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ABSTRACT

Diffusion models have achieved promising results on generative learning recently.
However, because diffusion processes are most naturally applied on the uncon-
strained Euclidean space R¢, key challenges arise for developing diffusion based
models for learning data on constrained and structured domains. We present a
simple and unified framework to achieve this that can be easily adopted to various
types of domains, including product spaces of any type (be it bounded/unbounded,
continuous/discrete, categorical/ordinal, or their mix). In our model, the diffu-
sion process is driven by a drift force that is a sum of two terms: one singular
force designed by Doob’s h-transform that ensures all outcomes of the process
to belong to the desirable domain, and one non-singular neural force field that is
trained to make sure the outcome follows the data distribution statistically. Ex-
periments show that our methods perform superbly on generating tabular data,
images, semantic segments and 3D point clouds. Code is available at https:
//github.com/gnobitab/ConstrainedDiffusionBridge.

1 INTRODUCTION

Diffusion-based deep generative models, notably score matching with Langevin dynamics (SMLD)
(Song & Ermon, 2019, 2020), denoising diffusion probabilistic models (DDPM) (Ho et al., 2020),
and their variants (e.g., Song et al., 2020b,a; Kong & Ping, 2021; Song et al., 2021; Nichol &
Dhariwal, 2021), have shown to achieve new state of the art results for image synthesis (Dhariwal
& Nichol, 2021; Ramesh et al., 2022; Ho et al., 2022; Liu et al., 2021), audio synthesis (Chen et al.,
2020; Kong et al., 2020), point cloud synthesis (Luo & Hu, 2021a,b; Zhou et al., 2021), and many
other Al tasks. These methods train a deep neural network to drive as drift force a diffusion process
to generate data, and are shown to outperform competitors, mainly GANs and VAEs, on stability
and sample diversity (Xiao et al., 2021; Ho et al., 2020; Song et al., 2020b).

However, due to the continuous nature of diffusion processes, the standard approaches are restricted
to generating unconstrained continuous data in R?. For generating data constrained on special struc-
tured domains, such as discrete, bound data or mixes of them, special techniques , e.g., dequantiza-
tion (Uria et al., 2013; Ho et al., 2019) and multinomial diffusion (Hoogeboom et al., 2021; Austin
et al., 2021), need to be developed case by case and the results still tend to be unsatisfying despite
promising recent advances (Hoogeboom et al., 2021; Austin et al., 2021).

This work proposes a simple and unified framework for learn- II*
ing diffusion models on general constrained domains {2 em-
bedded in the Euclidean space R%. The idea is to learn a ]pe
continuous R?-valued diffusion process Z; on time interval

t € [0,T), with a carefully designed force field, such that the Ky My
final state Zp guarantees to 1) fall into the desirable domain 2,

and 2) follows the data distribution asymptotically. We achieve
both steps by leveraging a key tool in stochastic calculus called

Doob’s h-transform (Doob, 1984), which provides formula for Time t
deriving the diffusion processes whose final states are guaran- Figure 1: An Q-Bridge on discrete do-
teed to fall into a specific set or equal a specific value. main 2 = {1,2,3,4}.
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Algorithm 1 Learning Diffusion Models on Constrained Domains (a Simple Example)

Input: A dataset D := {z(Y} drawn from distribution IT* on a domain Q = {ey, e, ..., ex}.
Goal: Learn a diffusion model that terminates at time 7" to generate samples from II*.
Learning: Solve the optimization below with stochastic gradient descent (or other optimizers)

T
6 = argmein/ Eomp [[|1/(Z0,t) = V2, logw® (0| Z0,1)|*] at, ()
0
where
o (_nzxn )
2(T —t) t t HT —t)
Q
W@ | 2,t) = Zy=—o+(1—- Dmg+ |t @)
Zexp( (B ) T T T
ecN t)

with z drawn from the dataset D, £ ~ N (0, 1), and z any initial point.
Sampling: Generate sample Zr from

17 (Zt) + V2, 1ogzexp< ||22(tT ll) )

ecql

4z, = At +dW,,  Zy = 0.

Remark When the domain (2 is a manifold (e.g., line or surface) in R?, simply replace the sum
> .cq With the corresponding line or surface (in general Hausdorff) integration [, on €.

Our simple procedure can be applied to any domain €2 once a properly defined summation (for
discrete sets) or integration (for continuous domains) can be evaluated. To give a quick overview on
the practical intuition without invoking the mathematical theory, we show in Algorithm 1 a simple
instance of the framework when the domain is a discrete set 2 = {e1,...,ex}. The idea is to set
up the diffusion model to have a form of

A2, = [f*(Zi,1) + V2,02, 0)] dt + AW, 9 logZexp< ”Zel)>, 3)
ecq)

where the drift is a sum of a non-singular (e.g., bounded) term f?(z,t) which is a trainable neural
force field with parameter 6, and a singular term Vsz(z, t), which drives Z; towards set {2 as a
gradient ascent on ¥%}(z, t). The *}(z, t) measures the closeness of z to set €2, as the log-likelihood
of a Gaussian mixture model (GMM) centered on the elements in ) with variance T' — t. When ¢
approaches to the terminal time 7', the variance 7" — ¢ of the GMM goes to zero, and the magnitude
of V.1®}(z,t) grows to infinity, hence ensuring that Z7 must belong to €2. In particular, note that

exp (—57h)
exp(¥(z,1))

V% (2, t) = Zw (e] z,

e€Q

we]z,t) =

which increases with an O(1/(T — t)) rate as t — T'; here w(e | z,t) is the softmax probability
measuring the relative closeness of z to the elements e in €2 (see also Eq (2)).

As we show in Section 2.3, once f9 is non-singular in the sense of the mild condition of

r E[| f0(Z4,t) Hg]dt < 400, the diffusion model in (3) guarantees to yield a final state Zr that
belongs to €2, and hence provides a flexible model family on {2. Moreover, as shown in Eq 1 in
Algorithm 1, the neural field f? can be simply trained to approximate V logw (e | z,t) with e
plugged as the data point that we expect to achieve when starting from z at time ¢. Intuitively, such
fitted f¢ increases the relative probability of the observed data points and hence allows us to fit the
data distribution. Empirically, diffusion models learned through 2-bridge achieves favorable results
in generating mixed discrete/continuous tabular data, point clouds on grids, categorical semantic
segments and discrete CIFAR10 images.
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Outline The rest of the paper is organized as follows. Section 2 introduces h-transform, which
allows us to derive bridge processes that are guaranteed to enter specific sets at the terminal time,
and Section 2.3 specifies the parametric diffusion models for 2-bridges. Then, with the learnable
diffusion models, Section 3 introduces the general learning framework along with the loss function.

2 BACKGROUND: DIFFUSION PROCESSES AND h-TRANSFORM

A diffusion process Z = {Z;: t € [0, T]} on R¢ follows a stochastic differential equation of form
Q: dZ; = b(Z, t)dt + o(Z;, t)dW, 4)

where W, is a Wiener process, and o: [0,7] x R? — R is a positive diffusion coefficient, and
bel[0,T] x R? — R? is a drift function. We use Q (or IP) to denote the path measure of stochastic
processes Z, which are probability measures on the space of continuous paths. Let Q; be the
marginal distribution of Z; at time ¢ under Q.

Our framework heavily relies on the bridge processes, special stochastic processes that guarantee to
achieve a deterministic value or fall into a given set at the final state T'.

w= For a set  C RY, a process 7 in R? with law Q is called an Q-bridge if Q(Zr € Q) = 1.

One natural approach to constructing bridge processes is to derive the conditioned process of a
general unconstrained process given that the desirable bridge constraint happens. Specifically, as-
sume that QQ is the law of a general unconstrained diffusion process of form (4), and denote by
Q%(:) = Q(- | Zr € Q) the conditioned distribution given that the event of Zy € ( happens.
Then Q is guaranteed to be an Q-bridge by definition. Importantly, a remarkable result from Doob
(Doob, 1984), now known as h-transform, shows that QQ is the law of a diffusion process with
a properly modified drift term. Below, we introduce this results, first for the case x-bridge when
Q = {z} includes a single point, and then for more general sets {2. For simplicity, we only state the
formula from h-transform that are useful for us without proofs. See e.g., Oksendal (2013); Rogers
& Williams (2000) for more background on h-transform.

