dispatching problems algebra solvers (§3.5) cannot handle.

In creating the new library, we drew upon code and proofs from
past projects, but rewrote them in a uniform style (both syntactically
and in proof style). We also extended them to fill in obvious gaps.
The main components covered by our version is discussed below.

Data Structures. Dafny provides built-in support for sequences,
maps, and sets, making them convenient for modeling a wide vari-
ety of systems. On top of these functional data structures, we added
more robust support for performing and reasoning about insertion,
removal, extrema, subsequencing or subsetting, conversions be-
tween data structures, and higher-order functions (fold, filter, etc.)
over the data structures.

Big Integers. As discussed earlier, cryptographic algorithms
often operate on large integers that cannot fit into a single machine
word. We provide a parameterized library for representing such
large integers as multi-limb sequences. The library includes oper-
ations such as big_add shown in Figure 7, lemmas about results
of the operations, and lemmas describing the effect of converting
between large integers represented by different bases. The latter
simplify the reasoning about, say, converting the representation of
a number as a sequence of bits into a sequence of 32-bit words.

Non-linear Arithmetic. As discussed earlier, another common
theme in cryptographic proofs is algebraic reasoning. While frag-
ments of non-linear reasoning can be decided (as we do with our
newly added Singular support - §3.5), the problem as a whole is
undecidable. SMT solvers rely on various heuristics to nonetheless
try to solve at least some non-linear problems. Unfortunately, in our
experience (and that of previous work [22, 30]), such heuristics are
unreliable; they can fail to solve seemingly simple problems, and
even when they succeed one time, the proofs can break in response
to seemingly minor perturbations, even something as simple as
variable renaming. To mitigate these effects, our library proves a set
of common algebraic properties from first principles and make them
available as lemmas. These lemmas are exposed with varying levels
of automation built in. Users can invoke very general lemmas (e.g.,
exposing lots of properties about multiplication), which provide
significant automation but may create proof performance problems.
Alternatively, developers can invoke tailored lemmas that specify
one property (e.g., multiplication is commutative) or even choose a
version where they specify exactly which variables in an equation
the property should be applied to (e.g., they can specify x and y
as arguments to the lemma to show that x * y == y * x). These
more specific versions require more manual developer work but
they provide consistently provide fast, deterministic performance.

The library has been adopted by the Dafny team at Amazon,
who have added it to Dafny’s continuous integration tests, which
run on each commit to the main Dafny repository. The presence
of a unified standard library has already encouraged additional
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Figure 12: Case Studies Overview. We include three hardware
platforms §4.1 and two algorithms §4.2 in our case studies.

contributions from other Dafny developers, including support for
monadic operations, searches, sorts, and a Unicode library.

4 Case Studies

As discussed in §1, Galapagos’ initial case studies were motivated
by the need to support the secure boot of the OpenTitan security
chip [49]. OpenTitan aims to process RSA signatures on both the
main RISC-V core and on the custom OTBN accelerator. Having
both implementations provides a fallback in case the OTBN acceler-
ator is later discovered to have a flaw, or if manufacturers decide to
omit the OTBN to save cost and energy. The RSA signature verifica-
tion routine is used to validate the firmware’s integrity at the very
beginning of the boot process; this code is burned into the chip’s
boot ROM, so it cannot be updated through software or microcode
patches, only by recalling the chip, designing a new ROM mask,
and manufacturing new chips. Hence, the security and correctness
of the implementation is crucial.

To further test Galdpagos’ expressivity, we added yet another
hardware platform, the MSP430. We also added a second, lattice-
based cryptographic primitive, Falcon, recently standardized by the
NIST post-quantum competition.

In this section we elaborate on both the hardware platforms and
our verified implementations. Figure 12 illustrates how our case
studies exercise the development process from Figure 4.

4.1 Case Studies: Hardware Platforms

Our case studies target three ISAs operating at different bit-widths,
using different addressing modes, and supporting different arith-
metic operations. We have developed formal semantics for each
ISA in Dafny. These semantics are trusted, but we increase our
confidence in them by running fuzz tests that compare the output
of our semantics with those produced by reference simulators.
MSP430 is a microcontroller family developed at Texas Instru-
ments [10]. It offers a minimalist 16-bit ISA with only 27 instruc-
tions (omitting, for example, multiplication). MSP430 memory is
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byte addressable, and its instructions have six possible address-
ing modes: register, indexed, absolute, indirect register, indirect
auto-increment, and immediate.

