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ABSTRACT

Diffusion models have achieved promising results on generative learning recently.
However, because diffusion processes are most naturally applied on the uncon-
strained Euclidean space Rd, key challenges arise for developing diffusion based
models for learning data on constrained and structured domains. We present a
simple and unified framework to achieve this that can be easily adopted to various
types of domains, including product spaces of any type (be it bounded/unbounded,
continuous/discrete, categorical/ordinal, or their mix). In our model, the diffu-
sion process is driven by a drift force that is a sum of two terms: one singular
force designed by Doob’s h-transform that ensures all outcomes of the process
to belong to the desirable domain, and one non-singular neural force field that is
trained to make sure the outcome follows the data distribution statistically. Ex-
periments show that our methods perform superbly on generating tabular data,
images, semantic segments and 3D point clouds. Code is available at https:
//github.com/gnobitab/ConstrainedDiffusionBridge.

1 INTRODUCTION

Diffusion-based deep generative models, notably score matching with Langevin dynamics (SMLD)
(Song & Ermon, 2019, 2020), denoising diffusion probabilistic models (DDPM) (Ho et al., 2020),
and their variants (e.g., Song et al., 2020b,a; Kong & Ping, 2021; Song et al., 2021; Nichol &
Dhariwal, 2021), have shown to achieve new state of the art results for image synthesis (Dhariwal
& Nichol, 2021; Ramesh et al., 2022; Ho et al., 2022; Liu et al., 2021), audio synthesis (Chen et al.,
2020; Kong et al., 2020), point cloud synthesis (Luo & Hu, 2021a,b; Zhou et al., 2021), and many
other AI tasks. These methods train a deep neural network to drive as drift force a diffusion process
to generate data, and are shown to outperform competitors, mainly GANs and VAEs, on stability
and sample diversity (Xiao et al., 2021; Ho et al., 2020; Song et al., 2020b).

However, due to the continuous nature of diffusion processes, the standard approaches are restricted
to generating unconstrained continuous data in Rd. For generating data constrained on special struc-
tured domains, such as discrete, bound data or mixes of them, special techniques , e.g., dequantiza-
tion (Uria et al., 2013; Ho et al., 2019) and multinomial diffusion (Hoogeboom et al., 2021; Austin
et al., 2021), need to be developed case by case and the results still tend to be unsatisfying despite
promising recent advances (Hoogeboom et al., 2021; Austin et al., 2021).
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Figure 1: An Ω-Bridge on discrete do-
main Ω = {1, 2, 3, 4}.

This work proposes a simple and unified framework for learn-
ing diffusion models on general constrained domains Ω em-
bedded in the Euclidean space Rd. The idea is to learn a
continuous Rd-valued diffusion process Zt on time interval
t ∈ [0, T ], with a carefully designed force field, such that the
final state ZT guarantees to 1) fall into the desirable domain Ω,
and 2) follows the data distribution asymptotically. We achieve
both steps by leveraging a key tool in stochastic calculus called
Doob’s h-transform (Doob, 1984), which provides formula for
deriving the diffusion processes whose final states are guaran-
teed to fall into a specific set or equal a specific value.
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Algorithm 1 Learning Diffusion Models on Constrained Domains (a Simple Example)

Input: A dataset D := {x(i)} drawn from distribution Π∗ on a domain Ω = {e1, e2, . . . , eK}.
Goal: Learn a diffusion model that terminates at time T to generate samples from Π∗.
Learning: Solve the optimization below with stochastic gradient descent (or other optimizers)

θ∗ = argmin
θ

∫ T

0

Ex∼D
[∥∥fθ(Zt, t)−∇Zt

logωΩ(x | Zt, t)
∥∥2] dt, (1)

where

ωΩ(x | z, t) =
exp

(
−∥z − x∥2
2(T − t)

)
∑
e∈Ω

exp

(
−∥z − e∥2
2(T − t)

) , Zt =
t

T
x+ (1− t

T
)x0 +

√
t(T − t)

T
ξ, (2)

with x drawn from the dataset D, ξ ∼ N (0, I), and x0 any initial point.
Sampling: Generate sample ZT from

dZt =

[
fθ

∗
(Zt, t) +∇Zt log

∑
e∈Ω

exp

(
−∥Zt − e∥2

2(T − t)

)]
dt+ dWt, Z0 = x0.

Remark When the domain Ω is a manifold (e.g., line or surface) in Rd, simply replace the sum∑
e∈Ω with the corresponding line or surface (in general Hausdorff) integration

∫
Ω

on Ω.

Our simple procedure can be applied to any domain Ω once a properly defined summation (for
discrete sets) or integration (for continuous domains) can be evaluated. To give a quick overview on
the practical intuition without invoking the mathematical theory, we show in Algorithm 1 a simple
instance of the framework when the domain is a discrete set Ω = {e1, . . . , eK}. The idea is to set
up the diffusion model to have a form of

dZt =
[
fθ(Zt, t) +∇Zt

ψΩ(Zt, t)
]
dt+ dWt, ψΩ(z, t) := log

∑
e∈Ω

exp

(
−∥z − e∥2
2(T − t)

)
, (3)

where the drift is a sum of a non-singular (e.g., bounded) term fθ(z, t) which is a trainable neural
force field with parameter θ, and a singular term ∇zψ

Ω(z, t), which drives Zt towards set Ω as a
gradient ascent on ψΩ(z, t). The ψΩ(z, t) measures the closeness of z to set Ω, as the log-likelihood
of a Gaussian mixture model (GMM) centered on the elements in Ω with variance T − t. When t
approaches to the terminal time T , the variance T − t of the GMM goes to zero, and the magnitude
of ∇zψ

Ω(z, t) grows to infinity, hence ensuring that ZT must belong to Ω. In particular, note that

∇zψ
Ω(z, t) =

∑
e∈Ω

ωΩ(e | z, t) e− z

T − t
, ωΩ(e | z, t) =

exp
(
−∥z−e∥2

2(T−t)

)
exp(ψΩ(z, t))

,

which increases with an O(1/(T − t)) rate as t → T ; here ωΩ(e | z, t) is the softmax probability
measuring the relative closeness of z to the elements e in Ω (see also Eq (2)).

As we show in Section 2.3, once fθ is non-singular in the sense of the mild condition of∫ T

0
E[
∥∥fθ(Zt, t)

∥∥2]dt < +∞, the diffusion model in (3) guarantees to yield a final state ZT that
belongs to Ω, and hence provides a flexible model family on Ω. Moreover, as shown in Eq 1 in
Algorithm 1, the neural field fθ can be simply trained to approximate ∇ logωΩ(e | z, t) with e
plugged as the data point that we expect to achieve when starting from z at time t. Intuitively, such
fitted fθ increases the relative probability of the observed data points and hence allows us to fit the
data distribution. Empirically, diffusion models learned through Ω-bridge achieves favorable results
in generating mixed discrete/continuous tabular data, point clouds on grids, categorical semantic
segments and discrete CIFAR10 images.
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Outline The rest of the paper is organized as follows. Section 2 introduces h-transform, which
allows us to derive bridge processes that are guaranteed to enter specific sets at the terminal time,
and Section 2.3 specifies the parametric diffusion models for Ω-bridges. Then, with the learnable
diffusion models, Section 3 introduces the general learning framework along with the loss function.

2 BACKGROUND: DIFFUSION PROCESSES AND h-TRANSFORM

A diffusion process Z = {Zt : t ∈ [0, T ]} on Rd follows a stochastic differential equation of form

Q : dZt = b(Zt, t)dt+ σ(Zt, t)dWt, (4)

where Wt is a Wiener process, and σ : [0, T ] × Rd → R is a positive diffusion coefficient, and
b ∈ [0, T ]× Rd → Rd is a drift function. We use Q (or P) to denote the path measure of stochastic
processes Z, which are probability measures on the space of continuous paths. Let Qt be the
marginal distribution of Zt at time t under Q.

Our framework heavily relies on the bridge processes, special stochastic processes that guarantee to
achieve a deterministic value or fall into a given set at the final state T .

☞ For a set Ω ⊆ Rd, a process Z in Rd with law Q is called an Ω-bridge if Q(ZT ∈ Ω) = 1.

One natural approach to constructing bridge processes is to derive the conditioned process of a
general unconstrained process given that the desirable bridge constraint happens. Specifically, as-
sume that Q is the law of a general unconstrained diffusion process of form (4), and denote by
QΩ(·) = Q(· | ZT ∈ Ω) the conditioned distribution given that the event of ZT ∈ Ω happens.
Then QΩ is guaranteed to be an Ω-bridge by definition. Importantly, a remarkable result from Doob
(Doob, 1984), now known as h-transform, shows that QΩ is the law of a diffusion process with
a properly modified drift term. Below, we introduce this results, first for the case x-bridge when
Ω = {x} includes a single point, and then for more general sets Ω. For simplicity, we only state the
formula from h-transform that are useful for us without proofs. See e.g., Oksendal (2013); Rogers
& Williams (2000) for more background on h-transform.

2.1 x-BRIDGES

Let us first consider the x-bridge Qx(·) := Q(· | ZT = x), the process Q pinned at a deterministic
terminal point ZT = x. By the result from h-transform (see e.g., Oksendal (2013)), the conditioned
process Qx(·) := Q(· | ZT = x), if it exists, can be shown to be the law of

dZt =
(
b(Zt, t) + σ2(Zt, t)∇z log qT |t(x | Zt)

)
dt+ σ(Zt, t)dWt, (5)

where qT |t(x|z) is the density function of the transition probability

QT |t(dx | z) := Q(ZT ∈ dx | Zt = z),

where dx denotes an infinitesimal volume centering around x. Compared with the diffusion pro-
cess (4) of Q, the main difference is that the conditioned process has an additional drift force
σ2(z, t)∇z log qT |t(x|z) which plays the role of steering Zt towards the target ZT = x; this is a
singular force whose magnitude increases to infinity as t→ T , because qT |t(· | z) is a delta measure
centered at z when t = T .

In addition, by Bayes rule, the distribution of the initial state Z0 should be given by

Z0 ∼ Q0|T (· | x), Q0|T (dz|x) ∝ Q0(dz)qT |0(x|z). (6)

Example 2.1. If Q is the law of dZt = σtdWt, we have QT |t(·|z) = N (z, βT − βt), where
βt =

∫ t

0
σ2
sds. Hence, following the formula in (5), Qx := Q(·|ZT = x) is the law of

dZt = σ2
t

x− Zt

βT − βt
dt+ σtdWt, (7)

and Z0 ∼ Q0|T (dz) ∝ Q0(dz)ϕ(x | z, βT −βt), and ϕ(·|µ, σ2) is the density function of N (µ, σ2).
The process in (7) is known as a (time-scaled) Brownian bridge. Note that the drift in (7) grows
to infinity in magnitude with a rate of O(1/(βT − βt)) as t → T , which ensures that Zt = x with
probability one.
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Arbitrary initialization To make (5) the conditioned process of (4), the initial distribution must
follow the Bayes rule in (6). However, thanks to the singular force ∇z log qT |t(x|z), the process
(5) can guarantee Zx

t = x from an arbitrary initialization once the process is well defined. When
the initialization is different from (6), the process in (5) is no longer the conditioned process of (4),
but it remains to be an x-bridge in that ZT = x is still guaranteed. To see why this is the case,
assume that Q is initialized from a deterministic point Z0 = x0. Then we would still have Z0 = x0
when conditioned on ZT ∈ Ω by Bayes rule. This suggests that (5) starting from any deterministic
initialization is the condition process of Q with the same deterministic initialization, and is hence
an x-bridge. As a result, (5) from any stochastic initialization is also an x-bridge because it can be
viewed as the mixture of the processes with different deterministic initialization, all of which are
x-bridges. See Appendix A.4 for a detailed analysis, in which it is shown that (5) with an arbitrary
initialization can be viewed as the conditioned process of a special class of non-Markov processes
called reciprocal process.