2.1 x-BRIDGES

Let us first consider the z-bridge Q*(-) := Q(: | Zr = ), the process Q pinned at a deterministic
terminal point Zp = x. By the result from A-transform (see e.g., Oksendal (2013)), the conditioned
process Q*(+) := Q(- | Zr = z), if it exists, can be shown to be the law of

dZ; = (b(Ze.t) + 0*(Ze, )V log arye(x | Z1)) dt + o (Zy, t)dW,, (5)

where g7 (2]2) is the density function of the transition probability
Qri(dz | 2) = Q(Zr € dz | Z; = 2),

where dz denotes an infinitesimal volume centering around z. Compared with the diffusion pro-
cess (4) of Q, the main difference is that the conditioned process has an additional drift force
0?(z,t)V . log g7+ (x|z) which plays the role of steering Z; towards the target Zy = x; this is a
singular force whose magnitude increases to infinity as ¢ — T', because g (- | z) is a delta measure
centered at z whent =T

In addition, by Bayes rule, the distribution of the initial state Z, should be given by

Zo ~ Qopr(- | ), Qojr(dz|z) o< Qo(dz)gqrio(z]2). (6)
Example 2.1. If Q is the law of dZ; = o,dW,;, we have Qr(-|z) = N(z,Br — Bi), where
By = f(j o2ds. Hence, following the formula in (5), Q° = Q(:|Z1 = x) is the law of

42, = 022

A

at + o, dWy, 7
Br — Bt e @
and Zy ~ Qojr(dz) o« Qo(d2)@(x | z, By — Bt), and ¢(-|p, 0°) is the density function of N (i, 0).
The process in (7) is known as a (time-scaled) Brownian bridge. Note that the drift in (7) grows
to infinity in magnitude with a rate of O(1/(Br — B:)) as t — T, which ensures that Z; = x with
probability one.
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Arbitrary initialization To make (5) the conditioned process of (4), the initial distribution must
follow the Bayes rule in (6). However, thanks to the singular force V. log 7| (|2), the process
(5) can guarantee Z = x from an arbitrary initialization once the process is well defined. When
the initialization is different from (6), the process in (5) is no longer the conditioned process of (4),
but it remains to be an z-bridge in that Zr = x is still guaranteed. To see why this is the case,
assume that Q is initialized from a deterministic point Zy = zy. Then we would still have Zy = z
when conditioned on Zr € () by Bayes rule. This suggests that (5) starting from any deterministic
initialization is the condition process of Q with the same deterministic initialization, and is hence
an z-bridge. As a result, (5) from any stochastic initialization is also an z-bridge because it can be
viewed as the mixture of the processes with different deterministic initialization, all of which are
z-bridges. See Appendix A.4 for a detailed analysis, in which it is shown that (5) with an arbitrary
initialization can be viewed as the conditioned process of a special class of non-Markov processes
called reciprocal process.

2.2 Q-BRIDGES

More generally, for the law Q of (4) and a set 2 € RY, the Q-bridge Q% := Q(- | Z7 € Q) follows
Q%:  AZ =" (Z, t)dt + o(Z, t)AW, ®)

with nﬂ(z,t) =b(z,t) + 02(7;, t)EmNQT\t,z,Q[vz log qrp(z | 2)], Zo~ QO‘T(~ | Zr € Q),

where drift force 7! is similar to that of the 2-bridge in (5), except that the final state x is now
randomly drawn from an -truncated (or 2-conditioned) transition probability:

Qrit,z0(dz | 2) = Q(Zr €dx | Z; = 2, Z7 € Q),
which is the transition probability from Z; to Zr, conditioned on that Z; € ). In practice, its form
can be derived using Bayes rule.
Example 2.2. Assume Q follows dZ; = o,dW,. Then Q% yields the following Q-bridge:
T—z
Br — Bt
where No(z,0%) = Law(Z | Z € Q) with Z ~ N (u,0?), which is an Q-truncated Gaussian

distribution N (11, 0?), whose density function is ¢q(x) o I(x € Q)p(x|u, o) with ¢(x|u, o) the
density function of N (i, 02).

dZ, = Y Z,, t)dt + o, d W, n(z,t) = U?]EwNNQ(ZygT,Igt) { } ) 9

Note that it is tractable to calculate n‘* once we can evaluate the expectation of No(z, Br — Bt).
A general case is when Q0 = Iy X --- 1, for which the expectation reduces to one dimensional
Gaussian integrals. See Appendix A.6 and A.7 for details and examples of n**.

As in the z-bridge, we can set the initialization to be any distribution supported on the set of points
that can reach Q following Q (precisely, points 2 that satisfy Q Nsupp(Qr(-|Zo = 20)) # () using
the mixture of initialization argument.

2.3 A PARAMETRIC FAMILY OF 2-BRIDGES

The formula in (8) only provides a fixed process for a given Q. For the purpose of learning generative
models, however, we need a rich family of Q2-bridges within which we can search for a best one to
fit with the data distribution. It turns out we can achieve this by simply adding an extra non-singular
drift force, which can be a trainable neural network, on top of the 2-bridge in (8). Specifically, we
construct the following parametric diffusion model P?:

PY: AdZ; = (0(Zi, ) f2(Zi, t) + (2, t))dt + 0(Zy, t)dW,,  Zo ~ PG, (10)

where f?(z,t) is a neural network with input (z,t) and parameter 6, which will be trained based
on the empirical observations. Adding the neural drift o(Z;,t)f%(Z;,t) term does not break the
Q-bridge condition, once it satisfies a very mild regularization condition:

Proposition 2.3. For any Q% following dZ; = n*(Z;,t)dt + o(Z;, t)dW; that is an Q-bridge, the
P’ in (10) is also an Q-bridge if Ezqol [y ||f*(Ze,t)||5 dt] < +o00 and KL(QF || P§) < +oc.
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The condition on f 9 is very mild, and it is satisfied if f" is bounded. Moreover, it can easily hold

even when f is not bounded. For example, assuming that fy(z) < a||z||” + b, which holds for
ReLU network with 5 = 1, we just need to require that the underlying process has a bounded

moment Ez_ e | fOT 1Z:]|*? dt] < +oc, which is a typical regularity condition to expect.

3 LEARNING 2-BRIDGE MODELS

Let {z()}?_, be an i.i.d. sample from an unknown distribution IT* on a domain @ C R?. Our
goal is to learn the parameter @ for the 2-bridge model PY in (10) such that the terminal distribution
Zr ~ P matches the data X ~ IT*. We should distinguish P?, which is the trainable generative
model, and Q, which is a fixed “baseline process” that helps us to derive methods for constructing
and learning the model. Q can be the simple Brownian motion in Example 2.1 and 2.2.

As the case of other diffusion models, P? can be viewed as a model L I

with an infinite dimensional latent variable of the intermediate tra-
jectories of Z. Hence, a canonical learning approach is expectation
maximization (EM), which alternates between

4

1) E-step: estimating the posterior P?% := PY(Z | Zy = z) of the teraining

latent trajectories Z given the observation Zr = z;

2) M-step: estimating the parameter # with Z imputed from P?:.

Time t

A key challenge, however, is that the posterior distribution P%* is

difficult to calculate due to the presence of neural force field in PY

(as the h-transform formula would have no closed form), and it need to be iteratively updated as
0 changes. Following DDPM (Ho et al., 2020), we consider a simpler approach that replaces the
posterior P?>* with an arbitrary z-bridge, denoted by Q7. This yields a simplified EM algorithm
without the expensive posterior inference in the E-step. A natural choice is the conditioned process
Q* = Q(Z | Zr = x), but the method works for a general z-bridge.

Specifically, let Q' (-) = [ Q?(-)IT*(dz) be the mixture of the z-bridges whose end point  is
randomly drawn from the data distribution z ~ IT*. The trajectories from Q™" can be generated in
the following “backward” way: first drawing a data point z ~ II*, and then Z ~ Q¥ conditioned
on the end point z. Obviously, by construction, the terminal distribution of Q" equals IT*, that is,
@2* = II*. Then, the model P? can be estimated by fitting data drawn from Q'" using maximum
likelihood estimation:

min {E(G) = KL@QT || P")} . (1)

The classical (variational) EM would alternatively update 6 (M-step) and Q* (E-step) to make Q* =
P%®. Why is it OK to simply drop the E-step? At the high level, it is the benefit from using universal
approximators like deep neural networks: if the model space of P? is sufficiently rich, by minimizing
the KL divergence in (11), P? can approximate the given Q" well enough (in a way that is made
precise in the Appendix A) such that their terminal distributions are close: PY, ~ QT* = IT*.

= [earning latent variable models require no E-step if the model space is sufficiently rich.

We should see that in this case the latent variables Z in the learned model P is dictated by the
choice of the imputation distribution Q since we have P?® = Q® when the KL divergence in (11)
is fully minimized to zero; EM also achieves P?* = Q7 but has the imputation distribution Q®
determined by the model PY, not the other way.

Loss Function In its general form, the z-bridge Q® that we use can be a non-Markov diffusion
process

@m : dZt Z’I?I(Z,t)dt—FO'(Zt,t)th, ZO N/J,m, (12)
which has the same diffusion coefficient o(Z;, ) as P? in (10), and any z-dependent 1 and initial-

ization p* once the x-bridge condition is ensured. As the general framework, we assume that * can
depend on the whole trajectory Z.
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Algorithm 2 Learning 2-Bridge Diffusion Models

Input: A dataset D := {2(¥} drawn from distribution IT* on a domain Q.
Setup: Specify an z-bridge Q% and an Q-bridge Q*

Q" : dZ, = n™(Z,t)dt + o(Zy, t)dAW;, QP : dZy = n°(Z, t)dt + 0(Zy, t)dWS,
Specify the generative model P? based on Q! and a neural network f?:
P’ dZy = (0(Ze, ) (Zi,t) + 0™ (21, 0)dt + 0 (Ze, ) AW, Zo ~ P,

Default: let Q be the law of dZ, = o,dW, and derive the bridges by h-transform as Q* =
Q(|Zr = x) in Eq (7) and Q° = Q(| Zr € Q) in Eq (9.

Training: Estimating 6 by minimizing the loss function (13) using any off-the-shelf optimizer.
Sampling: Generate sample Z7 from PY with the trained parameter 6.