RISC-V is an open standard ISA family [57, 63]. For our case
study, we use RV32IM, which is the 32-bit base integer ISA (47
instructions) with extensions for integer multiplication and division
(8 instructions). The instruction set is quite standard, with a 32-
bit address space and byte addressable memory. There are only
three data addressing modes: register, immediate, and indexed. One
interesting wrinkle is that unlike most platforms (including our
other two) RISC-V does not have a dedicated flags register for zero,
overflow, or sign bits; instead the developer is expected to check
for such conditions using standard ALU operations.

OTBN is a cryptographic accelerator ISA from the OpenTitan
project led by lowRISC and Google. OTBN operates on 32 control
registers, each 32 bits wide, and 32 data registers, each 256 bits
wide. Hence, the data registers alone can potentially hold 1KB of
data without any memory accesses. OTBN is designed to accel-
erate cryptographic computations involving large integers, such
as those used in RSA or elliptic curve cryptography. OTBN sup-
ports 57 instructions, many of which offer configurable options.
For example, the BN.MULQACC instruction performs a quarter-word
(64 bit) multiplication and then adds the result to a dedicated ac-
cumulation register. The instruction can be customized to choose
different quarter words from each source/destination register, to
shift the multiplication result before accumulating it, and to clear
the accumulation register before adding the result.

For the data-memory instructions, BN.LID and BN.SID, a con-
trol register provides the index of the data register as an operand,
indirectly reading and writing the wide registers. The instructions
read/write 256-bits of data memory and support indirect addressing
modes with auto-increment.

Memory Abstractions. Despite the differences in bit-width,
memory size and addressing modes, Galapagos’ common memory
abstraction applies smoothly to all of the hardware platforms.

Instantiating the Galapagos structured memory for each is sim-
ple. For each platform, the developer only needs to specify the
maximum memory size, the stack size, the word size, and the types
for heap entries. Given these definitions, Galapagos automatically
generates the high-level memory interface (§3.3), as well as refine-
ment proofs showing that the interface is sound with respect to the
byte-level memory model in the trusted ISA semantics. The devel-
oper can then wrap the generated abstractions around platform-
specific instructions and use those to write the platform-specific
implementations.

We return to 1w_heap pattern in Figure 9 for an example in
RISC-V. The actual RV_LW instruction (from Figure 2) only supports
register plus immediate addressing mode. This can be made com-
patible with the iterator interface by combining 1w_heap with an
explicit addi instruction to increment the pointer, or by simply
setting inc to false.

The indirect auto-increment mode in the MSP430 uses a register
operand as a pointer, and it increments the pointer after performing
the load. This matches the programming pattern that moves the
iterator of an array to the next entry after reading the current entry.
There is a similar story on OTBN load instruction. The full syntax
of the instruction is:
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BN.LID <grd>[<grd_inc>], <offset>(<grs>[<grs_inc>])
Both grd and grs are 32-bit control registers, where grd specifies
the index of the wide register to use as a destination, and grs along
with the of fset specifies the source memory address. Suppose that
grd is register x1, which contains the value 0x3, grs is register x16,
which contains the value 9x8000. With no offset, this instruction
will load the 256-bit word at address 0x8000 into data register w3.
We note that there are options to increment the control registers,
which also correspond to the 1w_heap iterator pattern.

4.2 Case Studies: Cryptographic Algorithms

RSA. RSA signatures are simple to specify in terms of modular ex-
ponentiation of integer values. RSA implementations, however, are
amenable to a wide variety of algorithmic and assembly-level opti-
mizations. The algorithmic optimizations are quite complex to rea-
son about even in isolation, let alone in the midst of a complicated
assembly-level implementation. Hence Galapagos’ split of these
obligations between the abstract implementation and the hardware-
specific implementation simplifies our correctness proofs.

Abstract Implementation. Our abstract implementation, fol-
lowing the style of OpenTitan’s unverified baselines, employs the
Montgomery multiplication algorithm [43] to efficiently implement
modular exponentiation. Algorithm 1 shows the pseudocode of the
algorithm. Notably, the algorithm (and our abstract implementa-
tion) is parameterized over both by the radix (e.g., the machine-
word’s upper limit) and by the size of the big integers, which are
represented by sequences of machine words, like the multi-limb
sequences in §3.2.