2.2 Ω-BRIDGES

More generally, for the law Q of (4) and a set Ω ∈ Rd, the Ω-bridge QΩ := Q(· | ZT ∈ Ω) follows

QΩ : dZt = ηΩ(Zt, t)dt+ σ(Zt, t)dWt, (8)

with ηΩ(z, t) = b(z, t) + σ2(z, t)Ex∼QT |t,z,Ω [∇z log qT |t(x | z)], Z0 ∼ Q0|T (· | ZT ∈ Ω),

where drift force ηΩ is similar to that of the x-bridge in (5), except that the final state x is now
randomly drawn from an Ω-truncated (or Ω-conditioned) transition probability:

QT |t,z,Ω(dx | z) := Q(ZT ∈ dx | Zt = z, ZT ∈ Ω),

which is the transition probability from Zt to ZT , conditioned on that ZT ∈ Ω. In practice, its form
can be derived using Bayes rule.
Example 2.2. Assume Q follows dZt = σtdWt. Then QΩ yields the following Ω-bridge:

dZt = ηΩ(Zt, t)dt+ σtdWt, ηΩ(z, t) = σ2
tEx∼NΩ(z,βT−βt)

[
x− z

βT − βt

]
, (9)

where NΩ(z, σ
2) = Law(Z | Z ∈ Ω) with Z ∼ N (µ, σ2), which is an Ω-truncated Gaussian

distribution N (µ, σ2), whose density function is ϕΩ(x) ∝ I(x ∈ Ω)ϕ(x|µ, σ) with ϕ(x|µ, σ) the
density function of N (µ, σ2).

Note that it is tractable to calculate ηΩ once we can evaluate the expectation of NΩ(z, βT − βt).
A general case is when Ω = I1 × · · · Id, for which the expectation reduces to one dimensional
Gaussian integrals. See Appendix A.6 and A.7 for details and examples of ηΩ.

As in the x-bridge, we can set the initialization to be any distribution supported on the set of points
that can reach Ω following Q (precisely, points z0 that satisfy Ω∩ supp(QT (·|Z0 = z0)) ̸= ∅) using
the mixture of initialization argument.

2.3 A PARAMETRIC FAMILY OF Ω-BRIDGES

The formula in (8) only provides a fixed process for a given Q. For the purpose of learning generative
models, however, we need a rich family of Ω-bridges within which we can search for a best one to
fit with the data distribution. It turns out we can achieve this by simply adding an extra non-singular
drift force, which can be a trainable neural network, on top of the Ω-bridge in (8). Specifically, we
construct the following parametric diffusion model Pθ:

Pθ : dZt = (σ(Zt, t)f
θ(Zt, t) + ηΩ(Zt, t))dt+ σ(Zt, t)dWt, Z0 ∼ Pθ

0, (10)

where fθ(z, t) is a neural network with input (z, t) and parameter θ, which will be trained based
on the empirical observations. Adding the neural drift σ(Zt, t)f

θ(Zt, t) term does not break the
Ω-bridge condition, once it satisfies a very mild regularization condition:
Proposition 2.3. For any QΩ following dZt = ηΩ(Zt, t)dt+ σ(Zt, t)dWt that is an Ω-bridge, the
Pθ in (10) is also an Ω-bridge if EZ∼QΩ [

∫ T

0

∥∥fθ(Zt, t)
∥∥2
2
dt] < +∞ and KL(QΩ

0 || Pθ
0) < +∞.
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The condition on fθ is very mild, and it is satisfied if fθ is bounded. Moreover, it can easily hold
even when fθ is not bounded. For example, assuming that fθ(x) ≤ a ∥x∥β + b, which holds for
ReLU network with β = 1, we just need to require that the underlying process has a bounded
moment EZ∼QΩ [

∫ T

0
∥Zt∥2β dt] < +∞, which is a typical regularity condition to expect.

3 LEARNING Ω-BRIDGE MODELS

Let {x(i)}ni=1 be an i.i.d. sample from an unknown distribution Π∗ on a domain Ω ⊆ Rd. Our
goal is to learn the parameter θ for the Ω-bridge model Pθ in (10) such that the terminal distribution
ZT ∼ Pθ

T matches the data X ∼ Π∗. We should distinguish Pθ, which is the trainable generative
model, and Q, which is a fixed “baseline process” that helps us to derive methods for constructing
and learning the model. Q can be the simple Brownian motion in Example 2.1 and 2.2.

P✓
T
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training

As the case of other diffusion models, Pθ can be viewed as a model
with an infinite dimensional latent variable of the intermediate tra-
jectories of Z. Hence, a canonical learning approach is expectation
maximization (EM), which alternates between

1) E-step: estimating the posterior Pθ,x := Pθ(Z | ZT = x) of the
latent trajectories Z given the observation ZT = x;

2) M-step: estimating the parameter θ with Z imputed from Pθ,x.

A key challenge, however, is that the posterior distribution Pθ,x is
difficult to calculate due to the presence of neural force field in Pθ

(as the h-transform formula would have no closed form), and it need to be iteratively updated as
θ changes. Following DDPM (Ho et al., 2020), we consider a simpler approach that replaces the
posterior Pθ,x with an arbitrary x-bridge, denoted by Qx. This yields a simplified EM algorithm
without the expensive posterior inference in the E-step. A natural choice is the conditioned process
Qx := Q(Z | ZT = x), but the method works for a general x-bridge.

Specifically, let QΠ∗
(·) =

∫
Qx(·)Π∗(dx) be the mixture of the x-bridges whose end point x is

randomly drawn from the data distribution x ∼ Π∗. The trajectories from QΠ∗
can be generated in

the following “backward” way: first drawing a data point x ∼ Π∗, and then Z ∼ Qx conditioned
on the end point x. Obviously, by construction, the terminal distribution of QΠ∗

equals Π∗, that is,
QΠ∗

T = Π∗. Then, the model Pθ can be estimated by fitting data drawn from QΠ∗
using maximum

likelihood estimation:

min
θ

{
L(θ) := KL(QΠ∗ || Pθ)

}
. (11)

The classical (variational) EM would alternatively update θ (M-step) and Qx (E-step) to make Qx ≈
Pθ,x. Why is it OK to simply drop the E-step? At the high level, it is the benefit from using universal
approximators like deep neural networks: if the model space of Pθ is sufficiently rich, by minimizing
the KL divergence in (11), Pθ can approximate the given QΠ∗

well enough (in a way that is made
precise in the Appendix A) such that their terminal distributions are close: Pθ

T ≈ QΠ∗
T = Π∗.

☞ Learning latent variable models require no E-step if the model space is sufficiently rich.

We should see that in this case the latent variables Z in the learned model Pθ is dictated by the
choice of the imputation distribution Q since we have Pθ,x = Qx when the KL divergence in (11)
is fully minimized to zero; EM also achieves Pθ,x = Qx but has the imputation distribution Qx

determined by the model Pθ, not the other way.

Loss Function In its general form, the x-bridge Qx that we use can be a non-Markov diffusion
process

Qx : dZt = ηx(Z, t)dt+ σ(Zt, t)dWt, Z0 ∼ µx, (12)

which has the same diffusion coefficient σ(Zt, t) as Pθ in (10), and any x-dependent ηx and initial-
ization µx once the x-bridge condition is ensured. As the general framework, we assume that ηx can
depend on the whole trajectory Z.
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Algorithm 2 Learning Ω-Bridge Diffusion Models

Input: A dataset D := {x(i)} drawn from distribution Π∗ on a domain Ω.
Setup: Specify an x-bridge Qx and an Ω-bridge QΩ

Qx : dZt = ηx(Z, t)dt+ σ(Zt, t)dWt, QΩ : dZt = ηΩ(Zt, t)dt+ σ(Zt, t)dWt,

Specify the generative model Pθ based on QΩ and a neural network fθ:

Pθ : dZt = (σ(Zt, t)f
θ(Zt, t) + ηΩ(Zt, t))dt+ σ(Zt, t)dWt, Z0 ∼ Pθ

0.

Default: let Q be the law of dZt = σtdWt and derive the bridges by h-transform as Qx =
Q(·|ZT = x) in Eq (7) and QΩ = Q(·|ZT ∈ Ω) in Eq (9).
Training: Estimating θ by minimizing the loss function (13) using any off-the-shelf optimizer.
Sampling: Generate sample ZT from Pθ with the trained parameter θ.

Using Girsanov theorem (e.g., Oksendal, 2013), with Pθ in (10) and Qx in (12), the KL divergence
in (11) can be shown to equal to

L(θ) = Ex∼Π∗
Z∼Qx

− log pθ0(Z0)︸ ︷︷ ︸
MLE of initial dist.

+
1

2

∫ T

0

∥∥σ−1(Zt, t)(s
θ(Zt, t)− ηx(Z, t))

∥∥2︸ ︷︷ ︸
score matching

dt

+ const, (13)

where we write sθ as the overall drift force of Pθ in (10), that is,

sθ(z, t) = σ(z, t)fθ(z, t) + ηΩ(z, t),

and pθ0 is the probability density function (PDF) of the initial distribution Pθ
0. Therefore, L(θ) is a

sum of the negative log-likelihood of the initial distribution that encourages Pθ
0 ≈ QΠ∗

0 , and a least
squares loss between sθ and ηx. In practice, we simply fix the initial distribution Pθ

0 to be a delta
measure on a fixed point (say x0 = 0), so we only need to train the drift function fθ. Algorithm 1
shows a simple instance of the framework when the baseline process Q is the standard Brownian
motion dZt = dWt, Qx = Q(· | ZT = x) and σ(z, t) = 1. Note that the least squares term in (13)
can be viewed as enforcing fθ ≈ σ−1(ηx − ηΩ), which reduces to fθ ≈ ∇ logωΩ in the case of
Algorithm 1.

