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Abstract

Bilevel optimization (BO) is useful for solving a variety of important machine
learning problems including but not limited to hyperparameter optimization, meta-
learning, continual learning, and reinforcement learning. Conventional BO methods
need to differentiate through the low-level optimization process with implicit dif-
ferentiation, which requires expensive calculations related to the Hessian matrix.
There has been a recent quest for first-order methods for BO, but the methods pro-
posed to date tend to be complicated and impractical for large-scale deep learning
applications. In this work, we propose a simple first-order BO algorithm that de-
pends only on first-order gradient information, requires no implicit differentiation,
and is practical and efficient for large-scale non-convex functions in deep learning.
We provide a non-asymptotic convergence analysis of the proposed method to
stationary points for non-convex objectives and present empirical results that show
its superior practical performance.

1 Introduction

We consider the bilevel optimization (BO) problem:

min
v,✓

f

v, ✓


s.t. ✓ 2 argmin
✓0

g

v, ✓

0
, (1)

where the goal is to minimize an outer objective f whose variables include the solution of another
minimization problem w.r.t an inner objective g. The ✓ and v are the inner and outer variables,
respectively. We assume that v 2 Rm

, ✓ 2 Rn and that g(v, ·) attains a minimum for each v.

BO is useful in a variety of machine learning tasks. A canonical example is hyperparameter opti-
mization, in which case f (resp. g) is the validation (resp. training) loss associated with a model
parameter ✓ and a hyperparameter v, and we want to find the optimal hyperparameter v to minimize
the validation loss f when ✓ is determined by minimizing the training loss; see e.g., Pedregosa
[42], Franceschi et al. [12]. Other applications include meta learning [12], continual learning [43],
reinforcement learning [52], and adversarial learning [23]. See Liu et al. [32] for a recent survey.

BO is notoriously challenging due to its nested nature. Despite the large literature, most existing
methods for BO are slow and unsatisfactory in various ways. For example, a major class of BO
methods is based on direct gradient descent on the outer variable v while viewing the optimal inner
variable ✓

⇤(v) = argmin✓ g(v, ✓) as a (uniquely defined) function of v. The key difficulty is to
calculate the derivative rv✓

⇤(v) which may require expensive manipulation of the Hessian matrix of
g via the implicit differentiation theorem. Another approach is to replace the low level optimization
with the stationary condition r✓g(v, ✓) = 0. This still requires Hessian information, and more
importantly, is unsuitable for nonconvex g since it allows ✓ to be any stationary point of g(v, ·),
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experiment. Both authors contribute equally on paper writing.
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not necessarily a minimizer. To the best of our knowledge, the only existing fully first-order BO
algorithms2 are BSG-1 [15] and BVFSM with its variants [33–35]; but BSG-1 relies on a non-
vanishing approximation that does not yield convergence to the correct solution in general, and
BVFSM is sensitive to hyper-parameters on large-scale practical problems and lacks a complete
non-asymptotic analysis for the practically implemented algorithm.

In this work, we seek a simple and fast fully first-order BO method that can be used with non-
convex functions including those appear in deep learning applications. The idea is to reformulate
(1) as a single-level constrained optimization problem using the so-called value-function-based
approach [10, 7]. The constrained problem is then solved by stopping gradient on the single variable
that contains the higher-order information and applying a simple first-order dynamic barrier gradient
descent method based on a method of Gong et al. [16]. Our contributions are: 1) we introduce a novel
and fast BO method by applying a modified dynamic barrier gradient descent on the value-function
reformulation of BO; 2) Theoretically, we establish the non-asymptotic convergence of our method
to local stationary points (as measured by a special KKT loss) for non-convex f and g. Importantly,
to the best of our knowledge, this work is the first to establish non-asymptotic convergence rate for a
fully first-order BO method. This result is also much beyond that of Gong et al. [16] and Ji et al. [22].
3) Empirically, the proposed method achieves better or comparable performance while being more
efficient than state-of-the-art BO methods on a variety of benchmarks.

2 Background

This section provides a brief background on traditional BO methods. Please see Bard [2], Dempe and
Zemkoho [7], Dempe [6] for overviews, and Liu et al. [32] for a survey on recent ML applications.

Hypergradient Descent Assume that the minimum of g(v, ·) is unique for all v so that we can
write ✓

⇤(v) = argmin✓ g(v, ✓) as a function of v; this is known as the low-level singleton (LLS)
assumption. The most straightforward approach to solving (1) is to conduct gradient descent on
f(v, ✓⇤(v)) as a function of v. Note that

rvf(v, ✓
⇤(v)) = r1f(v, ✓

⇤(v)) +rv✓
⇤(v)r2f(v, ✓

⇤(v)).

