
Flow Straight and Fast:
Learning to Generate and Transfer Data with Rectified Flow

Xingchao Liu*

University of Texas at Austin
xcliu@utexas.edu

Chengyue Gong*

University of Texas at Austin
cygong@cs.utexas.edu

Qiang Liu
University of Texas at Austin
lqiang@cs.utexas.edu

Abstract

We present rectified flow, a surprisingly simple approach to learning (neural) ordinary differential
equation (ODE) models to transport between two empirically observed distributions π0 and π1, hence
providing a unified solution to generative modeling and domain transfer, among various other tasks
involving distribution transport. The idea of rectified flow is to learn the ODE to follow the straight
paths connecting the points drawn from π0 and π1 as much as possible. This is achieved by solving a
straightforward nonlinear least squares optimization problem, which can be easily scaled to large models
without introducing extra parameters beyond standard supervised learning. The straight paths are special
and preferred because they are the shortest paths between two points, and can be simulated exactly with-
out time discretization and hence yield computationally efficient models. We show that the procedure
of learning a rectified flow from data, called rectification, turns an arbitrary coupling of π0 and π1 to a
new deterministic coupling with provably non-increasing convex transport costs. In addition, recursively
applying rectification allows us to obtain a sequence of flows with increasingly straight paths, which can
be simulated accurately with coarse time discretization in the inference phase. In empirical studies, we
show that rectified flow performs superbly on image generation, image-to-image translation, and domain
adaptation. In particular, on image generation and translation, our method yields nearly straight flows
that give high quality results even with a single Euler discretization step.

1 Introduction

Compared with supervised learning, the shared difficulty of various forms of unsupervised learning is the
lack of paired input/output data with which standard regression or classification tasks can be invoked. The
gist of most unsupervised methods is to find, in one way or another, meaningful correspondences between
points from two distributions. For example, generative models such as generative adversarial networks
(GAN) and variational autoencoders (VAE) [e.g., 19, 32, 14] seek to map data points to latent codes fol-
lowing a simple elementary (Gaussian) distribution with which the data can be generated and manipulated.
Representation learning rests on the idea that if a sufficiently smooth function can map a structured data

*XL and CG contributed equally to this work.

1

ar
X

iv
:2

20
9.

03
00

3v
1

 [c
s.L

G
]

7
Se

p
20

22

distribution to an elementary distribution, it can (likely) be endowed with certain semantically meaningful
interpretation and useful for various downstream learning tasks. On the other hand, domain transfer meth-
ods find mappings to transfer points from two different data distributions, both observed empirically, for the
purpose of image-to-image translation, style transfer, and domain adaption [e.g., 100, 16, 79, 59]. All these
tasks can be framed unifiedly as finding a transport map between two distributions:

The Transport Mapping Problem Given empirical observations of two distributions X0 ∼ π0, X1 ∼ π1
on Rd, find a transport map T : Rd → Rd (hopefully nice or optimal in certain sense), such that Z1 :=
T (Z0) ∼ π1 when Z0 ∼ π0, that is, (Z0, Z1) is a coupling (a.k.a transport plan) of π0 and π1.

Several lines of techniques have been developed depending on how to represent and train the map T . In
traditional generative models, T is parameterized as a neural network, and trained with either GAN-type
minimax algorithms or (approximate) maximum likelihood estimation (MLE). However, GANs are known
to suffer from numerically instability and mode collapse issues, and require substantial engineering efforts
and human tuning, which often do not transfer well across different model architecture and datasets. On the
other hand, MLE tends to be intractable for complex models, and hence requires approximate variational
or Monte Carlo inference techniques such as those used in variational auto-encoders (VAE), or special
model structures such as normalizing flow and auto-regressive models, to yield tractable likelihood, causing
difficult trade-offs between expressive power and computational cost.

Recently, advances have been made by representing the transport plan implicitly as a continuous time pro-
cess, such as flow models with neural ordinary differential equations (ODEs) [e.g., 6, 56] and diffusion
models by stochastic differential equations (SDEs) [e.g., 73, 23, 80, 11, 82]; in these models, a neural net-
work is trained to represent the drift force of the processes and a numerical ODE/SDE solver is used to
simulate the process during inference. The key idea is that, by leveraging the mathematical structures of
ODEs/SDEs, the continuous-time models can be trained efficiently without resorting to minimax or tradi-
tional approximate inference techniques. The most notable examples are the recent score-based generative
models [71–73] and denoising diffusion probabilistic models (DDPM) [23], which we call denoising dif-
fusion methods collectively. These methods allow us to train large-scale diffusion/SDE-based generative
models that surpass GANs on image generation in both image quality and diversity, without the instability
and mode collapse issues [e.g., 12, 53, 61, 64]. The learned SDEs can be converted into deterministic ODE
models for faster inference with the method of probability flow ODEs [73] and DDIM [70].

However, compared with the traditional one-step models like GAN and VAE, a key drawback of continuous-
times models is the high computational cost in inference time: drawing a single point (e.g., image) requires
to solve the ODE/SDE with a numerical solver that needs to repeatedly call the expensive neural drift
function. In addition, the existing denoising diffusion techniques require substantial hyper-parameter search
in an involved design space and are still poorly understood both empirically and theoretically [29].

In existing approaches, generative modeling and domain transfer are typically treated separately. It often
requires to extend or customize a generative learning techniques to solve domain transfer problems; see
e.g., Cycle GAN [100] and diffusion-based image-to-image translation [e.g., 75, 97]. One framework that
naturally unifies both domains is optimal transport (OT) [e.g., 85, 2, 15, 59], which endows a collection
of techniques for finding optimal couplings with minimum transport costs of form E[c(Z1 − Z0)] w.r.t. a
cost function c : Rd → R, yielding natural applications to both generative and transfer learning. However,
the existing OT techniques are slow for problems with high dimensional and large volumes of data [59].
Furthermore, as the transport costs do not perfectly align with the actual learning performance, methods that
faithfully find the optimal transport maps do not necessarily have better learning performance [34].

2

Figure 1: The trajectories of rectified flows for image generation (π0: standard Gaussian noise, π1: cat faces, top two
rows), and image transfer between human and cat faces (π0: human faces, π1: cat faces, bottom two rows), when
simulated using Euler method with step size 1/N for N steps. The first rectified flow induced from the training data
(1-rectified flow) yields good results with a very small number (e.g., ≥ 2) of steps; the straightened reflow induced
from 1-rectified flow (denoted as 2-rectified flow) has nearly straight line trajectories and yield good results even with
one discretization step.

Contribution

We introduce rectified flow, a surprisingly simple approach to the transport mapping problem, which uni-
fiedly solves both generative modeling and domain transfer. The rectified flow is an ODE model that trans-
port distribution π0 to π1 by following straight line paths as much as possible. The straight paths are
preferred both theoretically because it is the shortest path between two end points, and computationally
because it can be exactly simulated without time discretization. Hence, flows with straight paths bridge the
gap between one-step and continuous-time models.

Algorithmically, the rectified flow is trained with a simple and scalable unconstrained least squares opti-
mization procedure, which avoids the instability issues of GANs, the intractable likelihood of MLE meth-
ods, and the subtle hyper-parameter decisions of denoising diffusion models. The procedure of obtaining
the rectified flow from the training data has the attractive theoretical property of 1) yielding a coupling with
non-increasing transport cost jointly for all convex cost c, and 2) making the paths of flow increasingly
straight and hence incurring lower error with numerical solvers. Therefore, with a reflow procedure that
iteratively trains new rectified flows with the data simulated from the previously obtained rectified flow, we
obtain nearly straight flows that yield good results even with the coarsest time discretization, i.e., one Euler
step. Our method is purely ODE-based, and is both conceptually simpler and practically faster in inference
time than the SDE-based approaches of [23, 73, 70].

3

(a) Linear interpolation

Xt = tX1 + (1− t)X0

(b) Rectified flow Zt

induced by (X0, X1)

(c) Linear interpolation

Zt = tZ1 + (1− t)Z0

(d) Rectified flow Z′t

induced by (Z0, Z1)

Figure 2: (a) Linear interpolation of data input (X0, X1) ∼ π0 × π1. (b) The rectified flow Zt induced by (X0, X1);
the trajectories are “rewired” at the intersection points to avoid the crossing. (c) The linear interpolation of the end
points (Z0, Z1) of flow Zt. (d) The rectified flow induced from (Z0, Z1), which follows straight paths.

Empirically, rectified flow can yield high-quality results for image generation when simulated with a very
few number of Euler steps (see Figure 1, top row). Moreover, with just one step of reflow, the flow becomes
nearly straight and hence yield good results with a single Euler discretization step (Figure 1, the second
row). This substantially improves over the standard denoising diffusion methods. Quantitatively, we claim a
state-of-the-art result of FID (4.85) and recall (0.51) on CIFAR10 for one-step fast diffusion/flow models [5,
48, 91, 99, 47]. The same algorithm also achieves superb result on domain transfer tasks such as image-to-
image translation (see the bottom two rows of Figure 1) and transfer learning.

2 Method

We provide a quick overview of the method in Section 2.1, followed with some discussion and remarks in
Section 2.2. We introduce a nonlinear extension of our method in Section 2.3, with which we clarify the
connection and advantages of our method with the method of probability flow ODEs [73] and DDIM [70].

2.1 Overview

Rectified flow Given empirical observations of X0 ∼ π0, X1 ∼ π1, the rectified flow induced from
(X0, X1) is an ordinary differentiable model (ODE) on time t ∈ [0, 1],

dZt = v(Zt, t)dt,

which converts Z0 from π0 to a Z1 following π1. The drift force v : Rd → Rd is set to drive the flow to
follow the direction (X1 −X0) of the linear path pointing from X0 to X1 as much as possible, by solving a
simple least squares regression problem:

min
v

∫ 1

0
E
[∥∥(X1 −X0)− v

(
Xt, t

)∥∥2]dt, with Xt = tX1 + (1− t)X0, (1)

where Xt is the linear interpolation of X0 and X1. Naviely, Xt follows the ODE of dXt = (X1 −X0)dt,
which is non-causal (or anticipating) as the update of Xt requires the information of the final point X1. By
fitting the drift v with X1 − X0, the rectified flow causalizes the paths of linear interpolation Xt, yielding
an ODE flow that can be simulated without seeing the future.

In practice, we parameterize v with a neural network or other nonlinear models and solve (1) with any off-
the-shelf stochastic optimizer, such as stochastic gradient descent, with empirical draws of (X0, X1). See

4

Algorithm 1. After we get v, we solve the ODE starting from Z0 ∼ π0 to transfer π0 to π1, backwardly
starting from Z1 ∼ π1 to transfer π1 to π0. Specifically, for backward sampling, we simply solve dX̃t =
−v(X̃t, t)dt initialized from X̃0 ∼ π1 and set Xt = X̃1−t. The forward and backward sampling are
equally favored by the training algorithm, because the objective in (1) is time-symmetric in that it yields the
equivalent problem if we exchange X0 and X1 and flip the sign of v.

Flows avoid crossing A key to understanding the method is the non-crossing property of flows: the differ-
ent paths following a well defined ODE dZt = v(Zt, t)dt, whose solution exists and is unique, cannot cross
each other at any time t ∈ [0, 1). Specifically, there exists no location z ∈ Rd and time t ∈ [0, 1), such that
two paths go across z at time t along different directions, because otherwise the solution of the ODE would
be non-unique. On the other hand, the paths of the interpolation process Xt may intersect with each other
(Figure 2a), which makes it non-causal. Hence, as shown in Figure 2b, the rectified flow rewires the individ-
ual trajectories passing through the intersection points to avoid crossing, while tracing out the same density
map as the linear interpolation paths due to the optimization of (1). We can view the linear interpolation
Xt as building roads (or tunnels) to connect π0 and π1, and the rectified flow as traffics of particles passing
through the roads in a myopic, memoryless, non-crossing way, which allows them to ignore the global path
information of how X0 and X1 are paired, and rebuild a more deterministic pairing of (Z0, Z1).

Rectified flows reduce transport costs If (1) is solved exactly, the pair (Z0, Z1) of the rectified flow is
guaranteed to be a valid coupling of π0, π1 (Theorem 3.3), that is, Z1 follows π1 if Z0 ∼ π0. Moreover,
(Z0, Z1) guarantees to yield no larger transport cost than the data pair (X0, X1) simultaneously for all
convex cost functions c (Theorem 3.5). The data pair (X0, X1) can be an arbitrary coupling of π0, π1,
typically independent (i.e., (X0, X1) ∼ π0×π1) as dictated by the lack of meaningfully paired observations
in practical problems. In comparison, the rectified coupling (Z0, Z1) has a deterministic dependency as it is
constructed from an ODE model. Denote by (Z0, Z1) = Rectify((X0, X1)) the mapping from (X0, X1)
to (Z0, Z1). Hence, Rectify(·) converts an arbitrary coupling into a deterministic coupling with lower
convex transport costs.