Using Girsanov theorem (e.g., Oksendal, 2013), with P? in (10) and Q% in (12), the KL divergence
in (11) can be shown to equal to

1 T
L(0) =E,+| —logph(Zo) += | |lo™(Ze,t)(s° (24, 1) — n””(Z,t))||2dt + const, (13)
Z Q7| N — e’ 2 0

MLE of initial dist. score matching

where we write s? as the overall drift force of P? in (10), that is,
s"(z,t) = 0(2,0) (2, 1) + 1% (2, 1),

and p is the probability density function (PDF) of the initial distribution P9. Therefore, £(6) is a
sum of the negative log-likelihood of the initial distribution that encourages P§ ~ Qg*, and a least
squares loss between s? and 1. In practice, we simply fix the initial distribution P} to be a delta
measure on a fixed point (say 2o = 0), so we only need to train the drift function f?. Algorithm 1
shows a simple instance of the framework when the baseline process Q is the standard Brownian
motion dZ; = dW;, Q* = Qg | Zr = x) and o(z,t) = 1. Note that the least squares term in (13)
can be viewed as enforcing f? ~ o= (n® — n®), which reduces to f? ~ Vlogw® in the case of
Algorithm 1.

Related Works Bridge processes provide a simple and flexible approach to learning diffusion
generative models, which was explored in Peluchetti (2021); Ye et al. (2022); Wu et al. (2022);
De Bortoli et al. (2021). Heng et al. (2021) investigates the orthogonal problem of simulating from
the bridge Q7 for a given Q. In comparison, our method learns diffusion models on general domains
) on which an (2-bridge can be derived (using h-transform or any other method), and hence provides
a highly flexible framework for learning with structured data (including discrete, continuous, and
their mixes). This distinguishes it with existing approaches that are designed for special types of
data (e.g., Ho et al. (2020); Hoogeboom et al. (2021); Austin et al. (2021); Li et al. (2022); Dieleman
et al. (2022) for discrete data). De Bortoli et al. (2022) discusses how to learn score-based generative
models on general Riemannian manifolds. Another highly related work is Ye et al. (2022), which
proposes to learn first hitting diffusion models for generating data on both discrete sets and spheres.
The advantage of our approach is that it is simpler and easier to derive for more complex types of
domains.

4 EXPERIMENTS

We evaluate our algorithms for generating mixed-typed tabular data, grid-valued point clouds, cate-
gorical semantic segmentation maps, discrete CIFAR10 images. We observe that 2-bridge provides
a particularly attractive and superb approach to generating data from various constrained domains.

Algorithm Overview  For all experiments, we use Algorithm 2 with the default choice of Q” in
(7) and Q% in (9). The specific form of 1* is derived based on the specific choice of the domain €.
By default, we set the initialization Zy = 0 and the optimizer Adam.
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Logistic (1)  AdaBoost (1) MLP (1)
Real Training Data 0.877+0.021  0.912+0.013  0.897+0.012
TVAE (Xu et al., 2019) 0.825+£0.012  0.876+0.005  0.845+0.008
CTGAN (Xu et al., 2019) 0.649+0.014  0.841+0.021  0.84340.016
CopulaGAN (Patki et al., 2016) | 0.683+0.015  0.859+0.004  0.853+0.009
Mixed-Bridge 0.868+0.010  0.884+0.005 0.877+0.006

Table 1: Classification accuracy on the Adult Income dataset with different classifiers when trained with data
synthesized by generative models. Real Training Data shows the upper bound of the metrics.

4.1 GENERATING MIXED-TYPE TABULAR DATA

Learning to generate tabular data is challenging, because tabular data usually contains a mixture of
discrete and continuous attributes (Xu et al., 2019; Park et al., 2018). Unlike carefully designing
special GANS as in previous works (Xu et al., 2019; Srivastava et al., 2017), Q2-bridge can be seam-
lessly applied to mixed-typed tabular data generation without any further modification. In contrast,
diffusion processes that solely work on discrete domain (Austin et al., 2021; Hoogeboom et al.,
2021) cannot be applied to this task.

In this experiment, we use the Adult Income dataset (Kohavi, 1996), which contains 30,162 train-
ing samples. The data points are described by a series of attributes, including continuous (age,
capital—-gain, etc.) and discrete (sex, race, etc.). We compare with conditional tabular
GAN (Xu et al., 2019) (CTGAN), CopulaGAN (Patki et al., 2016), and Table VAE (Xu et al., 2019)
(TVAE), which are state-of-the-art GAN-based and VAE-based generative models for mixed-typed
tabular data. Following previous works (Xu et al., 2019; Patki et al., 2016), we measure the classifi-
cation accuracy on the real data of logistic regression, AdaBoost classifier and MLP classifier when
trained on the generated data.

In the Q-bridge model, we set o; = 3 exp(—3t) and f 0a 3-layer MLP. In this case, 2 = I; x - -+ X
15, where I to Ig are discrete domains and I to I15 are non-negative continuous domains. For dis-
l[z—ell®

T 2(Br—5r)
negative continuous domains, I = [0, +00), derivation shows 1’ (z,t) = 07V, log (F (ﬁ)),

crete domains, I = {ey,...,eq}, we have, n (2,t) = 07V log}_ .  exp ( ); for non-

where F is the standard Gaussian CDF. Finally, we have 7 (z,t) = 221 1% (2;,t) for the whole
domain 2. We set the number of diffusion steps to K = 2000. Results are shown in Table 1.

Result All the three different classifiers yield the highest accuracy when trained on the data gen-
erated by our method, referred to as Mixed-Bridge in this case. The result reflects that the data
generated by Mixed-Bridge is closer to the real distribution than the baseline methods.

PCD R%-Bridge  Grid-Bridge Method MMD | COV 1 1-NNA |
Generated PCD (Luo & Hu, 20213) 13.37 46.60 58.94
Point Clouds
R<-Bridge 1330 4652 5932
%’;' g Grid-Bridge 12.85 47.78 56.25

Reconstructed ! s
Meshes § 1
H Y

Figure 2 & Table 2: The point clouds (upper row) generated by different methods and meshes reconstructed
from them (lower row). Grid-Bridge obtains more uniform points and hence better mesh thanks to the integer
constraints. Numbers in the table are multiplied by 10

4.2 GENERATING INTEGER-VALUED POINT CLOUDS

A feature of point clouds in 3D objects in graphics is that they tend to distribute evenly, especially
if they are discretized from a mesh. This aspect is omitted in most existing works on point cloud
generation. As a result they tend to generate non-uniform points that are unsuitable for real applica-
tions, which often involve converting back to meshes with procedures like Ball-Pivoting (Bernardini
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Value
Distribution
Dimension o
#1 W

Time t Real Generated

Figure 3: Results on generating categorical segmentation maps. Each pixel here an one-hot vector. Each
dimension of the Q2-bridge starts from a deterministic and evolve through a stochastic trajectory to converge to
either O or 1. The generated samples have similar visual quality to the training data.

Methods ELBO () IWBO ()
Uniform Dequantization (Uria et al., 2013) 1.010 0.930
Variational Dequantization (Ho et al., 2019) 0.334 0.315
Argmax Flow (Softplus thres.) (Hoogeboom et al., 2021) 0.303 0.290
Argmax Flow (Gumbel distr.) (Hoogeboom et al., 2021) 0.365 0.341
Argmax Flow (Gumbel thres.) (Hoogeboom et al., 2021) 0.307 0.287
Multinomial Diffusion (Hoogeboom et al., 2021) 0.305 -
Cat.-Bridge (Constant Noise) 0.844 0.707
Cat.-Bridge (Noise Decay A) 0.276 0.232
Cat.-Bridge (Noise Decay B) 0.301 0.285
Cat.-Bridge (Noise Decay C) 0.363 0.302

Table 3: Results on the CityScapes dataset. Cat. refers to ‘Categorical’.

etal., 1999). We apply our method to generate point clouds that constrained on a integer grid which
we show yields much more uniformly distributed points. To the best of our knowledge, we are the
first work on integer-valued 3D point cloud generation.

A point cloud is a set of points {x;}™,, z; € R3 in the 3D space, where m refers to the number
of points. We apply two variants of our method: R?-Bridge and Grid-Bridge. R%-Bridge generates
points in the continuous 3D space, i.e., Qg = R®™. Grid-Bridge generate points that on integer
grids, Qgra = {1,...,128}3™. We fix the diffusion coefficient o, = 1. The number of diffusion
steps K is set to 1000. We test our method on ShapeNet (Chang et al., 2015) chair models, and
compare it with Point Cloud Diffusion (PCD) (Luo & Hu, 2021a), a state-of-the-art continuous
diffusion-based generative model for point clouds. The neural network f? in our methods are the
same as that of PCD for fair comparison. Qualitative results and quantitative results are shown in
Figure 2 and Table 2. As common practice (Luo & Hu, 2021a,b), we measure minimum matching
distance (MMD), coverage score (COV) and 1-NN accuracy (1-NNA) using Chamfer Distance (CD)
with the test dataset.

Result Both R?-Bridge and Grid-Bridge get better MMD, COV, and 1-NNA than PCD. More-
over, by constraining the domain of interest to the integer grids, Grid-Bridge yields even better
performance than R%-Bridge. In Figure 2, since the point clouds generated by Grid-Bridge are lim-
ited to integer grids, the reconstructed meshes from Ball-Pivoting clearly have higher quality than
R?-Bridge and PCD.