The difficulty is to computerv✓
⇤(v). From implicit function theorem, it satisfies a linear equation:

r1,2g(v, ✓
⇤(v)) +r2,2g(v, ✓

⇤(v))rv✓
⇤(v) = 0. (2)

If r2,2g is invertible, we can solve for rv✓
⇤(v) and obtain a gradient update rule on v:

vk+1  vk  ⇠

⇣
r1fk 


r1,2gk

>r2,2gk

1r2fk

⌘
,

where k denotes iteration,r1fk = r1f(vk, ✓⇤(vk)) and similarly for the other terms. This approach
is sometimes known as the hypergradient descent. However, hypergradient descent is computationally
expensive: Besides requiring evaluation of the inner optimum ✓

⇤(vk), the main computational
bottleneck is to solve the linear equation in (2). Methods have been developed that approximate (2)
using conjugate gradient [42, 44, 17], Neumann series [29, 37], and related variants [14]. Another
popular approximation approach is to replacerv✓

⇤(v) withrv✓
(T )(v), where ✓

(T )(v) denotes the
T -th iteration of gradient descent or other optimization steps on g(v, ✓) w.r.t. ✓ starting from certain
initialization. The gradientrv✓

(T )(v) can be calculated with auto-differentiation (AD) with either
forward mode [11], backward mode [12, 11, 46, 28, 1] or their variants [31]. While these approaches
claim to be first-order, they require many Hessian-vector or Jacobian-vector products at each iteration
and are slow for large problems.

Other examples of approximation methods include a neural surrogate method which approximates
✓
⇤(v) and its gradient rv✓

⇤(v) with neural networks [38] and Newton-Gaussian approximation
of the Hessian matrix with covariance of gradient [15]. Both approaches introduce non-vanishing
approximation error that is difficult to control. The neural surrogate method also suffers from high
training cost for the neural network.

Stationary-Seeking Methods. An alternative method is to replace the argmin constraint in (1) with
the stationarity condition r✓g(v, ✓) = 0, yielding a constrained optimization:

min
v,✓

f(v, ✓) s.t. r✓g(v, ✓) = 0. (3)

2By fully first-order, we mean methods that only require information of f, g,rf,rg, so this excludes meth-
ods that apply auto-differentiation or conjugate gradient that need multiple steps of matrix-vector computation.
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Algorithms for nonlinear equality constrained optimization can then be applied [39]. The constraint
in (3) guarantees only that ✓ is a stationary point of g(v, ·), so it is equivalent to (1) only when g is
convex w.r.t. ✓. Otherwise, the solution of (3) can be a maximum or saddle point of g. This makes it
problematic for deep learning, where non-convex functions are pervasive.

3 Method

We consider a value function approach [see e.g., 41, 53, 33], which yields natural first-order al-
gorithms for non-convex g and requires no computation of Hessian matrices. It is based on the
observation that (1) is equivalent to the following constrained optimization (even for non-convex g):

min
v,✓

f(v, ✓) s.t. q(v, ✓) := g(v, ✓) g
⇤(v)  0, (4)

where g
⇤(v) := min✓ g(v, ✓) = g(v, ✓⇤(v)) is known as the value function. Compared with the

hypergradient approach, this formulation does not require calculation of the implicit derivative
rv✓

⇤(v): Although g
⇤(v) depends on ✓

⇤(v), its derivative rvg
⇤(v) does not depend on rv✓

⇤(v),
by Danskin’s theorem:

rvg
⇤(v) = r1g(v, ✓

⇤(v)) +rv✓
⇤(v)r2g(v, ✓

⇤(v)) = r1g(v, ✓
⇤(v)), (5)

where the second term in (5) vanishes because we have r2g(v, ✓⇤(v)) = 0 by definition of the
optimum ✓

⇤(v). Therefore, provided that we can evaluate ✓
⇤(v) at each iteration, solving (4) yields

an algorithm for BO that requires no Hessian computation. In this work, we make use of the dynamic
barrier gradient descent algorithm of Gong et al. [16] to solve (4). This is an elementary first-order
algorithm for solving constrained optimization, but it applies only to a special case of the bilevel
problem and must be extended to handle the general case we consider here.

Dynamic Barrier Gradient Descent. The idea is to iterative update the parameter (v, ✓) to reduce
f while controlling the decrease of the constraint q, ensuring that q decreases whenever q > 0.
Specifically, denote ⇠ as the step size, the update at each step is

(vk+1, ✓k+1) (vk, ✓k) ⇠k, (6)

where k = argmin
δ
krf(vk, ✓k) k2 s.t. hrq(vk, ✓k), i  k. (7)

Hererfk := r(v,✓)f(vk, ✓k),rqk := r(v,✓)q(vk, ✓k), and k  0 is a non-negative control barrier
and should be strictly positive k > 0 in the non-stationary points of q: the lower bound on the inner
product ofrq(vk, ✓k) and k ensures that the update in (6) can only decrease q (when step size ⇠ is
sufficiently small) until it reaches stationary. In addition, by enforcing k to be close torf(vk, ✓k) in
(7), we decrease the objective f as much as possible so long as it does not conflict with descent of q.

