
Galápagos: Developing Verified Low-Level Cryptography on
Heterogeneous Hardware

Yi Zhou

Carnegie Mellon University

Sydney Gibson

Carnegie Mellon University

Sarah Cai

Databricks

Menucha Winchell

UC Berkeley

Bryan Parno

Carnegie Mellon University

Abstract
The proliferation of new hardware designs makes it difficult to pro-

duce high-performance cryptographic implementations tailored at

the assembly level to each platform, let alone to prove such imple-

mentations correct. Hence we introduce Galápagos, an extensible

framework designed to reduce the effort of verifying cryptographic

implementations across different ISAs.

In Galápagos, a developer proves their high-level implementation

strategy correct once and then bundles both strategy and proof

into an abstract module. The module can then be instantiated and

connected to each platform-specific implementation. Galápagos

facilitates this connection by generically raising the abstraction of

the targeted platforms, and via a collection of new verified libraries

and tool improvements to help automate the proof process.

We validate Galápagos via multiple verified cryptographic im-

plementations across three starkly different platforms: a 256-bit

special-purpose accelerator, a 16-bit minimal ISA (the MSP430),

and a standard 32-bit RISC-V CPU. Our case studies are derived

from a real-world use case, the OpenTitan security chip, which is

deploying our verified cryptographic code at scale.

CCS Concepts
• Software and its engineering→ Software verification.

Keywords
cryptographic implementation, assembly code, program verifica-

tion, heterogeneous hardware

ACM Reference Format:
Yi Zhou, Sydney Gibson, Sarah Cai, Menucha Winchell, and Bryan Parno.

2023. Galápagos: Developing Verified Low-Level Cryptography on Het-

erogeneous Hardware. In Proceedings of 2023 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’23). ACM, New York, NY,

USA, 15 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
As Moore’s law slows, we have seen an explosion of new, cus-

tom hardware designs that aim to increase performance and/or

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’23, NOV. 26-30, Copenhagen, Denmark
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

reduce power consumption relative to general-purpose proces-

sors [33, 35, 36, 41]. In our IoT-entranced world, these devices are

inevitably connected to the Internet, and hence require crypto-

graphic implementations for tasks like checking firmware integrity

or establishing secure connections to remote servers. Such tasks

place the cryptographic implementation on the system’s critical

path, making high performance crucial.

Historically, cryptographic providers such as OpenSSL [47] have

met these performance demands via hand-written assembly code

that utilizes platform-specific optimizations (e.g. NEON [6] or AES-

NI [26]), capturing performance gains missed by generic compil-

ers. Emerging heterogeneous platforms reinforce this trend, since

compilers for them (including one of our case studies) may not

be developed until long after the platforms are deployed, making

hand-crafted low-level code a necessity.

Unfortunately, manually writing such low-level code invites

vulnerabilities; e.g., OpenSSL has reported 33 CVEs since 2021 [46],

of which 29 are memory safety or function correctness bugs. Formal

software verification can statically prove an implementation free

of entire classes of vulnerabilities, but prior work in this area is ill

suited to a world of heterogeneous hardware (§6).

When supporting heterogeneous platforms, verification cost and
specialization-based performance are at odds. A large swath of

work [5, 9, 21, 53, 59, 65, 68] verifies high-level source code and

then assumes a standard compiler produces correct assembly with-

out introducing vulnerabilities. This approach reduces verification

costs, but it sacrifices specialization-based performance gains [11];

it is also infeasible for platforms that lack a compiler. Other work

directly targets assembly implementations [2, 3, 11, 12, 14, 24, 54,

55, 61]. This approach retains performance but targets only specific

platforms. Hence the effort to verify a cryptographic algorithm (say,

ECDSA [32]) grows linearly with the number of platforms targeted.

Our Approach. We present the extensible Galápagos
1
frame-

work, which reconciles the need for low-cost verification with the

performance gains from specialization in the multi-platform set-

ting. Taking a cross-platform view emphasizes the importance of

creating reusable abstractions across platforms, amortizing devel-

opment costs. Galápagos supports such abstractions by allowing

the developer to write high-level implementations and proofs that

are parameterized by an abstract machine model, making them

machine-independent. Galápagos also generates a common high-

level interface for hardware ISAs, making it easier for the developer

1
The Galápagos finch and tortoise species are famous for adapting their bodies to the

different environments on each of the Galápagos Islands. In the same vein, the Galá-

pagos framework adapts cryptographic algorithms to the specifics of each supported

hardware model.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

CCS ’23, NOV. 26-30, Copenhagen, Denmark Yi Zhou, Sydney Gibson, Sarah Cai, Menucha Winchell, and Bryan Parno

to connect platform-specific reasoning to the machine-independent

proofs. These two forms of abstraction significantly reduce the

developer’s hardware-specific proof work, without compromising

the run-time performance of their code.

Abstract Implementation. A Galápagos developer initially

writes an abstract implementation that captures their machine-

independent decisions and proves them correct. They use as many

named variables as they wish (unconstrained by finite registers),

interact with immutable sequences of structured data (rather than

byte-level memory accesses), and can thus focus on proving the

algorithm’s mathematical correctness. For example, the developer

might decide to implement the Cooley-Tukey (CT) algorithm (Al-

gorithm 2) to realize the number theoretic transform (NTT). The

correctness of CT is justified by the properties of polynomial rings,

which can be proven independent of any specific platform.

The abstract implementation is bundled into a functor using sup-
port we added to Dafny (§3.1). A functor is a special type of module

(a collection of types, functions, and proofs) that takes one or more

modules as arguments and produces a new module. In our case, the

abstract-implementation functor is parameterized by an abstract

machine module that provides generic word-size operations, which

makes the functor reusable across architectures. For instance, the
classic Montgomery multiplication algorithm (Algorithm 1) is de-

scribed in terms of some unspecified radix (word size), and the core

operations (e.g., addition and multiplication), the various iteration

counts, and even the pre-computed constants all depend on the

radix. Nonetheless, the algorithm can be proven generically correct

given an abstract machine model.

Platform-specific Instantiation. To target a new platform, as

with prior work, the programmer must obtain (or write) a specifica-

tion that defines the semantics of the hardware’s ISA. For example,

they might define a machine module with 256-bit words that sup-

ports addition and multiplication via hardware-specific instructions.

They can then apply the abstract implementation’s functor to this

machine-specific module to instantiate a machine-specific mod-

ule (containing a machine-specific algorithm and corresponding

proofs). Note that this instantiated module is obtained for free, and
it is now committed to the 256-bit word size.

Assembly Implementation. In the final step, the developer must

show that an assembly implementation is working as described by

the machine-specific algorithm in the instantiated module above.

The assembly can be hand-written, produced by a compiler, or

any combination thereof. Regardless, the developer must prove

that each assembly routine realizes an algorithmic step (typically

a fairly straightforward process). Crucially, however, they do not

need complex proofs showing why those algorithmic steps are

correct. Those proofs come for free from the instantiated module!

However, the instantiated module still operates over a high-

level structured memory, whereas a hardware-level ISA typically

operates over bytes. To manage this complexity, Galápagos sup-

plies tools to automatically raise the level of abstraction for each

platform. Specifically, Galápagos provides a functor-based, verified

abstraction layer that translates a machine’s low-level byte-oriented

memory interface into a memory with a structured heap and stack.

Tooling and Library. To help with proof reuse and automation,

Galápagos includes several improvements to the Dafny language

as well as its first standard library.

Functors for Dafny. Creating and managing abstractions is

critical for Galápagos. Hence, we introduced verified, ML-style

functors to Dafny. This required adapting higher-order functional

concepts to Dafny’s imperative, first-order design.

Algebra Solver. Non-linear arithmetic is endemic to crypto-

graphic algorithms. However, the state-of-the-art SMT solvers,

which tools such as Dafny rely on, struggle to reliably handle non-

linear reasoning [22, 30]. Prior work has shown the effectiveness

of algebra solvers in the Coq interactive theorem prover [61]. We

added similar support to the Dafny automated theorem prover,

resulting in more concise proofs.

Standard Library.We developed the first standard library for

Dafny (now distributed and maintained by the Dafny engineer-

ing team at Amazon) with over 5,800 LoC, 80 definitions, and 381

lemmas providing extensive verified facilities for reasoning about

collections (e.g., sequences of bytes), translations between different

ways of representing large integers in word-sized chunks, and a

comprehensive collection of properties about non-linear arithmetic.

Case Studies. We base our validation of Galápagos (§4) on a

real-world use case: the OpenTitan security chip [49]. Designed

by partners including Google and lowRISC, OpenTitan is an open

source TPM-like [60] chip that can provide a hardware root of

trust for a wide variety of devices and applications. At the heart of

OpenTitan’s security architecture is a secure boot process [25, 50]

that loads and executes properly signed code only. The code im-

plementing OpenTitan’s secure boot (including the cryptographic

routines) is baked into the chip’s ROM, meaning that any flaws

must be addressed by physically recalling the flawed chips, printing

a new multi-million-dollar hardware mask, and then fabricating

and distributing new chips.

Further complicating the story, OpenTitan includes both a 32-

bit RISC-V [57, 63] main core and a custom 256-bit big-number

accelerator (dubbed the OTBN), and for extra resiliency, OpenTitan

aims to support secure booting with and without the OTBN enabled.

Hence, in our case studies, we have used Galápagos to produce

fully verified implementations of OpenTitan’s existing RSA-3072

signature verification routines for both RISC-V and OTBN. Our

verified code has been burnt into the mask ROM currently in use

for fabricating OpenTitan chips, the first instance, to our knowledge,

of formally verified cryptography baked into hardware at scale.

To further validate Galápagos’s ability to support heterogeneous

hardware, we developed (in less than a week) an implementation for

yet another architecture, the MSP430, a tiny 16-bit ISA with only 27

instructions, developed by TI for low-power embedded devices. We

intentionally avoided ARM and x86 since they are quite standard

and well studied in prior work [2, 3, 11, 12, 14, 54, 55].

To validate Galápagos’s algorithmic generality, and to support

OpenTitan’s ongoing exploration of possible post-quantum algo-

rithms, we have also produced verified implementations, for the

MSP430, RISC-V, and OTBN chips, of the post-quantum Falcon

signature algorithm [23] recently standardized by NIST. Falcon’s

mathematical underpinnings differ starkly from RSA’s. Falcon op-

erates over lattices, and at the heart of our Falcon implementations

is an NTT functor, parameterized by a polynomial ring, that can

be used independently for other post-quantum algorithms. To our

knowledge, our three implementations are the first verified Falcon

implementations.

Galápagos: Developing Verified Low-Level Cryptography on Heterogeneous Hardware CCS ’23, NOV. 26-30, Copenhagen, Denmark

procedure times4()
requires a0 < 100;
reads a0; modifies a1, a2;
ensures a2 == 4 * a0;

{
add32(a1, a0, a0); // a1 <- a0 + a0
add32(a2, a1, a1); // a2 <- a1 + a1

}

Figure 1: Sample RISC-V Code in Vale.

Our evaluation (§5) finds that Galápagos reduces the effort to de-

fine a new ISA by 30-50%, and the proof burden for target-specific

implementations by 30-60%. Further, Galápagos’s approach pro-

duces implementations with speed comparable to (and in some

cases faster than) our unverified reference implementations.

Altogether, our case studies consist of approximately 36K lines

of specification, code, and proofs, which, along with our tool im-

provements, are available online as open source [66].