4.3 GENERATING SEMANTIC SEGMENTATION MAPS ON CITYSCAPES

We consider unconditionally generating categorical semantic segmentation maps. We represent each
pixels as a one—hot categorical vector. Hence the data domain is Q = {ey,...,e.}"**, where
c is the number of classes and e; is the i-th c-dimensional one-hot vector, and h,w represent the
height and width of the image. In CityScapes (Cordts et al., 2016), h = 32, w = 64,c = 8. In this
experiment, we test different schedule of the diffusion coefficient o;, including (Constant Noise):
ot = 1; (Noise Decay A): ¢ = aexp(—bt); (Noise Decay B): o0y = a(1 —t); (Noise Decay C) oy =
a(l —exp(—b(1 —t))). Here a and b are hyper-parameters. The number of diffusion steps K is set
to 500. We measure the negative log-likelihood (NLL) of the test set using the learned models. The
NLL (bits-per-dimension) is estimated with evidence lower bound (ELBO) and importance weighted
bound (IWBO) (Burda et al., 2016), respectively, as in (Hoogeboom et al., 2021). We compare
-Bridge with a state-of-the-art categorical diffusion algorithm, Argmax Flow (and Multinomial
Diffusion) (Hoogeboom et al., 2021), and the traditional methods, uniform dequantization (Uria
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Methods [IS(H) FID() NLL()
Discrete

D3PM uniform L,; (Austin et al., 2021) 5.99 51.27 5.08
D3PM absorbing L., (Austin et al., 2021) 6.26 41.28 4.83
D3PM Gauss L, (Austin et al., 2021) 7.75 15.30 3.966
D3PM Gauss Ly—g.0o1 (Austin et al., 2021) | 8.54 8.34 3.975
D3PM Gauss + logistic Lx—¢.001 8.56 7.34 3.435
Integer-Bridge (Init. A) 8.77 6.77 3.46
Integer-Bridge (Init. B) 8.68 6.91 3.35
Integer-Bridge (Init. C) 8.72 6.94 3.40

Table 4: Discrete CIFAR10 Image Generation

et al., 2013) and variational dequantization (Ho et al., 2019). The numerical results of the baselines
are directly adopted from (Hoogeboom et al., 2021), and experiment configuration is kept the same
for fair comparison. The neural network f? is the same as (Hoogeboom et al., 2021). The results
are shown in Figure 3 and Table 3. Our 2-bridge is named Categorical-Bridge (Cat.-Bridge) in this
experiment.

Result We observe that all the four kinds of Cat.-Bridge can successfully generate categorical se-
mantic segments, and different noise schedules result in different empirical performance. Among
the four variants of Cat.-Bridge, Cat.-Bridge with Noise Decay A yields the best ELBO and IWBO,
surpassing all the other algorithms in comparison.

4.4 GENERATING DISCRETE CIFAR10 IMAGES

In this experiment, we apply three types of
bridges. All of these bridges use the same out-
put domain Q = {0,...,255}"*wx¢ where
h,w,c are the height, width and number of
channels of the images, respectively. We set
oy = 3exp(—3t). We consider different ini-
tial distributions: (Init. A) Zg = 128; (Init. B)
Zo = ﬂo, (Init. C) Zy ~ N(ﬂo,é‘o), where ﬂ()
and 0 are the empirical mean and variance of
pixels in the CIFARI1O0 training set. The num-
ber of diffusion steps K is set to 1000. We
compare with the variants of a state-of-the-art
discrete diffusion model, D3PM (Austin et al.,
2021). For fair comparison, we use the DDPM Time ¢

backbone (Ho et al., 2020) as the neural drift f¢ Figure 4: Integer-bridges can generate high-quality
in our method, similar to D3PM. We report the discrete samples with different initial distribution.
Inception Score (IS) Salimans et al. (2016), Fréchet Inception Distance (FID) Heusel et al. (2017)
and negative log-likelihood (NLL) of the test dataset. We call our method Integer-Bridge in this
case. The results are shown in Table 4 and Figure 4.

Result In Table 4, Integer-Bridge with Initialization A,B,C can all get lower FIDs (< 7) than the
variants of D3PM. Among the three kinds of Integer-bridges, Integer-Bridge (Init. B) obtains the
lowest NLL (3.35). It also beats D3PM Gauss + logistic (3.435) on NLL, which has the best NLL
in the variants of D3PM.

5 CONCLUSION AND LIMITATIONS

We present a framework for learning diffusion generative models on constrained data domains. It
leaves a number of directions for further explorations and improvement. For example, the practical
impact of the choices of the bridges Q, in terms of initialization, dynamics, and noise schedule, are
still not well understood and need more systematical studies. Besides, our current method is limited
to €2 that are factorizable and integrable. Moreover, application of {2-bridge to many other practical
fields also needs investigation in the future.
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Roadmap The appendix is structured as follows:

e Appendix A provides the theoretical analysis and derivation of diffusion bridges. In particu-
lar, Appendix A.l1 shows the derivation of the main training loss; Appendix A.2 derives the drift
term 5" of Q"; Appendix A.3 proves that we can actually use a Markov model P to match all
time-marginals with Q" ; Appendix A.4 explains why we can use arbitrary initialization when con-
structing bridge processes and discusses the reciprocal structure of Q"; Appendix A.5 provides
analysis on the time-discretization error and statistical error of the practical discretized algorithm.
Appendix A.6 and A.7 presents details on the condition and examples of €2-bridge construction.

e Appendix B shows additional experiment details and results.

A THEORETICAL ANALYSIS ON BRIDGES

A.1 DERIVATION OF THE MAIN LOSS IN EQUATION (13)

[Proof of Equation (13)] Denote by Q© = Q(:|Zr = z). Note that

. dQ™
KL (1) = Ernrr 2 [log ey (2)]

dQ® dQ™
— Boerr 20 [log G55 (2) + 1oz 45 (2]

=E,on- [KL(Q" || PY)] + const,

where const denotes a constant that is independent of 6. Recall that Q* follows dZ; =
0" (Zjo,, t)dt + o(Zy, t)dWy, and P? follows dZ, = s%(Z,t)dt + o(Z;,t)dW;. By Girsanov
theorem (e.g., Lejay, 2018),

1 T 2
KL@" || P) = KL(Q§ || P)) + 5Eznge l / 15 (Zest) = 0" (Zio., 1) dt]

1 (7 2
=Ezqe [—logpg(Zo)-i-?/o |°(Ze,t) = 1" (Zpo,g,1)||, At | + const.

Hence

1 [T 2
L(6) = Egmnte 2 [—10gp8(zo)+2 / 18°(Ze,t) = 0" (Zpo,z, 1) ||, dt | + const
0

1 [T 2
=E, gu- [—logpg(Zo)—s-Z/ |°(Ze,t) = 07" (Zjo,,1)||, dt | + const.
0

A.2 DERIVATION OF THE DRIFT "' oF Q'
Lemma A.1. Let Q% is the law of
AZ¢ = 0" (Z g t)dt + 0(Z5,0)AW,,  Zy ~ QF,
and QU = J Q*(Z)I1*(dx) for a distribution I1* on RY. Then Q" is the law of
AZ; =" (Zjo g, )t + 0 (Ze, ) AWy, Zo ~ Qp

where

*

1™ (210.0,t) = Egnrte zoge [1°(Zi0.15 1) | Zo.g = 200.9)s Q) (d20) = Eprorr- [QF (d20)).

[Proof] Q™" is the solution of the following optimization problem:

Q"™ = argmin {ICC(QH* [|P) = Epon+ [KLQT || P)] + const} :
P

13
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By Girsanov’s Theorem (e.g., Lejay, 2018), any stochastic process P that has KL(Q” || P) < +oo
(and hence is equivalent to Q%) has a form of dZ;, = n''' (Z 0,4, t)dt + o(Z;,t)dW; for some
measurable function nn*, and

Epnn- [KL(Q" || P)]

I 1, . 2
= Epm [KL(Q5 || Bo)] + Eanrir 2o [2 | ez o Zoa.n < <Z[o,t]70>>H2].
0

It is clear that to achieve the minimum, we need to take Po(-) = Eyorr-[QF ()] and n" (29,4, 1) =
Eotte, z~qe 1% (Zjo,4,t) | Zjo,q = 2[0,1)], which yields the desirable form of Q'".

A.3 P? YIELDS A MARKOVIZATION OF Q™

As P? is Markov by the model assumption, it can not perfectly fit Q' which is non-Markov in
general. This is a substantial problem because Q™" can be non-Markov even if Q® is Markov for
all z € Q (see Section A.4). In fact, using Doob’s h-transform method (Doob, 1984), Q™" can be
shown to be the law of a diffusion process

AZy =" (Zjo g, )t + o(Ze, )dAWs, 0™ (210,0.t) = Eggne 077 (2(0,0:1) | Zjo.y) = 2(0.1)] -
where nn* is the expectation of 7” when x = Zr is drawn from Q conditioned on Z[g ;).