Related Works Bridge processes provide a simple and flexible approach to learning diffusion
generative models, which was explored in Peluchetti (2021); Ye et al. (2022); Wu et al. (2022);
De Bortoli et al. (2021). Heng et al. (2021) investigates the orthogonal problem of simulating from
the bridge Qx for a given Q. In comparison, our method learns diffusion models on general domains
Ω on which an Ω-bridge can be derived (using h-transform or any other method), and hence provides
a highly flexible framework for learning with structured data (including discrete, continuous, and
their mixes). This distinguishes it with existing approaches that are designed for special types of
data (e.g., Ho et al. (2020); Hoogeboom et al. (2021); Austin et al. (2021); Li et al. (2022); Dieleman
et al. (2022) for discrete data). De Bortoli et al. (2022) discusses how to learn score-based generative
models on general Riemannian manifolds. Another highly related work is Ye et al. (2022), which
proposes to learn first hitting diffusion models for generating data on both discrete sets and spheres.
The advantage of our approach is that it is simpler and easier to derive for more complex types of
domains.

4 EXPERIMENTS

We evaluate our algorithms for generating mixed-typed tabular data, grid-valued point clouds, cate-
gorical semantic segmentation maps, discrete CIFAR10 images. We observe that Ω-bridge provides
a particularly attractive and superb approach to generating data from various constrained domains.

Algorithm Overview For all experiments, we use Algorithm 2 with the default choice of Qx in
(7) and QΩ in (9). The specific form of ηΩ is derived based on the specific choice of the domain Ω.
By default, we set the initialization Z0 = 0 and the optimizer Adam.
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Logistic (↑) AdaBoost (↑) MLP (↑)
Real Training Data 0.877±0.021 0.912±0.013 0.897±0.012
TVAE (Xu et al., 2019) 0.825±0.012 0.876±0.005 0.845±0.008
CTGAN (Xu et al., 2019) 0.649±0.014 0.841±0.021 0.843±0.016
CopulaGAN (Patki et al., 2016) 0.683±0.015 0.859±0.004 0.853±0.009
Mixed-Bridge 0.868±0.010 0.884±0.005 0.877±0.006

Table 1: Classification accuracy on the Adult Income dataset with different classifiers when trained with data
synthesized by generative models. Real Training Data shows the upper bound of the metrics.

4.1 GENERATING MIXED-TYPE TABULAR DATA

Learning to generate tabular data is challenging, because tabular data usually contains a mixture of
discrete and continuous attributes (Xu et al., 2019; Park et al., 2018). Unlike carefully designing
special GANs as in previous works (Xu et al., 2019; Srivastava et al., 2017), Ω-bridge can be seam-
lessly applied to mixed-typed tabular data generation without any further modification. In contrast,
diffusion processes that solely work on discrete domain (Austin et al., 2021; Hoogeboom et al.,
2021) cannot be applied to this task.

In this experiment, we use the Adult Income dataset (Kohavi, 1996), which contains 30,162 train-
ing samples. The data points are described by a series of attributes, including continuous (age,
capital-gain, etc.) and discrete (sex, race, etc.). We compare with conditional tabular
GAN (Xu et al., 2019) (CTGAN), CopulaGAN (Patki et al., 2016), and Table VAE (Xu et al., 2019)
(TVAE), which are state-of-the-art GAN-based and VAE-based generative models for mixed-typed
tabular data. Following previous works (Xu et al., 2019; Patki et al., 2016), we measure the classifi-
cation accuracy on the real data of logistic regression, AdaBoost classifier and MLP classifier when
trained on the generated data.

In the Ω-bridge model, we set σt = 3 exp(−3t) and fθ a 3-layer MLP. In this case, Ω = I1 × · · · ×
I15, where I1 to I9 are discrete domains and I10 to I15 are non-negative continuous domains. For dis-
crete domains, I = {e1, . . . , ed}, we have, ηI(z, t) = σ2

t∇z log
∑

e∈I exp
(
− ∥z−e∥2

2(βT−βt)

)
; for non-

negative continuous domains, I = [0,+∞), derivation shows ηI(z, t) = σ2
t∇z log

(
F ( z√

βT−βt
)
)

,

where F is the standard Gaussian CDF. Finally, we have ηΩ(z, t) =
∑15

i=1 η
Ii(zi, t) for the whole

domain Ω. We set the number of diffusion steps to K = 2000. Results are shown in Table 1.

Result All the three different classifiers yield the highest accuracy when trained on the data gen-
erated by our method, referred to as Mixed-Bridge in this case. The result reflects that the data
generated by Mixed-Bridge is closer to the real distribution than the baseline methods.

Method MMD ↓ COV ↑ 1-NNA ↓

PCD (Luo & Hu, 2021a) 13.37 46.60 58.94

Rd-Bridge 13.30 46.52 59.32

Grid-Bridge 12.85 47.78 56.25

Figure 2 & Table 2: The point clouds (upper row) generated by different methods and meshes reconstructed
from them (lower row). Grid-Bridge obtains more uniform points and hence better mesh thanks to the integer
constraints. Numbers in the table are multiplied by 103.

4.2 GENERATING INTEGER-VALUED POINT CLOUDS

A feature of point clouds in 3D objects in graphics is that they tend to distribute evenly, especially
if they are discretized from a mesh. This aspect is omitted in most existing works on point cloud
generation. As a result they tend to generate non-uniform points that are unsuitable for real applica-
tions, which often involve converting back to meshes with procedures like Ball-Pivoting (Bernardini

7
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Time 𝒕

Dimension
#1

Real Generated

0 1

Value 
Distribution

Figure 3: Results on generating categorical segmentation maps. Each pixel here an one-hot vector. Each
dimension of the Ω-bridge starts from a deterministic and evolve through a stochastic trajectory to converge to
either 0 or 1. The generated samples have similar visual quality to the training data.

Methods ELBO (↓) IWBO (↓)
Uniform Dequantization (Uria et al., 2013) 1.010 0.930
Variational Dequantization (Ho et al., 2019) 0.334 0.315
Argmax Flow (Softplus thres.) (Hoogeboom et al., 2021) 0.303 0.290
Argmax Flow (Gumbel distr.) (Hoogeboom et al., 2021) 0.365 0.341
Argmax Flow (Gumbel thres.) (Hoogeboom et al., 2021) 0.307 0.287
Multinomial Diffusion (Hoogeboom et al., 2021) 0.305 -
Cat.-Bridge (Constant Noise) 0.844 0.707
Cat.-Bridge (Noise Decay A) 0.276 0.232
Cat.-Bridge (Noise Decay B) 0.301 0.285
Cat.-Bridge (Noise Decay C) 0.363 0.302

Table 3: Results on the CityScapes dataset. Cat. refers to ‘Categorical’.

et al., 1999). We apply our method to generate point clouds that constrained on a integer grid which
we show yields much more uniformly distributed points. To the best of our knowledge, we are the
first work on integer-valued 3D point cloud generation.

A point cloud is a set of points {xi}mi=1, xi ∈ R3 in the 3D space, where m refers to the number
of points. We apply two variants of our method: Rd-Bridge and Grid-Bridge. Rd-Bridge generates
points in the continuous 3D space, i.e., ΩR = R3m. Grid-Bridge generate points that on integer
grids, ΩGrid = {1, . . . , 128}3m. We fix the diffusion coefficient σt = 1. The number of diffusion
steps K is set to 1000. We test our method on ShapeNet (Chang et al., 2015) chair models, and
compare it with Point Cloud Diffusion (PCD) (Luo & Hu, 2021a), a state-of-the-art continuous
diffusion-based generative model for point clouds. The neural network fθ in our methods are the
same as that of PCD for fair comparison. Qualitative results and quantitative results are shown in
Figure 2 and Table 2. As common practice (Luo & Hu, 2021a,b), we measure minimum matching
distance (MMD), coverage score (COV) and 1-NN accuracy (1-NNA) using Chamfer Distance (CD)
with the test dataset.

Result Both Rd-Bridge and Grid-Bridge get better MMD, COV, and 1-NNA than PCD. More-
over, by constraining the domain of interest to the integer grids, Grid-Bridge yields even better
performance than Rd-Bridge. In Figure 2, since the point clouds generated by Grid-Bridge are lim-
ited to integer grids, the reconstructed meshes from Ball-Pivoting clearly have higher quality than
Rd-Bridge and PCD.

4.3 GENERATING SEMANTIC SEGMENTATION MAPS ON CITYSCAPES

We consider unconditionally generating categorical semantic segmentation maps. We represent each
pixels as a one-hot categorical vector. Hence the data domain is Ω = {e1, . . . , ec}h×w, where
c is the number of classes and ei is the i-th c-dimensional one-hot vector, and h,w represent the
height and width of the image. In CityScapes (Cordts et al., 2016), h = 32, w = 64, c = 8. In this
experiment, we test different schedule of the diffusion coefficient σt, including (Constant Noise):
σt = 1; (Noise Decay A): σt = a exp(−bt); (Noise Decay B): σt = a(1− t); (Noise Decay C) σt =
a(1− exp(−b(1− t))). Here a and b are hyper-parameters. The number of diffusion steps K is set
to 500. We measure the negative log-likelihood (NLL) of the test set using the learned models. The
NLL (bits-per-dimension) is estimated with evidence lower bound (ELBO) and importance weighted
bound (IWBO) (Burda et al., 2016), respectively, as in (Hoogeboom et al., 2021). We compare
Ω-Bridge with a state-of-the-art categorical diffusion algorithm, Argmax Flow (and Multinomial
Diffusion) (Hoogeboom et al., 2021), and the traditional methods, uniform dequantization (Uria
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Methods IS (↑) FID (↓) NLL (↓)
Discrete
D3PM uniform Lvb (Austin et al., 2021) 5.99 51.27 5.08
D3PM absorbing Lvb (Austin et al., 2021) 6.26 41.28 4.83
D3PM Gauss Lvb (Austin et al., 2021) 7.75 15.30 3.966
D3PM Gauss Lλ=0.001 (Austin et al., 2021) 8.54 8.34 3.975
D3PM Gauss + logistic Lλ=0.001 8.56 7.34 3.435
Integer-Bridge (Init. A) 8.77 6.77 3.46
Integer-Bridge (Init. B) 8.68 6.91 3.35
Integer-Bridge (Init. C) 8.72 6.94 3.40

Table 4: Discrete CIFAR10 Image Generation

et al., 2013) and variational dequantization (Ho et al., 2019). The numerical results of the baselines
are directly adopted from (Hoogeboom et al., 2021), and experiment configuration is kept the same
for fair comparison. The neural network fθ is the same as (Hoogeboom et al., 2021). The results
are shown in Figure 3 and Table 3. Our Ω-bridge is named Categorical-Bridge (Cat.-Bridge) in this
experiment.

Result We observe that all the four kinds of Cat.-Bridge can successfully generate categorical se-
mantic segments, and different noise schedules result in different empirical performance. Among
the four variants of Cat.-Bridge, Cat.-Bridge with Noise Decay A yields the best ELBO and IWBO,
surpassing all the other algorithms in comparison.

4.4 GENERATING DISCRETE CIFAR10 IMAGES

Initialization A

Initialization B

Initialization C

Time 𝒕
Figure 4: Integer-bridges can generate high-quality
discrete samples with different initial distribution.