Limitations. Galápagos still requires the developer to produce

low-level implementations of their algorithms; for scenarios where

compilers exist and performance is not essential, other approaches

may require less developer effort. Our case studies focus on signa-

ture verification, where side channels are irrelevant, so Galápagos

concentrates on functional correctness; standard extensions from

prior work [11] could support reasoning about side channels. Like

any verification effort, the soundness of our results depends on the

correctness of our specifications (both of the cryptography and the

machine semantics) and of our verification tool (Dafny).

Contributions. In summary, this research:

• Presents the Galápagos framework, which reduces developer

effort for cross-platform cryptographic implementations.

• Introduces functor support into an SMT-based automated

theorem prover, and shows how to use functors to abstract

algorithms and heterogeneous platforms.

• Evaluates the reuse enabled by Galápagos on six verified im-

plementations covering classical and post-quantum crypto-

graphic algorithms and three disparate hardware platforms.

• Contributes a new verified Dafny standard library, now up-

streamed, to facilitate future verification efforts.

• Produces the first formally verified cryptographic routines

baked into hardware for large scale deployment.

2 Background
Vale. Galápagos builds atop the Vale framework [11], which sup-

ports the verification of low-level, high-performance code. Figure 1

shows a sample Vale procedure that quadruples its input. The proce-

dure’s signature declares that it reads from register a0 and modifies

registers a1 and a2. It also claims that if the input satisfies its pre-

condition (the requires clause), then the output in a2 will satisfy

the postcondition (the ensures clause). It makes two procedure

calls, which here correspond to individual assembly instructions.

Vale discharges proof obligations (e.g., that the preconditions

imply the postconditions) by embedding the implementation code

in a backend verifier (in our case, Dafny) which reasons about the

implementation using a model of the target machine’s hardware

semantics. The verifier produces mathematical formulas and checks

their validity with an SMT solver (in our case, Z3 [17]).

datatype reg32_t =
| A0
| A1
| . . .

type mem_t = map<int, uint8>

datatype state = state(
regs : regs_t, // 32-bit registers
mem : mem_t, // Linear memory
ok : bool) // Not crashed

// base integer instruction set, 32-bit
datatype Ins32 =
| RV_ADD (rd : reg32_t, rs1 : reg32_t, rs2 : reg32_t)
| RV_LW (rd : reg32_t, rs1 : reg32_t, imm12 : uint32)
| . . .

predicate eval_ins32(ins : Ins32, s : state, r : state) {
match ins
case RV_LW(rd, rs, imm) ⇒
// load word from s.mem[rs + imm], set ok to false if unaligned
. . .

}

predicate eval_code(c : code, s : state, r : state) {
match c
case Ins32(ins) ⇒ eval_ins32(ins, s, r)
case Block(block) ⇒ eval_block(block, s, r)
. . .

Figure 2: Sample RISC-V Semantics in Dafny.

Thus, Vale proofs of correctness require a formal semantics for

the underlying hardware. These may come from the hardware man-

ufacturer (e.g., from ARM [56]), from prior academic work [7, 16],

or the developer can write their own. Figure 2 shows a simplified

sample of such a definition. It declares that the machine’s state con-

sists of a collection of named 32-bit registers, a memory that maps

integer addresses to bytes, and an ok flag that indicates whether

code has executed successfully without crashing. The eval_code
predicate defines the semantics, i.e., it dictates how the execution

of code c causes the machine to transition from state s to state r.
To aid proofs about their implementation, the Vale developer typ-

ically writes and proves additional lemmas directly in the backend

verifier and invokes them from Vale.

DafnyAbstractModules.Galápagos exploits proof reuse, which
standard Dafny supports (to a degree) through abstract modules. An

abstract module declares an interface, which can be implemented

by concrete modules. Dafny generates verification conditions that

ensure the concrete module adheres to the interface.

Consider the example in Figure 3. The abstract module ring
declares an elem type and functions over it. The int_ring module

refines the interface by declaring that elem has type int and

providing bodies to the functions. Importantly, add’s body must

satisfy the idempotency property specified in the abstract module.

Dafny also allows an abstract module to import other abstract
modules, allowing access to their contents. Continuing with our

example, suppose we want to implement a forward NTT generically

over any ring. In FNTT, we can use the syntax import R : ring to
use an unspecified module R that promises to implement the ring
interface. Now we can use functions in R to perform more complex

operations without assuming a particular implementation of R.add.
However, Dafny’s basic module system falls short in a subtle but

important case. Suppose now we want to implement an inverse

NTT, and then use the two NTT modules to implement polynomial

multiplication, all generically over some ring. The issue arises with

CCS ’23, NOV. 26-30, Copenhagen, Denmark Yi Zhou, Sydney Gibson, Sarah Cai, Menucha Winchell, and Bryan Parno

abstract module ring {
type elem
function unit() : elem
function add(a : elem, b : elem) : (c : elem)
ensures b == unit() =⇒c == a // Specifies idempotency

}
module int_ring refines ring {
type elem = int
function unit() : elem { 0 }
// Success : idempotency maintained
function add(a : elem, b : elem) : elem { a + b }
// Error : idempotency violated
// function add(a : elem, b : elem) : elem { b - a }

}
abstract module FNTT {
import R : ring
function double(a : R.elem) : R.elem { R.add(a, a) }
// Other generic implementations elided

}
abstract module INTT {
import R : ring /* Generic implementations elided */

}
abstract module poly_mul {
import F : FNTT
import I : INTT
// Problem : cannot express that F.R is the same module as I.R
function problematic(a : F.R.elem, b : I.R.elem) : F.R.elem {
F.R.add(a, b) // Error : this does not type check

}
}

Figure 3: Example Abstract Modules in Standard Dafny.

poly_mul, where Dafny has no way to specify that the imported

modules F and I are parameterized by the same underlying ring.

3 The Galápagos Framework
Galápagos is an extensible framework for developing high-performance

cryptographic implementations on different platforms. As shown

in Figure 4, the developer proves an abstract implementation (§3.2)

correct once and then reuses it across different platforms. For each

platform ISA, Galápagos automatically generates a proven-correct,

higher-level interface (§3.3). The concrete assembly implementa-

tion (§3.4) can thus be written on top of this interface, allowing

easier access to the proofs provided by the abstract implementation.

To support an existing crypto primitive on a new platform, the

developer supplies a new ISA specification and a corresponding as-

sembly implementation. To support a new cryptographic primitive

on existing platforms, the developer adds a new cryptographic spec-

ification, along with corresponding assembly implementations. The

remainder (shown in purple) comes automatically from Galápagos.

To provide the abstractions needed to achieve code reuse and

amortize development costs, Galápagos relies on our introduction

of functor support to Dafny (§3.1). Proof automation is further aided

by new solver support (§3.5) and standard libraries (§3.6) that we

added to Dafny.

3.1 Adding Functor Support to Dafny
Galápagos relies on abstraction to reduce developer effort. Dafny’s

existing module system was too limited for Galápagos (§2), so we

expanded its expressivity by introducing ML-style functors [20].

Functors are functions from modules to modules. In our im-

plementation, a functor is a module that takes other modules as

arguments (each argument is given a type defined by an abstract

module), and the code and proofs in the functor are written in terms

of the module arguments. The developer can instantiate the functor

Figure 4: Galápagos Overview. An abstract implementation and

proof (I1) parameterized by generic machine operations (S8) is

proven to refine a crypto spec (S0). An assembly implementation (I3)

is proven to refine a width-specific instance (I2) of the abstract

impl (I1). The assembly implementation (I3) is written on top of an

automatically generated instance (A4) of a higher-level hardware

interface (A7), which is proven sound against the low-level ISA

spec (S5). The ISA spec, in turn, is defined using an instance (S6) of

the generic machine operations (S8). Given S0, I1 is written once;

I3 and S5 are written once per-platform; and Galápagos provides

I2, A4, S6, A7, and S8. Figure 12 shows how our case studies apply

this workflow.

by applying it to concrete modules that refine the formal arguments’

types. A functor thus allows a collection of code and proofs to be

reused when instantiated with different module arguments.

Using functors, we can now successfully implement the polyno-

mial multiplication example from §2. As shown in Figure 5, FNTT is

now a functor that takes a module R of type ring as an argument

and returns an instantiation of the FNTT code and proofs specific to

that concrete argument. Applying FNTT to a different ring module

produces a different concrete instantiation. The crucial benefit of us-

ing functors (as opposed to Dafny’s existing module system) is that

when two functors are applied to the same argument (e.g., the ring
module in poly_mul), we can successfully unify the types coming

from the two different instantiated modules. Below, we expand on

our functor design choices using Dreyer’s terminology [20].

Applicative.Our functors are applicative, meaning that applying

the same functor to the same argument(s) in two different contexts

still produces the same concrete module. This is crucial for unifying

types in examples like Figure 5. Our design contrasts with SML’s

generative functors, where each application generates a fresh copy

of types, even with the same argument module(s). For example, in A

Galápagos: Developing Verified Low-Level Cryptography on Heterogeneous Hardware CCS ’23, NOV. 26-30, Copenhagen, Denmark

abstract module ring { type elem /* details elided */ }
abstract module FNTT(R : ring) { /* details elided */ }
abstract module INTT(R : ring) { /* details elided */ }
abstract module poly_mul(R : ring, F : FNTT(R), I : INTT(R)) {

// Functions in F and I can interop since R is the same in both
}

Figure 5: Functor Example in Galápagos.

= FNTT(IntRing) and B = FNTT(IntRing), A.elem and B.elem
will not be of the same type with generative functors.

Second-Class, First-Order. Similar to most ML dialects, our

functors are second class, meaning the module system exist in a

different plane from ordinary functions and types. Specifically, a

module cannot be passed to or returned from ordinary functions,

nor can it be stored in datatypes. Our functors are close to being

first-order, since they cannot be partially applied, but they can be

parameterized by other functors, which is a higher-order property.

Proof Obligations. Unlike most other functor-supporting lan-

guages such as OCaml orML, Dafny’s types andmethods comewith

verification obligations. Hence, when extending Dafny to support

functors, we had to carefully ensure that the proof of a functor’s

correctness relies only on the properties promised by the abstract

module “types” of its formal parameters, not any details of the con-

crete instantiations. In exchange, we gain verification efficiency:

we need only verify the abstract implementation once; i.e., no addi-

tional verification work is required when instantiating the functor

with concrete module arguments, since those arguments have al-

ready been proven to refine the corresponding abstract modules.

3.2 Writing an Abstract Implementation
A key aspect of the Galápagos framework is that the developer

initially writes an abstract implementation of their desired crypto-

graphic primitive. This implementation captures their algorithmic

decisions and optimizations. Since it is written against a generic,

high-level machine model, proving these decisions and optimiza-

tions is much simpler than it would be for a concrete implemen-

tation cluttered with hardware-specific details like finite registers,

byte-level memory access, etc. Once the developer instantiates the

generic machine module for a concrete hardware platform, Galápa-

gos provides a hardware-specific version of the correctness proofs.

To illustrate this process, we first introduce the generic machine

model and then show how the developer uses it to write their

abstract implementation and prove it correct.

Generic Machine Operations. As shown in Figure 6, the Galá-

pagos generic machine model is provided as an abstract module

in Dafny. An abstract module (§2) omits implementations, so that

other modules can provide those details by refining the abstract

module in different ways. For instance, in the generic machine, uint
represents the architecture’s word size, but it is defined in terms of

the upper bound BASE(), which deliberately omits a definition.

Within this module, Galápagos then provides various common

hardware operations, including arithmetic operations, bit shifts, etc.