Straight line flows yield fast simulation Following Algorithm 1, denote by Z = RectFlow((X0, X1))
the rectified flow induced from (X0, X1). Applying this operator recursively yields a sequence of rectified
flows Zk+1 = RectFlow((Zk0 , Z

k
1)) with (Z0

0 , Z
0
1) = (X0, X1), where Zk is the k-th rectified flow, or

simply k-rectified flow, induced from (X0, X1).

This reflow procedure not only decreases transport cost, but also has the important effect of straightening
paths of rectified flows, that is, making the paths of the flow more straight. This is highly attractive compu-
tationally as flows with nearly straight paths incur small time-discretization error in numerical simulation.
Indeed, perfectly straight paths can be simulated exactly with a single Euler step and is effectively a one-
step model. This addresses the very bottleneck of high inference cost in existing continuous-time ODE/SDE
models.

2.2 Main Results and Properties

We provide more in-depth discussions on the main properties of rectified flow. We keep the discussion
informal to highlight the intuitions in this section and defer the full course theoretical analysis to Section 3.

5

Algorithm 1 Rectified Flow: Main Algorithm

Procedure: Z = RectFlow((X0, X1)):
Inputs: Draws from a coupling (X0, X1) of π0 and π1; velocity model vθ : Rd → Rd with parameter θ.

Training: θ̂ = argmin
θ

E
[
‖X1 −X0 − v(tX1 + (1− t)X0, t)‖2

]
, with t ∼ Uniform([0, 1]).

Sampling: Draw (Z0, Z1) following dZt = vθ̂(Zt, t)dt starting from Z0 ∼ π0 (or backwardly Z1 ∼ π1).
Return: Z = {Zt : t ∈ [0, 1]}.

Reflow (optional): Zk+1 = RectFlow((Zk0 , Z
k
1)), starting from (Z0

0 , Z
0
1) = (X0, X1).

Distill (optional): Learn a neural network T̂ to distill the k-rectified flow, such that Zk1 ≈ T̂ (Zk0).

First, for a given input coupling (X0, X1), it is easy to see that the exact minimum of (1) is achieved if

vX(x, t) = E[X1 −X0 | Xt = x], (2)

which is the expectation of the line directions X1 −X0 that pass through x at time t. We discuss below the
property of rectified flow dZt = vX(Zt, t)dt with Z0 ∼ π0, assuming that the ODE has an unique solution.

Marginal preserving property [Theorem 3.3] The pair (Z0, Z1) is a coupling of π0 and π1. In fact, the
marginal law of Zt equals that of Xt at every time t, that is, Law(Zt) = Law(Xt),∀t ∈ [0, 1].

Intuitively, this is because, by the definition of vX in (2), the expected amount of mass that passes through
every infinitesmal volume at all location and time are equal under the dynamics ofXt and Zt, which ensures
that they trace out the same marginal distributions:

Flow in & out

()
= Flow in & out

()
, ∀time & location =⇒ Law(Zt) = Law(Xt),∀t.

On the other hand, the joint distributions of the whole trajectory of Zt and that ofXt are different in general.
In particular, Xt is in general a non-causal, non-Markov process, with (X0, X1) a stochastic coupling, and
Zt causalizes, Markovianizes and derandomizes Xt, while preserving the marginal distributions at all time.

Reducing transport costs [Theorem 3.5] The coupling (Z0, Z1) yields lower or equal convex transport
costs than the input (X0, X1) in that E[c(Z1 − Z0)] ≤ E[c(X1 −X0)] for any convex cost c : Rd → R.

The transport costs measure the expense of transporting the mass of one distribution to another following
the assignment relation specified by the coupling and is a central topic in optimal transport [e.g., 84, 85,
65, 59, 15]. Typical examples are c(·) = ‖·‖α with α ≥ 1. Hence, Rectify(·) yields a Pareto descent
on the collection of all convex transport costs, without targeting any specific c. This distinguishes it from
the typical optimal transport optimization methods, which are explicitly framed to optimize a given c. As a
result, recursive application of Rectify(·) does not guarantee to attain the c-optimal coupling for any given
c, with the exception in the one-dimensional case when the fixed point of Rectify(·) coincides with the
unique monotonic coupling that simultaneously minimizes all non-negative convex costs c; see Section 3.4.

Intuitively, the convex transport costs are guaranteed to decrease because the paths of the rectified flow Zt
is a rewiring of the straight paths connecting (X0, X1). To give an illustration, consider the simple case of

6

c(·) = ‖·‖ when transport costs E[‖X0 −X1‖] and E[‖Z0 − Z1‖] are the expected length of the straight
lines connecting the end points. The inequality can be proved graphically as follows:

E[‖Z0 − Z1‖] = Length

()
(∗)
≤ Length

()
(∗∗)
= Length

()
= E[‖X0 −X1‖] ,

where
(∗)
≤ uses the triangle inequality, and

(∗∗)
= holds because the paths of Zt is a rewiring of the straight

paths of Xt, following the construction of vX in (2). For general convex c, a similar proof using Jensen’s
inequality is shown in Section 3.2.

Reflow, straightening, fast simulation As shown in Figure 3, when we recursively apply the procedure
Zk+1 = RectFlow((Zk0 , Z

k
1)), the paths of the k-rectified flow Zk are increasingly straight, and hence

easier to simulate numerically, as k increases. This straightening tendency can be guaranteed theoretically.

(a)The 1st rectified flow Z1

Z1 = RectFlow((X0, X1))

(b) Reflow Z2

Z2 = RectFlow((Z1
0 , Z

1
1))

(c) Reflow Z3

Z3 = RectFlow((Z2
0 , Z

2
1))

(d) Transport cost,
Straightness

Figure 3: (a)-(c) Samples of trajectories drawn from the reflows on a toy example (π0: purple dots, π1: red dots; the
green and blue lines are trajectories connecting different modes of π0, π1). (d) The straightness and the relative L2
transport cost v.s. the reflow steps; the values are scaled into [0, 1], so 0 corresponds to straight lines and L2 optimal
transport; see Section 5.1 for more information. We use the non-parametric model in (5) with bandwidth h = 0.1.

Specifically, we say that a flow dZt = v(Zt, t)dt is straight if we have almost surely that Zt = tZ1 +
(1 − t)Z0 for ∀t ∈ [0, 1], or equivalently v(Zt, t) = Z1 − Z0 = const following each path. (More
precisely, “straight” here refers to straight with a constant speed.) Such straight flows are highly attractive
computationally as it is effective a one-step model: a single Euler step update Z1 = Z0+v(Z0, 0) calculates
the exact Z1 from Z0. Note that the linear interpolation X = {Xt} is straight by this definition but it is
not a (causal) flow and hence can not be simulated without an oracle assess to draws of both π0 and π1.
In comparison, it is non-trivial to make a flow dZt = v(Zt, t)dt straight, because if so v must satisfy the
inviscid Burgers’ equation ∂tv + (∂zv)v = 0:

d

dt
v(Zt, t) = ∂zv(Zt, t)Żt + ∂tv(Zt, t) = ∂zv(Zt, t)v(Zt, t) + ∂tv(Zt, t) = 0.

More generally, we can measure the straightness of any continuously differentiable process Z = {Zt} by

S(Z) =

∫ 1

0
E
[∥∥∥(Z1 − Z0)− Żt

∥∥∥2]dt. (3)

S(Z) = 0 means exact straightness. A flow whose S(Z) is small has nearly straight paths and hence can be
simulated accurately using numerical solvers with a small number of discretization steps. Section 3.3 shows
that applying rectification recursively provably decreases S(Z) towards zero.

7

[Theorem 3.7] Let Zk be the k-th rectified flow induced from (X0, X1). Then

min
k∈{0···K}

S(Zk) ≤ E[‖X1 −X0‖2]
K

.

As shown Figure 1, applying one step of reflow can already provide nearly straight flows that yield good
performance when simulated with a single Euler step. It is not recommended to apply too many reflow steps
as it may accumulate estimation error on vX .

Distillation After obtaining the k-th rectified flow Zk, we can further improve the inference speed by
distilling the relation of (Zk0 , Z

k
1) into a neural network T̂ to directly predict Zk1 from Zk0 without simulating

the flow. Given that the flow is already nearly straight (and hence well approximated by the one-step update),
and the distillation can be done efficiently. In particular, if we take T̂ (z0) = z0 + v(z0, 0), then the loss
function for distilling Zk is E

[∥∥(Zk1 − Zk0)− v(Zk0 , 0)∥∥2], which is the term in (1) when t = 0.

We should highlight the difference between distillation and rectification: distillation attempts to faithfully
approximate the coupling (Zk0 , Z

k
1) while rectification yields a different coupling (Zk+1

0 , Zk+1
1) with lower

transport cost and more straight flow. Hence, distillation should be applied only in the final stage when we
want to fine-tune the model for fast one-step inference.

On the velocity field vX If X0 yields a conditional density function ρ(x0 | x1) when conditioned on
X1 = x1, then the optimal velocity field vX(z, t) = E[X1 −X0|Xt = z] can be represented by

vX(z, t) = E
[
X1 − z
1− t

ηt(X1, z)

]
, ηt(X1, z) = ρ

(
z − tX1

1− t

∣∣∣∣ X1

)/
E
[
ρ

(
z − tX1

1− t

∣∣∣∣ X1

)]
, (4)

where the expectation E [·] is taken w.r.t. X1 ∼ π1. This can be seen by noting that X0 = z−tX1
1−t and

X1 −X0 = X1−z
1−t , when conditioned on Xt = z. Hence, if ρ is positive and continuous everywhere, then

vX is well defined and continuous on Rd × [0, 1). Further, if log ηt is continuously differentiable w.r.t. z,
we can show that

∇zvX(z, t) =
1

1− t
E [((X1 − z)∇z log ηt(X1, z)− 1) ηt(X1, z)] .

Note that dZt = vX(Zt, t)dt is guaranteed to have a unique solution if vX is uniformly Lipschitz continuous
on [0, a] for any a < 1.

If X0|X1 = x1 does not yield a conditional density function, vX(z, t) may be undefined or discontinuous,
making the ODE dZt = vX(Zt, t)dt ill-behaved. A simple fix is to add X0 with a Gaussian noise ξ ∼
N (0, σ2I) independent of (X0, X1) to yield a smoothed variable X̃0 = X0+ξ, and transfer X̃0 toX1 using
rectified flow. This would effectively give a randomized mapping of form T (X0 + ξ) transporting π0 to π1.

Smooth function approximation Following (4), we can exactly calculate vX if the conditional density
function ρ(·|x1) exists and is known, and π1 is the empirical measure of a finite number of points (whose
expectation can be evaluated exactly). In this case, running the rectified flow forwardly would precisely
recover the points in π1. This, however, is not practically useful in most cases as it completely overfits the

8

data. Hence, it is both necessary and beneficial to fit vX with a smooth function approximator such as neural
network or non-parametric models, to obtain smoothed distributions with novel samples that are practically
useful.

Deep neural networks are no doubt the best function approximators for large scale problems. For low
dimensional problems, the following simple Nadaraya–Watson style non-parametric estimator of vX can
yield a good approximation to the exact rectified flow without knowing the conditional density ρ:

vX,h(z, t) = E
[
X1 − z
1− t

ωh(Xt, z)

]
, (5)

where ωh(Xt, z) = κh(Xt,z)
E[κh(Xt,z)]

, and κh(x, z) is a smoothing kernel with a bandwith parameter h > 0 that

measures the similarity between z and x. Taking the Gaussian RBF kernel κh(x, z) = exp(−‖x− z‖2 /2h2),
then when h → 0+, it can be shown that vX,h(z, t) converges to vX(z, t) = E

[
X1−z
1−t | Xt = z

]
on points

z that can be attained by Xt (i.e., the conditional expectation E [· | Xt = z] exists.). On points z that Xt

can not attain, vX,h(z, t) extrapolates the value by finding the Xt that is close to z. In practice, we replace
the expectations in (5) with empirical averaging. We find that vX,h performs well in practice because it is a
mixture of linear functions that always point to a point in the support of π1.

2.3 A Nonlinear Extension

We present a nonlinear extension of rectified flow in which the linear interpolation Xt is replaced by any
time-differentiable curve connectingX0 andX1. Such generalized rectified flows can still transport π0 to π1
(Theorem 3.3), but no longer guarantee to decrease convex transport costs, or have the straightening effect.
Importantly, the method of probability flows [73] and DDIM [70] can be viewed (approximately) as special
cases of this framework, allows us to clarify the connection with and the advantages over these methods.