In this experiment, we apply three types of
bridges. All of these bridges use the same out-
put domain Ω = {0, . . . , 255}h×w×c, where
h,w, c are the height, width and number of
channels of the images, respectively. We set
σt = 3 exp(−3t). We consider different ini-
tial distributions: (Init. A) Z0 = 128; (Init. B)
Z0 = µ̂0, (Init. C) Z0 ∼ N (µ̂0, σ̂0), where µ̂0

and σ̂0 are the empirical mean and variance of
pixels in the CIFAR10 training set. The num-
ber of diffusion steps K is set to 1000. We
compare with the variants of a state-of-the-art
discrete diffusion model, D3PM (Austin et al.,
2021). For fair comparison, we use the DDPM
backbone (Ho et al., 2020) as the neural drift fθ
in our method, similar to D3PM. We report the
Inception Score (IS) Salimans et al. (2016), Fréchet Inception Distance (FID) Heusel et al. (2017)
and negative log-likelihood (NLL) of the test dataset. We call our method Integer-Bridge in this
case. The results are shown in Table 4 and Figure 4.

Result In Table 4, Integer-Bridge with Initialization A,B,C can all get lower FIDs (≤ 7) than the
variants of D3PM. Among the three kinds of Integer-bridges, Integer-Bridge (Init. B) obtains the
lowest NLL (3.35). It also beats D3PM Gauss + logistic (3.435) on NLL, which has the best NLL
in the variants of D3PM.

5 CONCLUSION AND LIMITATIONS

We present a framework for learning diffusion generative models on constrained data domains. It
leaves a number of directions for further explorations and improvement. For example, the practical
impact of the choices of the bridges Q, in terms of initialization, dynamics, and noise schedule, are
still not well understood and need more systematical studies. Besides, our current method is limited
to Ω that are factorizable and integrable. Moreover, application of Ω-bridge to many other practical
fields also needs investigation in the future.
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Roadmap The appendix is structured as follows:
• Appendix A provides the theoretical analysis and derivation of diffusion bridges. In particu-
lar, Appendix A.1 shows the derivation of the main training loss; Appendix A.2 derives the drift
term ηΠ

∗
of QΠ∗

; Appendix A.3 proves that we can actually use a Markov model Pθ to match all
time-marginals with QΠ∗

; Appendix A.4 explains why we can use arbitrary initialization when con-
structing bridge processes and discusses the reciprocal structure of QΠ∗

; Appendix A.5 provides
analysis on the time-discretization error and statistical error of the practical discretized algorithm.
Appendix A.6 and A.7 presents details on the condition and examples of Ω-bridge construction.
• Appendix B shows additional experiment details and results.

A THEORETICAL ANALYSIS ON BRIDGES

A.1 DERIVATION OF THE MAIN LOSS IN EQUATION (13)

[Proof of Equation (13)] Denote by Qx = Q(·|ZT = x). Note that

KL(QΠ∗ || Pθ) = Ex∼Π∗,Z∼Qx

[
log

dQΠ∗

dPθ
(Z)

]
= Ex∼Π∗,Z∼Qx

[
log

dQx

dPθ
(Z) + log

dQΠ∗

dQx
(Z)

]
= Ex∼Π∗

[
KL(Qx || Pθ)

]
+ const,

where const denotes a constant that is independent of θ. Recall that Qx follows dZt =
ηx(Z[0,t], t)dt + σ(Zt, t)dWt, and Pθ follows dZt = sθ(Zt, t)dt + σ(Zt, t)dWt. By Girsanov
theorem (e.g., Lejay, 2018),

KL(Qx || Pθ) = KL(Qx
0 || Pθ

0) +
1

2
EZ∼Qx

[∫ T

0

∥∥sθ(Zt, t)− ηx(Z[0,t], t)
∥∥2
2
dt

]

= EZ∼Qx

[
− log pθ0(Z0) +

1

2

∫ T

0

∥∥sθ(Zt, t)− ηx(Z[0,t], t)
∥∥2
2
dt

]
+ const.

Hence

L(θ) = Ex∼Π∗,Z∼Qx

[
− log pθ0(Z0) +

1

2

∫ T

0

∥∥sθ(Zt, t)− ηx(Z[0,t], t)
∥∥2
2
dt

]
+ const

= EZ∼QΠ∗

[
− log pθ0(Z0) +

1

2

∫ T

0

∥∥sθ(Zt, t)− ηZT (Z[0,t], t)
∥∥2
2
dt

]
+ const.

A.2 DERIVATION OF THE DRIFT ηΠ
∗

OF QΠ∗

Lemma A.1. Let Qx is the law of

dZx
t = ηx(Zx

[0,t], t)dt+ σ(Zx
t , t)dWt, Z0 ∼ Qx

0 ,

and QΠ∗
:=
∫
Qx(Z)Π∗(dx) for a distribution Π∗ on Rd. Then QΠ∗

is the law of

dZt = ηΠ
∗
(Z[0,t], t)dt+ σ(Zt, t)dWt, Z0 ∼ QΠ∗

0 ,

where

ηΠ
∗
(z[0,t], t) = Ex∼Π∗,Z∼Qx [ηx(Z[0,t], t) | Z[0,t] = z[0,t]], QΠ∗

0 (dz0) = Ex∼Π∗ [Qx
0(dz0)].

[Proof] QΠ∗
is the solution of the following optimization problem:

QΠ∗
= argmin

P

{
KL(QΠ∗ || P) = Ex∼Π∗ [KL(Qx || P)] + const

}
.

13
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By Girsanov’s Theorem (e.g., Lejay, 2018), any stochastic process P that has KL(Qx || P) < +∞
(and hence is equivalent to Qx) has a form of dZt = ηΠ

∗
(Z[0,t], t)dt + σ(Zt, t)dWt for some

measurable function ηΠ
∗
, and

Ex∼Π∗ [KL(Qx || P)]

= Ex∼Π∗ [KL(Qx
0 || P0)] + Ex∼Π∗,Z∼Qx

[
1

2

∫ T

0

∥∥∥σ(Zt, t)
−1(ηΠ

∗
(Z[0,t], t)− ηx(Z[0,t], 0))

∥∥∥2
2

]
.

It is clear that to achieve the minimum, we need to take P0(·) = Ex∼Π∗ [Qx
0(·)] and ηΠ

∗
(z[0,t], t) =

Ex∼Π∗,Z∼Qx [ηx(Z[0,t], t) | Z[0,t] = z[0,t]], which yields the desirable form of QΠ∗
.

A.3 Pθ∗
YIELDS A MARKOVIZATION OF QΠ∗

As Pθ is Markov by the model assumption, it can not perfectly fit QΠ∗
which is non-Markov in

general. This is a substantial problem because QΠ∗
can be non-Markov even if Qx is Markov for

all x ∈ Ω (see Section A.4). In fact, using Doob’s h-transform method (Doob, 1984), QΠ∗
can be

shown to be the law of a diffusion process

dZt = ηΠ
∗
(Z[0,t], t)dt+ σ(Zt, t)dWt, ηΠ

∗
(z[0,t], t) = EZ∼QΠ∗

[
ηZT (z[0,t], t) | Z[0,t] = z[0,t]

]
,

where ηΠ
∗

is the expectation of ηx when x = ZT is drawn from Q conditioned on Z[0,t].

We resolve this by observing that it is not necessary to match the whole path measure (Pθ ≈ QΠ∗
)

to match the terminal (Pθ
T ≈ QΠ∗

T = Π∗). It is enough for Pθ to be the best Markov approximation
(a.k.a. Markovization) of QΠ∗

, which matches all (hence terminal) fixed-time marginals with QΠ∗
:

Proj(QΠ∗
,M) := argmin

P∈M
KL(QΠ∗ || P), M = the set of all Markov processes on [0, T ].

Proposition A.2. The global optimum of L(θ) in (11) and (13) is achieved by θ∗ if

sθ
∗
(z, t) = EZ∼QΠ∗

[
ηZT (Z[0,t], t) | Zt = z

]
, µθ∗

(dz0) = QΠ∗
0 = Ex∼Π∗ [Qx

0(dz0)] . (14)

In this case, Pθ∗
= Proj(QΠ∗

,M) is the Markovization of QΠ∗
, with which it matches all time-

marginals: Pθ∗
t = QΠ∗

t for all time t ∈ [0, T ]. In addition,

KL(Π∗ || Pθ
T ) ≤ KL(Pθ∗ || Pθ) = KL(QΠ∗ || Pθ)−KL(QΠ∗ || Pθ∗

) = L(θ)− L(θ∗). (15)

Note that sθ
∗

is a conditional expectation of ηΠ
∗
: sθ

∗
(z, t) = EZ∼QΠ∗ [ηΠ

∗
(Z[0,t], t) | Zt = z].

Theorem 1 of Peluchetti (2021) gives a related result that the marginals of mixtures of Markov
diffusion processes can be matched by another Markov diffusion process, but does not discuss the
issue of Markovization nor connect to KL divergence. Theorem 1 of Song et al. (2021) is the special
case of (15) when QΠ∗

is Markov.

[Proof of Proposition A.2] It is the combined result of Lemma A.3 and Lemma A.4 below.

Lemma A.3. Let Q be a non-Markov diffusion process on [0, T ] of form

Q : dZt = η(Z[0,t], t)dt+ σ(Zt, t)dWt, Z0 ∼ Q0,

and M = argminP∈M KL(Q || P) be the Markovization of Q, where M is the set of all Markov
processes on [0, T ]. Then Q is the law of

M : dZt = m(Zt, t)dt+ σ(Zt, t)dWt, Z0 ∼ Q0,

where
m(z, t) = EZ∼Q[η(Z[0,t], t) | Zt = z].

In addition, we have Qt = Mt for all time t ∈ [0, T ].

14
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[Proof] By Girsanov’s Theorem (e.g., Lejay, 2018), any process that has KL(Q || M) < +∞
(and hence is equivalent to Q) has a form of dZt = m(Z[0,t], t)dt + σ(Zt, t)dWt, where m is a
measurable function. Since M is Markov, we have m(Z[0,t], t) = m(Zt, t). Then

KL(Q || P) = KL(Q0 || P0) + EZ∼Q

[
1

2

∫ T

0

∥∥σ(Zt, t)
−1(η(Z[0,t], t)−m(Zt, 0))

∥∥2
2

]
.

It is clear that to achieve the minimum, we need to take M0 = Q0 and m(z, t) =
EZ∼Q[η(Z[0,t], t) | Zt = z].

To prove Qt = Mt, note that by the chain rule of KL divergence:

KL(Q || P) = KL(Qt || Pt) + EZt∼Qt [KL(Q(·|Zt) || P(·|Zt))], ∀t ∈ [0, T ].

As the second term P(·|Zt) is independent of the choice of the marginal Pt at time t ∈ [0, T ], the
optimum should be achieved by M only if Mt = Qt.

Lemma A.4. Let

Q : dZt = η(Z[0,t], t)dt+ σ(Zt, t)dWt, Z0 ∼ Q0

M : dZt = m(Zt, t)dt+ σ(Zt, t)dWt, Z0 ∼ Q0,

Pθ : dZt = sθ(Zt, t)dt+ σ(Zt, t)dWt, Z0 ∼ Pθ
0,

where M is the Markovization of Q (see Lemma A.3). Then

KL(Q || Pθ) = KL(Q || M) +KL(M || Pθ).