These are defined in terms of uint words, without any knowledge

of what the actual value of uint will be, other than the information

from the ensures clauses, i.e., that BASE() will be even and larger

than 1, which is convenient, for example, when defining msb.

abstract module generic_machine_ops {
// Symbolic upper bound on word size
// Concrete instantiations must satisfy the ensures clauses
function BASE() : (v : nat)
ensures (v > 1)
ensures (v % 2 == 0)

// Defines an unsigned integer type upper-bounded by BASE()
type uint = i : int | 0 ≤ i < BASE()

/* Generic operations obtained "for free" by concrete
* instantiations when they define BASE() */

// Word-sized addition with carry
function addc(x : uint, y : uint, cin : uint1) : (uint, uint1) {
var sum : = x + y + cin;
// Handle possible overflow
var sum' : = if sum < BASE() then sum else sum - BASE();
var cout : = if sum < BASE() then 0 else 1;
(sum', cout)

}

// Extract the most-significant bit
function msb(x : uint) : uint1 {
if x ≥ BASE()/2 then 1 else 0

}

// Interpret a sequence of uint as a natural number
function to_nat(xs : seq<uint>) : nat {
// Details elided

}

// More operations elided
}

Figure 6: Snippet of Galápagos Generic Machine Operations
in Dafny.Operations are defined with respect to an unknownword
size uint; e.g., addition with carry wraps when the sum overflows.

To target a new platform, the Galápagos developer starts with a

concrete module that refines the generic module above by filling

in the missing definitions; for example, here is an excerpt of the

definition for the 16-bit operations.

module bw16_ops refines generic_machine_ops {
function BASE() : (v : nat) { 0x10000 }
// addc, msb and to_nat are obtained for free!

}

Dafny checks that the refinement is valid (e.g., that the definition

of BASE() is even and greater than 1 in this case) and then auto-

matically fills in concretized versions of the abstract operations.

In other words, we can now invoke bw16_ops.addc to talk about

add-with-carry over 16-bit words.

Abstract Implementation. With Galápagos, a developer aims

to capture the essence of their implementation strategy while ab-

stracting away the complexities of a low-level executable. This

makes proofs of correctness far simpler. The abstraction of imple-

mentation details takes several forms.

First, the developer can use an unlimited number of named vari-

ables, rather than worry about finite registers. Second, rather than

reason about byte-level memory operations, they instead write their

implementation by reading and updating immutable sequences of

structured data (e.g., word-sized values). When a sequence is up-

dated, it produces a copy of the original sequence with the corre-

sponding element changed (similar in spirit to copy-on-write files).

Hence every sequence is unique and unchanging, making reasoning

far simpler since it, among other benefits, eliminates any aliasing

concerns. Finally, the developer writes their implementation using

the operations from the generic machine model (Figure 6).

CCS ’23, NOV. 26-30, Copenhagen, Denmark Yi Zhou, Sydney Gibson, Sarah Cai, Menucha Winchell, and Bryan Parno

abstract module generic_big_add_impl(ops : generic_machine_ops)
{
function big_add(xs : seq<uint>, ys : seq<uint>, cin : uint1)

: (seq<uint>, uint1)
requires |xs| == |ys|

{
var len : = |xs|;
if len == 0 then
([], cin)

else
var (zs, cin') : = big_add(xs[..len-1], ys[..len-1], cin);
var (z, cout) : = ops.addc(x[len-1], y[len-1], cin');
(zs + [z], cout)

}

lemma big_add_correct(xs : seq<uint>, ys : seq<uint>,
zs : seq<uint>, cout : uint1)

requires |xs| == |ys|
requires (zs, cout) == big_add(xs, ys, 0)
ensures |zs| == |xs|
ensures ops.to_nat(xs) + ops.to_nat(ys) ==
ops.to_nat(zs) + cout * pow(BASE(), |xs|)

{
// Proof code here

}
}

module some_client {
import bw16_big_add = generic_big_add_impl(bw16_ops)
// Free to use the 16-bit version of big_add and big_add_correct

}

Figure 7: Generic Dafny Multi-Word Addition Code & Proof

To illustrate this process, Figure 7 shows an example of an ab-

stract implementation of multi-word addition. Algorithms like RSA

operate over large integers that cannot fit into a single machine

word and must instead be represented by a sequence of words (or

“limbs”) stored in memory. In the example, when we define addition

(big_add) over large integers, instead of explicitly referencing the

memory, xs and ys are each represented using an immutable se-

quence of machine-words. Because sequences are ordinary values

(just like integers), Dafny can trivially see that modifications to xs
have no effect on ys (and vice versa), whereas a low-level imple-

mentation would have to worry about potential pointer aliasing.

The implementation defines multi-word addition recursively, using

variables like len and z to represent intermediate values. It also in-

vokes the generic addc operation from the generic_machine_ops
module to propagate the carry bit.

Given the abstract definition of multi-word addition, the devel-

oper can then generically prove its correctness, as shown with

the big_add_correct lemma. Notice that the first ensures clause

says that the result has the expected number of elements, while the

second one shows that the addition is computed correctly if each

sequence of words is converted into a single big integer value.

As shown in Figure 7, the abstract implementation is a functor

parameterized by a machine module. This functor can be instanti-

ated by applying it to a module that refines the formal argument’s

type. For example, generic_big_add_impl(bw16_ops) instanti-

ates a concrete module, which has 16-bit definitions of big_add
and corresponding 16-bit lemmas such as big_add_correct.

3.3 Memory Abstraction
Having written an abstract implementation (§3.2) and instantiated

it to specific platforms using functors (§3.1), the Galápagos devel-

oper must use the resulting platform-specific proofs to show the

correctness of their concrete, hardware-specific implementation.

The concrete implementation is ultimately written using the hard-

ware’s ISA, formalized in Dafny. As discussed in §2 and shown

in Figure 2, the ISA and its formalization operate at a very low-

level compared to the abstract implementation and proofs. One

particularly challenging aspect is that an ISA typically defines a

flat, byte-level memory model. For example, the RISC-V model in

Figure 2 maps integer addresses to bytes; this means that a 32-byte

write to address, say, 0x400, affects the four bytes at addresses

0x400, 0x401, 0x402, and 0x403. Such a model is much harder

to reason about than the high-level immutable sequences used in

the abstract implementation, since the developer must carefully

maintain invariants about which memory regions contain which

data, and carefully prove at every memory operation that they are

accessing the intended data.

To simplify this reasoning and bring the concrete implementa-

tion closer to the abstract implementation, Galápagos generalizes

prior one-off memory abstraction techniques [11] by providing

automatic support for abstracting an ISA’s memory model. Specif-

ically, Galápagos uses a functor to define a generic higher-level

interface with a structured heap and stack.

As shown in Figure 8, the abstract heap maps an address to a

sequence of uint words, whose size is specified by the developer.

Similarly, the abstract stack is a sequence of frames, where each

frame is also a sequence of words. The abstraction layer soundly pre-

serves invariants showing that operations over structured memory

are accurately reflected in the underlying byte-oriented memory.

As with the abstract implementation, the developer instantiates

Galápagos’ abstraction layer by defining the size of the memory

entries they want to reason about. As we illustrate below for RISC-V,

this instantiation enables a richer interface for memory instructions.

Accessing Heap Buffers. Many cryptographic implementa-

tions iterate over fixed-size buffers, e.g., while reading a plaintext

message. Galápagos’s memory abstraction provides an iterator in-

terface to support such access patterns. This interface allows the

programmer to reason in terms of word-sized (or larger) reads and

writes made to immutable sequences of data. As a result, the devel-

oper can directly invoke the definitions and lemmas instantiated

from the abstract implementation (§3.1), which is conveniently

written in terms of sequences of structured data.

The main iterator type is iter_t, which abstracts over a struc-

tured heap entry. Its invariant, iter_inv, guarantees that the it-
erator is well formed; for example, it ensures that the heap entry

exists, that the current index is within the buffer’s bounds, that the

buffer’s view of that region of memory as a sequence of uintwords
is consistent with the heap’s state, and that a given address, addr,
is consistent with the iterator’s index.

Once the generic memory layer is instantiated for a hardware

platform, Galápagos wraps the iterator interface around low-level

memory accesses. Figure 9 shows the Vale procedure lw_heap that

corresponds to the underlying hardware’s load word instruction

(RV_LW) from Figure 2. In addition to the underlying instruction’s

three arguments (dst, src, offset), the wrapped version takes two

additional arguments, namely inc and iter_t. As shown in the

ensures clauses, the inc flag controls whether the iterator should

be advanced upon return. The caller of lw_heap must show that

the iterator is safe (i.e., within its buffer’s bounds) and well formed

Galápagos: Developing Verified Low-Level Cryptography on Heterogeneous Hardware CCS ’23, NOV. 26-30, Copenhagen, Denmark

// The abstract heap is a collection of disjoint buffers,
// each accessed in the map by its base address
type heap_t = map<nat, seq<uint>>

datatype frame_t = frame(fp : nat, content : seq<uint>)
// The stack is a sequence of frames
datatype stack_t = stack(sp : nat, fs : seq<frame_t>)
// relation between the byte level memory and structured heap/stack
predicate mem_inv(mem : map<int, uint8>, h : heap_t, s : stack_t)
{
. . .

}

datatype iter_t = iter_t(
base_ptr : nat, // Start of the heap buffer
index : nat, // Current index
buff : seq<uint> // Abstract view of the heap buffer

)

predicate iter_inv(iter : iter_t, heap : heap_t, addr : nat)
{

iter.base_ptr in heap
∧ heap[iter.base_ptr] == iter.buff
∧ iter.index ≤ |iter.buff|
∧ addr == iter.base_ptr + BASE() * index
∧ . . .

}

Figure 8: Generic Memory Interface. Dafny types for the struc-

tured heap, stack, and iterators over the heap’s buffers, plus an

invariant that connects an iterator to the contents of the heap.

procedure lw_heap(dst : reg32, src : reg32, offset : imm12,
inc : bool, iter : iter_t) returns (iter' : iter_t)
{ : instruction Ins32(RV_LW(dst, src, offset))}

requires
iter.index != |iter.buff|; // Not at the end of the buffer
// heap is a global state variable of type heap_t
iter_inv(iter, heap, src + offset);

ensures
dst == heap[iter.base_ptr][iter.index]

== iter.buff[iter.index];
inc =⇒iter_inv(iter', heap, src + offset + 4);
!(inc) =⇒iter_inv(iter', heap, src + offset);

Figure 9: RISC-V Load from Structured Heap. The untrusted
lw_heap Vale procedure offers a friendlier interface that is proven

sound against the trusted ISA-level RV_LW instruction (from Fig-

ure 2). The proof relies on invariants maintained about iterator

validity (shown in Figure 8).

(satisfies iter_inv). In exchange, the caller learns (from the first

ensures clause) that the destination’s value has been updated to

reflect the value in the structured heap.

In other words, the caller can reason about the contents of the

immutable sequences of uint words, without worrying about the

underlying bytes in the flat memory model. The lw_heap procedure
returns an updated iterator that is guaranteed to be well formed.

This programming style also means that despite all of the com-

plexities in iter_inv, the full definition is irrelevant for callers

of lw_heap, since lw_heap maintains the invariant “for free”. Fig-

ure 10 shows this in action. The procedure buff_sum computes

the sum of the contents in the buffer pointed at by a1. It does so
via pointer manipulation (e.g., incrementing a1 by four on each

loop iteration), but the correctness of these memory operations is

maintained by the iterator iter', which lw_heap updates.