Let X = {Xt : t ∈ [0, 1]} be any time-differentiable random process that connects X0 and X1. Let Ẋt be
the time derivative of Xt. The (nonlinear) rectified flow induced from X is defined as

dZt = vX(Zt, t)dt, with Z0 = X0, and vX(z, t) = E
[
Ẋt | Xt = t

]
.

We can estimate vX by solving

min
v

∫ 1

0
E
[
wt

∥∥∥v(Xt, t)− Ẋt

∥∥∥2]dt, (6)

where wt : (0, 1) → (0,+∞) is a positive weighting sequence (wt = 1 by default). When using the linear
interpolation Xt = tX1 + (1 − t)X0, we have Ẋt = X1 − X0 and (6) with wt = 1 reduces to (1). As
we show in Theorem 3.3, the flow Z given by this method still preserves the marginal laws of X , that is,
Law(Zt) = Law(Xt), ∀t ∈ [0, 1], and hence (Z0, Z1) remains to be a coupling of π0, π1. However, if X
is not straight, (Z0, Z1) no longer guarantees to decrease the convex transport costs over (X0, X1). More
importantly, the reflow procedure no longer straightens the paths of Zt.

A simple class of interpolation processes is Xt = αtX1 + βtX0 where αt and βt are two differentiable
sequences that satisfy α1 = β0 = 1 and α0 = β1 = 0 to ensure that the process equals X0, X1 at the
starting and end points. In this case, we have Ẋt = α̇tX1 + β̇tX0 in (6) where α̇t and β̇t are the time
derivatives of αt and βt. The shape of the curve is controlled by the relation of αt and βt. If we take

9

βt = 1− αt for all t, then Xt have straight paths but does not travel at a constant speed; it can be viewed as
a time-changed variant of the canonical case Xt = tX1 +(1− t)X0 when t is reparameterized to αt. When
βt 6= 1− αt, the paths of Xt are not straight lines except some special cases (e.g., α̇tX1 = 0 or β̇tX0 = 0,
or X1 = aX1 for some a ∈ R).

2.3.1 Probability Flow ODEs and DDIM

The probability flow ODEs (PF-ODEs) [73] and denoising diffusion implicit models (DDIM) [70] are meth-
ods for learning ODE-based generative models of π1 from a spherical Gaussian initial distribution π0, de-
rived by converting a SDE learned by denoising diffusion methods to an ODE with equivalent marginal
laws. In [73], three types of PF-ODEs are derived from three types of SDEs learned as score-based gen-
erative models, including variance-exploding (VE) SDE, variance-preserving (VP) SDE, and sub-VP SDE,
which we denote by VE ODE, VP ODE, and sub-VP ODE, respectively. VP ODE is equivalent to the
continuous time limit of DDIM, which is derived from the denoising diffusion probability model (DDPM)
[23]. As the derivations of PF-ODEs and DDIM require advanced tools in stochastic calculus, we limit our
discussion on the final algorithmic procedures suggested in [73, 23], which we summarize in Section 3.5.
The readers are referred to [73, 70] for the details.

[Proposition 3.11] All variants of PF-ODEs can be viewed as instances of (6) when usingXt = αtX1+βtξ
for some αt, βt with α1 = 1, β1 = 0, where ξ ∼ N (0, I) is a standard Gaussian random variable.

Here we need to use introduce ξ to replace X0 because the choices of αt and βt suggested in [73, 70, 23]
do not satisfy the boundary condition of α0 = 0 and β0 = 1 at t = 0, and hence X0 6= ξ. Instead, in these
methods, the initial distribution X0 ∼ π0 is implicitly defined as X0 = α0X1+β0ξ, which is approximated
by X0 ≈ β0ξ by making α0X1 � β0ξ. Hence, π0 is set to beN (0, β20I) in these methods. Viewed through
our framework, there is no reason to restrict ξ to be N (0, β20I), or not set α0 = 0, β0 = 1 to avoid the
approximation.

Rectified flow VP ODE sub-VP ODE
(αt = t, βt = 1− t) (αt in (7), βt =

√
1− α2

t) (αt in (7), βt = 1− α2
t)

1-Rectified Flow 2-Rectified Flow 1-Rectified Flow 2-Rectified Flow 1-Rectified Flow 2-Rectified Flow

Figure 4: Comparing rectified flow with VP ODE and sub-VP ODE when π0 = N (0, I) (purple dots) and π1 is a low
variance Gaussian mixture shown as the red dots. The linear rectified flow yields nearly straight trajectories with one
step of reflow. But the trajectories of VP ODE and sub-VP ODE are curved and can not be straightened by reflowing.

VP ODE and sub-VP ODE The VP ODE and sub-VP ODE of [73] use the following shared αt:

(sub-)VP ODE: αt = exp

(
−1

4
a(1− t)2 − 1

2
b(1− t)

)
; default values: a = 19.9, b = 0.1, (7)

10

Time-Discretization Rectified Flow VP ODE sub-VP ODE VP ODE (const speed)
Steps N αt = t, βt = 1− t αt in (7), βt =

√
1− α2

t αt in (7), βt = 1− α2
t αt = t, βt =

√
1− α2

t

N = 1

N = 2

N = 5

N = 100

Figure 5: Trajectories of different methods when varying the number of discretization steps N (purple dots: π0; red
dots: π1; orangle dots: intermediate steps; blue curves: flow trajectories). The rectified flow travels in straight lines
and progresses uniformly in time; it generates the mean of π1 when simulated with a single Euler step, and quickly
covers the whole distribution π1 with more steps (in this case N = 2 is sufficient). In comparison, VP ODE and
sub-VP ODE travel in curves with non-uniform speed: they tend to be slow in the beginning and speed up in the later
phase (much of the update happens when t'0.5). The non-uniform speed can be avoided by setting αt = t (see the
last column).

where the default values of a, b are chosen to match the continuous time limit of the shared training procedure
of DDIM and DDPM. The difference of VP ODE and sub-VP ODE is on the choice of βt, given as follows:

VP ODE: βt =
√

1− α2
t , sub-VP ODE: βt = 1− α2

t . (8)

As β0 ≈ 1 in both VP and sub-VP ODE, the π0 in both cases are taken as N (0, I).

The choices of αt, βt above are the consequence of the SDE-based derivation in [73]. However, they are not
well-motivated when we exam the path properties of the induced ODEs:

• Non-straight paths: Due to choices of βt in (8), the trajectories of VP ODE and sub-VP ODE are curved
in general, and can not be straightened by the reflow procedure. We should choose βt = 1 − αt to induce
straight paths.

Figure 6: t vs. αt, βt of different methods.

• Non-uniform speed: The exponential form of αt in (7) is
a consequence of using Ornstein–Uhlenbeck processes in the
derivation of SDE models [73, 23]. However, there is no clear
advantage of using (7) for ODEs. As shown in Figure 5, the
αt and βt of VP and sub-VP ODE change slowly in the early
phase (t/0.5). As a result, the flow also moves slowly in be-
ginning and hence most of the updates are concentrated in the
later phase. Such non-uniform update speed, in addition to the
non-straight paths, make VP ODE and sub-VP ODE perform
sub-optimally when using large step sizes, even for transport between simple spherical Gaussian distribu-
tions (see Figure 5). As we show in the last column of Figure 5, changing the exponential αt to the linear
function αt = t in VP ODE allows us to get a uniform update speed while preserving the same continuous-
time trajectories.

11

VE ODE The VE ODE of [73] uses αt = 1 and βt = σmin

√
r2(1−t) − 1 where σmin = 0.01 by default r

is set such that σmax := rσmin is as large as the maximum Euclidean distance between all pairs of training
data points from π1 (Technique 1 of [72]). Assume that σ2max is much larger than both σ2min and the variance
of X1, then X0 = X1 + β0ξ ≈ σmaxξ, and we can set the initial distribution to be π0 ∼ N (0, σ2maxI),
which has much larger variance than π1. Hence, VE ODE can not be applied to (and not shown in) the
toys in Figure 4 and Figure 5. As the case of (sub-)VP ODE, the restriction on ξ is in fact unnecessary and
requirement that σmax is unnatural viewed from our framework. On the other hand, the trajectories of Xt in
VE ODE are indeed straight lines, because the direction of Ẋt = β̇tξ is always the same as ξ. However, the
choice of βt causes a non-uniform speed issue similar to that of (sub-)VP ODE.

Following [73, 23], a line of works have been proposed to improve the choices of αt, βt, but remain to be
constrained by the basic design space from the SDE-to-ODE derivation; see for example [54, 29, 95].

To summarize, the simple nonlinear rectified flow framework in (6) both simplifies and extends the existing
framework, and sheds a number of importance insights:

• Learning ODEs can be considered directly and independently without resorting to diffusion/SDE methods;

• The paths of the learned ODEs can be specified by any smooth interpolation curve Xt of X0 and X1;

• The initial distribution π0 can be chosen arbitrarily, independent with the choice of the interpolation Xt.

• The canonical linear interpolation Xt = tX1 + (1− t)X0 should be recommended as a default choice.

On the other hand, non-linear choices ofXt can be useful when we want to incorporate certain non-Euclidan
geometry structure of the variable, or want to place certain constraints on the trajectories of the ODEs. We
leave this for future works.

3 Theoretical Analysis

We present the theoretical analysis for rectified flow. The results are summarized as follows.

• [Section 3.1] All nonlinear rectified flows with any interpolation Xt preserve the marginal laws.

• [Section 3.2] The rectified flow (with the canonical linear interpolation) reduces convex transport costs.

• [Section 3.3] Reflow guarantees to straighten the (linear) rectified flows.

• [Section 3.4] We clarify the relation between straight couplings and c-optimal couplings.

• [Section 3.5] We establish PF-ODEs as instances of nonlinear rectified flows.

3.1 The Marginal Preserving Property

The marginal preserving property that Law(Zt) = Law(Xt) for ∀t is a general property of the nonlinear
rectified flows in (6), regardless whether the interpolation Xt is straight or not.

Definition 3.1. For a path-wise continuously differentiable random process X = {Xt : t ∈ [0, 1]}, its
expected velocity vX is defined as

vX(x, t) = E[Ẋt | Xt = x], ∀x ∈ supp(Xt).

For x 6∈ supp(Xt), the conditional expectation is not defined and we set vX arbitrarily, say vX(x, t) = 0.

12

Definition 3.2. We call that X is rectifiable if vX is locally bounded and the solution of the integral equation
below exists and is unique:

Zt = Z0 +

∫ t

0
vX(Zt, t)dt, ∀t ∈ [0, 1], Z0 = X0. (9)

In this case, Z = {Zt : t ∈ [0, 1]} is called the rectified flow induced from X .

Theorem 3.3. Assume X is rectifiable and Z is its rectified flow. Then Law(Zt) = Law(Xt) for ∀t ∈ [0, 1].

Proof. For any compactly supported continuously differentiable test function h : Rd → R, we have

d

dt
E[h(Xt)] = E[∇h(Xt)

>Ẋt] = E[∇h(Xt)
>vX(Xt, t)], (10)

where we used vX(Xt, t) = E[Ẋt|Xt]. By definition, this is equivalent to that πt := Law(Xt) solves in the
sense of distributions the continuity equation with drift vXt := vX(·, t):

π̇t +∇ · (vXt πt) = 0. (11)

To see the equivalence of (10) and (11), we can multiply (11) with h and integrate both sides:

0 =

∫
h(π̇t +∇ · (vXt πt)) =

∫
hπ̇t −∇h>vXt πt =

d

dt
E[h(Xt)]− E[∇h(Xt)

>vX(Xt, t)],

where we use integration by parts that
∫
h∇ · (vXt πt) = −

∫
∇h>(vXt πt).

Because Zt is driven by the same velocity field vX , its marginal law Law(Zt) solves the very same equation
with the same initial condition (Z0 = X0). Hence, the equivalence of Law(Zt) and Law(Xt) follows if
the solution of (11) is unique, which is equivalent to the uniqueness of the solution of dZt = vX(Zt, t)
following Corollary 1.3 of Kurtz [37] (see also Theorem 4.1 of Ambrosio and Crippa [1]).

3.2 Reducing Convex Transport Costs

The fact that (Z0, Z1) yields no larger convex transport costs than (X0, X1) is a consequence of using the
special linear interpolation Xt = tX1 + (1− t)X0 as the geodesic of Euclidean space.

Definition 3.4. A coupling (X0, X1) is called rectifiable if its linear interpolation process X = {tX1 +
(1− t)X0 : t ∈ [0, 1]} is rectifiable. In this case, the Z = {Zt : t ∈ [0, 1]} in (9) is called the rectified flow
of coupling (X0, X1), denoted as Z = RectFlow((X0, X1)), and (Z0, Z1) is called the rectified coupling
of (X0, X1), denoted as (Z0, Z1) = Rectify((X0, X1)).