We resolve this by observmg that it is not necessary to match the whole path measure (P? ~ Q")
to match the terminal (P4 ~ QT = II*). It is enough for P? to be the best Markov approximation
(a.k.a. Markovization) of QH*, which matches all (hence terminal) fixed-time marginals with Q™"

Proj(Q", M) == algpg rj{l/lin KL(@Q™ || P), M = the set of all Markov processes on [0, 7.
€

Proposition A.2. The global optimum of L(0) in (11) and (13) is achieved by 0* if
" (28) = Bgogue (077 (Zpot) | Ze = 2], 1 (dz0) = QF = By [QF(d20)] . (14)

In this case, P?" = Proj (QH , M) is the Markovization of Q™", with which it matches all time-
marginals: P!" = QI for all time t € [0, T). In addition,

KL || P) < KLE || P?) = KL@T || PY) — KL@QT [|P”) = £(0) — L(67).  (15)
Note that s’ is a conditional expectation of n''": s?"(z,t) = E, _gn~ [n!! (Z[O 0,t) | Z¢ = 2].
Theorem 1 of Peluchetti (2021) gives a related result that the marginals of mlxtures of Markov
diffusion processes can be matched by another Markov diffusion process, but does not discuss the

issue of Markovization nor connect to KL divergence. Theorem 1 of Song et al. (2021) is the special
case of (15) when Q" is Markov.

[Proof of Proposition A.2] It is the combined result of Lemma A.3 and Lemma A.4 below.

Lemma A.3. Ler Q be a non-Markov diffusion process on [0,T] of form
Q:  dZy =n(Zpy,t)dt + o(Z, t)dWs,  Zo ~ Qo,

and M = arg minpe , KL(Q || P) be the Markovization of Q, where M is the set of all Markov
processes on [0, T]. Then Q is the law of

M : dZt = m(Zt,t)dt + O'(Zt,t)th, Z() ~ QO,

where
m(z,t) = Ez~q[n(Zp,,t) | Z: = 2].
In addition, we have Q; = M for all time t € [0, T).
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[Proof] By Girsanov’s Theorem (e.g., Lejay, 2018), any process that has KL(Q || M) < +oo
(and hence is equivalent to Q) has a form of dZ; = m(Zjg 4, t)dt + o(Z;,t)dW;, where m is a
measurable function. Since Ml is Markov, we have m(Z[g 4, t) = m(Z;,t). Then

1 2
KLQI|P) = LL(Qo ||P0)+Ez~<@[ / l|o(Ze, )~ (0(Z10,5 1) — m(Z1, 0)) |
It is clear that to achieve the minimum, we need to take My = @Qp and m(z,t) =
Ez~an(Zo,,t) | Ze = 2.
To prove Q; = M, note that by the chain rule of KL divergence:
KLQI|P) = KLQ: [| Py) + Ez,~q. [KLQ([Z0) [ P(-|Z))], Yt €[0,T].

As the second term P(-|Z;) is independent of the choice of the marginal P; at time ¢t € [0, T, the
optimum should be achieved by M only if M; = Q;.

Lemma A4. Let

Q:  dZy=n(Zpy,t)dt +o(Zs, t)dWs, Zy ~ Qo

M: dZ, =m(Z, t)dt + o(Z, )dWy, Zo ~ Qo,

P’ . Az, = s%(Z,, t)dt + o(Zy, t)AW,,  Zo ~ PY,
where M is the Markovization of Q (see Lemma A.3). Then

KL(QI|P’) = KLL(Q || M) + KL(M || B?).
Hence, assume there exists 0* such that P°" = M and write £(0) == KL(Q || P?). We have
KL(Qr || P7) = KL(Mr || PT) < KL(M || P?) = £(6) — L(67).

[Proof] Note that
KL(M || P?)

1 T
= KL(Mo || P§) + §EZtNMt V |o(Ze,8) (s (0, t) — m(Zt,t))Hj dt
0
6 1 T —1,.6 2
kLM B + 5 [ Bz, [lo(20)7(6"(201) = m(Ze )]
0
1 T
= KL(Qq |\IP’8)+§/ Ez,~0, U|O—(Zt,t Y% (Ze,t) — m(Ze, 1)), } HQ; = M, Vt
0

= KL(Qo || P5) + Ez~q

T
%A|pwwr%%%w %aHﬂ4
1
= KLQo | B) + 5 ||s* = m]lg,,

where we define ||f||Q,U =FEz-0 [% fo Ha(Zt,t)_lf(Zt,t)Hidt} .

On the other hand,

KL(QI|P’) = KL(Qo || F§) +Ezng

1/ HU Zy,t) ( G(Zho))_n(Z[Ot H2 ]
(QOHPO *HS _77HQg

1 (T 2
LQ||M) =Ezq Zéﬂdﬁﬁ”wwmw%”mﬁﬁMMﬂ

1 2
= 2 ln—ml,.
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Using Lemma A.5 with a(z) = o(z,t)7's(z,t), and b(z(04)) = 0(2,t) " n(2[0,4, t), we have the
following bias-variance decomposition:

In=llg., = lls” = mllg o +lin—mlg,

Hence, KL(Q || P?) = KL(M || B?) + KL(Q || M).

Finally, KL(M7 || P%) < KL(M || P?) is the direct result of the following factorization of KL
divergence:

KLM || P?) = KLM7 || PG) + Epray [KLM1(-|Z7 = 2) || PG (-|Z7 = 2))] .

Lemma A.5. Let (X,Y) be a random variable and a(x), b(z,y) are square integral functions. Let
m(z) =EB(X,Y) | X = z]. We have

Eflla(X) - b(X,Y)|l2] = E[[la(X) — m(X)|3] + E[[b(X,Y) — m(X)|3].

[Proof]
E[[|a(X) = b(X,Y)|[5] = E[lla(X) — m(X) +m(X) = b(X, Y)|3]
E[[|a(X) = m(X)[3] + E[[lm(X) — b(X,Y)||3] + 24,

where

A

Il
&=

[(a(X) = m(X))T (m(X) - b(X,Y))]
[(a(X) = m(X)) TE[(m(X) - b(X,Y))|X]
[(a(X) = m(X)) " (m(X) —m(X))] = 0.

[
H
3

A.4 MARKOV AND RECIPROCAL PROPERTIES OF QH*

Mixture of Bridges and Initialization It is an immediate observation that the mixtures of a set
of bridges are also bridges: let Q*“ be a set of A-bridges indexed by a variable z, then Q4 =
J @*#4u(dz) is an 2-bridge for any distribution 1 on z.

A special case is to take the mixture of the conditional bridges in (5) starting from different deter-
ministic initialization, which shows that we can obtain a valid x-bridge by equipping the same drift
in (5) with essentially any initialization. Hence, the choices of the drift force and initialization in
Q7 can be completely decouple.

Proposition A.6. Let Q is a path measure and )y is the set of z for which Q= () == Q(:|Zy =
x, Zy = 29) exists. Then Q® == [ Q" p(dzg | ) is an x-bridge, for any distribution j on 2 x .

[Proof of Proposition A.6] This is an obvious result. We have Q**(Zp = x) = 1 by the definition
of conditioned processes. Hence Q% (Zr = z) = [ Q®*(Zy = z)u(dzo | ) = [ p(dzo | z) = 1.

Markov and Reciprocal Properties of Q" If Q” is constructed as Q% = Q(:|Zy = z), it is
easy to see that Q" == [ Q”(-)IT*(dx) is Markov iff Q is Markov.

Proposition A.7. Assume Q° = Q(- | Zy = z) and 7*(z) = %(z) exists and is positive
everywhere. Then QU is Markov, iff Q is Markov.

[Proof of Proposition A.7] If Q* = Q(- | Zr = x), we have from the definition of QY
Q" (2) = Q2| Zr)T* (Zr) = Q(Z)7*(Zr),
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where 7*(Zr) = (‘}Q%(ZT). Therefore, Q" is obtained by multiplying a positive factor 7* (Z7) on
the terminal state Z7 of Q. Hence Q" has the same Markov structure as that of Q.

If Q7 is constructed from mixtures of bridges as above, the resulting Q™ is more complex. In fact,
simply varying the initialization 1 in Proposition (A.6) can change the Markov structure of Q'
Proposition A.8. Take Q” to be the dynamics in (7) initialized from Zo ~ N (0, vg). Assume o > 0,
Vt € [0,T). Then Q' is Markov only when vy = 0, or vy = +00.

[Proof of Proposition A.8] When taklng Q7 to be the dynamlcs (7) initialized from Zy ~ Ho =
N(0,v9), we have Q% = [ po(dzo) Q%% where Q0:* = Q(|Zy = 20, Zr = x) with Q fol-
lowing Brownian motion dZ; = dW;. Hence, we can write Q" (dZ) = Q(dZ)r(Zo, Zr), where

r(z0,27) = dg&(@r{ (20, z7). From Léonard et al. (2014), Q™" is Markov iff r(z, z) = f(z)g(z0)
for some f and g, which is not the case except the degenerated case (vg = 0 and vy = 400) because
Qo1 is not factorized.

On the other hand, when vy = 0, we have that Q* = Q(-|Zr = z) is the standard Brownian bridge
and hence Q™" is Markov following Proposition A.7. When vy = +00, as the case of SMLD, Qw
is the law of Z; = Zp_; with dZ; = dW; and Z ~ II*, which is also Markov.

The right characterization of Q" from Proposition (A.6) involves reciprocal processes (Léonard
et al., 2014).

Definition A.9. A process Z with law Q on [0,T)] is said to be reciporcal if it can be written into
Q= f@zO’ZT (dzg, dz7), where Q is a Markov process and Q**7 = Q(:|Zy = 20, ZT = 27),
and i is a probability measure on € x ().

Proposition A.10. Q' is reciprocal iff Q% = i Q== (dzg | x) for a Markov Q and distribution
L.

[Proof of Proposition A.10] Note that
Q0 = [ w0 () = [ we)u(dzo | 2.