Two straightforward choices of k that satisfies the condition above are k = ⌘q(vk, ✓k) and
k = ⌘ krq(vk, ✓k)k2 with ⌘ > 0. We find that both choices of k work well empirically and use
k = ⌘ krq(vk, ✓k)k2 as the default (see Section 6.2).

The optimization in (7) yields a simple closed form solution:

k = rf(vk, ✓k) + krq(vk, ✓k), with k = max

✓
k  hrf(vk, ✓k),rq(vk, ✓k)i

||rq(vk, ✓k)||2
, 0

◆
,

and k = 0 in the case of ||rq(vk, ✓k)|| = 0.

Practical Approximation. The main bottleneck of the method above is to calculate the q(vk, ✓k) and
rq(vk, ✓k) which requires evaluation of ✓⇤(vk). In practice, we approximate ✓

⇤(vk) by ✓
(T )
k , where

✓
(T )
k is obtained by running T steps of gradient descent of g(vk, ·) w.r.t. ✓ starting from ✓k. That is,

we set ✓(0)k = ✓k and let

✓
(t+1)
k = ✓

(t)
k  ↵r✓g(vk, ✓

(t)
k ), t = 0, . . . , T  1, (8)

for some step size parameter ↵ > 0. We obtain an estimate of q(v, ✓) at iteration k by replacing
✓
⇤(vk) with ✓

(T )
k : q̂(v, ✓) = g(v, ✓) g(v, ✓(T )

k ).
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Algorithm 1 Bilevel Optimization Made Easy (BOME!)
Goal: Solve minv,✓ f(v, ✓) s.t. ✓ 2 argmin g(v, ·).
Input: Initialization (v0, ✓0); inner step T ; outer and inner stepsize ⇠, ↵ (set ↵ = ⇠ by default).
for iteration k do

1. Get ✓(T )
k by T steps of gradient descent on g(vk, ·) starting from ✓k (See Eq. (8)).

2. Set q̂(v, ✓) = g(v, ✓) g(v, ✓(T )
k ).

3. Update (v, ✓) : (vk+1, ✓k+1) (vk, ✓k) ⇠(rf(vk, ✓k) + krq̂(vk, ✓k))

where k = max

 
k  hrf(vk, ✓k), rq̂(vk, ✓k)i

krq̂(vk, ✓k)k2
, 0

!
,

and k = ⌘||rq̂(vk, ✓k)||2 (default), or k = ⌘q̂(vk, ✓k) with ⌘ > 0.

Remark: 1) We treat ✓(T )
k as constant when taking derivative of q̂; 2) In practice, step 3 can

have separate stepsize (⇠v, ⇠✓) and use standard optimizers like Adam [26]; 3) We use ⌘ = 0.5
and T = 10 by default.

end for

We substitute q̂(vk, ✓k) into (7) to obtain the update direction k. The full procedure is summarized
in Algorithm 1. Note that the ✓

(T )
k is viewed as a constant when defining q̂(v, ✓) and hence no

differentiation of ✓(T )
k is performed when calculating the gradient rq̂. This differs from truncated

back-propagation methods [e.g., 46] which differentiate through ✓
(T )
k as a function of v. Alternatively,

it can be viewed as a plug-in estimator. We know that

rvkq(vk, ✓k) = rvkg(vk, ✓k)rvkg(vk, ✓
⇤(vk))

= rvkg(vk, ✓k) [r1g(vk, ✓
⇤(vk)) +rvk✓

⇤(vk)r2g(vk, ✓
⇤(vk))]

= rvkg(vk, ✓k)r1g(vk, ✓
⇤(vk)),

wherer1 denotes taking the derivative w.r.t. the first variable. Since ✓⇤(vk) is unknown, we estimate
r1g(vk, ✓⇤(vk)) by plugging-in ✓

(T )
k to approximate ✓

⇤(vk):

rvk q̂(vk, ✓k) = rvkg(vk, ✓k)r1g(vk, ✓
⇤(vk)).

Each step of Algorithm 1 can be viewed as taking one step (starting from vk, ✓k) toward solving an
approximate constrained optimization problem:

min
v,✓

f(v, ✓) s.t. g(v, ✓)  g(v, ✓(T )
k ), (9)

which can be viewed as a relaxation of the exact constrained optimization formulation (4), because
{(v, ✓) : g(v, ✓)  g

⇤(v)} is a subset of {(v, ✓) : g(v, ✓)  g(v, ✓(T )
k )}.