Galápagos offers a similar interface, sw_heap, that wraps RISC-
V’s store word instruction. Like lw_heap, it takes in and returns

procedure buff_sum(iter : iter_t) returns (iter' : iter_t)
requires
iter.index == 0 ∧ |iter.buff| == 10;
iter_inv(iter, heap, a1);

modifies t1, t2, a1, a2;
ensures
iter'.index == 10 ∧ iter_inv(iter', heap, a1);
a1 == old(a1) + 40;
a2 == old(a2) + sum(iter.buff);

{
iter' : = iter;
addi(t1, a1, 40); // t1 points to the end of the buffer
while (a1 < t1)
invariant a2 == old(a2) + sum(iter'.buff[..iter'.index]);
// Automatically maintained by lw_heap
invariant iter_inv(iter', heap, a1);

{
iter' : = lw_heap(t2, a1, 0, true, iter');
add(a2, a2, t2); // a2 += t2
addi(a1, a1, 4); // a1 += 4

}
}

Figure 10: Looping Over a Structured Memory Buffer. A Vale

procedure illustrating the use of the iterator interface to ergonomi-

cally process heap buffers. The iter_inv is maintained for free due

to Galápagos abstraction layer design. Slightly elided detail: sum is

a wrapped sum rather than mathematical sum due to overflow.

an iterator, guarding the heap-buffer writes and maintaining the

well-formed property of the iterator.

Accessing Stack Variables. Galápagos’ memory abstraction

layer also provides a structured stack as a generically-proven ab-

straction over the byte-level memory. The stack is a sequence of

frames, each containing several slots for local variables. This makes

it simpler for the implementation to prove that variables spilled

from registers to the stack retain their value until the next access.

Variables in the current frame can be read through the procedure

lw_stack, which is another wrapper around the load word instruc-

tion (RV_LW), except the source-address register is hard-coded to be
the stack pointer (SP). Stack frames can be added and removed using

the procedures push_stack and pop_stack, which are wrappers

around subtraction from and addition to the stack pointer.

3.4 Assembly Implementation
WithGalápagos, the developer provides, in Vale, a hardware-specific

implementation of their cryptographic primitive. They can do this

by transcribing the assembly output by a compiler (e.g., when run

on C reference code), by handcrafting the Vale assembly to exploit

optimization opportunities missed by a generic compiler, or any

mix of these strategies.

As they write their implementation, they interact with memory

via the high-level, structured memory interfaces provided by Galá-

pagos (§3.3). This makes it straightforward to invoke the definitions

and proofs from the hardware-specific instantiation of the abstract

implementation (§3.2). For example, because Galápagos’ iterators

abstract the ISA’s byte-level memory into sequences of structured

data, the iterators’ sequences can be passed directly to the lemmas

proven about the abstract implementation.

To illustrate this process, Figure 11 shows an excerpted version of

the concrete RISC-V implementation ofmulti-word addition. It takes

in an iterator for each of the 𝑥 , 𝑦, and 𝑧 buffers. Internally, it uses

the lw_heap and sw_heap procedures to interact with these buffers

CCS ’23, NOV. 26-30, Copenhagen, Denmark Yi Zhou, Sydney Gibson, Sarah Cai, Menucha Winchell, and Bryan Parno

procedure big_add(x_iter : iter_t, y_iter : iter_t, z_iter : iter_t)
returns (z_iter' : iter_t)
requires
x_iter.index == y_iter.index == z_iter.index == 0;
|x_iter.buff| == |y_iter.buff| == |z_iter.buff| == 96;
iter_inv(x_iter, heap, a1);
iter_inv(y_iter, heap, a2);
iter_inv(z_iter, heap, a3);

modifies
t1; t2; a1; a2; a3; a4;

ensures
iter_inv(z_iter', heap, a3);
a4 == 0 ∨a4 == 1; // Carry out bit
to_nat(x_iter.buff) + to_nat(y_iter.buff) ==
to_nat(z_iter'.buff) + a4 * pow(BASE(), 96);

{
// Implementation code here with loops maintaining iter_inv
. . .
// Invoke concretized lemma from the abstract impl's proof
big_add_correct(x_iter.buff, y_iter.buff, z_iter'.buff, a4);

}

Figure 11: A Concrete Vale Implementation of Multi-
Word Addition. By writing the implementation’s pre- and post-

conditions in terms of the abstract implementation’s definitions

(from Figure 7), the developer can easily invoke the corresponding

generic lemma concretized to the this platform.

in terms of the immutable sequences contained in the iterators

(e.g., in x_iter.buff). This allows the implementation to easily

invoke the concretized proof from the abstract implementation (i.e.,

big_add_correct from Figure 7), since both operate over the same

high-level sequences. The proof demonstrates that the assembly

implementation has successfully computed a step of the abstract

implementation (namely computing the sum).

3.5 Algebra Solver Support
Algebraic reasoning is a common theme in cryptographic proofs.

The highly parameterized nature of Galápagos also means that

many architecture-specific constants cannot be assumed, resulting

in formulas with more symbolic components.

Due to the undecidable nature [42] of general non-linear prob-

lems, SMT solvers (including Z3, the solver Dafny relies on), while

quite effective at many logical theories, often struggle with non-

linear reasoning. However, certain sub-classes of non-linear formu-

las such as congruence relations have been shown to be decidable

and robustly handled by dedicated algebra solvers [28].

Inspired by prior work [61] in the interactive theorem prover

setting, we have extended Dafny to offer similar support for the

Singular algebra solver [18]. A developer can provide a proof goal

and relevant facts (proven in standard Dafny) and then explicitly

invoke the solver via the new gbassert keyword. We provide more

details on our encoding in Appendix A.

3.6 Dafny Standard Library Support
Dafny provides a basic set of language features (e.g., sequences or

maps) for defining and proving the correctness of an implemen-

tation. However, any additional properties must be proven from

scratch by the developer. As a result, previous Dafny projects [11,

13, 22, 27, 29, 30, 39, 40] have each developed their own project-

specific libraries. This has contributed to significant duplication of

effort across projects and even across time, as these project-specific

libraries are typically not maintained as Dafny actively evolves.

Early in Galápagos’s development, we observed that we would

need many of the same properties proven by previous projects,

so rather than adding yet another project-specific collection, we

have created the first Dafny standard library. The library offers a

collection of definitions and lemmas, all fully verified with the latest

version of Dafny. They cover data structures (e.g., maps, sequences,

and sets), parameterized big integers represented as multi-limb

sequences, and an extensive non-linear algebraic properties for

dispatching problems algebra solvers (§3.5) cannot handle.

In creating the new library, we drew upon code and proofs from

past projects, but rewrote them in a uniform style (both syntactically

and in proof style). We also extended them to fill in obvious gaps.

The main components covered by our version is discussed below.

Data Structures. Dafny provides built-in support for sequences,

maps, and sets, making them convenient for modeling a wide vari-

ety of systems. On top of these functional data structures, we added

more robust support for performing and reasoning about insertion,

removal, extrema, subsequencing or subsetting, conversions be-

tween data structures, and higher-order functions (fold, filter, etc.)

over the data structures.

Big Integers. As discussed earlier, cryptographic algorithms

often operate on large integers that cannot fit into a single machine

word. We provide a parameterized library for representing such

large integers as multi-limb sequences. The library includes oper-

ations such as big_add shown in Figure 7, lemmas about results

of the operations, and lemmas describing the effect of converting

between large integers represented by different bases. The latter

simplify the reasoning about, say, converting the representation of

a number as a sequence of bits into a sequence of 32-bit words.

Non-linear Arithmetic. As discussed earlier, another common

theme in cryptographic proofs is algebraic reasoning. While frag-

ments of non-linear reasoning can be decided (as we do with our

newly added Singular support – §3.5), the problem as a whole is

undecidable. SMT solvers rely on various heuristics to nonetheless

try to solve at least some non-linear problems. Unfortunately, in our

experience (and that of previous work [22, 30]), such heuristics are

unreliable; they can fail to solve seemingly simple problems, and

even when they succeed one time, the proofs can break in response

to seemingly minor perturbations, even something as simple as

variable renaming. To mitigate these effects, our library proves a set

of common algebraic properties from first principles andmake them

available as lemmas. These lemmas are exposed with varying levels

of automation built in. Users can invoke very general lemmas (e.g.,

exposing lots of properties about multiplication), which provide

significant automation but may create proof performance problems.

Alternatively, developers can invoke tailored lemmas that specify

one property (e.g., multiplication is commutative) or even choose a

version where they specify exactly which variables in an equation

the property should be applied to (e.g., they can specify 𝑥 and 𝑦

as arguments to the lemma to show that 𝑥 ∗ 𝑦 == 𝑦 ∗ 𝑥). These
more specific versions require more manual developer work but

they provide consistently provide fast, deterministic performance.

The library has been adopted by the Dafny team at Amazon,

who have added it to Dafny’s continuous integration tests, which

run on each commit to the main Dafny repository. The presence

of a unified standard library has already encouraged additional

Galápagos: Developing Verified Low-Level Cryptography on Heterogeneous Hardware CCS ’23, NOV. 26-30, Copenhagen, Denmark

Figure 12: Case Studies Overview.We include three hardware

platforms §4.1 and two algorithms §4.2 in our case studies.

contributions from other Dafny developers, including support for

monadic operations, searches, sorts, and a Unicode library.

4 Case Studies
As discussed in §1, Galápagos’ initial case studies were motivated

by the need to support the secure boot of the OpenTitan security

chip [49]. OpenTitan aims to process RSA signatures on both the

main RISC-V core and on the custom OTBN accelerator. Having

both implementations provides a fallback in case the OTBN acceler-

ator is later discovered to have a flaw, or if manufacturers decide to

omit the OTBN to save cost and energy. The RSA signature verifica-

tion routine is used to validate the firmware’s integrity at the very

beginning of the boot process; this code is burned into the chip’s

boot ROM, so it cannot be updated through software or microcode

patches, only by recalling the chip, designing a new ROM mask,

and manufacturing new chips. Hence, the security and correctness

of the implementation is crucial.

To further test Galápagos’ expressivity, we added yet another

hardware platform, the MSP430. We also added a second, lattice-

based cryptographic primitive, Falcon, recently standardized by the

NIST post-quantum competition.

In this section we elaborate on both the hardware platforms and

our verified implementations. Figure 12 illustrates how our case

studies exercise the development process from Figure 4.

4.1 Case Studies: Hardware Platforms
Our case studies target three ISAs operating at different bit-widths,

using different addressing modes, and supporting different arith-

metic operations. We have developed formal semantics for each

ISA in Dafny. These semantics are trusted, but we increase our

confidence in them by running fuzz tests that compare the output

of our semantics with those produced by reference simulators.

MSP430 is a microcontroller family developed at Texas Instru-

ments [10]. It offers a minimalist 16-bit ISA with only 27 instruc-

tions (omitting, for example, multiplication). MSP430 memory is

byte addressable, and its instructions have six possible address-

ing modes: register, indexed, absolute, indirect register, indirect

auto-increment, and immediate.

RISC-V is an open standard ISA family [57, 63]. For our case

study, we use RV32IM, which is the 32-bit base integer ISA (47

instructions) with extensions for integer multiplication and division

(8 instructions). The instruction set is quite standard, with a 32-

bit address space and byte addressable memory. There are only

three data addressing modes: register, immediate, and indexed. One

interesting wrinkle is that unlike most platforms (including our

other two) RISC-V does not have a dedicated flags register for zero,

overflow, or sign bits; instead the developer is expected to check

for such conditions using standard ALU operations.

OTBN is a cryptographic accelerator ISA from the OpenTitan

project led by lowRISC and Google. OTBN operates on 32 control

registers, each 32 bits wide, and 32 data registers, each 256 bits

wide. Hence, the data registers alone can potentially hold 1KB of

data without any memory accesses. OTBN is designed to accel-

erate cryptographic computations involving large integers, such

as those used in RSA or elliptic curve cryptography. OTBN sup-

ports 57 instructions, many of which offer configurable options.