Theorem 3.5. Assume (X0, X1) is rectifiable and (Z0, Z1) = Rectify((X0, X1)). Then for any convex
function c : Rd → R, we have

E[c(Z1 − Z0)] ≤ E[c(X1 −X0)].

13

Proof. The proof is based on elementary applications of Jensen’s inequality.

E [c(Z1 − Z0)] = E
[
c

(∫ 1

0
vX(Zt, t)dt

)]
//as dZt = vX(Zt, t)dt

≤ E
[∫ 1

0
c
(
vX(Zt, t)

)
dt

]
//convexity of c, Jensen’s inequality

= E
[∫ 1

0
c
(
vX(Xt, t)

)
dt

]
//Xt and Zt shares the same marginals

= E
[∫ 1

0
c (E [(X1 −X0) | Xt]) dt

]
//definition of vX

≤ E
[∫ 1

0
E [c (X1 −X0) | Xt] dt

]
//convexity of c, Jensen’s inequality

=

∫ 1

0
E [c (X1 −X0)] dt //E[E[(X1 −X0)|Xt]] = E[(X1 −X0)]

= E [c (X1 −X0)] .

If Xt is straight but with positive non-constant speed, that is, Xt = αtX1 + βtX0 with βt = 1 − αt and
α̇t ≥ 0, then we still have E[c(Z1 − Z0)] ≤ E[c(X1 − X0)] if c is convex and m-homogeneous in that
c(ax) = |a|m c(x) for ∀a ∈ R, x ∈ Rd, with some constant m ∈ (0, 1].

3.3 The Straightening Effect

A coupling (X0, X1) is said to be straight (or fully rectified) if it is a fixed point of the Rectify(·) mapping.
It is desirable to obtain a straight coupling because its rectified flow is straight and hence can be simulated
exactly with one step using numerical solvers. In this section, we first characterize the basic properties of
straight couplings, showing that a coupling is straight iff its linear interpolation paths do not intersect with
each other. Then, we prove that recursive rectification straightens the coupling and its related flow with a
O(1/k) rate, where k is the number of rectification steps.

Theorem 3.6. Assume (X0, X1) is rectifiable. Let Xt = tX1 + (1− t)X0 and Z = RectFlow((X0, X1)).
Then (X0, X1) is a straight coupling iff the following equivalent statements hold.

1. There exists a strictly convex function c : Rd → R, such that E[c(Z1 − Z0)] = E[c(X1 −X0)].

2. (X0, X1) is a fixed point of Rectify(·), that is, (X0, X1) = (Z0, Z1).

3. The rectified flow coincides with the linear interpolation process: X = Z.

4. The paths of the linear interpolation X do not intersect:

V ((X0, X1)) :=

∫ 1

0
E
[
‖X1 −X0 − E [X1 −X0 | Xt]‖2

]
dt = 0, (12)

where V ((X0, X1)) = 0 indicates that X1 − X0 = E[X1 − X0|Xt] almost surely when t ∼
Uniform([0, 1]), meaning that the lines passing through each Xt is unique, and hence no linear inter-
polation paths intersect.

14

Proof. 3→ 2→ 1: Obvious.

1 → 4: If E[c(Z1 − Z0)] = E[c(X1 − X0)], the two applications of Jensen’s inequality in the proof of
Theorem 3.5 are tight. Because c is strictly convex, the second Jensen’s inequality in the proof implies that
X1−X0 = E[X1−X0 |Xt] almost surely w.r.t. X and t ∼ Uniform([0, 1]), which implies that V (X) = 0.

4 → 3: If V (X) = 0, we have
∫ s
0 (X1 −X0)dt =

∫ s
0 E[X1 −X0|Xt]dt =

∫ s
0 v

X(Xt, t)dt for s ∈ (0, 1].
Hence

Xt = X0 +

∫ t

0
(X1 −X0)dt = X0 +

∫ t

0
vX(Xt, t)dt.

Because Z satisfies the same equation (9), we have X = Z by the uniqueness of the solution.

O(1/K) convergence rate We now show that as we apply rectification recursively, the rectified flows be-
come increasingly straight and the linear interpolation of the couplings becomes increasingly non-intersecting.

Theorem 3.7. Let Zk the k-th rectified flow of (X0, X1), that is, Zk+1 = RectFlow((Zk0 , Z
k
1)) and

(Z0
0 , Z

0
1) = (X0, X1). Assume each (Zk0 , Z

k
1) is rectifiable for k = 0, . . . ,K.

Then

K∑
k=0

S(Zk+1) + V ((Zk0 , Z
k
1)) ≤ E

[
‖X1 −X0‖2

]
.

Hence, E[‖X1 −X0‖2] < +∞, we have mink≤K(S(Zk) + V ((Zk0 , Z
k
1)) = O(1/K).

Proof. Taking c(x) = ‖x‖2 in the proof of Theorem 3.5, we can obtain that

E [‖X1 −X0‖]− E [‖Z1 − Z0‖] = S(Z) + V ((X0, X1)). (13)

Applying it to each rectification step yields

E
[∥∥∥Zk1 − Zk0∥∥∥2]− E

[∥∥∥Zk+1
1 − Zk+1

0

∥∥∥2] = S(Zk+1) + V ((Zk0 , Z
k
1)).

A telescoping sum on k = 0, . . . ,K gives the result.

3.4 Straight vs. Optimal Couplings

A coupling (X0, X1) is called c-optimal if it achieves the minimum of E[c(X1 −X0)] among all couplings
that share the same marginals. Understanding and computing the optimal couplings have been the main
focus of optimal transport [e.g., 84, 2, 15, 59]. Straight couplings is a different desirable property. In the
following, we show that straightness is a necessary but not sufficient condition of being c-optimal for a
strictly convex function c, except in the one dimensional case when the two concepts coincides. Hence, it is
“easier” to find a straight coupling than a c-optimal couplings.

15

Theorem 3.8. If a rectifiable coupling (X0, X1) is c-optimal for some strictly convex cost function c, then
(X0, X1) is a straight coupling.

Proof. Let (Z0, Z1) = Rectify((X0, X1)). If (X0, X1) is c-optimal, we must have E[c(Z1 − Z0)] =
E[c(X1 −X0)]. This implies Statement 1 in Theorem 3.6 and hence that (X0, X1) is straight.

1D Case For any π0, π1 on R, there exists an unique coupling (X∗0 , X
∗
1) that is simultaneously optimal for

all non-negative convex cost functions c. This coupling is uniquely characterized by a monotonic property:
for every (x0, x1) and (x′0, x

′
1) in the support of (X∗0 , X

∗
1), if x0 < x′0, then x1 ≤ x′1. Furthermore, if π0

is absolutely continuously w.r.t. the Lebesgue measure, then (X∗0 , X
∗
1) must be deterministic in that there

exists a mapping T : R→ R such that X∗1 = T (X∗0). See [65].

In the following, we show that straight couplings on R coincides with the deterministic monotonic coupling
(X∗0 , X

∗
1) and hence is unique and simultaneously optimal for all convex c when π0 is absolutely contin-

uous. The idea is that, in R, a coupling is monotonic iff its linear interpolation paths do not intersect, a
characteristic feature of straight couplings.

Lemma 3.9. A coupling on R is straight iff it is deterministic and monotonic.

Theorem 3.10. For any π0, π1 on R, there exists either no straight coupling, or a unique straight coupling.
Further, if exists, the unique straight coupling is deterministic and monotonic, and jointly optimal w.r.t. all
convex cost functions c : Rd → [0,+∞) for which the minimum value of E [c(X1 −X0)] exists and is finite.

Proof of Lemma 3.9. If (X0, X1) on R is straight, then it coincides with its rectified coupling (Z0, Z1) =
Rectify((X0, X1)). But because (Z0, Z1) is induced from the rectified flow dZt = vX(Zt, t)dt, it is
obviously deterministic. It is also monotonic due to the non-crossing property of flows. Specifically, if
(Z0, Z1) is not monotonic, there exists (z0, z1) and (z′0, z

′
1) in the support of (Z0, Z1) such that z0 < z′0 and

z1 > z′1. If this happens, there must exists t0 ∈ (0, 1), such that zt0 = z′t0 . But by the uniqueness of the
solution, we have zt = zt for t ≥ t0, which is conflicting with z1 > z′1.

Assume (X0, X1) is deterministic and monotonic. Due to the monotonicity, there exists no x0 and x′0 in
the support of π0, such that x0 6= x′0 and xt0 = x′t0 for some t0 < 1. This suggests that X1 − X0 =
E[X1 − X0 | Xt] = vX(Xt, t) for t ∈ (0, 1), and hence dXt = (X1 − X0)dt = vX(Xt)dt, which is the
ODE of the rectified flow. In addition, Xt is obviously the unique solution of this ODE. Hence (X0, X1) is
rectifiable and straight following Statement 3 of Theorem 3.6.

Proof of Theorem 3.10. This is the result of Lemma 3.9 combined with the fact that the monotonic coupling
is unique and jointly optimal for all convex c for which the optimal coupling exists, following Lemma 2.8
and Theorem 2.9 of [65].

Multi-dimensional cases On the other hand, on Rd with d ≥ 2, the different cost functions c do not share
a common optimal coupling in general, and a straight coupling is not guaranteed to optimize a specific c;
this is expected because the Rectify(·) procedure does not depend on a particular choice of c. Hence, one
must modify the Rectify(·) procedure to tailor it to a specific c of interest.

In a recent work [30], it was conjectured that the couplings (Z0, Z1) induced from VP ODE (equivalently
DDIM) yields an optimal coupling w.r.t. the quadratic loss, which was proved to be false in [39, 78]. Here

16

we show that even straight couplings are not guaranteed to be optimal, not to mention that VP ODE does
not follow straight paths by design.

We explore this in a separate work [42] that is devoted to modifying rectified flow to find c-optimal cou-
plings; a result from [42] that can be easily stated is that the optimal coupling w.r.t. the quadratic cost
c(·) = ‖·‖2 can be achieved as the fixed point of Rectify(·) if v is restricted to be a gradient field of form
v(x, t) = ∇f(x, t) when solving (1). Restricting v to be a gradient field removes the rotational component
of the velocity field vX that causes sub-optimal transport cost.

3.5 Denoising Diffusion Models and Probability Flow ODEs

We prove that the probability flow ODEs (PF-ODEs) of [73] can be viewed as nonlinear rectified flows in
(6) with Xt = αtX1 + βtξ. We start with introducing the algorithmic procedures of the denoising diffusion
models and PF-ODEs, and refer the readers to the original works [73, 23, 70] for the theoretical derivations.

The denoising diffusion methods learn to generative models by constructing an SDE model driven by a
standard Brownian motion Wt:

dUt = b(Ut, t)dt+ σtdWt, U0 ∼ π0, (14)

where σt : [0, 1] → [0,+∞) is a (typically) fixed diffusion coefficient, b is a trainable neural network, and
the initial distribution π0 is restricted to a spherical Gaussian distribution determined by hyper-parameter
setting of the algorithm. The idea is to first collapse the data into an (approximate) Gaussian distribution
using a diffusion process, mostly an Ornstein-Uhlenbeck (OU) process, and then estimate the generative
diffusion process (14) as the time reversal [e.g., 3] of the collapsing process.

Without diving into the derivations, the training loss of the VE, VP, sub-VP SDEs for b in [73] can be
summarized as follows:

min
v

∫ 1

0
E
[
wt ‖v(Vt, t)− Yt‖22

]
dt, Vt = αtX1 + βtξt, Yt = −ηtVt −

σ2t
βt
ξt, (15)

where ξt is a diffusion process satisfying ξt ∼ N (0, I), and ηt, σt are the hyper-parameter sequences of the
algorithm, and αt, βt are determined by ηt, σt via

αt = exp

(∫ 1

t
ηsds

)
, β2t =

∫ 1

t
exp

(
2

∫ s

t
ηrdr

)
σ2sds. (16)

The relation in (16) is derived to make Ṽt = V1−t = α1−tX1+β1−tξt follow the Ornstein-Uhlenbeck (OU)
processes dṼt = η1−tṼtdt+ σ1−tdWt.

VE SDE, which is equivalent to SMLD in [71, 72], takes ηt = 0 and hence has αt = 1. (sub-)VP SDE takes
ηs to be a linear function of s, yielding the exponential αt in (7). VP SDE (which is equivalent to DDPM
[23]) takes ηt = −1

2σ
2
t which yields that α2

t + β2t = 1 as shown in (8). In DDPM, it was suggested to write

b(x, t) = −ηtx− σ2
t
βt
ε(x, t) , and estimate ε as a neural network that predicts ξt from (Vt, t).