4 Analysis

We first elaborate the KKT condition of (4) (Section 4.1), then quantify the convergence of the
method by how fast it meets the KKT condition. We consider both the case when g satisfies the
Polyak-Łojasiewicz (PL) inequality w.r.t. ✓, hence having a unique global optimum (Section 4.2),
and when g have multiple local minimum (Section 4.3).

4.1 KKT Conditions

Consider a general constrained optimization of form min f(v, ✓) s.t. q(v, ✓)  0. Under proper
regularity conditions known as constraint quantifications [40], the first-order KKT condition gives
a necessary condition for a feasible point (v⇤, ✓⇤) with q(v⇤, ✓⇤)  0 to be a local optimum of (4):
There exists a Lagrangian multiplier ⇤ 2 [0,+1), such that

rf(v⇤, ✓⇤) + 
⇤rq(v⇤, ✓⇤) = 0, (10)

and 
⇤ satisfies the complementary slackness condition 

⇤
q(v⇤, ✓⇤) = 0. A common regularity

condition to ensure (10) is the constant rank constraint quantification (CRCQ) condition [20].
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Definition 1. A point (v⇤, ✓⇤) is said to satisfy CRCQ with a function h if the rank of the Jacobian
matrix rh(v, ✓) is constant in a neighborhood of (v⇤, ✓⇤).

Unfortunately, the KKT condition in (10) does not hold for the bilevel optimization in (4). The
CRCQ condition does not typically hold for this problem. This is because the minimum of q is
zero, and hence if (v⇤, ✓⇤) is feasible for (4), then (v⇤, ✓⇤) must attain the minimum of q, yielding
q(v⇤, ✓⇤) = 0 and rq(v⇤, ✓⇤) = 0 if q is smooth; but we could not have rq(v, ✓) = 0 uniformly in
a neighborhood of (v⇤, ✓⇤) (hence CRCQ fails) unless q is a constant around (v⇤, ✓⇤). In addition, if
KKT (10) holds, we would have rf(v⇤, ✓⇤) = ⇤rq(v⇤, ✓⇤) = 0 which happens only in the rare
case when (v⇤, ✓⇤) is a stationary point of both f, g.

Instead, one can establish a KKT condition of BO through the form in (3), because there is nothing
special that prevents (v⇤, ✓⇤) from satisfying CRCQ withr✓q = r✓g (even though we just showed
that it is difficult to have CRCQ with q). Assume f and r✓q are continuously differentiable, and
(v⇤, ✓⇤) is a point satisfyingr✓q(v⇤, ✓⇤) = 0 and CRCQ withr✓q. Then by the typical first order
KKT condition of (3), there exists a Lagrange multiplier !⇤ 2 Rn such that

rf(v⇤, ✓⇤) +r(r✓q(v
⇤
, ✓

⇤))!⇤ = 0. (11)

This condition can be viewed as the limit of a sequence of (10) in the following way: assume we
relax the constraint in (4) to q(v, ✓)  ck where ck is a sequence of positive numbers that converge
to zero, then we can establish (10) for each ck > 0 and pass the limit to zero to yield (11).

Proposition 1. Assume that f , q, rq are continuously differentiable and krfk , f is bounded. For
a feasible point (v⇤, ✓⇤) of (4) that satisfies CRCQ with r✓q, if (v⇤, ✓⇤) is the limit of a sequence
{(vk, ✓k)}1k=1 satisfying q(vk, ✓k) 6= 0 8k, and there exists a sequence {k} ⇢ [0,1) such that

rf(vk, ✓k) + krq(vk, ✓k)! 0, q(vk, ✓k)! 0,

as k ! +1, then (v⇤, ✓⇤) satisfies (11).

This motivates us to use the following function as a measure of stationarity of the solution returned
by the algorithm:

K(v, ✓) = minλ0||rf(v, ✓) + rq(v, ✓)||2
| {z }

local improvement

+ q(v, ✓)| {z }
feasibility

.

The hope is to have an algorithm that generates a sequence {(vk, ✓k)}1k=0 that satisfies K(vk, ✓k)! 0
as k ! +1.

Intuitively, the first term in K(v, ✓) measures how much rf conflicts with rq (how much we
can decrease f without increasing q), as it is equal to the squared `2 norm of the solution to the
problem minδ ||rf||2 s.t. hrq, i  0. The second term in K measures how much the argmin g
constraint is satisfied.

4.2 Convergence with unimodal g

We first present the convergence rate when assuming g(v, ·) has unique minimizer and satisfies the
Polyak-Łojasiewicz (PL) inequality for all v, which guarantees a linear convergence rate of the
gradient descent on the low level problem.