Hence, assume there exists θ∗ such that Pθ∗
= M and write L(θ) := KL(Q || Pθ). We have

KL(QT || Pθ
T ) = KL(MT || Pθ

T ) ≤ KL(M || Pθ) = L(θ)− L(θ∗).

[Proof] Note that

KL(M || Pθ)

= KL(M0 || Pθ
0) +

1

2
EZt∼Mt

[∫ T

0

∥∥σ(Zt, t)
−1(sθ(Zt, t)−m(Zt, t))

∥∥2
2

]
dt

= KL(M0 || Pθ
0) +

1

2

∫ T

0

EZt∼Mt

[∥∥σ(Zt, t)
−1(sθ(Zt, t)−m(Zt, t))

∥∥2
2

]
dt

= KL(Q0 || Pθ
0) +

1

2

∫ T

0

EZt∼Qt

[∥∥σ(Zt, t)
−1(sθ(Zt, t)−m(Zt, t))

∥∥2
2

]
dt //Qt = Mt ∀t

= KL(Q0 || Pθ
0) + EZ∼Q

[
1

2

∫ T

0

∥∥σ(Zt, t)
−1(sθ(Zt, t)−m(Zt, t))

∥∥2
2
dt

]

= KL(Q0 || Pθ
0) +

1

2

∥∥sθ −m
∥∥2
Q,σ

,

where we define ∥f∥2Q,σ = EZ∼Q

[
1
2

∫ T

0

∥∥σ(Zt, t)
−1f(Zt, t)

∥∥2
2
dt
]
.

On the other hand,

KL(Q || Pθ) = KL(Q0 || Pθ
0) + EZ∼Q

[
1

2

∫ T

0

∥∥σ(Zt, t)
−1(sθ(Zt, 0))− η(Z[0,t], t)

∥∥2
2
dt

]

= KL(Q0 || Pθ
0) +

1

2

∥∥sθ − η
∥∥2
Q,σ

KL(Q || M) = EZ∼Q

[
1

2

∫ T

0

∥∥σ(Zt, t)
−1(η(Z[0,t], t)−m(Zt, 0))

∥∥2
2
dt

]

=
1

2
∥η −m∥2Q,σ .

15
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Using Lemma A.5 with a(z) = σ(z, t)−1sθ(z, t), and b(z[0,t]) = σ(z, t)−1η(z[0,t], t), we have the
following bias-variance decomposition:∥∥η − sθ

∥∥2
Q,σ

=
∥∥sθ −m

∥∥2
Q,σ

+ ∥η −m∥2Q,σ .

Hence, KL(Q || Pθ) = KL(M || Pθ) +KL(Q ||M).

Finally, KL(MT || Pθ
T ) ≤ KL(M || Pθ) is the direct result of the following factorization of KL

divergence:

KL(M || Pθ) = KL(MT || Pθ
T ) + Ex∼MT

[
KL(MT (·|ZT = x) || Pθ

T (·|ZT = x))
]
.

Lemma A.5. Let (X,Y ) be a random variable and a(x), b(x, y) are square integral functions. Let
m(x) = E[b(X,Y ) | X = x]. We have

E[∥a(X)− b(X,Y )∥22] = E[∥a(X)−m(X)∥22] + E[∥b(X,Y )−m(X)∥22].

[Proof]

E[∥a(X)− b(X,Y )∥22] = E[∥a(X)−m(X) +m(X)− b(X,Y )∥22]
= E[∥a(X)−m(X)∥22] + E[∥m(X)− b(X,Y )∥22] + 2∆,

where

∆ = E[(a(X)−m(X))⊤(m(X)− b(X,Y ))]]

= E[(a(X)−m(X))⊤E[(m(X)− b(X,Y ))|X]]

= E[(a(X)−m(X))⊤(m(X)−m(X))] = 0.

A.4 MARKOV AND RECIPROCAL PROPERTIES OF QΠ∗

Mixture of Bridges and Initialization It is an immediate observation that the mixtures of a set
of bridges are also bridges: let Qz,A be a set of A-bridges indexed by a variable z, then QA :=∫
Qz,Aµ(dz) is an x-bridge for any distribution µ on z.

A special case is to take the mixture of the conditional bridges in (5) starting from different deter-
ministic initialization, which shows that we can obtain a valid x-bridge by equipping the same drift
in (5) with essentially any initialization. Hence, the choices of the drift force and initialization in
Qx can be completely decouple.

Proposition A.6. Let Q̃ is a path measure and Ωx is the set of z for which Q̃z0,x(·) := Q̃(·|ZT =

x, Z0 = z0) exists. Then Qx :=
∫
Q̃z0,xµ(dz0 | x) is an x-bridge, for any distribution µ on Ω× Ω.

[Proof of Proposition A.6] This is an obvious result. We have Qz0,x(ZT = x) = 1 by the definition
of conditioned processes. Hence Qx(ZT = x) =

∫
Qz0,x(ZT = x)µ(dz0 | x) =

∫
µ(dz0 | x) = 1.

Markov and Reciprocal Properties of QΠ∗
If Qx is constructed as Qx = Q(·|ZT = x), it is

easy to see that QΠ∗
:=
∫
Qx(·)Π∗(dx) is Markov iff Q is Markov.

Proposition A.7. Assume Qx = Q(· | ZT = x) and π∗(z) := dΠ∗

dQT
(z) exists and is positive

everywhere. Then QΠ∗
is Markov, iff Q is Markov.

[Proof of Proposition A.7] If Qx = Q(· | ZT = x), we have from the definition of QΠ∗
:

QΠ∗
(Z) = Q(Z|ZT )Π

∗(ZT ) = Q(Z)π∗(ZT ),
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where π∗(ZT ) =
dΠ∗

dQT
(ZT ). Therefore, QΠ∗

is obtained by multiplying a positive factor π∗(ZT ) on
the terminal state ZT of Q. Hence QΠ∗

has the same Markov structure as that of Q.

If Qx is constructed from mixtures of bridges as above, the resulting QΠ∗
is more complex. In fact,

simply varying the initialization µ in Proposition (A.6) can change the Markov structure of QΠ∗
.

Proposition A.8. Take Qx to be the dynamics in (7) initialized fromZ0 ∼ N (0, v0). Assume σt > 0,
∀t ∈ [0, T ]. Then QΠ∗

is Markov only when v0 = 0, or v0 = +∞.

[Proof of Proposition A.8] When taking Qx to be the dynamics (7) initialized from Z0 ∼ µ0 =
N (0, v0), we have Qx =

∫
µ0(dz0)Q̃z0,x, where Q̃z0,x = Q̃(·|Z0 = z0, ZT = x) with Q̃ fol-

lowing Brownian motion dZt = dWt. Hence, we can write QΠ∗
(dZ) = Q̃(dZ)r(Z0, ZT ), where

r(z0, zT ) =
dµ0⊗Π∗

dQ̃0,T
(z0, zT ). From Léonard et al. (2014), QΠ∗

is Markov iff r(x, z0) = f(x)g(z0)

for some f and g, which is not the case except the degenerated case (v0 = 0 and v0 = +∞) because
Q̃0,1 is not factorized.

On the other hand, when v0 = 0, we have that Qx = Q(·|ZT = x) is the standard Brownian bridge
and hence QΠ∗

is Markov following Proposition A.7. When v0 = +∞, as the case of SMLD, QΠ∗

is the law of Zt = Z̃T−t with dZ̃t = dWt and Z̃0 ∼ Π∗, which is also Markov.

The right characterization of QΠ∗
from Proposition (A.6) involves reciprocal processes (Léonard

et al., 2014).
Definition A.9. A process Z with law Q on [0, T ] is said to be reciporcal if it can be written into
Q =

∫
Q̃z0,zT µ(dz0,dzT ), where Q̃ is a Markov process and Q̃z0,zT = Q̃(·|Z0 = z0, ZT = zT ),

and µ is a probability measure on Ω× Ω.

Proposition A.10. QΠ∗
is reciprocal iff Qx =

∫
Q̃z0,xµ(dz0 | x) for a Markov Q̃ and distribution

µ.

[Proof of Proposition A.10] Note that

QΠ∗
(·) =

∫
π(dx)Qx(·) =

∫
π(dx)µ(dz0 | x)Q̃z0,x(·).

Hence if Q̃ is Markov, QΠ∗
is reciprocal by Definition A.9.

On the other hand, if QΠ∗
is reciprocal, we have QΠ∗

(·) =
∫
Mz0,x(·)µ(dz0,dx) for some Markov

process M and probability measure µ on Ω × Ω. In this case, we have Qx(·) = QΠ∗
(·|ZT = x) =∫

Mz0,x(·)µ(dz0 | x), assuming it exits.

Intuitively, a reciprocal process can be viewed as connecting the head and tail of a Markov chain,
yielding a single loop structure. A characteristic property is Q(X[s,t] ∈ A | Z[0,s], Z[t,T ]) =
Q(X[s,t] ∈ A | Zs, Zt), where A is any event that occur between time s and t. Solutions of the
Schrodinger bridge problems are reciprocal processes (Léonard et al., 2014).

A.5 PRACTICAL ALGORITHM AND ERROR ANALYSIS

In practice, we need to introduce empirical and numerical approximations in both training and in-
ference phases. Denote by τ = {τi}K+1

i=1 a grid of time points with 0 = τ1 < τ2 . . . < τK+1 = T .
During training, we minimize an empirical and time-discretized surrogate of L(θ) as follows

L̂(θ) = 1

n

n∑
i=1

ℓ(θ;Z(i), τ (i)), ℓ(θ;Z, τ) := − log pθ0(Z0) +
1

2K

K∑
k=1

∆(θ;Z, τk), (16)

where ∆(θ;Z, t) :=
∥∥σ−1(Zt, t)(s

θ(Zt, t)− ηx(Z[0,t], t))
∥∥2, and {Z(i)} is drawn from QΠ∗

, and
τ (i) can be either a deterministic uniform grid of [0, T ], i.e., τ (i) = {i/K}Ki=0, or drawn i.i.d.
uniformly on [0, T ] (see e.g.,Song et al. (2020b); Ho et al. (2020)). A subtle problem here is that the
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variance of ∆(θ;Z, t) grows to infinite as t ↑ T . Hence, we should not include ∆(θ;Z, T ) at the
end point τK+1 = T into the sum in the loss ℓ(θ, Z, τ) to avoid variance exploding.

In the sampling phase, the continuous-time model Pθ should be approximated numerically. A stan-
dard approach is the Euler-Maruyama method, which simulates the trajectory on a time grid τ by

Ẑτk+1
= Ẑτk + ϵks

θ(Ẑτk , τk) +
√
ϵkσ(Ẑτk , τk)ξk, ϵk = τk+1 − τk, ξk ∼ N (0, Id), (17)

The final output is ẐT . The following result shows the KL divergence between Π∗ and the dis-
tribution of ẐT can be bounded by the sum of the step size and the expected optimality gap
E[L̂(θ)− L̂(θ∗)] of the time-discretized loss in (16).