Theoretically, the SDE in (14) with b solving (15) is ensured to yield Law(U1) = Law(X1) = π1 when
initialized from U0 = α0X1 + β0ξ0, which can be approximated by U0 ≈ βξ0 when α0X1 � β0ξ0.

17

By using the properties of Fokker-Planck equations, it was observed in [73, 70] that the SDE in (14) with b
trained in (15) can be converted into an ODE that share the same marginal laws:

dZt = b̃(Zt, t)dt, with b̃(z, t) =
1

2
(b(z, t)− ηtz), starting from Z0 = U0 = α0X1 + β0ξ0. (17)

Equivalently, we can regard b̃ as the solution of

min
v

∫ 1

0
E
[
wt

∥∥∥v(Vt, t)− Ỹt∥∥∥2
2

]
dt, Vt = αtX1 + βtξt, Ỹt = −ηtVt −

σ2t
2βt

ξt, (18)

which defers from (14) only by a factor of 1/2 in the second term of Yt. This simple equivalence holds only
when (14) and (17) use the special initialization of Z0 = U0 = α0X1 + β0ξ0.

In the following, we are ready to prove that (18) is can be viewed as the nonlinear rectified flow objective
in (6) using Xt = αtX1 + βtξ with ξ ∼ N (0, I). We mainly need to show that Ỹt is equivalent to Ẋt by
eliminating ηt and σt using the relation in (16).

Proposition 3.11. Assume (16) hold. Then (18) is equivalent to (6) with Xt = αtX1 + βtξ.

Proof. First, note that we can take ξt = ξ for all time t, as the correlation structure of ξt does not impact the
result. Hence, we have Vt = Xt = αtX1 + βtξ. To show the equivalence of (18) and (6), we just need to
verify that Ẋt = Ỹt.

Ỹt = −ηtXt +
σ2t
2β2t

(αtX1 −Xt)

= −η̇t (αtX1 + βtξ) +
σ2t
2βt

ξ

= −η̇αtX1 +

(
−η̇tβt +

σ2t
2βt

)
ξ

(∗)
= α̇tX1 + β̇tξ

= Ẋt.

where in
(∗)
= we used that ηt = − α̇t

αt
and σ2t = 2β2t

(
α̇t
αt
− β̇t

βt

)
which can be derived from (16).

4 Related Works and Discussion

Learning one-step models GANs [19, 4, 43], VAEs [32], and (discrete-time) normalizing flows [62,
13, 14] have been three classical approaches for learning deep generative models. GANs have been most
successful in terms of generation qualities (for images in particular), but suffer from the notorious training
instability and mode collapse issues due to use of minimax updates. VAEs and normalizing flows are both
trained based on the principle of maximum likelihood estimation (MLE) and need to introduce constraints on
the model architecture and/or special approximation techniques to ensure tractable likelihood computation:
VAEs typically use a conditional Gaussian distribution in addition to the variational approximation of the
likelihood; normalizing flows require to use specially designed invertible architectures and need to copy
with calculating expensive Jacobian matrices.

The reflow+distillation approach in this work provides another promising approach to training one-step
models, avoiding the minimax issues of GANs and the intractability issues of the likelihood-based methods.

18

Learning ODEs: MLE and PF-ODEs There are two major approaches for learning neural ODEs: the
PF-ODEs/DDIM approach discussed in Section 2.3, and the more classical MLE based approach of [6].

• The MLE approach. In [6], neural ODEs are trained for learning generative models by maximizing the
likelihood of the distribution of the ODE outcome Z1 at time t = 1 under the data distribution π1. Specifi-
cally, with observations from π1, it estimates a neural drift v of an ODE dZt = v(Zt, t)dt by

max
v

D(π1; ρv,π0), (19)

where D(·; ·) denotes KL divergence (or other discrepancy measures), and ρv,π0 is the density of Z1 follow-
ing dZt = v(Zt, t)dt from Z0 ∼ π0; the density of π0 should be known and tractable to calculate.

By using an instantaneous change of variables formula, it was observed in [6] that the likelihood of neural
ODEs are easier to compute than the discrete-time normalizing flow without constraints on the model struc-
tures. However, this MLE approach is still computationally expensive for large scale models as it requires
repeated simulation of the ODE during each training step. In addition, as the optimization procedure of
MLE requires to backpropagate through time, it can easily suffer the gradient vanishing/exploding problem
unless proper regularization is added.

Another fundamental problem is that the MLE (19) of neural ODEs is theoretically under-specified, because
MLE only concerns matching the law of the final outcome Z1 with the data distribution π1, and there are
infinitely many ODEs to achieve the same output law of Z1 while traveling through different paths. A
number of works have been proposed to remedy this by adding regularization terms, such as these based on
transport costs, to favor shorter paths; see [54, 55]. With a regularization term, the ODE learned by MLE
would be implicitly determined by the initialization and other hyper-parameters of the optimizer used to
solve (19).

• Probability Flow ODEs. The method of PF-ODEs [73] and DDIM [70] provides a different approach
to learning ODEs that avoids the main disadvantages of the MLE approach, including the expensive like-
lihood calculation, training-time simulation of the ODE models, and the need of backpropagation through
time. However, because PF-ODEs and DDIM were derived as the side product of learning the mathemat-
ically more involved diffusion/SDE models, their theories and algorithm forms were made unnecessarily
restrictive and complicated. The nonlinear rectified flow framework shows that the learning of ODEs can be
approached directly in a very simple way, allowing us to identify the canonical case of linear rectified flow
and open the door of further improvements with flexible and decoupled choices of the interpolation curves
Xt and initial distributions π0.

Viewed through the general non-linear rectified flow framework, the computational and theoretical draw-
backs of MLE can be avoided because we can simply pre-determines the “roads” that the ODEs should
travel through by specifying the interpolation curve Xt, rather than leaving it for the algorithm to figure
out implicitly. It is theoretically valid to pre-specify any interpolation Xt because the neural ODE is highly
over-parameterized as a generative model: when v is a universal approximator and π0 is absolutely contin-
uous, the distribution of Z1 can approximate any distribution given any fixed interpolation curve Xt. The
idea of rectified flow is to the simplest geodesic paths for Xt.

Learning SDEs with denoising diffusion Although the scope of this work is limited to learning ODEs,
the score-based generative models [71–74] and denoising diffusion probability models (DDPM) [23] are of
high relevance as the basis of PF-ODEs and DDIM. The diffusion/SDE models trained with these methods

19

have been found outperforming GANs in image synthesis in both quality and diversity [12]. Notably, thanks
to the stable and scalable optimization-based training procedure, the diffusion models have successfully
used in huge text-to-image generation models with astonishing results [e.g., 53, 61, 64]. It has been quickly
popularized in other domains, such as video [e.g., 24, 92, 21], music [51], audio [e.g., 33, 40, 60], and
text [41, 88], and more tasks such as image editing [97, 50]. A growing literature has been developed for
improving the inference speed of denoising diffusion models, an example of which is the PF-ODEs/DDIM
approach which gains speedup by turning SDEs into ODEs. We provide below some examples of recent
works, which is by no mean exhaustive.

• Improved training and inference. A line of works focus on improving the inference and sampling pro-
cedure of denoising diffusion models. For example, [54] presents a few simple modifications of DDPM to
improve the likelihood, sampling speed, and generation quality. [29] systematic exams the design space of
diffusion generative models with empirical studies and identifies a number of training and inference recipes
for better generative quality with fewer sampling steps. [94] proposes a diffusion exponential integrator
sampler for fast sampling of diffusion models. [46] provides a customized high order solver for PF-ODEs.
[5] provides an analytic estimate of the optimal diffusion coefficient.

• Combination with other methods. Another direction is to speed up diffusion models by combining them
with GANs and other generative models. DDPM Distillation [47] accelerates the inference speed by dis-
tilling the trajectories of a diffusion model into a series of conditional GANs. The truncated diffusion
probabilistic model (TDPM) of [99] trains a GAN model as π0 so that the diffusion process can be trun-
cated to improve the speed; the similar idea was explored in [48, 18], and [18] provides an analysis on the
optimal truncation time. [68, 89, 81] learns a denoising diffusion model in the latent spaces and combines
it with variational auto-encoders. These methods can be potentially applied to rectified flow to gain similar
speedups for learning neural ODEs.

• Unpaired Image-to-Image translation. The standard denoising diffusion and PF-ODEs methods focus on
the generative task of transferring a Gaussian noise (π0) to the data (π1). A number of works have been
proposed to adapt it to transferring data between arbitrary pairs of source-target domains. For example,
SDEdit [50] synthesizes realistic images guided by an input image by first adding noising to the input and
then denoising the resulting image through a pre-trained SDE model. [8] proposes a method to guide the
generative process of DDPM to generate realistic images based on a given reference image. [75] leverages
two two PF-ODEs for image translation, one translating source images to a latent variable, and the other
constructing the target images from the latent variable. [97] proposes an energy-guided approach that em-
ploys an energy function pre-trained on the source and target domains to guide the inference process of a
pretrained SDE for better image translation. In comparison, our framework shows that domain transfer can
be achieved by essentially the same algorithm as generative modeling, by simply setting π0 to be the source
domain.

• Diffusion bridges. Some recent works [57, 44] show that the design space of denoising diffusion models
can be made highly flexible with the assistant of diffusion bridge processes that are pinned to a fixed data
point at the end time. This reduces the design of denoising diffusion methods to constructing a proper
bridge processes. The bridges in Song et al. [73] are constructed by a time-reversal technique, which can be
equivalently achieved by Doob’s h-transform as shown in [57, 44], and more general construction techniques
are discussed in [44, 90]. Despite the significantly extended design spaces, an unanswered question is what
type of diffusion bridge processes should be preferred. This question is made challenging because the
presence of diffusion noise and the need of advanced stochastic calculus tools make it hard to intuit how

20

the methods work. By removing the diffusion noise, our work makes it clear that straight paths should
be preferred. We expect that the idea can be extended to provide guidance on designing optimal bridge
processes for learning SDEs.

• Schrodinger bridges. Another body of works [87, 11, 7, 82] leverages Schrodinger bridges (SB) as an
alternative approach to learning diffusion generative models. These approaches are attractive theoretically,
but casts significant computational challenges for solving the Schrodinger bridge problem.

Re-thinking the role of diffusion noise The introduction of diffusion noise was consider essential due to
the key role it plays in the derivations of the successful methods [73, 23]. However, as rectified flow can
achieve better or comparable results with a ODE-only framework, the role of diffusion mechanisms should
be re-examed and clearly decoupled from the other merits of denoising diffusion models. The success of the
denoising diffusion models may be mainly attributed to the simple and stable optimization-based training
procedure that allows us to avoid the instability issues and the need of case-by-case tuning of GANs, rather
than the presence of diffusion noises.

Because our work shows that there is no need to invoke SDE tools if the goal is to learn ODEs, the remaining
question is whether we should learn an ODE or an SDE for a given problem. As already argued by a number
of works [73, 70, 29], ODEs should be preferred over SDEs in general. Below is a detailed comparison
between ODEs and SDEs.

•Conceptual simplicity and numerical speed. SDEs are more mathematically involved and are more difficult
to understand. Numerical simulation of ODEs are simpler and faster than SDEs.

• Time reversibility. It is equally easy to solve the ODEs forwardly and backwardly. In comparison, the time
reversal of SDEs [e.g., 3, 22, 17] is more involved theoretically and may not be computationally tractable.

• Latent spaces. The couplings (Z0, Z1) of ODEs are deterministic and yield low transport cost in the case of
rectified flows, hence providing a good latent space for representing and manipulating outputs. Introducing
diffusion noises make (Z0, Z1) more stochastic and hence less useful. In fact, the (Z0, Z1) given by DDPM
[23] and the SDEs of [73] and hence useless for latent presentation.

• Training difficulty. There is no reason to believe that training an ODE is harder, if not easier, than training
an SDE sharing the same marginal laws: the training loss of both cases would share the distributions of
covariant and differ only on the targets. In the setting of [73], the two loss functions (15) and (18) are
equivalent upto a linear reparameterization.

• Expressive power. As every SDE can be converted into an ODE that has the same marginal distribution
using the techniques in [70, 73] (see also [84]), ODEs are as powerful as SDEs for representing marginal
distributions, which is what needed for the transport mapping problems considered in this work. On the
other hand, SDEs may be preferred if we need to capture richer time-correlation structures.