Hence if Q is Markov, Q™" is reciprocal by Definition A.9.

On the other hand, if Q™ is reciprocal, we have QH* f M#o-% () u(dzp, dx) for some Markov

process M and probability measure 1 on  x Q. In thls case, we have Qz() =QM(|Zr=2) =
J MFo:* (1) pu(dzg | ), assuming it exits.

Intuitively, a reciprocal process can be viewed as connecting the head and tail of a Markov chain,
yielding a single loop structure. A characteristic property is Q(X[S,t] € A Z0,s] Z[t’T]) =
Q(X[s,y € A Zs, Zy), where A is any event that occur between time s and ¢. Solutions of the
Schrodinger bridge problems are reciprocal processes (Léonard et al., 2014).

A.5 PRACTICAL ALGORITHM AND ERROR ANALYSIS

In practice, we need to introduce empirical and numerical approximations in both training and in-
ference phases. Denote by T = {TL}K tla grid of time points with 0 =7 < 7o... < 741 =T
During training, we minimize an emplrlcal and time-discretized surrogate of £(6 ) as follows

n

A 1 Q) (i
L(o) = ﬁgew; 20, 70), 00:Z.7) = ~logp(Zo) + 57 ZA (0;Z,7),  (16)
where A(0; Z,t) = ||o™(Ze, 1)(s°(Z1,t) = 0" (Zjo.9, 1)) ® and {Z®} is drawn from Q™", and
(¥ can be elther a deterministic uniform grid of [0, 7], i.e., 7 = {i/K}K, or drawn i.i.d.
uniformly on [0, 7] (see e.g.,Song et al. (2020b); Ho et al. (2020)). A subtle problem here is that the
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variance of A(6; Z,t) grows to infinite as ¢ T 7. Hence, we should not include A(6; Z, T') at the
end point 75+1 = T into the sum in the loss £(6, Z, T) to avoid variance exploding.

In the sampling phase, the continuous-time model P? should be approximated numerically. A stan-
dard approach is the Euler-Maruyama method, which simulates the trajectory on a time grid 7 by

Zrpir = Zoy + 18 (Zo, 1) + V0 (Zog s T1)ky € = Tt — Ty Ex ~N(0,13),  (17)

The final output is Zr. The following result shows the KL divergence between II* and the dis-
tribution of Zr can be bounded by the sum of the step size and the expected optimality gap
E[L(0) — L(6%)] of the time-discretized loss in (16).

A.5.1 TIME-DISCRETIZATION ERROR ANALYSIS (PROPOSITION A.11)

Proposition A.11. Assume Q@ = R? and o(z,t) = o(t) is state-independent. Take the uniform time
grid T = {ie} K | with step size ¢ = T/K in the sampling step (17). Assume o(t) > ¢ > 0,
Vt and o (t) is piecewise constant w.r.t. time grid "™ Let L.(0) = By qn- [((0; Z,7"1)]. Let
IP’QT’6 be the distribution of the resulting s2ample Zp. Let 0% be an optimal parameter satisfying
(14). Assume Cy = sup, , (Hse*(z,t)H J(1+ [|12]17), tr(c2(z2,1)), Eper] Zo||2}) < +o0, and

Hse*(z,t) - 39*(z’,t’)||z <L (||z — P+t - t’|>f0er,z' € Rand t,t' € [0,T). Then

VLA (| PR < V/L(0) — Le(67) + O(Ve).

We provide the analysis and proof for Proposition A.11 in the following text.

Proposition A.12. Assume Q = R? and o(z,t) = o(t) is state-independent and o(t) > ¢ > 0,
Vt € [0,T]. Take the uniform time grid 7™ := {ie}X | with step size ¢ = T /K in the sampling
step (17). Let L(0) = E . qu- [£c(0; Z)] with

((0, Z,) = —logpy(Zo) + 2KZ”” " (Zosti) = 177 (Zo., )

where € > 0 is a step size with T = Ke and ti, = (k —1)e, and 03 == (tj41 —tg) ::“ o(t)?dt.

Let ng be the distribution of the sample Zr resulting from the following Euler method:

Ztk+1 = Zi, + €% (Zs,, tr) + Veorés,
where &, ~ N(0, ;) is the standard Gaussian noise in R?. Let * be an optimal parameter satisfy-
ing (14). Assume Cy = sup, , (Hs‘g*(z,t)H2 /(14 |12I1%), tr(o2(z,t)), Epe- H|Z0||2]) < +oo,
and $%° satisfies ||s%" (z,t) — %" (2, ¢)||, < L (Hz — 2P+t - t’|) for ¥z,2' € R? and
t,t' € [0,T). Then we have

I

LI || BF) < VL(0) — Lc(67) + O(Ve).

[Proof of Proposition A.11] This is the result of Lemma A.13 below by noting that the P? there
is equivalent to the Euler method above, and L (0) — L(0*) < L(6) — L.(0*) (because o}, > =

(ter —te) "L [ 0 (D)) < (trpr — ti) L[5 (1) 7).
Lemma A.13. Let h be a step size and € = T /K for a positive integer K. For each t € [0, 00),
denote by [t|. = max({ke: k € N} N[0,t]). Assume

QM dz,=q" (Z[o o, t)dt + 0 (Zy, t)dWy,  Zo ~ Qo

P . dZ, = s (Zy, t)dt + o(Zy, t)AW,,  Zy ~ Qy,

P’: Az, = s%(Zy, t)dt + o(Zy, t)AW,, Zo ~ PY

B Az, =" (Zy. t)dt + o (Zs, t)dWs,  Zo ~ P,

18
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where PP is the Markovianization of QU and P? is a discretized version of P?. Define
~ 1 T
Le(0) =Egn- [—bgpg(zo)*- 5/0 o™ (Ze,)(s° (21 [t]e) — 07" (Zio,1).) || dt

Assume the conditions of Lemma A.17 holds for P?", and o(z,t) > ¢ > 0 for all z,t, and 50"
satisfies ||s? (z,t) — 59*(2/,t’)||§ <L (Hz — )P+t - t’|) forvz,2' € R and t,t' € [0,T).
Then

VEL®Y ||B) < \[£(8) — £.(0) + CVE,

where C'is a constant that is independent of e.

[Proof] Define ||fHéa = ]EZNQ[IOT |0 (Z,t)f(Z,1)|]%] for convenient notation. Let s?(Z,t) =
s°(Z11)., [t)e), and e = 07T (Zpo 14 s [t]e)-

KL || B
= KLPY || PY) + H
0* 0 1 o* 0 o |12
<KLEY (B + 5 (L +w)||sf s . —|—(1—|—1/w)”5 -],
=(1+wl+(1+1/w)l,
where w > 0 is any positive number and
. .12
I = —H KLPY || P) + = ||s? — s -
1 12
0* || o 0_ 0
T]C‘C(]P) HPO)—’_i Se =S¢ o o
1 2
< KL 1Y) + 5 |52 =L,
. 1 2 .
ce® 12+ 5 (1o, [ a2 [} memmans
- 25(9) - 56(9*%
and
Y
I2 §HS Se Po* o
L T
§§]EIP@* / (Zt, <HZt_ZLtJ€H + (t— [t )) dt]
L T
< gt / ((Ze = 21 )? + (= [t)0))
L T
< @(Cw +1)/O (t—|t]c)dt  //Lemma A.17

L Te
=52 (Cpox +1) — 5 //[Lemma A.15,

where Cpo~ is a constant depending on PY" that comes from Lemma A.17. Hence

KL®? || P < inf (1+w)li + (1+1/w)I

— (VI +

I)?
< <«/£1(9) —L(6%)+ %\/C—LQ (Cpor + 1)T6> :

This completes the proof.
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Lemma A.14. For any a,b € R%, and w > 0,

la+b]3 < (1+w)|lalls+ (1+1/w)]bl3.
[Proof]

2 2 2 2 2
(1+w) llallz + (1 + 1/w) [1Bll; > llall; + [Ibl; +2a"b = fla+ b,

Lemma A.15. Assume T > 0, ¢ > 0 and T'/e € N. We have
Te

/0 (1~ 1))t = -

[Proof]

/T(t — [t]e)dt = (hk + x — hk)dx
0

>~
g
ﬁ

=
L

€

zdx

I
e
Il
o
O\

I
N =
D -
SO
N~
[\}

Lemma A.16 (Gronwall’s inequality). Let I denote an interval of the real line of the form [a, o)
or la,b] or [a,b) with a < b. Let o, 8 and u be real-valued functions defined on I. Assume that
B and u are continuous and that the negative part of « is integrable on every closed and bounded
subinterval of I.

(a) If B is non-negative and if u satisfies the integral inequality

u(t) < aft) —l—/ B(s)u(s)ds, Vtel,

which is true if
u'(t) < o'(t) + B(t)u(t).

then

u(t) < a(t) —l—/toz(s)ﬂ(s)exp (/Stﬂ(r) dr)ds, el

a

(b) If, in addition, the function « is non-decreasing, then

u(t)Sa(t)exp(/tﬂ(s)ds>, tel.