A.5.1 TIME-DISCRETIZATION ERROR ANALYSIS (PROPOSITION A.11)

Proposition A.11. Assume Ω = Rd and σ(z, t) = σ(t) is state-independent. Take the uniform time
grid τunif := {iϵ}Ki=0 with step size ϵ = T/K in the sampling step (17). Assume σ(t) > c > 0,
∀t and σ(t) is piecewise constant w.r.t. time grid τunif . Let Lϵ(θ) = EZ∼QΠ∗ [ℓ(θ;Z, τunif)]. Let
Pθ,ϵ
T be the distribution of the resulting sample ẐT . Let θ∗ be an optimal parameter satisfying

(14). Assume C0 := supz,t

(∥∥sθ∗
(z, t)

∥∥2 /(1 + ∥z∥2), tr(σ2(z, t)), EPθ∗ [∥Z0∥2]
)
< +∞, and∥∥sθ∗

(z, t)− sθ
∗
(z′, t′)

∥∥2
2
≤ L

(
∥z − z′∥2 + |t− t′|

)
for ∀z, z′ ∈ Rd and t, t′ ∈ [0, T ]. Then√

KL(Π∗ || Pθ,ϵ
T ) ≤

√
Lϵ(θ)− Lϵ(θ∗) +O

(√
ϵ
)
.

We provide the analysis and proof for Proposition A.11 in the following text.
Proposition A.12. Assume Ω = Rd and σ(z, t) = σ(t) is state-independent and σ(t) > c > 0,
∀t ∈ [0, T ]. Take the uniform time grid τunif := {iϵ}Ki=0 with step size ϵ = T/K in the sampling
step (17). Let Lϵ(θ) = EZ∼QΠ∗ [ℓϵ(θ;Z)] with

ℓϵ(θ, Zt) = − log pθ0(Z0) +
1

2K

K∑
k=1

∥∥σ−1
k (sθ(Ztk , tk)− ηZT (Z[0,tk], tk))

∥∥2
2
,

where ϵ > 0 is a step size with T = Kϵ and tk = (k− 1)ϵ, and σ2
k := (tk+1 − tk)

−1
∫ tk+1

tk
σ(t)2dt.

Let Pθ,ϵ
T be the distribution of the sample ẐT resulting from the following Euler method:

Ẑtk+1
= Ẑtk + ϵsθ(Ztk , tk) +

√
ϵσkξk,

where ξk ∼ N (0, Id) is the standard Gaussian noise in Rd. Let θ∗ be an optimal parameter satisfy-

ing (14). Assume C0 := supz,t

(∥∥sθ∗
(z, t)

∥∥2 /(1 + ∥z∥2), tr(σ2(z, t)), EPθ∗ [∥Z0∥2]
)
< +∞,

and sθ
∗

satisfies
∥∥sθ∗

(z, t)− sθ
∗
(z′, t′)

∥∥2
2

≤ L
(
∥z − z′∥2 + |t− t′|

)
for ∀z, z′ ∈ Rd and

t, t′ ∈ [0, T ]. Then we have√
KL(Π∗ || Pθ,ϵ

T ) ≤
√

Lϵ(θ)− Lϵ(θ∗) +O
(√
ϵ
)
.

[Proof of Proposition A.11] This is the result of Lemma A.13 below by noting that the P̂θ there
is equivalent to the Euler method above, and Lϵ(θ) − Lϵ(θ

∗) ≤ L̃ϵ(θ) − L̃ϵ(θ
∗) (because σ−2

k =

((tk+1 − tk)
−1
∫ tk+1

tk
σ(t)2)−1 ≤ (tk+1 − tk)

−1
∫ tk+1

tk
σ(t)−2).

Lemma A.13. Let h be a step size and ϵ = T/K for a positive integer K. For each t ∈ [0,∞),
denote by ⌊t⌋ϵ = max({kϵ : k ∈ N} ∩ [0, t]). Assume

QΠ∗
: dZt = ηΠ

∗
(Z[0,t], t)dt+ σ(Zt, t)dWt, Z0 ∼ Q0

Pθ∗
: dZt = sθ

∗
(Zt, t)dt+ σ(Zt, t)dWt, Z0 ∼ Q0,

Pθ : dZt = sθ(Zt, t)dt+ σ(Zt, t)dWt, Z0 ∼ Pθ
0

P̂θ : dZt = sθ(Z⌊t⌋ϵ , t)dt+ σ(Zt, t)dWt, Z0 ∼ Pθ
0,
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where Pθ∗
is the Markovianization of QΠ∗

, and P̂θ is a discretized version of Pθ. Define

L̃ϵ(θ) = EQΠ∗

[
− log pθ0(Z0) +

1

2

∫ T

0

∥∥σ−1(Zt, t)(s
θ(Z⌊t⌋ϵ , ⌊t⌋ϵ)− ηZT (Z[0,⌊t⌋ϵ], ⌊t⌋ϵ))

∥∥2 dt] .
Assume the conditions of Lemma A.17 holds for Pθ∗

, and σ(z, t) ≥ c > 0 for all z, t, and sθ
∗

satisfies
∥∥sθ∗

(z, t)− sθ
∗
(z′, t′)

∥∥2
2
≤ L

(
∥z − z′∥2 + |t− t′|

)
for ∀z, z′ ∈ Rd and t, t′ ∈ [0, T ].

Then √
KL(Pθ∗ || P̂θ) ≤

√
L̃ϵ(θ)− L̃ϵ(θ∗) + C

√
ϵ,

where C is a constant that is independent of ϵ.

[Proof] Define ∥f∥2Q,σ = EZ∼Q[
∫ T

0
∥σ(Z, t)f(Z, t)∥2] for convenient notation. Let sθϵ (Z, t) =

sθ(Z⌊t⌋ϵ , ⌊t⌋ϵ), and ηϵ = ηZT (Z[0,⌊t⌋ϵ], ⌊t⌋ϵ).
KL(Pθ∗ || P̂θ)

= KL(Pθ∗
0 || P̂θ

0) +
1

2

∥∥∥sθ∗ − sθϵ

∥∥∥2
≤ KL(Pθ∗

0 || Pθ
0) +

1

2

(
(1 + ω)

∥∥∥sθϵ − sθ
∗

ϵ

∥∥∥2
Pθ∗ ,σ

+ (1 + 1/ω)
∥∥∥sθ∗ − sθ

∗
ϵ

∥∥∥2
Pθ∗ ,σ

)
:= (1 + ω)I1 + (1 + 1/ω)I2,

where ω > 0 is any positive number and

I1 :=
1

1 + ω
KL(Pθ∗

0 || Pθ
0) +

1

2

∥∥∥sθϵ − sθ
∗

ϵ

∥∥∥2
Pθ∗ ,σ

=
1

1 + ω
KL(Pθ∗

0 || Pθ
0) +

1

2

∥∥∥sθϵ − sθ
∗

ϵ

∥∥∥2
QΠ∗ ,σ

≤ KL(Pθ∗
0 || Pθ

0) +
1

2

∥∥∥sθϵ − sθ
∗

ϵ

∥∥∥2
QΠ∗ ,σ

≤ KL(Pθ∗
0 || Pθ

0) +
1

2

(∥∥sθϵ − ηZT
ϵ

∥∥2
QΠ∗ ,σ

−
∥∥∥sθ∗

ϵ − ηZT
ϵ

∥∥∥2
QΠ∗ ,σ

)
//Lemma A.5

= L̃ϵ(θ)− L̃ϵ(θ
∗),

and

I2 :=
1

2

∥∥∥sθ∗ − sθ
∗

ϵ

∥∥∥2
Pθ∗ ,σ

≤ L

2
EPθ∗

[∫ T

0

σ−2(Zt, t)
(∥∥Zt − Z⌊t⌋ϵ

∥∥2 + (t− ⌊t⌋ϵ)
)
dt

]

≤ L

2c2
EPθ∗

[∫ T

0

((Zt − Z⌊t⌋ϵ)
2 + (t− ⌊t⌋ϵ))dt

]

≤ L

2c2
(CPθ∗ + 1)

∫ T

0

(t− ⌊t⌋ϵ)dt //Lemma A.17

=
L

2c2
(CPθ∗ + 1)

Tϵ

2
. //Lemma A.15,

where CPθ∗ is a constant depending on Pθ∗
that comes from Lemma A.17. Hence

KL(Pθ∗ || P̂θ) ≤ inf
ω≥0

(1 + ω)I1 + (1 + 1/ω)I2

= (
√
I1 +

√
I2)

2

≤
(√

L̃ϵ(θ)− L̃ϵ(θ∗) +
1

2

√
L

c2
(CPθ∗ + 1)Tϵ

)
.

This completes the proof.
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Lemma A.14. For any a, b ∈ Rd, and ω ≥ 0,

∥a+ b∥22 ≤ (1 + ω) ∥a∥22 + (1 + 1/ω) ∥b∥22 .

[Proof]

(1 + ω) ∥a∥22 + (1 + 1/ω) ∥b∥22 ≥ ∥a∥22 + ∥b∥22 + 2a⊤b = ∥a+ b∥22

Lemma A.15. Assume T ≥ 0, ϵ ≥ 0 and T/ϵ ∈ N. We have∫ T

0

(t− ⌊t⌋ϵ)dt =
Tϵ

2
.

[Proof] ∫ T

0

(t− ⌊t⌋ϵ)dt =
K−1∑
k=0

∫ ϵ

0

(hk + x− hk)dx

=

K−1∑
k=0

∫ ϵ

0

xdx

= Kϵ2/2

= Tϵ/2.

Lemma A.16 (Grönwall’s inequality). Let I denote an interval of the real line of the form [a,∞)
or [a, b] or [a, b) with a < b. Let α, β and u be real-valued functions defined on I . Assume that
β and u are continuous and that the negative part of α is integrable on every closed and bounded
subinterval of I .

(a) If β is non-negative and if u satisfies the integral inequality

u(t) ≤ α(t) +

∫ t

a

β(s)u(s) ds, ∀t ∈ I,

which is true if
u′(t) ≤ α′(t) + β(t)u(t).

then

u(t) ≤ α(t) +

∫ t

a

α(s)β(s) exp

(∫ t

s

β(r) dr

)
ds, t ∈ I.

(b) If, in addition, the function α is non-decreasing, then

u(t) ≤ α(t) exp

(∫ t

a

β(s) ds

)
, t ∈ I.

Lemma A.17. Consider

dXt = b(Zt, t)dt+ σ(Zt, t)dWt, X0 = 0, t ∈ [0, T ].

Assume there exists a finite constant C0, such that

∥b(x, t)∥22 ≤ C0(1 + ∥x∥22), ∀x ∈ Rd, t ∈ [0, T ],

tr(σσ⊤(x, t)) ≤ C0, ∀x ∈ Rd, t ∈ [0, T ].

and E[∥Z0∥22] ≤ C0.