•Manifold data. When equipped with neural network drifts, the outputs of ODEs tend to fall into a smooth
low dimensional manifold, a key inductive for structured data in AI such as images and text. In comparison,
when using SDEs to model manifold data, one has to carefully anneal the diffusion noise to obtain smooth
outcomes, which causes slow computation and a burden of hyperparameter tuning. SDEs might be more
useful in for modeling highly noisy data in areas like finance and economics, and in areas that involve
diffusion processes physically, such as molecule simulation.

21

Optimal vs. straight transport Optimal transport has been extensively explored in machine learning as
a powerful way to compare and transfer between probability measures. For the transport mapping problem
considered in this work, a natural approach is to finding the optimal coupling (Z0, Z1) that minimizes a
transport cost E[c(Z1 − Z0)] for a given c. The most common choice of c is the quadratic cost c(·) = ‖·‖2.

However, finding the optimal couplings, especially for high dimensional continuous measures, is highly
challenging computationally and is the subject of active research; see for example [67, 34, 35, 49, 63, 10]. In
addition, although the optimal couplings are known to have nice smoothness and other regularity properties,
it is not necessary to accurately find the optimal coupling because the transport cost do not exactly align
with the learning performance of individual problems; see e.g., [34].

In comparison, our reflow procedure finds a straight coupling, which is not optimal w.r.t. a given c (see
Section 3.4). From the perspective of fast inference, all straight couplings are equally good because they all
yield straight rectified flows and hence can be simulated with one Euler step.

5 Experiments

We start by studying the impact of reflow on toy examples. After that, we demonstrate that with multiple
times of reflow, rectified flow achieves state-of-the-art performance on CIFAR-10. Moreover, it can also
generate high-quality images on high-resolution image datasets. Going beyond unconditioned image gener-
ation, we apply our method to unpaired image-to-image translation tasks to generate visually high-quality
image pairs.

Algorithm We follow the procedure in Algorithm 1. We start with drawing (X0, X1) ∼ π0 × π1 and
use it to get the first rectified flow Z1 by minimizing (1). The second rectified flow Z2 is obtained by the
same procedure except with the data replaced by the draws from (Z1

0 , Z
1
1), obtained by simulating the first

rectified flow Z1. This process is repeated for k times to get the k-rectified flow Zk. Finally, we can further
distill the k-rectified flow Zk into a one step model z1 = z0 + v(z0, 0) by fitting it on draws from (Zk0 , Z

k
1).

By default, the ODEs are simulated using the vanilla Euler method with constant step size 1/N for N steps,
that is, Ẑt+1/N = Ẑt + v(Ẑt, t)/N for t ∈ {0, . . . , N}/N . We use the Runge-Kutta method of order 5(4)
from Scipy [86], denoted as RK45, which adaptively decide the step size and number of steps N based on
user-specified relative and absolute tolerances. In our experiments, we stick to the same parameters as [73].

5.1 Toy Examples

To accurately illustrate the theoretical properties, we use the non-parametric estimator vX,h(z, t) in (5) in
the toy examples in Figure 2, 3, 4, 5. In practice, we approximate the expectation in (5) an nearest neighbor
estimator: given a sample {x(i)0 , x

(i)
1 }i drawn from (X0, X1), we estimate vX by

vX,h(z, t) ≈
∑

i∈knn(z,m)

x
(i)
1 − z
1− t

ωh(x
(i)
t , z) /

∑
i∈knn(z,m)

ωh(x
(i)
t , z), x

(i)
t = tx

(i)
1 + (1− t)x(i)0 ,

where knn(z,m) denotes the top m nearest neighbors of z in {x(i)t }i. We find that the results are not
sensitive to the choice of m and the bandwidth h (see Figure 7). We use h = 1 and m = 100 by default.
The flows are simulated using Euler method with a constant step size of 1/N for N steps. We use N = 100
steps unless otherwise specified.

22

Alternatively, vX can be parameterized as a neural network and trained with stochastic gradient descent
or Adam. Figure 7 shows an example of when vX is parameterized as an 2-hidden-layer fully connected
neural network with 64 neurons in both hidden layers. We see that the neural networks fit less perfectly with
the linear interpolation trajectories (which should be piece-wise linear in this toy example). As shown in
Figure 7, we find that enhancing the smoothness of the neural networks (by increasing the L2 regularization
coefficient during training) can help straighten the flow, in addition to the rectification effect.

1-Rectified Flow 2-Rectified Flow 3-Rectified Flow 1-Rectified Flow 2-Rectified Flow 3-Rectified Flow

L
2

Pe
na

lty
=0

h
=

0
.0
1

L
2

Pe
na

lty
=

0
.0
1

h
=

1
Figure 7: Rectified flows fitted with neural networks trained with different L2 penalty (left), and kernel estimator with
different bandwidth h (right). π0: red dots; π1: purple dots.

In Figure 3 of Section 2.2, the straightness is calculated as the empirical estimation of (3) based on the
simulated trajectories. The relative transport cost is calculated based on {z(i)0 , z

(i)
1 }ni=1 drawn from (Z0, Z1)

by simulating the flow, as 1
n

∑n
i=1

∥∥∥z(i)1 − z
(i)
0

∥∥∥2−∥∥∥z(i∗)1 − z(i)0

∥∥∥2, where z(i
∗)

1 is the optimal L2 assignment

of z(i)0 obtained by solving the discrete L2 optimal transport problem between {z(i)0 } and {z(i)1 }. We should
note that this metric is only useful in low dimensions, as it tends to be identically zero in high dimensional
cases even vX is set to be a random neural network. This misleading phenomenon is what causes [30] to
make the false hypothesis that DDIM yields L2 optimal transport.

5.2 Unconditioned Image Generation

We test rectified flow for unconditioned image generation on CIAFR-10 and a number of high resolution
datasets. The methods are evaluated by the quality of generated images by Fréchet inception distance (FID)
and inception score (IS), and the diversity of the generated images by the recall score following [38].

Experiment settings For the purpose of generative modeling, we set π0 to be the standard Gaussian
distribution and π1 the data distribution. Our implementation of rectified flow is modified upon the open-
source code of [73]. We adopt the U-Net architecture of DDPM++ [73] for representing the drift vX , and
report in Table 1 (a) and Figure 8 the results of our method and the (sub)-VP ODE from [73] using the
same architecture. Other recent results using different network architectures are shown in Table 1 (b) for
reference. More detailed settings can be found in the Appendix.

Results • Results of fully solved ODEs. As shown in Table 1 (a), the 1-rectified flow trained on the
DDPM++ architecture, solved with RK45, yields the lowest FID (2.58) and highest recall (0.57) among all
the ODE-based methods. In particular, the recall of 0.57 yields a substantial improvement over existing ODE

23

Method NFE(↓) IS (↑) FID (↓) Recall (↑)
ODE One-Step Generation (Euler solver, N=1)
1-Rectified Flow (+Distill) 1 1.13 (9.08) 378 (6.18) 0.0 (0.45)
2-Rectified Flow (+Distill) 1 8.08 (9.01) 12.21 (4.85) 0.34 (0.50)
3-Rectified Flow (+Distill) 1 8.47 (8.79) 8.15 (5.21) 0.41 (0.51)
VP ODE [73] (+Distill) 1 1.20 (8.73) 451 (16.23) 0.0 (0.29)
sub-VP ODE [73] (+Distill) 1 1.21 (8.80) 451 (14.32) 0.0 (0.35)
ODE Full Simulation (Runge–Kutta (RK45), Adaptive N)
1-Rectified Flow 127 9.60 2.58 0.57
2-Rectified Flow 110 9.24 3.36 0.54
3-Rectified Flow 104 9.01 3.96 0.53
VP ODE [73] 140 9.37 3.93 0.51
sub-VP ODE [73] 146 9.46 3.16 0.55
SDE Full Simulation (Euler solver, N=2000)
VP SDE [73] 2000 9.58 2.55 0.58
sub-VP SDE [73] 2000 9.56 2.61 0.58

Method NFE(↓) IS (↑) FID (↓) Recall (↑)
GAN One-Step Generation
SNGAN [52] 1 8.22 21.7 0.44
StyleGAN2 [28] 1 9.18 8.32 0.41
StyleGAN-XL [66] 1 - 1.85 0.47
StyleGAN2 + ADA [28] 1 9.40 2.92 0.49
StyleGAN2 + DiffAug [98] 1 9.40 5.79 0.42
TransGAN + DiffAug [26] 1 9.02 9.26 0.41
GAN with U-Net One-step Generation
TDPM (T=1) [99] 1 8.65 8.91 0.46
Denoising Diffusion GAN (T=1) [91] 1 8.93 14.6 0.19
ODE One Step Generation (Euler solver, N=1)
DDIM Distillation [47] 1 8.36 9.36 0.51
NCSN++ (VE ODE) [73] (+Distill) 1 1.18 (2.57) 461 (254) 0.0 (0.0)
ODE Full Simulation (Runge–Kutta (RK45), Adaptive N)
NCSN++ (VE ODE) [73] 176 9.35 5.38 0.56
SDE Full Simulation (Euler solver)
DDPM [23] 1000 9.46 3.21 0.57
NCSN++ (VE SDE) [73] 2000 9.83 2.38 0.59

(a) Results using the DDPM++ architecture. (b) Recent results with different architectures reported in literature.

Table 1: Results on CIFAR10 unconditioned image generation. Fréchet Inception Distance (FID) and Inception Score
(IS) measure the quality of the generated images, and recall score [38] measures diversity. The number of function
evaluation (NFE) denotes the number of times we need to call the main neural network during inference. It coincides
with the number of discretization steps N for ODE and SDE models.

1-Rectified Flow 2-Rectified Flow 3-Rectified Flow 1-Distilled 2-Distilled 3-Distilled
sub-VP ODE VP ODE VE ODE sub-VP SDE VP SDE 2-Rectified Flow 3-Rectified Flow

Reflow Reflow Reflow Reflow

N = 1 N = 2 N = 3

(a) FID and Recall vs. Number of Euler discretization steps N (b) FID and Recall vs. Training Iterations

Figure 8: (a) Results of rectified flows and (sub-)VP ODE on CIFAR10 with different numberN of Euler discretization
steps. (b) The FID and recall during different reflow and training steps. In (a), k-Distilled refers to the one-step model
distilled from k-Rectified Flow for k = 1, 2, 3.

and GAN methods. Using the same RK45 ODE solver, rectified flows require fewer steps to generate the
images compared with VE, VP, sub-VP ODEs. The results are comparable to the fully simulated (sub-)VP
SDE, which yields simulation cost.

Reflow Reflow
1-Rectified Flow

2-Rectified Flow
3-Rectified Flow

1-Rectified Flow 2-Rectified Flow

Pi
xe

l V
al

ue

Figure 9: The straightening effect on CIFAR10. Left:
the straightness measure on different reflow steps and
training iterations. Right: trajectories of randomly
sampled pixels following 1- and 2-rectified flow.

• Results on few and single step generation. As shown
in Figure 8, the reflow procedure substantially improves
both FID and recall in the small step regime (e.g.,
N/80), even though it worsens the results in the large
step regime due to the accumulation of error on estimat-
ing vx. Figure 8 (b) show that each reflow leads to a
noticeable improvement in FID and recall. For one-step
generation (N = 1), the results are further boosted by
distillation (see the stars in Figure 8 (a)). Overall, the
distilled k-Rectified Flow with k = 1, 2, 3 yield one-step
generative models beating all previous ODEs with dis-
tillation; they also beat the reported results of one-step

24

models with similar U-net type architectures trained using GANs (see the GAN with U-Net in Table 1 (b)).

In particular, the distilled 2-rectified flow achieves an FID of 4.85, beating the best known one-step genera-
tive model with U-net architecture, 8.91 (TDPM, Table 1 (b)). The recalls of both 2-rectified flow (0.50) and
3-rectified flow (0.51) outperform the best known results of GANs (0.49 from StyleGAN2+ADA) showing
an advantage in diversity. We should note that the reported results of GANs have been carefully optimized
with special techniques such as adaptive discriminator augmentation (ADA) [28], while our results are based
on the vanilla implementation of rectified flow. It is likely to further improve rectified flow with proper data
augmentation techniques, or the combination of GANs such as those proposed by TDPM [99] and denoising
diffusion GAN [91].

• Reflow straightens the flow. Figure 9 shows the reflow procedure decreases improves the straightness of
the flow on CIFAR10. In Figure 10 visualizes the trajectories of 1-rectified flow and 2-rectified flow on the
AFHQ cat dataset: at each point zt, we extrapolate the terminal value at t = 1 by ẑt1 = zt + (1− t)v(zt, t);
if the trajectory of ODE follows a straight line, ẑt1 should not change as we vary t when following the
same path. We observe that ẑt1 is almost independent with t for 2-rectified flow, showing the path is almost
straight. Moreover, even though 1-rectified flow is not straight with ẑt1 over time, it still yields recognizable
and clear images very early (t ≈ 0.1). In comparison, it is need t ≈ 0.6 to get a clear image from the
extrapolation of sub-VP ODE.