Lemma A.17. Consider
dX: = b(Zy, t)dt + o(Z, t)dWy, X0 =0,t € [0,T].
Assume there exists a finite constant Cy, such that
oz, )15 < Co(1+ [|23), Ve €RY, te(0,T],

tr(oo ' (z,t)) < Cy, Vo e RLte0,T).
and B[|| Zo|[3] < Co.
Then forany 0 < s <t < T, we have

E[l1Z: — Zsll3) < Keqr(t = s),

where K¢,  is a finite constant that depends on Cy and T
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[Proof] Let n = sup,,, tr(co " (,t)). We have by Ito Lemma,

SE[12, - 23] =E 202 - 2T (6(Z,0) + aW,) + 0]
—E[22 szmw
~E [nzt Zoll3 + 16(Ze, )13 + d]
<E[lZ - Z,l3 + Co(1 + 1:13) + ]

< (14 2C0)E [ 20— Z,J13] +n+ Co(1 + 2B [1Z,3])-
Using Gronwall’s inequality,
E (12~ ZuJ3] < (= )1+ Co(1 + 2B Z, ) exp (¢ — $)(1+2C).
Taking s = 0 yields that

E[I1Z: ~ Zol3] <t + Co(1 + 2Bl Zol13]) exp (¢(1 + 2C0))

Hence
B{1Z13] < 2B {112, - Zoll3) + 2E [ Xoll}]
< 2t(n + Co(1 + 2E[]| Zo|3])) exp (¢(1 + 2Cy)) + 2E [IIZng}
< AT(Cy + C2) exp(T(1 + 2Cp)) + 2Cy.
Therefore,
E[I1Z - 23]
< (t—8)(n + Co(1 + 2E[|| Z|[3])) exp ((t — s)(1 + 2Co))
<C@t-s),
where

C = (2C) + 4C2 + 8CyT(Co + C2) exp(T(1 + 2C))) exp (T(1 4 2Cp)) .

A.5.2 STATISTICAL ERROR ANALYSIS (PROPOSITION A.18)

To provide a simple analysis of the statistical error, we assume that b, = argming ﬁ(ﬂ) is an
asymptotically normal M-estimator of 6* following classical asymptotic statistics (Van der Vaart,
2000), with which we can estimate the rate of the excess risk L (f,,) — L(6*) and hence the KL
divergence.

Proposition A.18. Assume the conditions in Proposition (A.11). Assume 0, = arg min, L. (9)
with Lc(0) = Y0, 4(6; 7z iy i 70~ QW Take Q® to be the standard Brown-
ian bridge dZF = l;i‘ dt + dWy with Zg ~ N(0,v9) and vg > 0. Assume \/ﬁ(én —

d . . . .
0*) — N(0,%X.) as n — +oo, where ¥, is the asympiotic covariance matrix of the

M estimator 0,,. Assume L.(0) is second order continuously differentiable and strongly con-
vex at 0*. Assume II* has a finite covariance and admits a density function m that satisfies

sup;cpo, 1) Egu- [|}V986*(Zt,t)||2 (14| Viogn(Zr)|* + tr(VZlog W(ZT)))} < 4o00. We have
) log(1 1
IE[ /cg(n*m(;”)] 0( Og(f)*ﬂ@). (18)
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The expectation in Eq. (18) is w.r.t. the randomness of f,,. The log(1 /) factor shows up as the sum
of a harmonic series as the variance of A(6; Z,t) grows with O(1/(T —t)) when ¢t 1 T. Taking

e = 1/n yields KL(IT* || P2€) = O(log n/n). If we want to achieve KL(IT* || P5€) = O(n), it
is sufficient to take K = T'/e = O(1/n) steps and n = O(log(1/n)/n) data points.

[Proof of Proposition A.18] Let

n

0" = argmin L(0) := E,_qn- [£(0; Z)], 0,, = argmin £ (0) := 1 Zé(@; z®),
0 o i3

where {Z()}7_ is drawn i.i.d. from Q™. We assume that 0,, is an asymptotically normal M-
estimator, in which case we have

V0, — 07) % N(0,3,),
where
Y, =H'V.H', H.=Ey gn- [V5sl(052)], Vi=E[Vel(0*;2)Vel(6*;2)"],
and

nE[(L(0,) — L(6%))] = [;\/5(9* —0,)"Ho /(0% — én)} = %tr(H*_lV*),

where f < g denotes that f — g = o(1). We now need to bound tr(H 1V, ). Combining the results
in Lemma A.19 and Lemma A.23, we have when ¢, = (k — 1)eand T' = Ke,

K
tr(H'V,) = O(l + % Z T i tk) = 0(1 +log(1/e)).
k=1

Hence,

E[ KMHWM@”NO<M L@mﬁwﬂh\ﬁ)

. O<\/E[£(én) _L(6%)] + \/E>
O( log(1/e +1) ﬁ)

n

Lemma A.19. Assume the conditions in Proposition A.18. Define

* 2 . 2
o= Egegue |[Viowst @) |, = Eag {[V0s” (2ot erteov(o? oot 1 210

forVk=1,... K. Then

1 1 K 1/2
V) < 3 (B <K ZI’“)

[Proof] From Lemma A.21, tr(H,;'V,) < (Amin(H.)) 'tr(Vi). Hence we just need to bound
tr(Vi).
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. 1/2
(Vi)™ = Eggn- [[IV6(0 ,Z>||§]

. . 271/2
< Egzqne [IVol(67,2) } = ZEZN@H* Vos" (Zo, ti)(s" (Zis 1) —nZT(Z[Oytk],tk))HJ
‘2

1/2
< ]EZNQH* [HV@E(H* :| Z]EZNQH* V959 (Ztkatk)’ ) (50 (Ztk-7tk) - nZT (Z[O,tk]7tk))H2:|

) ) 1/2
=Ez qn [||V9£(9* } ZEZNQH* Vs’ (thtk)HQtf (cov (07" (Zpo,eu)- i) | Ztk))]

1
1/2 2 : 1/2
k=1

Lemma A.20. Assume the results in Lemma A.19 and Lemma A.23 hold. Assume

. 2
_max Ezon- {ng@ (Ztk,tk)HZ (1+ IV log 7 (Zz)||? + (V2 1og7r*(zT)))} < +o0,

Then fork =1,..., K, we have I}, :O(T%tk+1)'

[Proof] It is a direction application of (20).

Lemma A.21. Let A and B be two d X d positive semi-definite matrices. Then tr(AB) <
Amax (A)tr(B).

[Proof] Write A into A = Zle )\iuiu;r where \; and u; is the i-th eigenvalue and eigenvectors of
A, respectively. Then

d
tr(AB):tr(Z)\iu;'—Bui)_ max (A)tr( Zu Bu;) = Amax(A)tr(B).

i=1

Controlling the Conditional Variance of the Regression Problem Assume Q" is the standard
Brownian bridge:

x— 77
T_1 dt+th, ZO NN(O,’UQ). (19)

Q*: dzf =
In this case, the (ideal) loss function is

X -2
1—t

L(0) = —Exn- z~ox [logpo(Zo) 1/ Hs (Z4,1) Y,5H2dt where Y; =

The second part of the loss is a least square regression for predicting Y; = 7 (Z;,t) with s (Z;, t).
The conditioned variance cov(Y; | Z;) is an important factor that influences the error of the regres-
sion problem. We now show that tr(cov(Y; | Z;)) = O(1/T — t) which means that it explodes to
infinity when ¢ T 7T'.

First, note that tr(cov(Y; | Z;)) = ﬁtr(cov(X | Z;)). Using the estimate in Lemma A.23, we
have

tr(cov(Y: | Z)) = O(Tlt +E {Vm log 7* (X)||§ +tr (VZlogm™* (X)) ’Zt} ) (20)
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Lemma A.22. For the standard Brownian bridge in (19), we have

. t  HT—t) (T-1t)?
Zt NN(TJ:’ T + T2 Vo .

[Proof] Let Z;*" be the same process that is initialized from Z;** = z;. We have from the

textbook result regarding Brownian bridge that we can write Z;>" = t”(?_t)z” + 4/ t(TT_ e,

where &, is some standard Gaussian random variable. The result follows directly as Z} = ZtZ 0%
with Z() ~ N(O, ’Uo).

Lemma A.23. Let 7 be the density function II* on RY whose covariance matrix exists. When
X ~ 0" and Z ~ QX from (19) with vg > 0. Then the density function p;(z|z) of X|Z; = =
satisfies

T 2
pe(x)z) o m*(x) exp | — HTZ?%HQ 21
2( T('];ft) + 0 (T);t)2 )
In addition, there exists positive constants ¢ < +oo and T € (0,T), such that

wid + uf, |9 og* (@) + tr (¥ og ()

c, when 0 <t >,

h <t<T
tr(covy, (z]2)) < } T =t

(T—1)?
t2

where w; = T(jft) + vo
ast 1 T.

. So tr(cov,, (z|2)) is bounded and decay to zero with rate O(T —t)

[Proof] We know that X ~ II* and Z;¥|X ~ N (t/T X, w;). Hence, (21) is a direct result of Bayes
rule. Then Lemma A.25 gives

tr(covy, (2[2)) = wid + wiE,, |||V, logn* (2)[5 + tr (V? log 7 (x))

On the other hand,

T

. 1 s, T
pilalz) o " (@) exp(— g ] + 72T

When ¢ — 0, we have 1/w, — 0 and T'/(tw;) — 0. Hence, p;(z|z) converges to 7*(z) as t — 0,
as a result, tr(cov,, (z|z)) — tr(cov,-(z)) < 4o0. Therefore, for any ¢ > 0, there exists ¢ty > 0,
such that tr(cov,, (x]z)) < tr(cove«(z)) + cwhen 0 < t < t.