Assumption 1 (PL-inequality). Given any v, assume g(v, ·) has a unique minimizer denoted as ✓⇤(v).
Also assume there exists  > 0 such that for any (v, ✓), kr✓g(v, ✓)k2  (g(v, ✓) g(v, ✓⇤(v))).

The PL inequality gives a characterization on how a small gradient norm implies global optimality.
It is implied from, but weaker than strongly convexity. The PL-inequality is more appealing than
convexity because some modern over-parameterized deep neural networks have been shown to satisfy
the PL-inequality along the trajectory of gradient descent. See, for example, Frei and Gu [13], Song
et al. [48], Liu et al. [30] for more discussion.

Assumption 2 (Smoothness). f and g are differentiable, andrf andrg are L-Lipschitz w.r.t. the
joint inputs (v, ✓) for some L 2 (0,+1).
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Assumption 3 (Boundedness). There exists a constant M <1 such that krg(v, ✓)k, krf(v, ✓)k,
|f(v, ✓)| and |g(v, ✓)| are all upper bounded by M for any (v, ✓).

Assumptions 2 and 3 are both standard in optimization.

Theorem 1. Consider Algorithm 1 with ⇠,↵  1/L, k = ⌘ krq̂(vk, ✓k)k2, and ⌘ > 0. Suppose
that Assumptions 1, 2, and 3 hold. Then there exists a constant c depending on ↵,, ⌘, L such that
when T  c, we have for any K  0,

min
kK

K(vk, ✓k)=O

✓p
⇠ +

r
q0

⇠K
+

1

⇠K
+ exp(bT )

◆

where q0 = q(v0, ✓0), and b > 0 is a constant depending on , L, and ↵.

Remark Note that one of the dominant terms depends on the initial value q0 = q(v0, ✓0). Therefore,
we can obtain a better rate if we start from a ✓0 with small q0 (hence near the optimum of g(v0, ·)). In
particular, when q(v0, ✓0) = O(1), choosing ⇠ = O(K1/2) gives minkK K(vk, ✓k) = O(K1/4+
exp(bT )) rate. On the other hand, if we start from a better initialization such that q(v0, ✓0) =
O((⇠K)1), then choosing ⇠ = O(K2/3) gives minkK K(vk, ✓k) = O(K1/3 + exp(bT )).

4.3 Convergence with multimodal g

The PL-inequality eliminates the possibility of having stationary points that are not global optimum.
To study cases in which g has multiple local optima, we introduce the notion of attraction points
following gradient descent.

Definition 2 (Attraction points). Given any (v, ✓), we say that ✓⇧(v, ✓) is the attraction point
of (v, ✓) with step size ↵ > 0 if the sequence {✓(t)}1t=0 generated by gradient descent ✓(t) =
✓
(t1)  ↵r✓g(v, ✓(t1)) starting from ✓

(0) = ✓ converges to ✓
⇧(v, ✓).

Assume the step size ↵  1/L where L is the smoothness constant defined in Assumption 2, one
can show the existence and uniqueness of attraction point of any (v, ✓) using Proposition 1.1 of
Traonmilin and Aujol [49]. Intuitively, the attraction of (v, ✓) is where the gradient descent algorithm
can not make improvement. In fact, when ↵  1/L, one can show that g(v, ✓)  g(v, ✓⇧(v, ✓)) is
equivalent to the stationary condition r✓g(v, ✓) = 0.

The set of (v, ✓) that have the same attraction point forms an attraction basin. Our analysis needs to
assume the PL-inequality within the individual attraction basins.

Assumption 4 (Local PL-inequality within attraction basins). Assume that for any (v, ✓), ✓⇧(v, ✓)
exists. Also assume that there exists  > 0 such that for any (v, ✓) kr✓g(v, ✓)k2  (g(v, ✓) 
g(v, ✓⇧(v, ✓)).

We can also define local variants of q and K as follows:

q
⇧(v, ✓) = g(v, ✓) g(v, ✓⇧(v, ✓)), K⇧(v, ✓) = min

λ0
krf(v, ✓) + rq⇧(v, ✓)k2 + q

⇧(v, ✓).

Compared with Section 4.2, a key technical challenge is that ✓⇧(v, ✓) and hence q
⇧(v, ✓) can be

discontinuous w.r.t. ✓ when it is on the boundary of different attraction basins; K⇧ is not well defined
on these points. However, these boundary points are not stable stationary points, and it is possible
to use arguments based on the stable manifold theorem to show that an algorithm with random
initialization will almost surely not visit them [47, 27].

Theorem 2. Consider Algorithm 1 with ⇠,↵  1/L, k = ⌘ krq̂(vk, ✓k)k2, and ⌘ > 0. Suppose
that Assumptions 2, 3, and 4 hold and that q⇧ is differentiable on (vk, ✓k) at every iteration k  0.
Then there exists a constant c depending on ↵,, ⌘, L, such that when T  c, we have

min
kK

K⇧(vk, ✓k) = O

✓p
⇠ +

r
1

⇠K
+ exp(bT )

◆
,

where b is a positive constant depending on , L, and ↵.