High-resolution image generation Figure 11 shows the result of 1-rectified flow on image generation on
high-resolution (256× 256) datasets, including LSUN Bedroom [93], LSUN Church [93], CelebA HQ [27]
to AFHQ Cat [9]. We can see that it can generate high quality results across the different datasets. Figure 1
& 10 show that 1-(2-)rectified flow yields good results within one or few Euler steps.

Figure 12 shows a simple example of image editing using 1-rectified flow: We first obtain an unnatural image
z1 by stitching the upper and lower parts of two natural images, and then run 1-rectified flow backwards to
get a latent code z0. We then modify z0 to increase its likelihood under π0 (which is N (0, I)) to get more
naturally looking variants of the stitched image.

5.3 Image-to-Image Translation

Assume we are given two sets of images of different styles (a.k.a. domains), whose distributions are denoted
by π0, π1, respectively. We are interested in transferring the style (or other key characteristics) of the images
in one domain to the other domain, in the absence of paired examples. A classical approach to achieving
this is cycle-consistent adversarial networks (a.k.a. CycleGAN) [100, 25], which jointly learns a forward
and backward mapping F,G by minimizing the sum of adversarial losses on the two domains, regularized
by a cycle consistency loss to enforce F (G(x)) ≈ x for all image x.

By constructing the rectified flow of π0 and π1, we obtain a simple approach to image translation that
requires no adversarial optimization and cycle-consistency regularization: training the rectified flow requires
a simple optimization procedure and the cycle consistency is automatically in flow models satisfied due to
reversibility of ODEs.

As the main goal here is to obtain good visual results, we are not interested in faithfully transferringX0 ∼ π0
to an X1 that exactly follows π1. Rather, we are interested in transferring the image styles while preserving
the identity of the main object in the image. For example, when transferring a human face image to a cat

25

Figure 10: Sample trajectories zt of different flows on the AFHQ Cat dataset, and the extrapolation ẑt1 = zt + (1 −
t)v(zt, t) from different zt. The same random seed is adopted for all three methods. The ẑt1 of 2-rectified flow is
almost independent with t, indicating that its trajectory is almost straight.

Figure 11: Examples of 256× 256 images generated by 1-rectified flow.

26

Figure 12: An example of image editing using 1-rectified flow. Here, we stitch the images of a white cat and a
black cat into an unnatural image (denoted as z1). We simulate the ODE reversely from z1 to get the latent code z0.
Because z1 is not a natural image, z0 should have low likelihood under π0 = N (0, I). Hence, we move z0 towards
the high probability region of π0 to get z′0 and solve the ODE forwardly to get a more realistically looking image
z′1. The modification can be done deterministically by improving the π0-likelihood via z′0 = αz0 with α ∈ (0, 1), or
stochastically by Langevin dynamics, which yields a formula of z′0 = αz0 +

√
1− α2ξ with ξ ∼ N (0, I).

face, we are interested in getting a unrealistic face of human-cat hybrid that still “looks like” the original
human face.

To achieve this, let h(x) be a feature mapping of image x representing the styles that we are interested in
transferring. Let Xt = tX1 + (1 − t)X0. Then Ht = h(Xt) follows an ODE of dHt = ∇h(Xt)

>(X1 −
X0)dt. Hence, to ensure that the style is transferred correctly, we propose to learn v such that H ′t = h(Zt)
with dZt = v(Zt, t)dt approximates Ht as much as possible. Because dH ′t = ∇h(Zt)>v(Zt, t)dt, we
propose to minimize the following loss:

min
v

∫ 1

0
E
[∥∥∥∇h(Xt)

>(X1 −X0 − v(Xt, t))
∥∥∥2
2

]
dt, Xt = tX1 + (1− t)X0. (20)

In practice, we set h(x) to be latent representation of a classifier trained to distinguish the images from the
two domains π0, π1, fine-tuned from a pre-trained ImageNet [77] model. Intuitively, ∇xh(x) serves as a
saliency score and re-weights coordinates so that the loss in (20) focuses on penalizing the error that causes
significant changes on h.

Experiment settings We set the domains π0, π1 to be pairs of the AFHQ [9], MetFace [28] and CelebA-
HQ [27] dataset. For each dataset, we randomly select 80% as the training data and regard the rest as the test
data; and the results are shown by initializing the trained flows from the test data. We resize the image to
512× 512. The training and network configurations generally follow the experiment settings in Section 5.2.
See the appendix for detailed descriptions.

Results Figure 1, 13, 14, 15 show examples of results of 1- and 2-rectified flow simulated with Euler
method with different number of steps N . We can see that rectified flows can successfully transfer the styles

27

(A) Cat→Wild Animals (B) Wild Animals→ Cat (C) MetFace→ CelebA Face (D) CelebA Face→MetFace

Figure 13: Samples of 1-rectified flow simulated with N = 100 Euler steps between different domains.

Initialization 1-Rectified Flow 2-Rectified Flow 1-Rectified Flow 2-Rectified Flow
N = 100 N = 100 N = 1 N = 1

Figure 14: Samples of results of 1- and 2-rectified flow simulated with N = 1 and N = 100 Euler steps.

and generate high quality images. For example, when transferring cats to wild animals, we can generate
diverse images with different animal faces, e.g., fox, lion, tiger and cheetah. Moreover, with one step
of reflow, 2-rectified flow returns good results with a single Euler step (N = 1). See more examples in
Appendix.

5.4 Domain Adaptation

A key challenge of applying machine learning to real-world problems is the domain shift between the train-
ing and test datasets: the performance of machine learning models may degrade significantly when tested
on a novel domain different from the training set. Rectified flow can be applied to transfer the novel domain
(π0) to the training domain (π1) to mitigate the impact of domain shift.

Experiment settings We test the rectified flow for domain adaptation on a number of datasets. DomainNet
[58] is a dataset of common objects in six different domain taken from DomainBed [20]. All domains from
DomainNet include 345 categories (classes) of objects such as Bracelet, plane, bird and cello. Office-Home
[83] is a benchmark dataset for domain adaptation which contains 4 domains where each domain consists of
65 categories. To apply our method, first we map both the training and testing data to the latent representation
from final hidden layer of the pre-trained model, and construct the rectified flow on the latent representation.

28

1-Rectified Flow

2-Rectified Flow

1-Rectified Flow

2-Rectified Flow

(a) 1-rectified flow between different domains (b) 1- and 2-rectified flow for MetFace→ Cat.

Figure 15: (a) Samples of trajectories zt of 1- and 2-rectified flow for transferring between different domains.

Method ERM IRM ARM Mixup MLDG CORAL Ours
OfficeHome 66.5± 0.3 64.3± 2.2 64.8± 0.3 68.1± 0.3 66.8± 0.6 68.7± 0.3 69.2± 0.5
DomainNet 40.9± 0.1 33.9± 2.8 35.5± 0.2 39.2± 0.1 41.2± 0.1 41.5± 0.2 41.4± 0.1

Table 2: The accuracy of the transferred testing data using different methods, on the OfficeHome and DomainNet
dataset. Higher accuracy means the better performance.

We use the same DDPM++ model architecture for training. For inference, we set the number of steps of our
flow model as 100 using uniform discretization. The methods are evaluated by the prediction accuracy of
the transferred testing data on the classification model trained on the training data.

Results As demonstrated in Table 2, the 1-rectified flow shows state-of-the-art performance on both Do-
mainNet and OfficeHome. It is better or on par with the previous best approach (Deep CORAL [76]), while
sustainably improve over all other methods.

29

References
[1] Luigi Ambrosio and Gianluca Crippa. Existence, uniqueness, stability and differentiability properties

of the flow associated to weakly differentiable vector fields. In Transport equations and multi-D
hyperbolic conservation laws, pages 3–57. Springer, 2008.

[2] Luigi Ambrosio, Elia Brué, and Daniele Semola. Lectures on optimal transport. Springer, 2021.

[3] Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Appli-
cations, 12(3):313–326, 1982.

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pages 214–223. PMLR, 2017.

[5] Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: an analytic estimate of the optimal
reverse variance in diffusion probabilistic models. arXiv preprint arXiv:2201.06503, 2022.

[6] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differ-
ential equations. Advances in neural information processing systems, 31, 2018.

[7] Tianrong Chen, Guan-Horng Liu, and Evangelos A Theodorou. Likelihood training of Schrödinger
bridge using forward-backward sdes theory. arXiv preprint arXiv:2110.11291, 2021.

[8] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. Ilvr: Condi-
tioning method for denoising diffusion probabilistic models. arXiv preprint arXiv:2108.02938, 2021.

[9] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. StarGAN v2: Diverse image synthesis
for multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 8188–8197, 2020.

[10] Max Daniels, Tyler Maunu, and Paul Hand. Score-based generative neural networks for large-scale
optimal transport. Advances in neural information processing systems, 34:12955–12965, 2021.

[11] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion Schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information Pro-
cessing Systems, 34, 2021.

[12] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. Advances
in Neural Information Processing Systems, 34, 2021.

[13] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516, 2014.

[14] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

[15] Alessio Figalli and Federico Glaudo. An Invitation to Optimal Transport, Wasserstein Distances, and
Gradient Flows. 2021.

[16] R Flamary, N Courty, D Tuia, and A Rakotomamonjy. Optimal transport for domain adaptation. IEEE
Trans. Pattern Anal. Mach. Intell, 1, 2016.

30

[17] Hans Föllmer. An entropy approach to the time reversal of diffusion processes. In Stochastic Differ-
ential Systems Filtering and Control, pages 156–163. Springer, 1985.

[18] Giulio Franzese, Simone Rossi, Lixuan Yang, Alessandro Finamore, Dario Rossi, Maurizio Filip-
pone, and Pietro Michiardi. How much is enough? a study on diffusion times in score-based genera-
tive models. arXiv preprint arXiv:2206.05173, 2022.

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

[20] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

[21] William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Weilbach, and Frank Wood. Flexible
diffusion modeling of long videos. arXiv preprint arXiv:2205.11495, 2022.

[22] Ulrich G Haussmann and Etienne Pardoux. Time reversal of diffusions. The Annals of Probability,
pages 1188–1205, 1986.

[23] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

[24] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv preprint arXiv:2204.03458, 2022.

[25] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1125–1134, 2017.

[26] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. TransGAN: Two pure transformers can make one
strong GAN, and that can scale up. Advances in Neural Information Processing Systems, 34, 2021.

[27] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for
improved quality, stability, and variation. In International Conference on Learning Representations,
2018.

[28] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Train-
ing generative adversarial networks with limited data. Advances in Neural Information Processing
Systems, 33:12104–12114, 2020.

[29] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. arXiv preprint arXiv:2206.00364, 2022.

[30] Valentin Khrulkov and Ivan Oseledets. Understanding DDPM latent codes through optimal transport.
arXiv preprint arXiv:2202.07477, 2022.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

31

[32] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[33] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations, 2020.

[34] Alexander Korotin, Lingxiao Li, Aude Genevay, Justin M Solomon, Alexander Filippov, and Evgeny
Burnaev. Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark. Ad-
vances in Neural Information Processing Systems, 34:14593–14605, 2021.

[35] Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Neural optimal transport. arXiv
preprint arXiv:2201.12220, 2022.

[36] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[37] Thomas G Kurtz. Equivalence of stochastic equations and martingale problems. In Stochastic analysis
2010, pages 113–130. Springer, 2011.

[38] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved pre-
cision and recall metric for assessing generative models. Advances in Neural Information Processing
Systems, 32, 2019.

[39] Hugo Lavenant and Filippo Santambrogio. The flow map of the fokker–planck equation does not
provide optimal transport. Applied Mathematics Letters, page 108225, 2022.

[40] Junhyeok Lee and Seungu Han. Nu-wave: A diffusion probabilistic model for neural audio upsam-
pling. arXiv preprint arXiv:2104.02321, 2021.

[41] Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B Hashimoto. Diffusion-
lm improves controllable text generation. arXiv preprint arXiv:2205.14217, 2022.

[42] Qiang Liu. On rectified flow and optimal coupling. preprint, 2022.

[43] Xingchao Liu, Chengyue Gong, Lemeng Wu, Shujian Zhang, Hao Su, and Qiang Liu. Fusedream:
Training-free text-to-image generation with improved clip+ gan space optimization. arXiv preprint
arXiv:2112.01573, 2021.

[44] Xingchao Liu, Lemeng Wu, Mao Ye, and Qiang Liu. Let us build bridges: Understanding and
extending diffusion generative models. arXiv preprint arXiv:2208.14699, 2022.