For example, the BN.MULQACC instruction performs a quarter-word

(64 bit) multiplication and then adds the result to a dedicated ac-

cumulation register. The instruction can be customized to choose

different quarter words from each source/destination register, to

shift the multiplication result before accumulating it, and to clear

the accumulation register before adding the result.

For the data-memory instructions, BN.LID and BN.SID, a con-
trol register provides the index of the data register as an operand,

indirectly reading and writing the wide registers. The instructions

read/write 256-bits of data memory and support indirect addressing

modes with auto-increment.

Memory Abstractions. Despite the differences in bit-width,

memory size and addressing modes, Galápagos’ common memory

abstraction applies smoothly to all of the hardware platforms.

Instantiating the Galápagos structured memory for each is sim-

ple. For each platform, the developer only needs to specify the

maximum memory size, the stack size, the word size, and the types

for heap entries. Given these definitions, Galápagos automatically

generates the high-level memory interface (§3.3), as well as refine-

ment proofs showing that the interface is sound with respect to the

byte-level memory model in the trusted ISA semantics. The devel-

oper can then wrap the generated abstractions around platform-

specific instructions and use those to write the platform-specific

implementations.

We return to lw_heap pattern in Figure 9 for an example in

RISC-V. The actual RV_LW instruction (from Figure 2) only supports

register plus immediate addressing mode. This can be made com-

patible with the iterator interface by combining lw_heap with an

explicit addi instruction to increment the pointer, or by simply

setting inc to false.
The indirect auto-increment mode in the MSP430 uses a register

operand as a pointer, and it increments the pointer after performing

the load. This matches the programming pattern that moves the

iterator of an array to the next entry after reading the current entry.

There is a similar story on OTBN load instruction. The full syntax

of the instruction is:

CCS ’23, NOV. 26-30, Copenhagen, Denmark Yi Zhou, Sydney Gibson, Sarah Cai, Menucha Winchell, and Bryan Parno

BN.LID <grd>[<grd_inc>], <offset>(<grs>[<grs_inc>])

Both grd and grs are 32-bit control registers, where grd specifies
the index of the wide register to use as a destination, and grs along
with the offset specifies the source memory address. Suppose that

grd is register x1, which contains the value 0x3, grs is register x16,
which contains the value 0x8000. With no offset, this instruction

will load the 256-bit word at address 0x8000 into data register w3.
We note that there are options to increment the control registers,

which also correspond to the lw_heap iterator pattern.

4.2 Case Studies: Cryptographic Algorithms
RSA. RSA signatures are simple to specify in terms of modular ex-

ponentiation of integer values. RSA implementations, however, are

amenable to a wide variety of algorithmic and assembly-level opti-

mizations. The algorithmic optimizations are quite complex to rea-

son about even in isolation, let alone in the midst of a complicated

assembly-level implementation. Hence Galápagos’ split of these

obligations between the abstract implementation and the hardware-

specific implementation simplifies our correctness proofs.

Abstract Implementation. Our abstract implementation, fol-

lowing the style of OpenTitan’s unverified baselines, employs the

Montgomery multiplication algorithm [43] to efficiently implement

modular exponentiation. Algorithm 1 shows the pseudocode of the

algorithm. Notably, the algorithm (and our abstract implementa-

tion) is parameterized over both by the radix (e.g., the machine-

word’s upper limit) and by the size of the big integers, which are

represented by sequences of machine words, like the multi-limb

sequences in §3.2.

Notice that Line 3 of the algorithm accumulates an intermediate

result and requires several multi-limb operations (e.g., 𝑢 ·𝑚 is a

product between a multi-limb sequence 𝑚 and a machine word,

which produces a multi-limb result, and similarly for 𝑥 [𝑖] ·𝑦). There-
fore, in the abstract implementation, this line translates into a loop,

which handles the element-wise products and sums.

We show our abstract Montgomery multiplication implementa-

tion correct by proving the following facts: (a) the output is congru-
ent to 𝑥𝑦𝑏−𝑛 , and (b) it is bounded by𝑚. To prove those, we need

to construct appropriate loop invariants. For example, in the loop

over 𝑖 starting on Line 1, two invariants are 𝑎 ≡ 𝑥 [..𝑖]𝑦𝑏−𝑖 (mod𝑚)
and 𝑎 < 2𝑚. While the congruence proof above fits perfectly into

the subset handled by the extension to Dafny (§3.5), the bound

proof does not. Thus for the latter part we rely on lemmas about

non-linear arithmetic from our new Dafny standard library (§3.6).

Below we expand on the proof of invariants in the main loop of

Algorithm 1, starting from Line 1. The two main invariants are the

congruence relation and the bound. i.e. 𝑎 ≡ 𝑥 [..𝑖]𝑦𝑏−𝑖 (mod𝑚) and
𝑎 < 2𝑚. Consider 𝑖th iteration of the loop. We can show that the

accumulation preserves the bound:

(𝑎 + 𝑥 [𝑖] · 𝑦 + 𝑢 ·𝑚)/𝑏
≤ (2𝑚 − 1 + 𝑥 [𝑖] · 𝑦 + 𝑢 ·𝑚)/𝑏
≤ (2𝑚 − 1 + 𝑥 [𝑖] · (𝑚 − 1) + 𝑢 ·𝑚)/𝑏
≤ (2𝑚 − 1 + (𝑏 − 1) (𝑚 − 1) + (𝑏 − 1)𝑚)/𝑏
= (2𝑏𝑚 − 𝑏 − 1)/𝑏
< 2𝑚

The congruence proof roughly follows these steps:

(𝑎 + 𝑥 [𝑖] · 𝑦 + 𝑢 ·𝑚)/𝑏 (mod𝑚) (1)

≡ (𝑎 + 𝑥 [𝑖] · 𝑦 + 𝑢 ·𝑚)𝑏−1 (mod𝑚) (2)

≡ (𝑎 + 𝑥 [𝑖] · 𝑦)𝑏−1 (mod𝑚) (3)

≡ (𝑥 [..𝑖]𝑦𝑏−𝑖 + 𝑥 [𝑖] · 𝑦)𝑏−1 (mod𝑚) (4)

≡ (𝑦 (𝑥 [..𝑖]𝑏−𝑖 + 𝑥 [𝑖]))𝑏−1 (mod𝑚) (5)

≡ (𝑦𝑥 [..𝑖 + 1]𝑏−𝑖)𝑏−1 (mod𝑚) (6)

≡ 𝑦𝑥 [..𝑖 + 1]𝑏−(𝑖+1) (mod𝑚) (7)

We prove that the least significant word of𝑎+𝑥 [𝑖] ·𝑦+𝑢 ·𝑚 is 0, which

justifies (2). We also note that (6) is due to the evaluation rule of

multi-limb numbers. These invariants, along with the conditional

subtraction at Line 6 of the algorithm, ensure we compute the

correct result.

Concrete Implementations. We ported the existing, unverified

RSA implementations for RISC-V and OTBN into Vale. For the

MSP430, we compiled a C version and transcribed the resulting

assembly to Vale. For our proofs, we instantiate the abstract imple-

mentation’s functor with hardware-specific modules that specify

an appropriate radix for each platform (e.g., 2
16

for the MSP430).

All three modules specialize RSA’s integers to 3072 bits, to match

OpenTitan’s expectations.

Given the lemmas instantiated from the abstract implementation,

proving the correctness of the hardware-specific implementations

was relatively straightforward, mostly boiling down to proving

various hardware-specific bit-fiddling optimizations. The OTBN

implementation was relatively easy, since it could fit all of the RSA

integers entirely into registers. Its two sets of flag registers sim-

plified carry propagation, and the built-in accumulator register

likewise simplified the multi-word computations. The most signifi-

cant proof challenge was proving that the implementation correctly

used the (very complex) BN.MULQACC instruction to compute the

multiplication of two 256-bit numbers.

The MSP430 and RISC-V implementations resemble one another.

Compared to OTBN, both support a simpler multiplication instruc-

tion, while RISC-V was complicated by the lack of a flags register.

Algorithm 1 : Montgomery Multiplication

Require:
𝑏 is some radix

𝑛 is some length

𝑚, 𝑥,𝑦 are vectors length 𝑛 with elements bounded by 𝑏

𝑎 is a vector length 𝑛 + 1 with all 0 elements

0 ≤ 𝑥,𝑦 < 𝑚

𝑚′ = −𝑚−1mod 𝑏

Ensure:
𝑎 = 𝑥𝑦𝑏−𝑛 mod𝑚

1: for 𝑖 = 0; 𝑖 < 𝑛; 𝑖 = 𝑖 + 1 do
2: 𝑢 = (𝑎[0] + 𝑥 [𝑖] · 𝑦 [0])𝑚′mod 𝑏

3: 𝑎 = (𝑎 + 𝑥 [𝑖] · 𝑦 + 𝑢 ·𝑚)/𝑏
4: if 𝑎 > 𝑚 then
5: 𝑎 = 𝑎 −𝑚

Galápagos: Developing Verified Low-Level Cryptography on Heterogeneous Hardware CCS ’23, NOV. 26-30, Copenhagen, Denmark

Falcon. To validate that Galápagos is applicable to other algo-
rithms, we have used it to produce verified implementations of

Falcon [23], a post-quantum signature algorithm recently standard-

ized by NIST. Falcon is based on lattices and its security reduces

to the short integer solution problem [1], making it quite different

from RSA.

The spec for Falcon is relatively concise, although still more

verbose than RSA, since it depends on definitions of polynomial

arithmetic. Simplifying a bit, Falcon verifies a signature 𝑠 over

(hashed) message𝑚, using public key pk, by computing

𝑠 ′ ←𝑚 − 𝑠 · pk mod 𝑞

and checking that the distance between 𝑠 and 𝑠 ′ is small. The sig-

nature and the public key are treated as polynomials, so the most

computationally intense operation is computing the polynomial

multiplication (i.e., 𝑠 · pk).

Algorithm 2 : Number Theoretic Transform (NTT) with Cooley-

Tukey (CT) butterfly

Require:
𝑛 is a power of two.

𝑞 is a prime such that 𝑞 ≡ 1(mod 2𝑛).
𝑎 is a vector in Z𝑛𝑞 (standard order).

𝜓 is a primitive 2𝑛-th root of unity in Z𝑞
Ψ𝑟𝑒𝑣 is a vector in Z

𝑛
𝑞 with powers of𝜓 (bit-reversed order).

Ensure:
𝑎 is the NTT of its initial content (bit-reversed order).

1: 𝑡 = 𝑛

2: for𝑚 ← 1; 𝑚 < 𝑛; 𝑚 ← 2 ·𝑚 do
3: 𝑡 = 𝑡/2
4: for 𝑖 ← 0; 𝑖 < 𝑚; 𝑖 ← 𝑖 + 1 do
5: 𝑠 = Ψ𝑟𝑒𝑣 [𝑚 + 𝑖]
6: for 𝑗 ← 2𝑖 · 𝑡 ; 𝑗 < 2𝑖 · 𝑡 + 𝑡 ; 𝑗 ← 𝑗 + 1 do
7: 𝑒 = 𝑎[𝑗]
8: 𝑜 = 𝑎[𝑗 + 𝑡] · 𝑆
9: 𝑎[𝑗] = (𝑒 + 𝑜) mod 𝑞

10: 𝑎[𝑗 + 𝑡] = (𝑒 − 𝑜) mod 𝑞

Abstract Implementation.Naively, a polynomial multiplication

takes 𝑂 (𝑁 2) time, but this can be optimized to 𝑂 (𝑁 log𝑁) using
the number theoretic transform (NTT). In our abstract implemen-

tation, we employ the Cooley-Tukey (CT) butterfly algorithm [15]

to compute a forward NTT operation (shown in pseudocode in

Algorithm 2). Notice that the algorithm, like our abstract implemen-

tation, is parameterized over the prime 𝑞 that defines the field and

the size 𝑛 of the polynomials. Hence, our generic NTT implemen-

tation can be instantiated for many other lattice-based algorithms

beyond Falcon.