Unlike Theorem 1, the rate does not improve when q
⇧
0 := q

⇧(v0, ✓0) is small because the attraction
basin may change in different iterations, eliminating the benefit of starting from a good initialization.
Choosing ⇠ = O(K1/2) gives O(K1/4 + exp(bT )) rate of minkK K⇧(vk, ✓k).
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5 Related Works

The value-function formulation (4) is a classical approach in bilevel optimization [41, 53, 7]. How-
ever, despite its attractive properties, it has been mostly used as a theoretical tool, and much less
exploited for practical algorithms compared with the more widely known hypergradient approach
(Section 2), especially for challenging nonconvex functions f and g such as those encountered in deep
learning. One exception is Liu et al. [33], which proposes a BO method by solving the value-function
formulation using an interior-point method combined with a smoothed approximation. This was
improved later in a pessimistic trajectory truncation approach [35] and a sequential minimization
approach [34] (BVFSM). Similar to our approach, these methods do not require computation of
Hessians, thanks to the use of value function. However, as we observe in experiments (Section 6.2),
BVFSM tends to be dominated by our method both in accuracy and speed, and is sensitive to some
hyperparameters that are difficult to tune (such as the coefficients of the log-barrier function in
interior point method). Theoretically, Liu et al. [33, 34, 35] provide only asymptotic analysis on the
convergence of the smoothed and penalized surrogate loss to the target loss. They do not give an
analysis for the algorithm that was actually implemented.

Our algorithm is build up on the dynamic control barrier method of Gong et al. [16], an elementary
approach for constrained optimization. Gong et al. [16] also applied their approach to solve a lexico-
graphical optimization of form min✓ f(✓) s.t. ✓ 2 argmin✓0 g(✓0), which is a bilevel optimization
without an outer variable (known as simple bilevel optimization [8]). Our method is an extension
of their method to general bilevel optimization. Such extension is not straightforward, especially
when the lower level problem is non-convex, requiring introducing the stop-gradient operation in
a mathematically correct way. We also provide non-asymptotic analysis for our method, that goes
beyond the continuous time analysis in Gong et al. [16]. A key sophistication in the theoretical
analysis is that we need to control the approximation error of ✓⇤(vk) with ✓

(T )
k at each step, which

requires an analysis significantly different from that of Gong et al. [16]. Indeed, non-asymptotic
results have not yet been obtained for many BO algorithms. Even for the classic hypergradient-based
approach (such results are established only recently in Ji et al. [22]). We believe that we are the first
to establish a non-asymptotic rate for a purely first-order BO algorithm under general assumptions,
e.g. the lower level problem can be both convex or non-convex.

Another recent body of theoretical works on BO focus on how to optimize when only stochastic
approximation of the objectives is provided [14, 19, 22, 51, 18, 4, 25]; there are also recent works on
the lower bounds and minimax optimal algorithms [21, 22]. These algorithms and analysis are based
on hypergradient descent and hence require Hessian-vector products in implementation.

6 Experiment

We conduct experiments (1) to study the correctness, basic properties, and robustness to hyperpa-
rameters of BOME, and (2) to test its performance and computational efficiency on challenging ML
applications, compared with state-of-the-art bilevel algorithms. In the following, we first list the
baseline methods and how we set the hyperparameters. Then we introduce the experiment problems
in Section 6.1, which includes 3 toy problems and 3 ML applications, and provide the experiment
results. Finally we summarize observations and findings in Section 6.2.

Baselines A comprehensive set of state-of-the-art BO methods are chosen as baseline methods. This
includes the fully first-order methods: BSG-1 [15] and BVFSM [34], ; a stationary-seeking method:
Penalty [39], explicit/implicit methods: ITD [22], AID-CG (using conjugate gradient), AID-FP
(using fixed point method) [17], reverse (using reverse auto-differentiation) [11] stocBiO [22], and
VRBO [51].

Hyperparameters Unless otherwise specified, BOME strictly follows Algorithm 1 with k =
⌘ krq̂(vk, ✓k)k2, ⌘ = 0.5, and T = 10. The inner stepsize ↵ is set to be the same
as outer stepsize ⇠. The stepsizes of all methods are set by a grid search from the set
{0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000}. All toy problems adopt vanilla gradient descent
(GD) and applications on hyperparameter optimization adapts GD with a momentum of 0.9. Details
are provided in Appendix A.
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Figure 1: Results on the toy coreset problem and mini-max problem. (a)-(c): the trajectories of
(vk, ✓k), and f(vk, vk) and q̂k(vk, vk) of BOME (our method), BSG-1 [15], BVFSM [34], Penalty
[39] and Optimistic GD [5] (only for minimax problem). (d)-(e) trajectories of BOME with different
choices of inner gradient step T and the control coefficient ⌘.