Notice that Line 3 of the algorithm accumulates an intermediate
result and requires several multi-limb operations (e.g., u - mis a
product between a multi-limb sequence m and a machine word,
which produces a multi-limb result, and similarly for x[i] -y). There-
fore, in the abstract implementation, this line translates into a loop,
which handles the element-wise products and sums.

We show our abstract Montgomery multiplication implementa-
tion correct by proving the following facts: (a) the output is congru-
ent to xyb™", and (b) it is bounded by m. To prove those, we need
to construct appropriate loop invariants. For example, in the loop
over i starting on Line 1, two invariants are a = x[..iJyb~" (mod m)
and a < 2m. While the congruence proof above fits perfectly into
the subset handled by the extension to Dafny (§3.5), the bound
proof does not. Thus for the latter part we rely on lemmas about
non-linear arithmetic from our new Dafny standard library (§3.6).

Below we expand on the proof of invariants in the main loop of
Algorithm 1, starting from Line 1. The two main invariants are the
congruence relation and the bound. i.e. a = x[..i]yb~ (mod m) and
a < 2m. Consider i iteration of the loop. We can show that the
accumulation preserves the bound:

(a+x[i] - y+u-m)/b
<@m-1+x[i]-y+u-m)/b
<@Cm-1+x[i] -(m=-1)+u-m)/b
<@Cm-1+(b-1)(m-1)+Ob-1)m)/b
=(2bm-b-1)/b

<2m
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The congruence proof roughly follows these steps:

(a+x[i] -y+u-m)/b (mod m) (1)
= (a+x[i]l - y+u-mb? (mod m) ()
= (a+x[i] - y)b~! (mod m) 3)
= (x[.i]lyb~  + x[i] - y)b ! (mod m) (4)
= (y(x[..i]b™" + x[i]))b™? (mod m) (5)
= (yx[..i+1]b7Hp ! (mod m) (6)
=yx[.i+ 1]b_(i+1) (mod m) 7)

We prove that the least significant word of a+x[i]-y+u-mis 0, which
justifies (2). We also note that (6) is due to the evaluation rule of
multi-limb numbers. These invariants, along with the conditional
subtraction at Line 6 of the algorithm, ensure we compute the
correct result.

Concrete Implementations. We ported the existing, unverified
RSA implementations for RISC-V and OTBN into Vale. For the
MSP430, we compiled a C version and transcribed the resulting
assembly to Vale. For our proofs, we instantiate the abstract imple-
mentation’s functor with hardware-specific modules that specify
an appropriate radix for each platform (e.g., 21¢ for the MSP430).
All three modules specialize RSA’s integers to 3072 bits, to match
OpenTitan’s expectations.

Given the lemmas instantiated from the abstract implementation,
proving the correctness of the hardware-specific implementations
was relatively straightforward, mostly boiling down to proving
various hardware-specific bit-fiddling optimizations. The OTBN
implementation was relatively easy, since it could fit all of the RSA
integers entirely into registers. Its two sets of flag registers sim-
plified carry propagation, and the built-in accumulator register
likewise simplified the multi-word computations. The most signifi-
cant proof challenge was proving that the implementation correctly
used the (very complex) BN.MULQACC instruction to compute the
multiplication of two 256-bit numbers.

The MSP430 and RISC-V implementations resemble one another.
Compared to OTBN, both support a simpler multiplication instruc-
tion, while RISC-V was complicated by the lack of a flags register.

Algorithm 1 : Montgomery Multiplication

Require:
b is some radix
n is some length
m, x, y are vectors length n with elements bounded by b
a is a vector length n + 1 with all 0 elements
0<xy<m
m’ = —m~'mod b
Ensure:
a=xyb™" mod m
1: fori=0;i<ni=i+1 do
u = (a[0] + x[i] - y[0])m'mod b
a=(a+x[i]-y+u-m)/b

w N

4: if a > m then
5 a=a-m
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Falcon. To validate that Galapagos is applicable to other algo-
rithms, we have used it to produce verified implementations of
Falcon [23], a post-quantum signature algorithm recently standard-
ized by NIST. Falcon is based on lattices and its security reduces
to the short integer solution problem [1], making it quite different
from RSA.

The spec for Falcon is relatively concise, although still more
verbose than RSA, since it depends on definitions of polynomial
arithmetic. Simplifying a bit, Falcon verifies a signature s over
(hashed) message m, using public key pk, by computing

s’ < m-s-pkmodgq
and checking that the distance between s and s’ is small. The sig-
nature and the public key are treated as polynomials, so the most

computationally intense operation is computing the polynomial
multiplication (i.e., s - pk).