While the pseudocode in Algorithm 2 is relatively succinct, the

justifications for why each step computes the right value are sur-

prisingly subtle and are described across multiple research pa-

pers [37, 38, 44, 45].

We provide some brief intuition for the algorithm’s correctness

and refer the interested reader to [38] for more details. The NTT

algorithm works with a sequence of words, where each word repre-

sents a polynomial coefficient in the ring Z𝑞 . Hence we can think of

CLR R10 ; clear R10
SUBC R10, R10 ; subtract with overflow flag

; R10 is either 0x0000 or 0xFFFF
AND 12289, R10 ; R10 is conditionally set to Q

Figure 13: MSP430 Set Register On Overflow.

add a1, a1, a0 ; sum up a0 and a1
sltu a0, a1, a0 ; if the sum is less than a0, set a0

Figure 14: RISC-V Extract Carry Bit.

a sequence as a polynomial and reason about the effect of evaluat-

ing it on a point. If we have sequence 𝑎 ∈ Z𝑛𝑞 and point 𝑥 ∈ Z𝑞 , then
the evaluation 𝑎(𝑥) can be written as

∑𝑛−1
𝑗=0 𝑎[𝑗]𝑥 𝑗 . Let 𝜔 be the

primitive 𝑛-th root of unity in the ring Z𝑞 . The NTT algorithm eval-

uates the polynomial 𝑎 at the points 𝜔0, 𝜔1 ..𝜔𝑛−1
. More formally,

NTT(𝑎) [𝑖] = ∑𝑛−1
𝑗=0 𝑎[𝑗]𝜔𝑖 𝑗

.

The CT butterfly optimization uses the fact that polynomial eval-

uation can be split into the evaluation of the terms corresponding to

even and odd powers. Let the corresponding coefficients be 𝑎𝑒 and

𝑎𝑜 , then we can rewrite 𝑎(𝑥) as 𝑎𝑒 (𝑥2) +𝑥 ·𝑎𝑜 (𝑥2). This reduces the
problem to to evaluating the polynomials 𝑎𝑒 and 𝑎𝑜 on the points

𝜔0, 𝜔2 ..𝜔2(𝑛−1)
. Since 𝜔 is a primitive 𝑛-th root, the list now only

contains
𝑛
2
distinct points. Applying this recursively produces the

𝑂 (𝑁 log𝑁) running time.

Note, however, that for additional efficiency, Algorithm 2 is an

iterative and in-place version of the CT butterfly. The loop over

𝑚 that starts on Line 2 corresponds to the size of the polynomial,

which doubles at each level. The loops over 𝑖 and 𝑗 combine the

evaluations of the smaller polynomials.

Concrete Implementations. Having dealt with the complex

mathematical reasoning in our abstract implementation, our con-

crete Falcon implementations focus on proving that they faithfully

execute the operations dictated by the abstract implementation.

Of the three implementations, the OTBN implementation is the

simplest, since we were able to implement Falcon’s many addi-

tions and subtractions modulo 𝑞 by simply loading 𝑞 into OTBN’s

dedicated modulus register and then invoking OTBN’s modular ad-

dition and subtraction instructions. Implementing these operations

on the MSP430 and RISC-V was more complex and involved some

non-trivial bit manipulation. For example, on RISC-V the carry bit

can be extracted through conditional branches, but Figure 13 is

more efficient. Figure 14 shows another example from the MSP430.

Without using branches, the code conditionally sets R10 to 12289
(the modulus 𝑞) based on the overflow flag.

5 Evaluation
We aim to evaluate two key questions.

(1) How much developer effort does Galápagos save?

(2) How do implementations developed with Galápagos perform

compared to unverified reference implementations?

5.1 Developer Effort
Below, we estimate how much effort is saved by applying Galápa-

gos’s abstractions, rather than writing them from scratch for each

CCS ’23, NOV. 26-30, Copenhagen, Denmark Yi Zhou, Sydney Gibson, Sarah Cai, Menucha Winchell, and Bryan Parno

Specification Abstraction Total

loc savings loc savings loc savings

Generic 453 - 1,140 - 1,593 -

MSP430 490 48% 1,091 51% 1,581 50%

RISC-V 685 39% 1,273 47% 1,958 44%

OTBN 1,506 23% 1,843 38% 3,349 32%

Figure 15: Hardware Line Counts & Estimated Effort Saved.

RSA Falcon

Dafny Vale savings Dafny Vale savings

Spec 58 - - 440 - -

Generic 963 - - 5,280 - -

MSP430 32 1,757 34% 290 2,945 62%

RISC-V 446 1,824 29% 543 2,654 62%

OTBN 339 2,103 28% 163 2,641 65%

Figure 16: Algorithm Line Counts & Estimated Effort Saved.

platform or algorithm. Hence we report the ratio of the generic

part to the sum of generic and platform/algorithm-specific parts.

Case Study Hardware. Figure 15 measures the lines of code de-

veloped for our three hardware platforms. The generic row contains

the abstract machine model (§3.2) and the memory abstraction layer

(§3.3). The other rows show the additional lines of code needed to

support each ISA’s specification and abstraction. OTBN requires

slightly more effort due to the complexities of the ISA’s design.

The generic row is a one-time cost when developing the Galápa-

gos framework. For the simpler ISAs, it saves up to half of the code

that would have been written if developed without Galápagos.

Case Study Algorithms. Figure 16 presents the lines of code
developed for our cryptographic algorithms. The specification and

the generic implementation are the per-algorithm one-time cost.

We note that the generic implementation for RSA is much shorter

than Falcon’s, largely due to the Dafny standard library’s support

for big-integer reasoning. For the concrete implementations, the

Vale code embeds the concrete assembly while the Dafny code

measures the additional platform-specific lemmas needed. Notice

that the generic code reduces the proof burden for RSA by ∼ 30%

and for Falcon by more than 60% (RSA has a lower ratio due to its

heavy use of our standard library).

In our initial verification efforts, we verified implementations

of RSA for the OTBN and RISC-V using traditional monolithic

techniques from prior work [11, 24, 55]. Motivated by the dupli-

cation across these implementations, we then developed the Galá-

pagos framework and used it to refactor the code. This reduced

the developer-written platform-specific code by 28% for OTBN and

29% for RISC-V. We then further leveraged the framework to both

specify the MSP430 and add a custom RSA implementation, in

approximately one week of developer effort.

With Falcon, we had the Galápagos framework in place, so we

initially focused on the abstract proofs related to the NTT, which

took 4 developer months. We then derived the platform specific

implementations in ∼ 1 developer month.

Line Count Definitions Lemmas

Data Structures 1,219 46 40

Big Integers 914 27 29

Nonlinear Arith. 3,732 7 249

Figure 17: Standard Library Statistics.

Standard Library. As discussed in §3.6, we introduced Dafny’s

first standard library. Our case studies make heavy use of it, with

∼ 300 calls to standard-library lemmas.

Figure 17 summarizes various statistics about the new library.

Notice that even though the non-linear portion only includes a

handful of definitions (primarily for basic recursive definitions of

the various non-linear operations), it provides nearly 250 lemmas

proving properties of those definitions.

Singular Support. Our case studies invoke Dafny’s new Sin-

gular solver 27 times, often for properties that would have been

quite painful to prove via manual lemma invocations. As evidence

for this, we replaced 15 manual proofs with Singular invocations,

eliminating ∼ 525 lines of proof code.

5.2 Performance
Hardware Setup.We execute our verified RISC-V andMSP430 code

on two physical development boards and compare the cycle counts

of our verified code against their unverified baselines. For RISC-V,

we use SiFive’s HiFive1 Rev B featuring the Freedom E310 microcon-

troller. We run the controller at the default 16 MHz. For MSP430,

we use a Texas Instrument LaunchPad with the MSP430FR2476

microcontroller configured to run at 8 MHz.

Since OpenTitan chips are still working their way through their

first production run, to measure performance of our OTBN imple-

mentations, we rely on OpenTitan’s cycle-accurate simulator [48].

Baselines. For RSA, prior to our work, the OpenTitan team

produced a hand-written assembly implementation for OTBN, and

they used a C compiler (configured to optimize for size) to produce

code for RISC-V. We similarly use a C compiler to produce code for

the MSP430. These three unverified implementations serve as our

RSA baselines.

Falcon has pre-existing C implementation [34] but no optimized

assembly for the hardware platforms we target. Hence, we rely on

a C compiler to produce unverified baselines for RISC-V and the

MSP430. No unverified baselines exist for OTBN, so we wrote our

verified implementation from scratch.

Results. Figure 18 shows our performance results for our var-

ious verified implementations and their unverified baselines. We

find that our verified implementations typically perform within

±2% of their respective baseline implementations. This result is

expected, since our verified implementations differ from the base-

lines only in minor ways which make the code more amenable to

verification, e.g., instruction reordering. Our verified Falcon imple-

mentation for the MSP430, however, is considerably faster than

its compiled baseline. We attribute this result to our hand-tuned

register allocation in the verified version.

Galápagos: Developing Verified Low-Level Cryptography on Heterogeneous Hardware CCS ’23, NOV. 26-30, Copenhagen, Denmark

MSP430 RISC-V OTBN
RSA
Baseline 144,998,445 9,355,922 160,814

Verified 142,870,737 9,454,635 160,664

% Change -1.47% +1.05 0%

Falcon
Baseline 2,810,513 846,946 -

Verified 2,015,556 846,926 256,796

% Change -28.3% 0% -

Figure 18: Case Study Performance (Cycle Counts). If %
Change is negative, the verified version outperforms the unver-

ified baseline. OTBN does not have an unverified Falcon baseline.

6 Related Work
Barbosa et al. present a recent summary of computer-aided cryptog-

raphy [8]. Here we focus on more closely related work on formally

verified cryptographic implementations. We roughly categorize the

work by target (source or assembly language) and by technique.

High-Level Languages. Several lines of work verify or produce
cryptographic code in high-level languages. For example, some

work [5, 9, 65] uses the Verified Software Toolchain [4] and yields C

code, as does work on Fiat Crypto [21] and the HACL
∗
library [53,

68]. Other work [59] uses SAW [19] to produce C and Java code.

Still other work [67] relies on extraction to OCaml.

All of this work trusts a compiler (often run in a maximally ag-

gressive optimization mode) to correctly and securely produce ma-

chine code suitable for execution. Such trust may be misplaced [21,

62, 64]. Relying on a compiler can also be problematic for emerging

hardware platforms, like OTBN, for which compilers do not yet

exist. Historically, this approach has also produced code that lags

hand-tuned assembly by 2× [21] to 100× [67].

Low-Level Languages. Work in Jasmin [2, 3] verifies imple-

mentations written in a domain-specific language and then uses

verified compilation to produce an executable. Fiat Crypto [21]

also employs verified compilation from high-level elliptic curve de-

scriptions to C-level implementations. Subsequent work suggests a

path towards extending their verified pipeline to assembly [51, 52].

While attractive, developing a verified compiler (or even a verified

backend) is a significant upfront development effort, and it asks

engineers to write proofs about compilation passes, rather than

about the code they wish to execute. It may also be difficult to

generically match the ingenuity that performance engineers put

into their hand-crafted assembly.