[45] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[46] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-solver: A
fast ODE solver for diffusion probabilistic model sampling in around 10 steps. arXiv preprint
arXiv:2206.00927, 2022.

[47] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

[48] Zhaoyang Lyu, Xudong Xu, Ceyuan Yang, Dahua Lin, and Bo Dai. Accelerating diffusion models
via early stop of the diffusion process. arXiv preprint arXiv:2205.12524, 2022.

32

[49] Ashok Makkuva, Amirhossein Taghvaei, Sewoong Oh, and Jason Lee. Optimal transport mapping via
input convex neural networks. In International Conference on Machine Learning, pages 6672–6681.
PMLR, 2020.

[50] Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit:
Image synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073,
2021.

[51] Gautam Mittal, Jesse Engel, Curtis Hawthorne, and Ian Simon. Symbolic music generation with
diffusion models. arXiv preprint arXiv:2103.16091, 2021.

[52] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations, 2018.

[53] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

[54] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pages 8162–8171. PMLR, 2021.

[55] Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow: Fast and accurate contin-
uous normalizing flows via optimal transport. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 9223–9232, 2021.

[56] George Papamakarios, Eric T Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. J. Mach. Learn. Res.,
22(57):1–64, 2021.

[57] Stefano Peluchetti. Non-denoising forward-time diffusions. 2021.

[58] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 1406–1415, 2019.

[59] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data sci-
ence. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

[60] Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-tts: A
diffusion probabilistic model for text-to-speech. In International Conference on Machine Learning,
pages 8599–8608. PMLR, 2021.

[61] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[62] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International
conference on machine learning, pages 1530–1538. PMLR, 2015.

[63] Litu Rout, Alexander Korotin, and Evgeny Burnaev. Generative modeling with optimal transport
maps. arXiv preprint arXiv:2110.02999, 2021.

33

[64] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.
Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

[65] Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94,
2015.

[66] Axel Sauer, Katja Schwarz, and Andreas Geiger. StyleGAN-XL: Scaling StyleGAN to large diverse
datasets. In Special Interest Group on Computer Graphics and Interactive Techniques Conference
Proceedings, pages 1–10, 2022.

[67] Vivien Seguy, Bharath Bhushan Damodaran, Rémi Flamary, Nicolas Courty, Antoine Rolet,
and Mathieu Blondel. Large-scale optimal transport and mapping estimation. arXiv preprint
arXiv:1711.02283, 2017.

[68] Abhishek Sinha, Jiaming Song, Chenlin Meng, and Stefano Ermon. D2C: Diffusion-decoding models
for few-shot conditional generation. Advances in Neural Information Processing Systems, 34:12533–
12548, 2021.

[69] Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial intelligence and machine learning for multi-domain operations
applications, volume 11006, pages 369–386. SPIE, 2019.

[70] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2020.

[71] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32, 2019.

[72] Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

[73] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2020.

[74] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-
based diffusion models. Advances in Neural Information Processing Systems, 34, 2021.

[75] Xuan Su, Jiaming Song, Chenlin Meng, and Stefano Ermon. Dual diffusion implicit bridges for
image-to-image translation. arXiv preprint arXiv:2203.08382, 2022.

[76] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
European conference on computer vision, pages 443–450. Springer, 2016.

[77] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pages 6105–6114. PMLR, 2019.

[78] Anastasiya Tanana. Comparison of transport map generated by heat flow interpolation and the optimal
transport brenier map. Communications in Contemporary Mathematics, 23(06):2050025, 2021.

34

[79] Giulio Trigila and Esteban G Tabak. Data-driven optimal transport. Communications on Pure and
Applied Mathematics, 69(4):613–648, 2016.

[80] Belinda Tzen and Maxim Raginsky. Theoretical guarantees for sampling and inference in generative
models with latent diffusions. In Conference on Learning Theory, pages 3084–3114. PMLR, 2019.

[81] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. Ad-
vances in Neural Information Processing Systems, 34:11287–11302, 2021.

[82] Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving Schrödinger
bridges via maximum likelihood. Entropy, 23(9):1134, 2021.

[83] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5018–5027, 2017.

[84] Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

[85] Cédric Villani. Topics in optimal transportation, volume 58. American Mathematical Soc., 2021.

[86] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Con-
tributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[87] Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, and Can Yang. Deep generative learning via
Schrödinger bridge. In International Conference on Machine Learning, pages 10794–10804. PMLR,
2021.

[88] Rose E Wang, Esin Durmus, Noah Goodman, and Tatsunori Hashimoto. Language modeling via
stochastic processes. arXiv preprint arXiv:2203.11370, 2022.

[89] Antoine Wehenkel and Gilles Louppe. Diffusion priors in variational autoencoders. arXiv preprint
arXiv:2106.15671, 2021.

[90] Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule
generation with informative prior bridges. arXiv preprint, 2022.

[91] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
denoising diffusion GANs. arXiv preprint arXiv:2112.07804, 2021.

[92] Ruihan Yang, Prakhar Srivastava, and Stephan Mandt. Diffusion probabilistic modeling for video
generation. arXiv preprint arXiv:2203.09481, 2022.

[93] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

35

[94] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902, 2022.

[95] Qinsheng Zhang, Molei Tao, and Yongxin Chen. gDDIM: Generalized denoising diffusion implicit
models. arXiv preprint arXiv:2206.05564, 2022.

[96] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 586–595, 2018.

[97] Min Zhao, Fan Bao, Chongxuan Li, and Jun Zhu. EGSDE: Unpaired image-to-image translation via
energy-guided stochastic differential equations. arXiv preprint arXiv:2207.06635, 2022.

[98] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for
data-efficient GAN training. Advances in Neural Information Processing Systems, 33:7559–7570,
2020.

[99] Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Truncated diffusion probabilis-
tic models. arXiv preprint arXiv:2202.09671, 2022.

[100] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on
computer vision, pages 2223–2232, 2017.

36

Algorithm 2 Train(Data)
Input: Data={x0, x1}
Output: Model v(x, t) for the rectified flow
initialize Model
for x0, x1 in Data: # x0, x1: samples from π0, π1

Optimizer.zero grad()
t = torch.rand(batchsize) # Randomly sample t ∈ [0,1]
Loss = (Model(t*x1+(1-t)*x0, t) - (x1-x0)).pow(2).mean()
Loss.backward()
Optimizer.step()

return Model

Algorithm 3 Sample(Model, Data)

Input: Model v(x, t) of the rectified flow
Output: draws of the rectified coupling (Z0, Z1)
coupling = []
for x0, in Data: # x0: samples from π0 (batchsize×dim)

x1 = model.ODE solver(x0)
coupling.append((x0, x1))

return coupling

Algorithm 4 Reflow(Data)
Input: Data={x0, x1}
Output: draws of the K-th rectified coupling
Coupling = Data
for k = 1, . . . ,K:

Model = Train(Coupling)
Coupling = sample(Model, Data)

return Coupling

A Additional Experiment Details

Experiment Configuration on CIFAR10 We conduct unconditional image generation with the CIFAR-
10 dataset [36]. The resolution of the images are set to 32 × 32. For rectified flow, we adopt the same
network structure as DDPM++ in [73]. The training of the network is smoothed by exponential moving
average as in [73], with a ratio of 0.999999. We adopt Adam [31] optimizer with a learning rate of 2e − 4
and a dropout rate of 0.15.

For reflow, we first generate 4 million pairs of (z0, z1) to get a new dataset D, then fine-tune the i-rectified
flow model for 300, 000 steps to get the (i + 1)-rectified flow model. We further distill these rectified flow
models for few-step generation. To get a k-step image generator from the i-rectified flow, we randomly sam-
ple t ∈ {0, 1/k, · · · , (k − 1)/k} during fine-tuning, instead of randomly sampling t ∈ [0, 1]. Specifically,
for k = 1, we replace the L2 loss function with the LPIPS similarity [96] since it empirically brings better
performance.

37

Figure 16: Few-step generation with different ODEs. Compared with VE,VP,sub-VP ODE, 1-rectified flow can gen-
erate blurry images using only 1,2,3 steps. After one time of rectification, 2-rectified flow can generate clear images
with 1,2,3 steps.

Expreiment Configuration on Image-to-Image Translation In this experiment, we also adopt the same
U-Net structure of DDPM++ [73] for representing the drift vX . We follow the procedure in Algorithm 1.
For the purpose of generative modeling, we set π0 to be one domain dataset and π1 the other domain dataset.
For optimization, we use AdamW [45] optimizer with β (0.9, 0.999), weight decay 0.1 and dropout rate 0.1.
We train the model with a batch size of 4 for 1, 000 epochs. We further apply exponential moving average
(EMA) optimizer with coefficient 0.9999. We perform grid-search on the learning rate from {5× 10−4, 2×
10−4, 5× 10−5, 2× 10−5, 5× 10−6} and pick the model with the lowest training loss.

We use the AFHQ [9], MetFace [28] and CelebA-HQ [27] dataset. Animal Faces HQ (AFHQ) is an animal-
face dataset consisting of 15,000 high-quality images at 512 × 512 resolution. The dataset includes three
domains of cat, dog, and wild animals, each providing 5000 images. MetFace consists of 1,336 high-quality
PNG human-face images at 1024 × 1024 resolution, extracted from works of art. CelebA-HQ is a human-
face dataset which consists of 30,000 images at 1024 × 1024 resolution. We randomly select 80% as the
training data and regard the rest as the test data, and resize the image to 512× 512.

Experiment Configuration on Domain Adaptation For training the model, we apply AdamW [45] opti-
mizer with batch size 16, number of iterations 50k, learning rate 10−4, weight decay 0.1 and OneCycle [69]
learning rate schedule.

38

Figure 17: To visualize the latent space, we randomly sample z0 and z1 fromN (0, I), and show the generated images
of
√
αz0 +

√
1− αz1 for α ∈ [0, 1].

Figure 18: (a) We compare the latent space between Rectified Flow (0) and (1) using different sampling strategies
with the same random seeds. We observe that (i) both 1-Rectified Flow and 2-Rectified Flow can provide a smooth
latent interpolation, and their latent spaces look similar; (ii) when using one-step sampling (N = 1), 2-Rectified Flow
can still provide visually recognizable interpolation, while 1-Rectified Flow cannot; (iii) Distilled one-step models
can also continuously interpolate between the images, and their latent spaces have little difference with the original
flow. (b) We composite the latent codes of two images by replacing the boundary of a black cat with a white cat, then
visualize the variation along the trajectory. The black cat turns into a grey cat at first, then a cat with mixing colors,
and finally a white cat. (c) We randomly sample ξ ∼ N (0, I), then generate images with αξ to examine the influence
of α on the generated images. We find α < 1 results in overly smooth images, while α > 1 leads to noisy images.

39

t0 1

0 1 t

2-Rectified Flow

0.001 0.002 0.1 0.3 0.5 0.8

t

subVP-ODE

0 10.001 0.002 0.1 0.3 0.5 0.8

0 1 t

1-Rectified Flow

0.001 0.002 0.1 0.3 0.5 0.8

Figure 19: Sample trajectories zt of different flows on the CIFAR10 dataset, and the extrapolation ẑt1 = zt + (1 −
t)v(zt, t) from different zt. The same random seed is adopted for all three methods. The ẑt1 of 2-rectified flow is
almost independent with t, indicating that its trajectory is almost straight.

Figure 20: We perform latent space embedding / image reconstruction here. Given an image z1, we use an reverse
ODE solver to get a latent code ẑ0, then use a forward ODE solver to get a reconstruction ẑ1 of the image. The
columns in the figure are reverse ODE solver (forward ODE solver). (i) Thanks to the‘straightening’ effect, 2-rectified
flow can get meaningful latent code with only one reverse step. It can also generate recognizable images using one
forward step. (ii) With the help of distilled models, one-step embedding and reconstruction is significantly improved.

40

Figure 21: More results for image-to-image translation between different domains. The images in each row are time-
uniformly sampled from the trajectory of 1-rectified flow solved N = 100 Euler steps with constant step size.

41

	1 Introduction
	2 Method
	2.1 Overview
	2.2 Main Results and Properties
	2.3 A Nonlinear Extension
	2.3.1 Probability Flow ODEs and DDIM

	3 Theoretical Analysis
	3.1 The Marginal Preserving Property
	3.2 Reducing Convex Transport Costs
	3.3 The Straightening Effect
	3.4 Straight vs. Optimal Couplings
	3.5 Denoising Diffusion Models and Probability Flow ODEs

	4 Related Works and Discussion
	5 Experiments
	5.1 Toy Examples
	5.2 Unconditioned Image Generation
	5.3 Image-to-Image Translation
	5.4 Domain Adaptation

	A Additional Experiment Details