Algorithm 2 : Number Theoretic Transform (NTT) with Cooley-
Tukey (CT) butterfly

Require:
n is a power of two.
q is a prime such that ¢ = 1(mod 2n).
a is a vector in ZZ (standard order).

¥ is a primitive 2n-th root of unity in Z

Y,y is a vector in ZZ with powers of i/ (bit-reversed order).
Ensure:

a is the NTT of its initial content (bit-reversed order).

1: t=n

22 form— 1, m<n; m«2-mdo

3 t=1t/2

4 fori—0;i<m;i<—i+1 do

5: S=‘I’rev[m+i]

6 forj«—2i-t;j<2i-t+t;j«— j+1do
7 e =alj]

8 o=al[j+t]-S

9 aljl = (e+0) modq

10: alj+t] =(e—0) modgq

Abstract Implementation. Naively, a polynomial multiplication
takes O(N?) time, but this can be optimized to O(N log N) using
the number theoretic transform (NTT). In our abstract implemen-
tation, we employ the Cooley-Tukey (CT) butterfly algorithm [15]
to compute a forward NTT operation (shown in pseudocode in
Algorithm 2). Notice that the algorithm, like our abstract implemen-
tation, is parameterized over the prime q that defines the field and
the size n of the polynomials. Hence, our generic NTT implemen-
tation can be instantiated for many other lattice-based algorithms
beyond Falcon.

While the pseudocode in Algorithm 2 is relatively succinct, the
justifications for why each step computes the right value are sur-
prisingly subtle and are described across multiple research pa-
pers [37, 38, 44, 45].

We provide some brief intuition for the algorithm’s correctness
and refer the interested reader to [38] for more details. The NTT
algorithm works with a sequence of words, where each word repre-
sents a polynomial coefficient in the ring Z4. Hence we can think of
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CLR R10 ; clear R10
SUBC R10, R10 ; subtract with overflow flag

; R10 is either 0x0000 or OxFFFF
AND 12289, R10 ; R10 is conditionally set to Q

Figure 13: MSP430 Set Register On Overflow.

add a1, al, ao ;
sltu a0, al, a0 ;

sum up a@ and al
if the sum is less than a0, set a@

Figure 14: RISC-V Extract Carry Bit.

a sequence as a polynomial and reason about the effect of evaluat-
ing it on a point. If we have sequence a € Z;’ and point x € Zg, then

the evaluation a(x) can be written as Z?:_Ol a[j]xJ. Let w be the
primitive n-th root of unity in the ring Z4. The NTT algorithm eval-
uates the polynomial a at the points w°, »!..0™ 1. More formally,
NTT(a)[i] = 725 aljlo".

The CT butterfly optimization uses the fact that polynomial eval-
uation can be split into the evaluation of the terms corresponding to
even and odd powers. Let the corresponding coefficients be a, and
a,, then we can rewrite a(x) as e (x2) +x - ao (x%). This reduces the
problem to to evaluating the polynomials a. and a, on the points
@0, 2.2V Since w is a primitive n-th root, the list now only
contains % distinct points. Applying this recursively produces the
O(Nlog N) running time.

Note, however, that for additional efficiency, Algorithm 2 is an
iterative and in-place version of the CT butterfly. The loop over
m that starts on Line 2 corresponds to the size of the polynomial,
which doubles at each level. The loops over i and j combine the
evaluations of the smaller polynomials.

Concrete Implementations. Having dealt with the complex
mathematical reasoning in our abstract implementation, our con-
crete Falcon implementations focus on proving that they faithfully
execute the operations dictated by the abstract implementation.
Of the three implementations, the OTBN implementation is the
simplest, since we were able to implement Falcon’s many addi-
tions and subtractions modulo g by simply loading g into OTBN’s
dedicated modulus register and then invoking OTBN’s modular ad-
dition and subtraction instructions. Implementing these operations
on the MSP430 and RISC-V was more complex and involved some
non-trivial bit manipulation. For example, on RISC-V the carry bit
can be extracted through conditional branches, but Figure 13 is
more efficient. Figure 14 shows another example from the MSP430.
Without using branches, the code conditionally sets R10 to 12289
(the modulus g) based on the overflow flag.