Remark A.24. We need to have vy > 0 to ensure that T /(tw;) — 0 in the proof of Lemma A.23.
This is purely a technical reason, for yielding a finite bound of the conditioned variance when
t is close to 0. We can establish the same result when vy = 0 by adding the assumption that

maxgei,....x Ezgn {HV@SW (Zs,, tr) H; tr(covn*ztk (ZT))] < 400, where 1% is the distribution
with density 7} (x) oc 7 (z) exp(z " z/T).

2
Lemma A.25. Let p(z) x w(x) exp (—a%) be a positive probability density function on R,

where o > 0, b € R and log 7 is continuously second order differentiable. Then

tr(covy (2)) < By[llo]] = o td + a2 (B[ V. log m(2)|3 + tx(V* log n(x)] ).

[Proof] Let us focus on the case when b = 0 first. Stein’s identity says that
E, [(Valogn(z) — ax) T ¢(z) + Vi ¢(2)] =0,

for a general continuously differentiable function ¢ when the integrals above are finite.
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Taking ¢ = x yields that
E, [(V,logn(z) — ax) Tz + d =0,

which gives
Eyll(l3) = o (B, [V, log m(x) 2] + d).
On the other hand, taking ¢(x) = V, log m(x) yields

E, [(V.logn(z) — az) "V, log(z) + tr(VZlog m(z))] =0,
which gives
E,[V, logr(z) 2] = o (E,,[Hvz log 7(x)||2 + tr(V2 10g77(x))]> .
This gives

Ey(llz]3) = da" + a2 (By[[| V. log m(a) |} + tx(V* log ()] ) -

For b # 0, define p(x) o 7 (x + b) exp (—% ||x||2), which is the distribution of Z = x — b when
x ~ p. Then applying the result above to p yields

tr(covy(x)) = tr(covy(x))

<ald+a E,.; [I\Vm log 7 (z + b)||? + tr (V2log 7 (x + b))}

=atd+a?E., {va log (a:)H% + tr (V2 logw(m))} .

A.6  CONDITION FOR (2-BRIDGES

We provide the proof for Proposition 2.3.

[Proof of Proposition 2.3] By the formula of KL divergence between two diffusion processes, we
have

T
KL@Q ||P?) = KL(QF || PY) + %EZNQQ [/0 er(Zt,t)szt < +o0.

This means that Q* and PY are absolutely continuous to each other, and hence have the same support.
Therefore, Q*(Z7 € Q) = 1 implies that P?(Zy € Q) = 1.

A.7 EXAMPLES OF 2-BRIDGES

If Q2 is a product space, the integration can be factorized into one-dimensional integrals. Specifically,
assume ) = I; x --- Iy, then

n2(z,6) = [ (2, 0],

where 77[1‘ is the drift fore of the I;-bridge, and z; is the i-th element of z = [z;]. Therefore, it is
sufficient to focus on 1D case below.

Consider the bridge process constructed from the Brownian motion in (9). If € is a discrete set, say
O ={er...,ex}, we have

K
1 —z
Q ek
7 (z,t —a—g w(ek, z,t)
(1) tzk cwiek, z,t) 1o Br — B
K

=0}V, logz w(eg, z,t),
k=1
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age workclass fnlwgt  education  marital-status occupation relationship race sex capital-gain capital-loss hours-p k nati try income
55 Self-emp-not-inc 229791 hel Divorced Prof-specialty Other-relative White Male 2561 77 37 Cuba >50K
45 Self-emp-not-inc 313479 Some-college Never-married Machine-op-inspct ~ Husband White Male 4660 483 38 United-States >50K
81 Without-pay 106624 9th Married-civ-spouse Adm-clerical Husband Black  Male 1910 66 24 United-States <=50K
41 Private 285037 Sth Divorced Adm-clerical Husband White Male 3754 46 28 Poland <=50K
22 Private 21419 hel i Exec: i Own-child White Female 4689 209 34 United-States <=50K

Figure 5: Generated tabular data from Mixed-Bridge.

where

2
w(@k,Z,t) = exp (—M) )

If Q = [a, b], we have

Q 9 1 /b e—z
0 (z,t) =0, ———— | w(e, z,t)=——de
( tf:w(e,z,t) a )ﬁT — B

b
=0?V, log/ w(e, z,t)de
— 02V, log (F(z—a) _F(z—b))
P VBT — P VBr =B.")"

where F'is the standard Gaussian CDF.
B ADDITIONAL MATERIALS OF THE EXPERIMENTS
In our experiments, 7' = 1 and e = T/K = 1/K. Moreover, we take the time grid by randomly
sampling from {i/K }figl for the training objective Eq. (13). For evaluation, we calculate the

standard evidence lower bound (ELBO) by viewing the resulting time-discretized model as a latent
variable model:

EXNH* [— logﬁg«(X)} S EZNQI’I* — log

Bz ilo ﬁkarl‘tk (Ztrsa 1200
(JO(ZO) =1 th+1\tk(Ztk+1|Ztk) ’

where t;, = (k—1)e, and p? is the density function of the time-discretized version of P?, and ¢ is the
density function of Q. We adopt Monte-Carlo sampling to estimate the log-likelihood. As in (Song
et al., 2020b), we repeat 5 times in the test set for the estimation. For categorical/integer/grid gen-
eration, the likelihood of the last step should take the rounding into account: in practice, we have
Zp = rounding(Zy,. + €5 (Zy,. , ti) +eo(Zs, , ti )k, Q). where rounding(z, ) denotes find-
ing the nearest element of = on €2, and hence the likelihood ﬁaT‘tK of the last step should incorporate
the rounding operator as a part of the model.

B.1 GENERATING MIXED-TYPE TABULAR DATA

In this experiment, the metrics are measured by the implementation from Synthetic Data Vault
(SDV) (Patki et al., 2016). For baseline methods, we adopt their open-sourced official implementa-
tion !. For the machine learning models adopted for evaluation, logistic regerssion, AdaBoost and
MLP, we directly use their default configuration in SDV. For the results in Table 1, we repeat the ex-
periments with 5 different random seeds and report their standard deviation. We provide additional
generated samples from Mixed-Bridge in Figure 5.

"https://github.com/sdv-dev/CTGAN
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Figure 6: Visualization of the noise schedule of Noise decay A, Noise decay B and Noise decay C.

B.2 GENERATING INTEGER-VALUED POINT CLOUDS

In this experiment, we need to process point cloud data on integer grid. To prepare the data, we
firstly sample 2048 points from the ground truth mesh. Then, we normalize all the point clouds
to a unit bounding box. After this, we simply project the points onto grid point by rounding the
coordinate to integer. The metrics in the main text, MMD, COV and 1-NNA are computed with
respect to the post-processed integer-valued training point clouds. For the results in Table 2, we
repeat the experiments for 3 times and report the mean of the experiments.

B.3 GENERATING SEMANTIC SEGMENTATION MAPS ON CITYSCAPES

In this experiment, we set (Noise Decay A): o7 = 3exp(—3t); (Noise Decay B): 07 = 3(1 — t);
(Noise Decay C) o = 3 — 3exp(—3(1 — t)). We visualize the noise schedule in Figure 6. Note
that, except for Constant Noise, all the other three processes gradually decrease the magnitude of
the noise as t — 1. For fair comparison, we use the same neural network as in Hoogeboom et al.
(2021). The network is optimized with Adam optimizer with a learning rate of 0.0002. The model is
trained for 500 epochs. The CityScapes dataset (Cordts et al., 2016) contains photos captured by the
cameras on the driving cars. A pixel-wise semantic segmentation map is labeled for each photo. As
in (Hoogeboom et al., 2021), we rescale the segmentation maps from cityscapes to 32 x 64 images
using nearest neighbour interpolation. Our training set and test set is exactly the same as that of
(Hoogeboom et al., 2021) for fair comparison. For the results in Table 3,we repeat the experiments
for 3 times and report the mean of the experiments. We provide more samples in Figure 9.

B.4 DiSCRETE CIFAR10 GENERATION

The model is trained using the same training strategy as DDPM (Ho et al., 2020) with the code base
provided in Song et al. (2020b). Specifically, the neural network is the same U-Net structure as
the implementation in Song et al. (2020b). The optimizer is Adam with a learning rate of 0.0002.
According to common practice (Song & Ermon, 2020; Song et al., 2020b), the training is smoothed
by exponential moving average (EMA) with a factor of 0.999. We use K = 1000 and d¢ = 0.001 for
discretizing the SDE. To account for the discretization error, after the final step, we apply rounding
to the generated images to get real integer-valued images. We compare the value distribution of the
generated images in Figure 8.
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Figure 7: Diffusion process of one pixel (a 8-dimensional vector) in CityScapes. As ¢ — 1, 7 of the dimensions
reaches 0, while 1 of the dimensions reaches 1, turning the vector into a one-hot vector.

126 127 128 129 130 126 127 128 129 130
(a) Bridge-Continuous (b) Bridge-Integer

Figure 8: Final value distribution of the generated images with Bridge-Continuous and Bridge-Integer (before
rounding) on CIFAR10. We only show the values in [125.5, 130.5] for visual clarity. Integer-Bridge generates
discrete values.
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(a) Real Data

(e) Noise Decay C

Figure 9: Additional samples from real data, Constant Noise, Noise decay A, Noise decay B and Noise decay
C.
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