6.1 Experiment Problems and Results

Toy Coreset Problem To validate the convergence property of BOME, we consider:

minv,✓ k✓  x0k2 s.t. ✓ 2 argmin✓0 k✓0 X(v)k2 ,
where (v) = exp(v)/

P4
i=1 exp(vi) is the softmax function, v 2 R4

, ✓ 2 R2, and X =
[x1, x2, x3, x4] 2 R2⇥4. The goal is to find the closest point to a target point x0 within the convex
hull of {x1, . . . , x4}. See Fig. 6.1 (upper row) for the illustration and results.

Toy Mini-Max Game Mini-max game is a special and challenging case of BO where f and g

contradicts with each other completely (e.g., f = g). We consider
minv,✓2R v✓ s.t. ✓ 2 argmax✓02R v✓

0
. (12)

The optimal solution is v⇤ = ✓
⇤ = 0. Note that the naive gradient descent ascent algorithm diverges to

infinity on this problem, and a standard alternative is to use optimistic gradient descent [5]. Figure 6.1
(lower row) shows that BOME works on this problem while other first-order BO methods fail.

Degenerate Low Level Problem Many existing BO algorithms require the low level singleton (LLS)
assumption, which BOME does not require. To test this, we consider an example from Liu et al. [31]:

minv2R,✓2R2 k✓  [v; 1]k22 s.t. ✓ 2 argmin(✓0
1,✓

0
2)2R2(✓01  v)2,

where ✓ = (✓1, ✓2) and the solution is v⇤ = 1, ✓⇤ = (1, 1). See Fig. 4 in Appendix A.3 for the result.

Data Hyper-cleaning We are given a noisy training set Dtrain := {xi, yi}mi=1 and a clean validation
set Dval. The goal is to optimally weight the training data points so that the model trained on the
weighted training set yields good performance on the validation set:

minv,✓`val(✓), s.t. ✓ = argmin✓0

n
`

train(✓0, v) + c k✓0k2
o
,

where `
val is the validation loss on Dval, and `

train is a weighted training loss: `
train =Pm

i=1 (vi)`(xi, yi, ✓) with (v) = Clip(v, [0, 1]) and v 2 Rm. We set c = 0.001. For the
dataset, we use MNIST [9] (FashionMNIST [50]). We corrupt 50% of the training points by assigning
them randomly sampled labels. See Fig. 2 (upper panel) for the results. (Results for FashionMNIST
are reported in Appendix A.4.)

Learnable Regularization We apply bilevel optimization to learn the optimal regularization coeffi-
cient on the twenty newsgroup dataset:3

minv,✓ `val(✓) s.t. ✓ 2 argmin✓0

n
`

train(✓0) + kWv✓
0k22
o
,

3Dataset from https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html.
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Figure 2: Result for hyperparameter optimization. Top: data hyper-cleaning on MNIST dataset.
The solid black line is the model performance trained purely on the validation set and the dashed
black line is the model performance trained on the validation set and on the part of training set that
have correct labels. Bottom: learnable regularization on 20 Newsgroup dataset. The solid black line
indicates the model performance without any regularization. All results are averaged on 5 random
trials. See Appendix A.4 and A.5 for results on FashionMNIST and more details.

Method
PMNIST Split CIFAR

ACC (") NBT (#) FT (") ACC (") NBT (#) FT (")
Offline 84.95± 0.95 - - 74.11± 0.66 - -
MER 76.59± 0.74 5.73± 0.59 82.32± 0.34 60.32± 0.86 8.91± 0.86 69.23± 0.40
CTN (+ITD) 78.40± 0.28 5.62± 0.39 84.02± 0.29 67.7± 60.96 4.88± 0.77 72.58± 0.62
CTN (+BVFSM) 77.78± 0.32 7.25± 0.28 85.0385.0385.03± 0.28 67.04± 0.76 6.97± 0.62 74.0174.0174.01± 0.57
CTN (+BOME) 80.7080.7080.70± 0.26 4.094.094.09± 0.27 84.7984.7984.79± 0.25 68.1668.1668.16± 0.60 4.724.724.72± 0.75 72.88± 0.48

Table 1: Results of continual learning as bilevel optimization. We compute the mean and standard
error of each method’s results over 5 independent runs. Best results are bolded. The full result with
comparison against other methods are provided in Table 2 in the Appendix.
where Wv is a matrix depending on v, e.g., Wv = diag(exp(v)). See Fig. 2 (lower panel) for results.