5 Evaluation
We aim to evaluate two key questions.
(1) How much developer effort does Galapagos save?
(2) How do implementations developed with Galapagos perform

compared to unverified reference implementations?

5.1 Developer Effort

Below, we estimate how much effort is saved by applying Galapa-
gos’s abstractions, rather than writing them from scratch for each
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Specification Abstraction Total

loc savings loc savings loc savings
Generic 453 - 1,140 - 1,593 -
MSP430 490 48% 1,091 51% 1,581 50%
RISC-V 685 39% 1,273 47% 1,958 44%

OTBN 1,506 23% 1,843 38% 3,349 32%

Figure 15: Hardware Line Counts & Estimated Effort Saved.

RSA Falcon
Dafny  Vale savings Dafny  Vale  savings
Spec 58 - - 440 - -
Generic 963 - - 5,280 - -
MSP430 32 1,757 34% 290 2,945 62%
RISC-V 446 1,824 29% 543 2,654 62%
OTBN 339 2,103 28% 163 2,641 65%

Figure 16: Algorithm Line Counts & Estimated Effort Saved.

platform or algorithm. Hence we report the ratio of the generic
part to the sum of generic and platform/algorithm-specific parts.

Case Study Hardware. Figure 15 measures the lines of code de-
veloped for our three hardware platforms. The generic row contains
the abstract machine model (§3.2) and the memory abstraction layer
(§3.3). The other rows show the additional lines of code needed to
support each ISA’s specification and abstraction. OTBN requires
slightly more effort due to the complexities of the ISA’s design.

The generic row is a one-time cost when developing the Galapa-
gos framework. For the simpler ISAs, it saves up to half of the code
that would have been written if developed without Galapagos.

Case Study Algorithms. Figure 16 presents the lines of code
developed for our cryptographic algorithms. The specification and
the generic implementation are the per-algorithm one-time cost.
We note that the generic implementation for RSA is much shorter
than Falcon’s, largely due to the Dafny standard library’s support
for big-integer reasoning. For the concrete implementations, the
Vale code embeds the concrete assembly while the Dafny code
measures the additional platform-specific lemmas needed. Notice
that the generic code reduces the proof burden for RSA by ~ 30%
and for Falcon by more than 60% (RSA has a lower ratio due to its
heavy use of our standard library).

In our initial verification efforts, we verified implementations
of RSA for the OTBN and RISC-V using traditional monolithic
techniques from prior work [11, 24, 55]. Motivated by the dupli-
cation across these implementations, we then developed the Gala-
pagos framework and used it to refactor the code. This reduced
the developer-written platform-specific code by 28% for OTBN and
29% for RISC-V. We then further leveraged the framework to both
specify the MSP430 and add a custom RSA implementation, in
approximately one week of developer effort.

With Falcon, we had the Galapagos framework in place, so we
initially focused on the abstract proofs related to the NTT, which
took 4 developer months. We then derived the platform specific
implementations in ~ 1 developer month.
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Line Count Definitions Lemmas
Data Structures 1,219 46 40
Big Integers 914 27 29
Nonlinear Arith. 3,732 7 249

Figure 17: Standard Library Statistics.

Standard Library. As discussed in §3.6, we introduced Dafny’s
first standard library. Our case studies make heavy use of it, with
~ 300 calls to standard-library lemmas.

Figure 17 summarizes various statistics about the new library.
Notice that even though the non-linear portion only includes a
handful of definitions (primarily for basic recursive definitions of
the various non-linear operations), it provides nearly 250 lemmas
proving properties of those definitions.

Singular Support. Our case studies invoke Dafny’s new Sin-
gular solver 27 times, often for properties that would have been
quite painful to prove via manual lemma invocations. As evidence
for this, we replaced 15 manual proofs with Singular invocations,
eliminating ~ 525 lines of proof code.

5.2 Performance

Hardware Setup. We execute our verified RISC-V and MSP430 code
on two physical development boards and compare the cycle counts
of our verified code against their unverified baselines. For RISC-V,
we use SiFive’s HiFivel Rev B featuring the Freedom E310 microcon-
troller. We run the controller at the default 16 MHz. For MSP430,
we use a Texas Instrument LaunchPad with the MSP430FR2476
microcontroller configured to run at 8 MHz.

Since OpenTitan chips are still working their way through their
first production run, to measure performance of our OTBN imple-
mentations, we rely on OpenTitan’s cycle-accurate simulator [48].