In contrast to verified compilation, previous work [11, 24, 55]

based on Vale [11] directly verify a wide variety of cryptographic al-

gorithmswritten in assembly. However, that work primarily focuses

on x86-64, with a few implementations for Arm. These implemen-

tations and their proofs are standalone efforts, with little code or

proof shared between architectures, even for implementations of

the same algorithm.

Another line of work [14, 54, 61] targets implementations in an

assembly-like domain-specific language (translated from platform-

specific assembly via Python). The work’s key insight is that often

the proof of correctness for the core of a cryptographic routine can

be automatically partitioned into proofs about basic mathematical

operations and proofs about machine behavior (e.g., proving the

absence of overflow), with the former discharged by an algebra

solver (Singular [18]) and the latter discharged via an SMT solver

(Z3 [17]). This work is complementary to Galápagos, which focuses

on providing functor-based platform and algorithm abstractions

that can be verifiably reused for multi-platform development. Sim-

ilarly, their work inspired our integration of Singular into Dafny,

but we have found that working in a general verifier like Dafny is

critical, since it is unclear how to soundly and automatically break

up and efficiently discharge the proof obligations that arise from

larger implementations that include memory operations, condi-

tional branches, non-linear equations beyond congruence relations,

and arbitrary-length sequences needed to compute, say, RSA.

Extracting Common Algorithmic Features.Many verifica-

tion projects focus on verifying elliptic curve operations, and sev-

eral have extracted common algorithmic code (e.g., computing over

Montgomery curves), either as libraries [67] or as compiler passes

(in Fiat Crypto [21]). This generic code is then instantiated for

specific curves that may have different optimal strategies for rep-

resenting curve points. Galápagos also abstracts over the crypto

algorithm, but it differs in using verified functors and focusing

on implementations of the same algorithm on different hardware

platforms, rather than different algorithms/curves on the same

platform.

Prior work has also targeted the number theoretic transform,

which is the building block of many post-quantum cryptographic al-

gorithms. Navas et al. use abstract interpretation to show that NTT

implementations in C are free of algorithmic overflows [44]. Other

work has produced verified NTT implementations through domain-

specific languages [31, 58]. These works focus on the techniques to

facilitate “push button” verification of individual NTT implementa-

tions, while Galápagos focuses on amortizing the verification effort

across multiple implementations.

7 Conclusion
We have presented the Galápagos framework, which aims to lower

the cost of developing high-performance cryptographic implemen-

tations across an increasingly heterogeneous hardware landscape.

Galápagos uses functors to abstract algorithms and platforms, which

can then be automatically instantiated across heterogeneous hard-

ware. Using Galápagos to verify six cryptographic implementations

of RSA and Falcon on three wildly varying platforms shows that

Galápagos reduces the developer’s burden without sacrificing per-

formance. OpenTitan is deploying our verified RSA code at scale. Ul-

timately, we hope Galápagos helps verified cryptography to boldly

go where no (verified) cryptography has gone before.

Acknowledgments
We thank Jay Bosamiya, Joshua Gancher and the anonymous re-

viewers for their helpful feedback on the paper. We thank our collab-

orators at OpenTitan team, especially Felix Miller, Jade Philipoom,

Dominic Rizzo, and Rupert Swarbrick for their help with the Open-

Titan case studies.

This work was funded in part by National Science Foundation

(NSF) Grant No. 1801369 and grants from the Intel Corporation and

Rolls-Royce. Sydney Gibson was also funded by the NSF Graduate

Research Fellowship Program under Grant No. DGE1745016.

CCS ’23, NOV. 26-30, Copenhagen, Denmark Yi Zhou, Sydney Gibson, Sarah Cai, Menucha Winchell, and Bryan Parno

References

[1] Miklós Ajtai. 1996. Generating Hard Instances of Lattice Problems. In Proceedings
of the ACM Symposium on Theory of Computing (STOC).

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin

Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and

Pierre-Yves Strub. 2017. Jasmin: High-Assurance and High-Speed Cryptography.

In Proceedings of the ACM Conference on Computer and Communications Security
(CCS).

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien

Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. 2020. The

Last Mile: High-Assurance and High-Speed Cryptographic Implementations. In

Proceedings of the IEEE Symposium on Security and Privacy.
[4] Andrew W. Appel. 2011. Verified Software Toolchain. In Proceedings of the

European Conference on Programming Languages and Systems (ESOP/ETAPS).
[5] Andrew W. Appel. 2015. Verification of a Cryptographic Primitive: SHA-256.

ACM Trans. Program. Lang. Syst. (April 2015).
[6] arm. 2022. NEON. https://developer.arm.com/Architectures/Neon.

[7] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E.

Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christo-

pher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. 2019.

ISA Semantics for ARMv8-a, RISC-v, and CHERI-MIPS. In Proceedings of the ACM
Symposium Principles of Programming Languages(POPL).

[8] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers,

Kevin Liao, and Bryan Parno. 2021. SoK: Computer-Aided Cryptography. In

Proceedings of the IEEE Symposium on Security and Privacy.
[9] Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. 2015.

Verified Correctness and Security of OpenSSL HMAC. In Proceedings of the
USENIX Security Symposium.

[10] Lutz Bierl. 2000. MSP430 Family Mixed-signal Microcontroller Application Reports.
Texas Instruments.

[11] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino, Jacob R.

Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure Thompson. 2017. Vale:

Verifying High-Performance Cryptographic Assembly Code. In Proceedings of
the USENIX Security Symposium.

[12] Jay Bosamiya, Sydney Gibson, Yao Li, Bryan Parno, and Chris Hawblitzel. 2020.

Verified Transformations and Hoare Logic: Beautiful Proofs for Ugly Assembly

Language. In Proceedings of the Conference on Verified Software: Theories, Tools,
and Experiments (VSTTE).

[13] Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung, M. Frans Kaashoek, and

Nickolai Zeldovich. 2021. GoJournal: A verified, concurrent, crash-safe journaling

system. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

[14] Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe, Ming-Hsien

Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang. 2014. Verifying

Curve25519 Software. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS).

[15] James Cooley and John Tukey. 1965. An Algorithm for the Machine Calculation

of Complex Fourier Series. Math. Comp. 19, 90 (1965), 297–301.
[16] Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S. Adve, and

Grigore Roşu. 2019. A Complete Formal Semantics of x86-64 User-Level Instruc-

tion Set Architecture. In Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI).

[17] L. de Moura and N. Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings
of the Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS).

[18] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann.

2022. Singular 4-3-0 — A computer algebra system for polynomial computations.

http://www.singular.uni-kl.de.

[19] Robert Dockins, Adam Foltzer, Joe Hendrix, Brian Huffman, Dylan McNamee,

and Aaron Tomb. 2016. Constructing Semantic Models of Programs with the

Software Analysis Workbench. In Conference on Verified Software - Theories, Tools,
and Experiments (VSTTE).

[20] Derek Dreyer. 2005. Understanding and Evolving the Ml Module System. Ph. D.

Dissertation. Carnegie Mellon University, USA.

[21] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. 2019. Simple High-

Level Code for Cryptographic Arithmetic - With Proofs, Without Compromises.

In Proceedings of the IEEE Symposium on Security and Privacy.
[22] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017.

Komodo: Using verification to disentangle secure-enclave hardware from soft-

ware. In Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP).

[23] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,

Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte,

and Zhenfei Zhang. 2017. Falcon: Fast-Fourier Lattice-based Compact Signatures

over NTRU. https://falcon-sign.info/.

[24] Aymeric Fromherz, Nick Giannarakis, Chris Hawblitzel, Bryan Parno, Aseem

Rastogi, and Nikhil Swamy. 2019. A Verified Efficient Embedding of A Verifi-

able Assembly Language. In Proceedings of the ACM Symposium on Principles of
Programming Languages (POPL).

[25] Morrie Gasser, Andy Goldstein, Charlie Kaufman, and Butler Lampson. 1989. The

Digital Distributed System Security Architecture. In Proceedings of the National
Computer Security Conference.

[26] Shay Gueron. 2012. Intel
®
Advanced Encryption Standard (AES) New Instructions

Set. https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-

22-v01.pdf.

[27] Travis Hance, Andrea Lattuada, Chris Hawblitzel, Jon Howell, Rob Johnson, and

Bryan Parno. 2020. Storage Systems are Distributed Systems (So Verify Them

That Way!). In Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

[28] John Harrison. 2007. Automating Elementary Number-Theoretic Proofs Using

Gröbner Bases. In Proceedings of the Conference on Automated Deduction (CADE).
[29] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,

Michael L. Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet: Proving Practical

Distributed Systems Correct. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP).

[30] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno,

Danfeng Zhang, and Brian Zill. 2014. Ironclad Apps: End-to-End Security via

Automated Full-System Verification. In Proceedings of the USENIX Symposium on
Operating System Design and Implementation (OSDI).

[31] Vincent Hwang, Jiaxiang Liu, Gregor Seiler, Xiaomu Shi, Ming-Hsien Tsai, Bow-

Yaw Wang, and Bo-Yin Yang. 2022. Verified NTT Multiplications for NISTPQC

KEM Lattice Finalists: Kyber, SABER, and NTRU. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems (2022).

[32] Don Johnson, Alfred Menezes, and Scott Vanstone. 2001. The Elliptic Curve Dig-

ital Signature Algorithm (ECDSA). International Journal of Information Security
(2001).

[33] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,

Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt

Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,

William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,

Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander

Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,

James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,

GordonMacKean, AdrianaMaggiore, MaireMahony, KieranMiller, Rahul Nagara-

jan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,

Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad

Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan

Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma,

Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and

Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a Tensor Process-

ing Unit. In Proceedings of the International Symposium on Computer Architecture
(ISCA).

[34] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen. [n. d.]. PQClean.

https://github.com/PQClean/PQClean Commit febf78a.

[35] Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei

Jiao, Lorena Qendro, and Fahim Kawsar. 2016. DeepX: A Software Accelerator

for Low-Power Deep Learning Inference on Mobile Devices. In Proceedings of the
ACM/IEEE International Conference on Information Processing in Sensor Networks
(IPSN). https://doi.org/10.1109/IPSN.2016.7460664

[36] Royson Lee, Stylianos I Venieris, Lukasz Dudziak, Sourav Bhattacharya, and

Nicholas D Lane. 2019. Mobisr: Efficient on-device super-resolution through

heterogeneous mobile processors. In Proceedings of the Conference on Mobile
Computing and Networking (MobiCom).

[37] Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Grossschadl, Howon Kim,

and Ingrid Verbauwhede. 2015. Efficient Ring-LWE Encryption on 8-Bit AVR

Processors. In Proceedings of IACR Conference on Cryptographic Hardware and
Embedded Systems (CHES). Springer Berlin Heidelberg.

[38] Patrick Longa and Michael Naehrig. 2016. Speeding up the Number Theoretic

Transform for Faster Ideal Lattice-Based Cryptography. In Proceedings of the
Conference on Cryptology and Network Security (CANS).

[39] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Haojun Ma, Bryan Parno, Shaz

Qadeer, Upamanyu Sharma, James R. Wilcox, and Xueyuan Zhao. 2022. Armada:

Automated Verification of Concurrent Code with Sound Semantic Extensibility.

ACM Transactions on Programming Languages and Systems 44, 2 (June 2022).
[40] Haohui Mai, Edgar Pek, Hui Xue, Samuel Talmadge King, and Parthasarathy

Madhusudan. 2013. Verifying Security Invariants in ExpressOS. In Proceedings
of the ACM Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[41] Akhil Mathur, Nicholas D. Lane, Sourav Bhattacharya, Aidan Boran, Claudio

Forlivesi, and Fahim Kawsar. 2017. DeepEye: Resource Efficient Local Execu-

tion of Multiple Deep Vision Models Using Wearable Commodity Hardware.

https://developer.arm.com/Architectures/Neon
http://www.singular.uni-kl.de
https://falcon-sign.info/
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://github.com/PQClean/PQClean
https://doi.org/10.1109/IPSN.2016.7460664

Galápagos: Developing Verified Low-Level Cryptography on Heterogeneous Hardware CCS ’23, NOV. 26-30, Copenhagen, Denmark

In Proceedings of the Conference on Mobile Systems, Applications, and Services
(MobiSys).