Then for any 0 ≤ s ≤ t ≤ T , we have

E[∥Zt − Zs∥22] ≤ KC0,T (t− s),

where KC0,T is a finite constant that depends on C0 and T .
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[Proof] Let η = supx,t tr(σσ
⊤(x, t)). We have by Ito Lemma,

d

dt
E
[
∥Zt − Zs∥22

]
= E

[
2(Zt − Zs)

⊤(b(Zt, t) + dWt) + η
]

= E
[
2(Zt − Zs)

⊤b(Zt, t) + η
]

= E
[
∥Zt − Zs∥22 + ∥b(Zt, t)∥22 + d

]
≤ E

[
∥Zt − Zs∥22 + C0(1 + ∥Zt∥22) + η

]
≤ (1 + 2C0)E

[
∥Zt − Zs∥22

]
+ η + C0(1 + 2E

[
∥Zs∥22

]
).

Using Gronwall’s inequality,

E
[
∥Zt − Zs∥22

]
≤ (t− s)(η + C0(1 + 2E[∥Zs∥22])) exp ((t− s)(1 + 2C0)) .

Taking s = 0 yields that

E
[
∥Zt − Z0∥22

]
≤ t(η + C0(1 + 2E[∥Z0∥22])) exp (t(1 + 2C0)) .

Hence

E[∥Zt∥22] ≤ 2E
[
∥Zt − Z0∥22

]
+ 2E

[
∥X0∥22

]
≤ 2t(η + C0(1 + 2E[∥Z0∥22])) exp (t(1 + 2C0)) + 2E

[
∥Z0∥22

]
≤ 4T (C0 + C2

0 ) exp(T (1 + 2C0)) + 2C0.

Therefore,

E
[
∥Zt − Zs∥22

]
≤ (t− s)(η + C0(1 + 2E[∥Zs∥22])) exp ((t− s)(1 + 2C0))

≤ C(t− s),

where

C = (2C0 + 4C2
0 + 8C0T (C0 + C2

0 ) exp(T (1 + 2C0))) exp (T (1 + 2C0)) .

A.5.2 STATISTICAL ERROR ANALYSIS (PROPOSITION A.18)

To provide a simple analysis of the statistical error, we assume that θ̂n = argminθ L̂(θ) is an
asymptotically normal M-estimator of θ∗ following classical asymptotic statistics (Van der Vaart,
2000), with which we can estimate the rate of the excess risk Lϵ(θ̂n) − Lϵ(θ

∗) and hence the KL
divergence.

Proposition A.18. Assume the conditions in Proposition (A.11). Assume θ̂n = argminθ L̂ϵ(θ)

with L̂ϵ(θ) =
∑n

i=1 ℓ(θ;Z
(i), τunif)/n, Z(i) ∼ QΠ∗

. Take Qx to be the standard Brown-
ian bridge dZx

t =
x−Zx

t

T−t dt + dWt with Z0 ∼ N (0, v0) and v0 > 0. Assume
√
n(θ̂n −

θ∗)
d−→ N (0,Σ∗) as n → +∞, where Σ∗ is the asymptotic covariance matrix of the

M estimator θ̂n. Assume Lϵ(θ) is second order continuously differentiable and strongly con-
vex at θ∗. Assume Π∗ has a finite covariance and admits a density function π that satisfies
supt∈[0,T ] EQΠ∗

[∥∥∇θs
θ∗
(Zt, t)

∥∥2 (1 + ∥∇ log π(ZT )∥2 + tr(∇2 log π(ZT )))
]
< +∞. We have

E
[√

KL(Π∗ || Pθ̂n,ϵ
T )

]
= O

(√
log(1/ϵ) + 1

n
+

√
ϵ

)
. (18)
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The expectation in Eq. (18) is w.r.t. the randomness of θ̂n. The log(1/ϵ) factor shows up as the sum
of a harmonic series as the variance of ∆(θ;Z, t) grows with O(1/(T − t)) when t ↑ T . Taking
ϵ = 1/n yields KL(Π∗ || Pθ̂n,ϵ

T ) = O(log n/n). If we want to achieve KL(Π∗ || Pθ̂n,ϵ
T ) = O(η), it

is sufficient to take K = T/ϵ = O(1/η) steps and n = Ø(log(1/η)/η) data points.

[Proof of Proposition A.18] Let

θ∗ = argmin
θ

Lϵ(θ) := EZ∼QΠ∗ [ℓ(θ;Z)], θ̂n = argmin
θ

L̂ϵ(θ) :=
1

n

n∑
i=1

ℓ(θ;Z(i)),

where {Z(i)}ni=1 is drawn i.i.d. from QΠ∗
. We assume that θ̂n is an asymptotically normal M-

estimator, in which case we have

√
n(θn − θ∗)

d−→ N (0,Σ∗),

where

Σ∗ = H−1
∗ V∗H

−1
∗ , H∗ = EZ∼QΠ∗

[
∇2

θθℓ(θ
∗;Z)

]
, V∗ = E[∇θℓ(θ

∗;Z)∇θℓ(θ
∗;Z)⊤],

and

nE[(L(θ̂n)− L(θ∗))] ≍
[
1

2

√
n(θ∗ − θ̂n)

⊤H∗
√
n(θ∗ − θ̂n)

]
≍ 1

2
tr(H−1

∗ V∗),

where f ≍ g denotes that f − g = o(1). We now need to bound tr(H−1
∗ V∗). Combining the results

in Lemma A.19 and Lemma A.23, we have when tk = (k − 1)ϵ and T = Kϵ,

tr(H−1
∗ V∗) = O

(
1 +

1

K

K∑
k=1

1

T − tk

)
= O(1 + log(1/ϵ)).

Hence,

E[
√
KL(Π∗ || Pθ̂n,ϵ

T )] = O

(
E[
√
L(θ̂n)− L(θ∗)] +√

ϵ

)
= O

(√
E[L(θ̂n)− L(θ∗)] +√

ϵ

)
= O

(√
log(1/ϵ+ 1)

n
+

√
ϵ

)
.

Lemma A.19. Assume the conditions in Proposition A.18. Define

I0 = EZ∼QΠ∗

[∥∥∥∇ log pθ
∗

0 (Z0)
∥∥∥2] , Ik = EZ∼QΠ∗

[∥∥∥∇θs
θ∗
(Ztk , tk)

∥∥∥2 tr(cov(ηZT (Z[0,tk], tk) | Ztk))

]
,

for ∀k = 1, . . .K. Then

tr(H−1
∗ V∗)

1/2 ≤ 1

λmin(H∗)1/2

I1/20 +

(
1

K

K∑
k=1

Ik

)1/2
 .

[Proof] From Lemma A.21, tr(H−1
∗ V∗) ≤ (λmin(H∗))−1tr(V∗). Hence we just need to bound

tr(V∗).
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tr(V∗)
1/2 = EZ∼QΠ∗

[
∥∇θℓ(θ

∗, Z)∥22
]1/2

≤ EZ∼QΠ∗

[
∥∇θℓ(θ

∗, Z)∥22
]1/2

+
1

K

K∑
k=1

EZ∼QΠ∗

[∥∥∥∇θs
θ∗
(Ztk , tk)(s

θ∗
(Ztk , tk)− ηZT (Z[0,tk], tk))

∥∥∥2
2

]1/2

≤ EZ∼QΠ∗

[
∥∇θℓ(θ

∗, Z)∥22
]1/2

+
1

K

K∑
k=1

EZ∼QΠ∗

[∥∥∥∇θs
θ∗
(Ztk , tk)

∥∥∥2
2

∥∥∥(sθ∗
(Ztk , tk)− ηZT (Z[0,tk], tk))

∥∥∥2
2

]1/2

= EZ∼QΠ∗

[
∥∇θℓ(θ

∗, Z)∥22
]1/2

+
1

K

K∑
k=1

EZ∼QΠ∗

[∥∥∥∇θs
θ∗
(Ztk , tk)

∥∥∥2
2
tr
(
cov

(
ηZT (Z[0,tk], tk) | Ztk

))]1/2

= I
1/2
0 +

1

K

K∑
k=1

I
1/2
k

≤ I
1/2
0 +

√√√√ 1

K

K∑
k=1

Ik.

Lemma A.20. Assume the results in Lemma A.19 and Lemma A.23 hold. Assume

max
k∈1,...,K

EZ∼Π∗

[∥∥∥∇θ s̃
θ∗
(Ztk , tk)

∥∥∥2
2

(
1 + ∥∇ log π∗(ZT )∥22 + tr(∇2 log π∗(ZT ))

)]
< +∞,

Then for k = 1, . . . ,K, we have Ik = O
(

1
T−tk

+ 1
)
.

[Proof] It is a direction application of (20).

Lemma A.21. Let A and B be two d × d positive semi-definite matrices. Then tr(AB) ≤
λmax(A)tr(B).

[Proof] Write A into A =
∑d

i=1 λiuiu
⊤
i where λi and ui is the i-th eigenvalue and eigenvectors of

A, respectively. Then

tr(AB) = tr(

d∑
i=1

λiu
⊤
i Bui) ≤ λmax(A)tr(

d∑
i=1

u⊤i Bui) = λmax(A)tr(B).

Controlling the Conditional Variance of the Regression Problem Assume Qx is the standard
Brownian bridge:

Qx : dZx
t =

x− Zx
t

T − t
dt+ dWt, Z0 ∼ N (0, v0). (19)

In this case, the (ideal) loss function is

L(θ) = −EX∼Π∗,Z∼QX

[
log pθ0(Z0) +

1

2

∫ T

0

∥∥sθ(Zt, t)− Yt
∥∥2 dt] , where Yt =

X − Zt

1− t
.

The second part of the loss is a least square regression for predicting Yt = ηX(Zt, t) with sθ(Zt, t).
The conditioned variance cov(Yt | Zt) is an important factor that influences the error of the regres-
sion problem. We now show that tr(cov(Yt | Zt)) = O(1/T − t) which means that it explodes to
infinity when t ↑ T .

First, note that tr(cov(Yt | Zt)) =
1

(T−t)2 tr(cov(X | Zt)). Using the estimate in Lemma A.23, we
have

tr(cov(Yt | Zt)) = O

(
1

T − t
+ E

[
∥∇x log π

∗ (X)∥22 + tr
(
∇2 log π∗ (X)

) ∣∣∣∣Zt

])
. (20)
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Lemma A.22. For the standard Brownian bridge in (19), we have

Zx
t ∼ N

(
t

T
x,

t(T − t)

T
+

(T − t)2

T 2
v0

)
.

[Proof] Let Zz0,x
t be the same process that is initialized from Zz0,x

0 = z0. We have from the

textbook result regarding Brownian bridge that we can write Zz0,x
t = tx+(T−t)z0

T +
√

t(T−t)
T ξt

where ξt is some standard Gaussian random variable. The result follows directly as Zx
t = ZZ0,x

t
with Z0 ∼ N (0, v0).

Lemma A.23. Let π∗ be the density function Π∗ on Rd whose covariance matrix exists. When
X ∼ Π∗ and Z ∼ QX from (19) with v0 > 0. Then the density function ρt(x|z) of X|Zt = zt
satisfies

ρt(x|z) ∝ π∗(x) exp

(
−

∥∥T
t z − x

∥∥2
2

2(T (T−t)
t + v0

(T−t)2

t2 )

)
. (21)

In addition, there exists positive constants c < +∞ and τ ∈ (0, T ), such that

tr(covρt(x|z)) ≤

wtd+ w2
tEρt

[
∥∇x log π

∗ (x)∥22 + tr
(
∇2 log π∗ (x)

) ∣∣∣∣ z] , when τ ≤ t ≤ T

c, when 0 ≤ t ≥ τ ,

wherewt =
T (T−t)

t + v0
(T−t)2

t2 . So tr(covρt
(x|z)) is bounded and decay to zero with rateO(T−t)

as t ↑ T .