Baselines. For RSA, prior to our work, the OpenTitan team
produced a hand-written assembly implementation for OTBN, and
they used a C compiler (configured to optimize for size) to produce
code for RISC-V. We similarly use a C compiler to produce code for
the MSP430. These three unverified implementations serve as our
RSA baselines.

Falcon has pre-existing C implementation [34] but no optimized
assembly for the hardware platforms we target. Hence, we rely on
a C compiler to produce unverified baselines for RISC-V and the
MSP430. No unverified baselines exist for OTBN, so we wrote our
verified implementation from scratch.

Results. Figure 18 shows our performance results for our var-
ious verified implementations and their unverified baselines. We
find that our verified implementations typically perform within
+2% of their respective baseline implementations. This result is
expected, since our verified implementations differ from the base-
lines only in minor ways which make the code more amenable to
verification, e.g., instruction reordering. Our verified Falcon imple-
mentation for the MSP430, however, is considerably faster than
its compiled baseline. We attribute this result to our hand-tuned
register allocation in the verified version.
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MSP430 RISC-V OTBN
RSA
Baseline | 144,998,445 9,355,922 160,814
Verified | 142,870,737 9,454,635 160,664
% Change -1.47% +1.05 0%
Falcon
Baseline 2,810,513 846,946 -
Verified 2,015,556 846,926 256,796
% Change -28.3% 0% -

Figure 18: Case Study Performance (Cycle Counts). If %
Change is negative, the verified version outperforms the unver-
ified baseline. OTBN does not have an unverified Falcon baseline.

6 Related Work

Barbosa et al. present a recent summary of computer-aided cryptog-
raphy [8]. Here we focus on more closely related work on formally
verified cryptographic implementations. We roughly categorize the
work by target (source or assembly language) and by technique.

High-Level Languages. Several lines of work verify or produce
cryptographic code in high-level languages. For example, some
work [5, 9, 65] uses the Verified Software Toolchain [4] and yields C
code, as does work on Fiat Crypto [21] and the HACL* library [53,
68]. Other work [59] uses SAW [19] to produce C and Java code.
Still other work [67] relies on extraction to OCaml.

All of this work trusts a compiler (often run in a maximally ag-
gressive optimization mode) to correctly and securely produce ma-
chine code suitable for execution. Such trust may be misplaced [21,
62, 64]. Relying on a compiler can also be problematic for emerging
hardware platforms, like OTBN, for which compilers do not yet
exist. Historically, this approach has also produced code that lags
hand-tuned assembly by 2x [21] to 100X [67].

Low-Level Languages. Work in Jasmin [2, 3] verifies imple-
mentations written in a domain-specific language and then uses
verified compilation to produce an executable. Fiat Crypto [21]
also employs verified compilation from high-level elliptic curve de-
scriptions to C-level implementations. Subsequent work suggests a
path towards extending their verified pipeline to assembly [51, 52].
While attractive, developing a verified compiler (or even a verified
backend) is a significant upfront development effort, and it asks
engineers to write proofs about compilation passes, rather than
about the code they wish to execute. It may also be difficult to
generically match the ingenuity that performance engineers put
into their hand-crafted assembly.

In contrast to verified compilation, previous work [11, 24, 55]
based on Vale [11] directly verify a wide variety of cryptographic al-
gorithms written in assembly. However, that work primarily focuses
on x86-64, with a few implementations for Arm. These implemen-
tations and their proofs are standalone efforts, with little code or
proof shared between architectures, even for implementations of
the same algorithm.

Another line of work [14, 54, 61] targets implementations in an
assembly-like domain-specific language (translated from platform-
specific assembly via Python). The work’s key insight is that often
the proof of correctness for the core of a cryptographic routine can
be automatically partitioned into proofs about basic mathematical
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operations and proofs about machine behavior (e.g., proving the
absence of overflow), with the former discharged by an algebra
solver (Singular [18]) and the latter discharged via an SMT solver
(Z3 [17]). This work is complementary to Galapagos, which focuses
on providing functor-based platform and algorithm abstractions
that can be verifiably reused for multi-platform development. Sim-
ilarly, their work inspired our integration of Singular into Dafny,
but we have found that working in a general verifier like Dafny is
critical, since it is unclear how to soundly and automatically break
up and efficiently discharge the proof obligations that arise from
larger implementations that include memory operations, condi-
tional branches, non-linear equations beyond congruence relations,
and arbitrary-length sequences needed to compute, say, RSA.