[42] Yuri Vladimirovich Matiyasevich. 1993. Hilbert’s Tenth Problem. The MIT Press.

[43] Peter L. Montgomery. 1985. Modular Multiplication without Trial Division. Math.
Comp. 44, 170 (1985), 519–521.

[44] Jorge A Navas, Bruno Dutertre, and Ian A Mason. 2020. Verification of an opti-

mized NTT algorithm. In Proceedings of the IFIP Conference on Verified Software:
Theories, Tools, Experiments (VSTTE).

[45] Hamid Nejatollahi, Nikil D. Dutt, Sandip Ray, Francesco Regazzoni, Indranil

Banerjee, and Rosario Cammarota. 2019. Post-Quantum Lattice-Based Cryptog-

raphy Implementations. ACM Computing Surveys (CSUR) 51 (2019).
[46] OpenSSL. [n. d.]. Vulnerabilities. https://www.openssl.org/news/vulnerabilities.

html. Retrieved June, 2023.

[47] OpenSSL Team. 2005. OpenSSL. http://www.openssl.org/.

[48] OpenTitan . [n. d.]. OTBN simulator. https://github.com/lowRISC/opentitan/

tree/0be5abcf448de4e6076067820e27fbc77bd93a72/hw/ip/otbn/dv/otbnsim.

[49] OpenTitan. [n. d.]. The OpenTitan Project. https://opentitan.org/.

[50] Bryan Parno, Jonathan M. McCune, and Adrian Perrig. 2011. Bootstrapping Trust
in Modern Computers. Springer.

[51] Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen, and Adam

Chlipala. 2022. Relational Compilation for Performance-Critical Applications:

Extensible Proof-Producing Translation of Functional Models into Low-Level

Code. In Proceedings of the ACM Conference on Programming Language Design
and Implementation (PLDI).

[52] Clément Pit-Claudel, Peng Wang, Benjamin Delaware, Jason Gross, and Adam

Chlipala. 2020. Extensible Extraction of Efficient Imperative Programs with

Foreign Functions, Manually Managed Memory, and Proofs. In Proceedings of the
International Joint Conference on Automated Reasoning (IJCAR).

[53] Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beur-

douche, Aymeric Fromherz, Natalia Kulatova, and Santiago Zanella-Béguelin.

2020. HACL×N: Verified Generic SIMD Crypto (For All Your Favorite Platforms).

In Proceedings of the ACM Conference on Computer and Communications Security.
[54] Andy Polyakov, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. 2018. Veri-

fying Arithmetic Assembly Programs in Cryptographic Primitives. In Proceedings
of the Conference on Concurrency Theory (CONCUR).

[55] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel, Marina

Polubelova, Karthikeyan Bhargavan, Benjamin Beurdouche, Joonwon Choi, An-

toine Delignat-Lavaud, Cédric Fournet, Natalia Kulatova, Tahina Ramananandro,

Aseem Rastogi, Nikhil Swamy, Christoph Wintersteiger, and Santiago Zanella-

Beguelin. 2020. EverCrypt: A Fast, Verified, Cross-Platform Cryptographic

Provider. In Proceedings of the IEEE Symposium on Security and Privacy.
[56] Alastair Reid. 2016. Trustworthy Specifications of ARM v8-A and v8-M Sys-

tem Level Architecture. In Proceedings of the Conference on Formal Methods in
Computer-Aided Design.

[57] RISC-V Foundation. 2017. The RISC-V Instruction Set Manual, Volume I: User-

Level ISA, Document Version 2.2. Editors AndrewWaterman and Krste Asanovic.

[58] Ryo Tokuda and Yukiyoshi Kameyama. 2023. Generating Programs for Poly-

nomial Multiplication with Correctness Assurance. In Proceedings of the ACM
Workshop on Partial Evaluation and Program Manipulation.

[59] Aaron Tomb. 2016. Automated Verification of Real-World Cryptographic Imple-

mentations. IEEE Security Privacy Magazine 14, 6 (Nov. 2016).
[60] Trusted Computing Group. 2011. Trusted Platform Module Main Specification.

Version 1.2, Revision 116.

[61] Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. 2017. Certified Verification

of Algebraic Properties on Low-Level Mathematical Constructs in Cryptographic

Programs. In Proceedings of the ACMConference on Computer and Communications
Security (CCS).

[62] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zeldovich, and

M Frans Kaashoek. 2012. Undefined behavior: what happened to my code?. In

Proceedings of the Asia-Pacific Workshop on Systems.
[63] Andrew S. Waterman. 2016. Design of the RISC-V Instruction Set Architecture.

Ph. D. Dissertation. University of California, Berkeley.

[64] X. Yang, Y. Chen, E. Eide, and J. Regehr. 2011. Finding and Understanding Bugs

in C compilers. In Proceedings of the ACM Conference on Programming Language
Design and Implementation (PLDI).

[65] Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer, Adam

Petcher, and Andrew W. Appel. 2017. Verified Correctness and Security of

mbedTLS HMAC-DRBG. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS).

[66] Yi Zhou, Sydney Gibson, Sarah Cai, Menucha Winchell, and Bryan Parno. 2023.

Galápagos source code. https://github.com/secure-foundations/veri-titan.

[67] Jean Karim Zinzindohoue, Evmorfia-Iro Bartzia, and Karthikeyan Bhargavan.

2016. A Verified Extensible Library of Elliptic Curves. In Proceedings of the IEEE
Computer Security Foundations Symposium (CSF).

[68] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and

Benjamin Beurdouche. 2017. HACL*: A Verified Modern Cryptographic Library.

In Proc. of the ACM Conference on Computer and Communications Security (CCS).

A Polynomial Entailment Details
We briefly summarize the mathematical underpinnings of polyno-

mial entailment for solving congruence relations (see prior work [28,

61] for more details), follow by our Dafny-specific encoding.

Background: Polynomial Ring Ideals. Fix a set of variables
𝑥1, ..., 𝑥𝑛 . Let 𝑅 = Z[𝑥1, ..., 𝑥𝑛] be a polynomial ring over the inte-

gers; i.e., the elements of 𝑅 are polynomials with indeterminate

𝑥1, ..., 𝑥𝑛 and integer coefficients. A set 𝐼 ⊂ 𝑅 is an ideal in 𝑅 iff

𝑎 + 𝑏 ∈ 𝐼 ∀𝑎, 𝑏 ∈ 𝐼
𝑎 × 𝑐 ∈ 𝐼 ∀𝑎, 𝑏 ∈ 𝐼 , 𝑐 ∈ 𝑅

Let 𝐵 = {𝑏1, .., 𝑏𝑚} ⊆ 𝑅. 𝐵 is a generating set of an ideal 𝐼 , or

𝐼 = ideal(𝐵) if

𝐼 =

{ 𝑚∑︁
𝑖=1

𝑟𝑖 × 𝑏𝑖 | 𝑟1, ..., 𝑟𝑚 ∈ 𝑅
}

The ideal membership problem decides if a polynomial 𝑝 ∈ 𝑅 be-

longs to an ideal 𝐼 = ideal(𝐵). If 𝑝 ∈ 𝐼 , then there exists polynomials

𝑟1, ..., 𝑟𝑚 ∈ 𝑅 such that

𝑝 =

𝑚∑︁
𝑖=1

𝑟𝑖 × 𝑏𝑖

Our Dafny Encoding. We added a new gbassert primitive that

takes in one goal statement and an arbitrary number of supporting

statements as inputs. Each statementmust be amodular congruence,

meaning that each statement 𝑖 is the form of 𝑎𝑖 = 𝑏𝑖 (mod 𝑚𝑖),
where 𝑎𝑖 , 𝑏𝑖 , 𝑚𝑖 are integer typed expressions.

We start with a pass over the input statements to collect existing

variables. For invocations of uninterpreted functions, we introduce

fresh variables. For example, msb(x) might be assigned a variable

name 𝑡0, and any occurrences of msb(x) will be replaced with 𝑡0.

We then use all of the existing and new variables to construct ele-

ments of a polynomial ring 𝑅 over the integers. The goal statement

(at index 0) is in the form of 𝑎0 = 𝑏0 (mod𝑚0) and is translated to

the polynomial 𝑎0−𝑏0. Each supporting statement 𝑎𝑖 = 𝑏𝑖 (mod𝑚𝑖)
is translated into the polynomial 𝑎𝑖 −𝑏𝑖 +𝑝𝑖𝑚𝑖 , where 𝑝𝑖 is a freshly

introduced variable. Because the supporting statement is proven (by

Dafny), forall 𝑎𝑖 , 𝑏𝑖 , there exists some 𝑝𝑖 such that 𝑎𝑖 −𝑏𝑖 +𝑝𝑖𝑚𝑖 = 0.

We form a generating set for an ideal 𝐵 by collecting all of

the polynomials from the supporting statements along with the

modulus𝑚0 from the goal statement:

𝐵 = {𝑚0, 𝑎1 − 𝑏1 + 𝑝1𝑚1, . . . , 𝑎𝑘 − 𝑏𝑘 + 𝑝𝑘𝑚𝑘 }
We then invoke Singular [18] to decide whether the goal poly-

nomial 𝑎0 − 𝑏0 belongs to the ideal generated by 𝐵. If so, then we

conclude that 𝑎0 = 𝑏0 (mod𝑚0). The intuition is that if 𝑎0 − 𝑏0 ∈
ideal(𝐵), then there exists polynomials 𝑟0, ..., 𝑟𝑚 ∈ 𝑅

𝑎0 − 𝑏0 =𝑚0 × 𝑟0 +
𝑘∑︁
𝑖=1

𝑟𝑖 × (𝑎𝑖 − 𝑏𝑖 + 𝑝𝑖𝑚𝑖)

The 𝑝𝑖 values discussed above ensure that the summation on the

right evaluates to zero. Hence membership effectively shows that

there exists 𝑟0 ∈ 𝑅 such that 𝑎0 − 𝑏0 = 𝑚0 × 𝑟0, proving that our

original goal congruence holds (i.e., that 𝑎0 = 𝑏0 mod𝑚0).

https://www.openssl.org/news/vulnerabilities.html
https://www.openssl.org/news/vulnerabilities.html
http://www.openssl.org/
https://github.com/lowRISC/opentitan/tree/0be5abcf448de4e6076067820e27fbc77bd93a72/hw/ip/otbn/dv/otbnsim
https://github.com/lowRISC/opentitan/tree/0be5abcf448de4e6076067820e27fbc77bd93a72/hw/ip/otbn/dv/otbnsim
https://opentitan.org/
https://github.com/secure-foundations/veri-titan

	Abstract
	1 Introduction
	2 Background
	3 The Galápagos Framework
	3.1 Adding Functor Support to Dafny
	3.2 Writing an Abstract Implementation
	3.3 Memory Abstraction
	3.4 Assembly Implementation
	3.5 Algebra Solver Support
	3.6 Dafny Standard Library Support

	4 Case Studies
	4.1 Case Studies: Hardware Platforms
	4.2 Case Studies: Cryptographic Algorithms

	5 Evaluation
	5.1 Developer Effort
	5.2 Performance

	6 Related Work
	7 Conclusion
	References
	A Polynomial Entailment Details