Continual Learning (CL) CL studies how to learn on a sequence of tasks in an online fashion
without catastrophic forgetting of previously learned tasks. We follow the setting of contextual
transformation network (CTN) from Pham et al. [43], which trains a deep neural network consisting
of a quickly updated backbone network (parameterized by ✓) and a slowly updated controller network
(parameterized by v). When training the ⌧ -th task, we update (v, ✓) by

minv,✓ `val
1:⌧


v, ✓


s.t. ✓ 2 argmin✓0 `
train
1:⌧


v, ✓

0
,

where `
train
1:⌧ and `

val
1:⌧ are the training and validation loss available up to task ⌧ . The goal is to update

the controller such that the long term loss `val
1:⌧ is minimized assuming ✓ is adapted to the available

training loss when new tasks come. Assume the CL process terminates at time t . Denote by a
s
⌧ the

test accuracy of task s after training on task ⌧ . We measure the performance of CL by 1) the final
mean accuracy on all seen tasks (ACC = 1

t

P
⌧t a

⌧
t ), 2) how much the model forgets as measured

by negative backward transfer NBT = 1
t

P
⌧t(a

⌧
⌧  a

⌧
t ), and 3) how fast the model learns on new

tasks as measured by forward transfer FT = 1
t

P
⌧t a

⌧
t . Note that FT = ACC + NBT.

We follow the setting of Pham et al. [43] closely, except replacing their bilevel optimizer (which is
essentially ITD [22]) with BOME. See Appendix A.6 for experiment details. The results are shown in
Table 1, where in addition to the bilevel algorithms, we also compare with a set of state-of-the-art CL
algorithms, including MER [45], ER [3], and GEM [36]. Table 1 also includes an ‘Offline" basline –
learning t tasks simultaneously using a single model (which is the upper bound on performance).
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6.2 Observations

BOME yields faster learning and better solutions at convergence Figure 6.1-4 show that BOME
converges to the optimum of the corresponding bilevel problems and work well on the mini-max
optimization and the degenerate low level problem; see also Fig.3 in Appendix A.1. In comparison,
the other methods like BSG-1, BVFSM, and Penalty fail to converge to the true optimum even with a
grid search over their hyperparameters. Moreover, in all three toy examples, BOME guarantees that
q̂, which is a proxy for the optimality of the inner problem, decreases to 0. From Fig. 2, it is observed
that BOME achieves comparable or better performance than the state-of-the-art bilevel methods for
hyperparameter optimization. Moreover, BOME exhibits better computational efficiency (Fig. 2),
especially on the twenty newsgroup dataset where the dimension of ✓ is large. In Table 1, we find
that directly plugging in BOME to the CL problem yields a substantial performance boost.
Robustness to parameter choices Besides the standard step size ⇠ in typical optimizers, BOME
only has three parameters: control coefficient ⌘, inner loop iteration T , and inner step size ↵. We use
the default setting of ⌘ = 0.5, T = 10 and ↵ = ⇠ across the experiments. From Fig. 6.1 (d,e) and
Fig. 2 (b,d), BOME is robust to the choice of ⌘, T and ↵ as varying them results in almost identical
performance. Specifically, T = 1 works well in many cases (see Figure 6.1 (e) and 2 (b)). The fact
that BOME works well with a small T empirically makes it computationally attractive in practice.
Choice of control barrier k The control barrier is set as k = ⌘ krq̂(vk, ✓k)k2 by default. Another
option is to use k = ⌘q̂(vk, ✓k). We test both options on the data hyper-cleaning and learnable
regularization experiments in Fig. 2 (d), and observe no significant difference (we choose ⌘ properly
so that both choices of k is on the same order). Hence we use k = ⌘ krq̂(vk, ✓k)k2 as the default.
Comparison against BVFSM The most relevant baseline to BOME is BVFSM, which similarly
adopts the value-function reformulation of the bilevel problems. However, BOME consistently
outperform BVFSM in both converged results and computational efficiency, across all experiments.
More importantly, BOME has fewer hyperparameters and is robust to them, while we found BVFSM
is sensitive to hyperparameters. This makes BOME a better fit for large practical bilevel problems.

7 Conclusion and Future Work
BOME, a simple fully first-order bilevel method, is proposed in this work with non-asymptotic
convergence guarantee. While the current theory requires the inner loop iterations to scale in a
logarithmic order w.r.t to the outer loop iterations, we do not observe this empirically. A further study
to understand the mechanism is an interesting future direction.
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Societal Impacts

This paper proposes a simple first order algorithm for bi-level optimization. Many specific instanti-
ation of bi-level optimization such as adversarial learning and data attacking might be harmful to
machine learning system in real world, as a general optimization algorithm for bi-level optimization,
our method can be a tool in such process. We also develop a great amount of theoretical works and to
our best knowledge, we do not observe any significant negative societal impact of our theoretical
result.
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