Extracting Common Algorithmic Features. Many verifica-
tion projects focus on verifying elliptic curve operations, and sev-
eral have extracted common algorithmic code (e.g., computing over
Montgomery curves), either as libraries [67] or as compiler passes
(in Fiat Crypto [21]). This generic code is then instantiated for
specific curves that may have different optimal strategies for rep-
resenting curve points. Galapagos also abstracts over the crypto
algorithm, but it differs in using verified functors and focusing
on implementations of the same algorithm on different hardware
platforms, rather than different algorithms/curves on the same
platform.

Prior work has also targeted the number theoretic transform,
which is the building block of many post-quantum cryptographic al-
gorithms. Navas et al. use abstract interpretation to show that NTT
implementations in C are free of algorithmic overflows [44]. Other
work has produced verified NTT implementations through domain-
specific languages [31, 58]. These works focus on the techniques to
facilitate “push button” verification of individual NTT implementa-
tions, while Galapagos focuses on amortizing the verification effort
across multiple implementations.

7 Conclusion

We have presented the Galapagos framework, which aims to lower
the cost of developing high-performance cryptographic implemen-
tations across an increasingly heterogeneous hardware landscape.
Galapagos uses functors to abstract algorithms and platforms, which
can then be automatically instantiated across heterogeneous hard-
ware. Using Galapagos to verify six cryptographic implementations
of RSA and Falcon on three wildly varying platforms shows that
Galapagos reduces the developer’s burden without sacrificing per-
formance. OpenTitan is deploying our verified RSA code at scale. Ul-
timately, we hope Galapagos helps verified cryptography to boldly
go where no (verified) cryptography has gone before.
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A Polynomial Entailment Details

We briefly summarize the mathematical underpinnings of polyno-
mial entailment for solving congruence relations (see prior work [28,
61] for more details), follow by our Dafny-specific encoding.
Background: Polynomial Ring Ideals. Fix a set of variables
X1, ..., Xn. Let R = Z[x1, ..., x,] be a polynomial ring over the inte-
gers; i.e., the elements of R are polynomials with indeterminate
X1, ..., Xn and integer coefficients. A set I C R is an ideal in R iff

a+bel Vabel
axcel VabelceR

Let B = {b1,..bm} € R. Bis a generating set of an ideal I, or

I = ideal(B) if
m
I= {Zri Xbi|r,.orm ER}
i=1
The ideal membership problem decides if a polynomial p € R be-
longs to anideal I = ideal(B).If p € I, then there exists polynomials

1, ....'m € R such that
m
p= Z ri X b;
i=1

Our Dafny Encoding. We added a new gbassert primitive that
takes in one goal statement and an arbitrary number of supporting
statements as inputs. Each statement must be a modular congruence,
meaning that each statement i is the form of a; = b;(mod m;),
where a;, b;, m; are integer typed expressions.

We start with a pass over the input statements to collect existing
variables. For invocations of uninterpreted functions, we introduce
fresh variables. For example, msb(x) might be assigned a variable
name ), and any occurrences of msb(x) will be replaced with .

We then use all of the existing and new variables to construct ele-
ments of a polynomial ring R over the integers. The goal statement
(at index 0) is in the form of ag = by(mod mg) and is translated to
the polynomial ag —bg. Each supporting statement a; = b;(mod m;)
is translated into the polynomial a; — b; + p;m;, where p; is a freshly
introduced variable. Because the supporting statement is proven (by
Dafny), forall a;, b;, there exists some p; such that a; —b; +p;m; = 0.

We form a generating set for an ideal B by collecting all of
the polynomials from the supporting statements along with the
modulus mg from the goal statement:

B={mg,a1 — by + pim1,...,ar — b + ppmy}

We then invoke Singular [18] to decide whether the goal poly-
nomial ag — by belongs to the ideal generated by B. If so, then we
conclude that ay = bg(mod myg). The intuition is that if ay — by €
ideal(B), then there exists polynomials r, ..., rm € R

k
ap — by =m0Xr0+Zr1‘X (a,——bi+pim,—)
i=1

The p; values discussed above ensure that the summation on the
right evaluates to zero. Hence membership effectively shows that
there exists rp € R such that ap — by = mg X rg, proving that our
original goal congruence holds (i.e., that ap = by mod my).
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