[Proof] We know that X ∼ Π∗ and ZX
t |X ∼ N (t/TX, wt). Hence, (21) is a direct result of Bayes

rule. Then Lemma A.25 gives

tr(covρt
(x|z)) = wtd+ w2

tEρt

[
∥∇x log π

∗ (x)∥22 + tr
(
∇2 log π∗ (x)

) ∣∣∣∣z] .
On the other hand,

ρt(x|z) ∝ π∗(x) exp(− 1

2wt
∥x∥2 + T

twt
z⊤x),

When t → 0, we have 1/wt → 0 and T/(twt) → 0. Hence, ρt(x|z) converges to π∗(x) as t → 0,
as a result, tr(covρt

(x|z)) → tr(covπ∗(x)) < +∞. Therefore, for any c > 0, there exists t0 > 0,
such that tr(covρt

(x|z)) ≤ tr(covπ∗(x)) + c when 0 ≤ t ≤ t0.

Remark A.24. We need to have v0 > 0 to ensure that T/(twt) → 0 in the proof of Lemma A.23.
This is purely a technical reason, for yielding a finite bound of the conditioned variance when
t is close to 0. We can establish the same result when v0 = 0 by adding the assumption that
maxk∈1,...,K EZ∼QΠ∗

[∥∥∇θs
θ∗
(Ztk , tk)

∥∥2
2
tr(covΠ∗

Ztk

(ZT ))
]
< +∞, where Π∗

z is the distribution

with density π∗
z(x) ∝ π∗(x) exp(z⊤x/T ).

Lemma A.25. Let p(x) ∝ π(x) exp
(
−α ∥x−b∥2

2

2

)
be a positive probability density function on Rd,

where α > 0, b ∈ R and log π is continuously second order differentiable. Then

tr(covp(x)) ≤ Ep[∥x∥22] = α−1d+ α−2
(
Ep[∥∇x log π(x)∥22 + tr(∇2 log π(x))]

)
.

[Proof] Let us focus on the case when b = 0 first. Stein’s identity says that

Ep

[
(∇x log π(x)− αx)⊤ϕ(x) +∇⊤

x ϕ(x)
]
= 0,

for a general continuously differentiable function ϕ when the integrals above are finite.
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Taking ϕ = x yields that

Ep

[
(∇x log π(x)− αx)⊤x+ d

]
= 0,

which gives
Ep[∥x∥22] = α−1(Ep[∇x log π(x)

⊤x] + d).

On the other hand, taking ϕ(x) = ∇x log π(x) yields

Ep

[
(∇x log π(x)− αx)⊤∇x log π(x) + tr(∇2 log π(x))

]
= 0,

which gives

Ep[∇x log π(x)
⊤x] = α−1

(
Ep[∥∇x log π(x)∥22 + tr(∇2 log π(x))]

)
.

This gives

Ep[∥x∥22] = dα−1 + α−2
(
Ep[∥∇x log π(x)∥22 + tr(∇2 log π(x))]

)
.

For b ̸= 0, define p̃(x) ∝ π (x+ b) exp
(
−α

2 ∥x∥2
)

, which is the distribution of x̃ = x − b when
x ∼ p. Then applying the result above to p̃ yields

tr(covp(x)) = tr(covp̃(x))

≤ α−1d+ α−2Ex∼p̃

[
∥∇x log π (x+ b)∥22 + tr

(
∇2 log π (x+ b)

)]
= α−1d+ α−2E∼p

[
∥∇x log π (x)∥22 + tr

(
∇2 log π (x)

)]
.

A.6 CONDITION FOR Ω-BRIDGES

We provide the proof for Proposition 2.3.

[Proof of Proposition 2.3] By the formula of KL divergence between two diffusion processes, we
have

KL(QΩ ||Pθ) = KL(QΩ
0 || Pθ

0) +
1

2
EZ∼QΩ

[∫ T

0

∥∥fθ(Zt, t)
∥∥2
2
dt

]
< +∞.

This means that QΩ and Pθ are absolutely continuous to each other, and hence have the same support.
Therefore, QΩ(ZT ∈ Ω) = 1 implies that Pθ(ZT ∈ Ω) = 1.

A.7 EXAMPLES OF Ω-BRIDGES

If Ω is a product space, the integration can be factorized into one-dimensional integrals. Specifically,
assume Ω = I1 × · · · Id, then

ηΩ(z, t) =
[
ηIi(zi, t)

]d
i=1

,

where ηIi is the drift fore of the Ii-bridge, and zi is the i-th element of z = [zi]. Therefore, it is
sufficient to focus on 1D case below.

Consider the bridge process constructed from the Brownian motion in (9). If Ω is a discrete set, say
Ω = {e1 . . . , eK}, we have

ηΩ(z, t) = σ2
t

1∑K
k=1 ω(ek, z, t)

K∑
k=1

ω(ek, z, t)
ek − z

βT − βt

= σ2
t∇z log

K∑
k=1

ω(ek, z, t),
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Figure 5: Generated tabular data from Mixed-Bridge.

where

ω(ek, z, t) = exp

(
− ∥z − ek∥2
2(βT − βt)

)
.

If Ω = [a, b], we have

ηΩ(z, t) = σ2
t

1∫ b

a
ω(e, z, t)

∫ b

a

ω(e, z, t)
e− z

βT − βt
de

= σ2
t∇z log

∫ b

a

ω(e, z, t)de

= σ2
t∇z log

(
F (

z − a√
βT − βt

)− F (
z − b√
βT − βt

)

)
,

where F is the standard Gaussian CDF.

B ADDITIONAL MATERIALS OF THE EXPERIMENTS

In our experiments, T = 1 and ϵ = T/K = 1/K. Moreover, we take the time grid by randomly
sampling from {i/K}K−1

i=0 for the training objective Eq. (13). For evaluation, we calculate the
standard evidence lower bound (ELBO) by viewing the resulting time-discretized model as a latent
variable model:

EX∼Π∗ [− log p̂θT (X)] ≤ EZ∼QΠ∗

[
− log

p̂θ0(Z0)

q0(Z0)
−

K∑
k=1

log
p̂θtk+1|tk(Ztk+1

|Ztk)

qtk+1|tk(Ztk+1
|Ztk)

]
,

where tk = (k−1)ϵ, and p̂θ is the density function of the time-discretized version of Pθ, and q is the
density function of Q. We adopt Monte-Carlo sampling to estimate the log-likelihood. As in (Song
et al., 2020b), we repeat 5 times in the test set for the estimation. For categorical/integer/grid gen-
eration, the likelihood of the last step should take the rounding into account: in practice, we have
ẐT = rounding(ẐtK + ϵsθ(ẐtK , tK)+

√
ϵσ(Ztk , tK)ξK , Ω), where rounding(x,Ω) denotes find-

ing the nearest element of x on Ω, and hence the likelihood p̂θT |tK of the last step should incorporate
the rounding operator as a part of the model.

B.1 GENERATING MIXED-TYPE TABULAR DATA

In this experiment, the metrics are measured by the implementation from Synthetic Data Vault
(SDV) (Patki et al., 2016). For baseline methods, we adopt their open-sourced official implementa-
tion 1. For the machine learning models adopted for evaluation, logistic regerssion, AdaBoost and
MLP, we directly use their default configuration in SDV. For the results in Table 1, we repeat the ex-
periments with 5 different random seeds and report their standard deviation. We provide additional
generated samples from Mixed-Bridge in Figure 5.

1https://github.com/sdv-dev/CTGAN
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Figure 6: Visualization of the noise schedule of Noise decay A, Noise decay B and Noise decay C.

B.2 GENERATING INTEGER-VALUED POINT CLOUDS

In this experiment, we need to process point cloud data on integer grid. To prepare the data, we
firstly sample 2048 points from the ground truth mesh. Then, we normalize all the point clouds
to a unit bounding box. After this, we simply project the points onto grid point by rounding the
coordinate to integer. The metrics in the main text, MMD, COV and 1-NNA are computed with
respect to the post-processed integer-valued training point clouds. For the results in Table 2, we
repeat the experiments for 3 times and report the mean of the experiments.

B.3 GENERATING SEMANTIC SEGMENTATION MAPS ON CITYSCAPES

In this experiment, we set (Noise Decay A): σ2
t = 3 exp(−3t); (Noise Decay B): σ2

t = 3(1 − t);
(Noise Decay C) σ2

t = 3 − 3 exp(−3(1 − t)). We visualize the noise schedule in Figure 6. Note
that, except for Constant Noise, all the other three processes gradually decrease the magnitude of
the noise as t → 1. For fair comparison, we use the same neural network as in Hoogeboom et al.
(2021). The network is optimized with Adam optimizer with a learning rate of 0.0002. The model is
trained for 500 epochs. The CityScapes dataset (Cordts et al., 2016) contains photos captured by the
cameras on the driving cars. A pixel-wise semantic segmentation map is labeled for each photo. As
in (Hoogeboom et al., 2021), we rescale the segmentation maps from cityscapes to 32× 64 images
using nearest neighbour interpolation. Our training set and test set is exactly the same as that of
(Hoogeboom et al., 2021) for fair comparison. For the results in Table 3,we repeat the experiments
for 3 times and report the mean of the experiments. We provide more samples in Figure 9.

B.4 DISCRETE CIFAR10 GENERATION

The model is trained using the same training strategy as DDPM (Ho et al., 2020) with the code base
provided in Song et al. (2020b). Specifically, the neural network is the same U-Net structure as
the implementation in Song et al. (2020b). The optimizer is Adam with a learning rate of 0.0002.
According to common practice (Song & Ermon, 2020; Song et al., 2020b), the training is smoothed
by exponential moving average (EMA) with a factor of 0.999. We useK = 1000 and dt = 0.001 for
discretizing the SDE. To account for the discretization error, after the final step, we apply rounding
to the generated images to get real integer-valued images. We compare the value distribution of the
generated images in Figure 8.
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Figure 7: Diffusion process of one pixel (a 8-dimensional vector) in CityScapes. As t → 1, 7 of the dimensions
reaches 0, while 1 of the dimensions reaches 1, turning the vector into a one-hot vector.

(a) Bridge-Continuous (b) Bridge-Integer

Figure 8: Final value distribution of the generated images with Bridge-Continuous and Bridge-Integer (before
rounding) on CIFAR10. We only show the values in [125.5, 130.5] for visual clarity. Integer-Bridge generates
discrete values.
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(a) Real Data

(b) Constant Noise

(d) Noise Decay B

(c) Noise Decay A

(e) Noise Decay C

Figure 9: Additional samples from real data, Constant Noise, Noise decay A, Noise decay B and Noise decay
C.
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