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Abstract
Recently, contrastive learning has found impres-
sive success in advancing the state of the art in
solving various machine learning tasks. However,
the existing generalization analysis is very lim-
ited or even not meaningful. In particular, the
existing generalization error bounds depend lin-
early on the number k of negative examples while
it was widely shown in practice that choosing
a large k is necessary to guarantee good gener-
alization of contrastive learning in downstream
tasks. In this paper, we establish novel general-
ization bounds for contrastive learning which do
not depend on k, up to logarithmic terms. Our
analysis uses structural results on empirical cov-
ering numbers and Rademacher complexities to
exploit the Lipschitz continuity of loss functions.
For self-bounding Lipschitz loss functions, we
further improve our results by developing opti-
mistic bounds which imply fast rates in a low
noise condition. We apply our results to learning
with both linear representation and nonlinear rep-
resentation by deep neural networks, for both of
which we derive Rademacher complexity bounds
to get improved generalization bounds.

1. Introduction
The performance of machine learning (ML) models often
depends largely on the representation of data, which mo-
tivates a resurgence of contrastive representation learning
(CRL) to learn a representation function f : X 7→ Rd from
unsupervised data (Chen et al., 2020; Khosla et al., 2020;
He et al., 2020). The basic idea is to pull together similar
pairs (x,x+) and push apart disimilar pairs (x,x−) in an
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embedding space, which can be formulated as minimizing
the following objective (Chen et al., 2020; Oord et al., 2018)

Ex,x+,{x−
i }k

i=1
log

(
1+

k∑
i=1

exp
(
−f(x)⊤

(
f(x+)−f(x−

i )
)))

,

where k is the number of negative examples. The hope is
that the learned representation f(x) would capture the latent
structure and be beneficial to other downstream learning
tasks (Arora et al., 2019; Tosh et al., 2021a). CRL has
achieved impressive empirical performance in advancing
the state-of-the-art performance in various domains such
as computer vision (He et al., 2020; Caron et al., 2020;
Chen et al., 2020; Caron et al., 2020) and natural language
processing (Brown et al., 2020; Gao et al., 2021; Radford
et al., 2021).

The empirical success of CRL motivates a natural question
on theoretically understanding how the learned representa-
tion adapts to the downstream tasks, i.e.,

How would the generalization behavior of downstream ML
models benefit from the representation function built from
positive and negative pairs? Especially, how would the num-
ber of negative examples affect the learning performance?

Arora et al. (2019) provided an attempt to answer the above
questions by developing a theoretical framework to study
CRL. They first gave generalization bounds for a learned
representation function in terms of Rademacher complex-
ities. Then, they showed that this generalization behavior
measured by an unsupervised loss guarantees the general-
ization behavior of a linear classifier in the downstream
classification task. However, the generalization bounds
there enjoy a linear dependency on k, which would not
be effective if k is large. Moreover, this is not consistent
with many studies which show a large number of negative
examples (Chen et al., 2020; Tian et al., 2020a; Hénaff
et al., 2020; Khosla et al., 2020) is necessary for good gen-
eralization performance. For example, the work (He et al.,
2020) used 65536 negative examples in unsupervised visual
representation learning, for which the existing analysis re-
quires n ≥ (65536)2d training examples to get non-vacuous
bounds (Arora et al., 2019). Yuan et al. (2022) has demon-
strated the benefits using all negative data for each anchor
data for CRL and proposed an efficient algorithm for op-
timizing global contrastive loss. Therefore, the existing
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Assumption Arora et al.’19 Ours
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√
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d√
n

)
low noise O

(
k
√
d√
n

)
Õ
(

d
n

)
Table 1. Comparison between our generalization bounds and those
in Arora et al. (2019) for the logistic loss. Here d is the number of
learned features. The notation Õ ignores log factors.

analysis does not fully answer the question on the super
performance of CRL to downstream tasks as already shown
in many applications.

In this paper, we aim to further deepen our understanding
of CRL by fully exploiting the Lipschitz continuity of loss
functions. Our contributions are listed as follows.

1. We develop generalization error bounds for CRL. We
consider three types of loss functions: ℓ2-Lipschitz loss,
ℓ∞-Lipschitz loss and self-bounding Lipschitz loss. For
ℓ2-Lipschitz loss, we develop a generalization bound with a
square-root dependency on k by two applications of vector-
contraction lemmas on Rademacher complexities, which
improves the existing bound by a factor of

√
k (Arora et al.,

2019). For ℓ∞-Lipschitz loss, we develop generalization
bounds which does not depend on k, up to some logarithmic
terms, by approximating the arguments of loss functions
via expanding the original dataset by a factor of k to fully
exploit the Lipschitz continuity. For self-bounding Lipschitz
loss, we develop optimistic bounds involving the training
errors, which can imply fast rates under a low noise set-
ting. All of our generalization bounds involve Rademacher
complexities of feature classes, which preserve the coupling
among different features.

2. We then apply our general result to two unsupervised
representation learning problems: learning with linear fea-
tures and learning with nonlinear features via deep neural
networks (DNNs). For learning with linear features, we con-
sider two regularization schemes, i.e., p-norm regularizer
and Schatten-norm regularizer. For learning with nonlinear
features, we develop Rademacher complexity and general-
ization bounds with a square-root dependency on the depth
of DNNs. To this aim, we adapt the technique in Golowich
et al. (2018) by using a different moment generalization
function to capture the coupling among different features.

3. Finally, we apply our results on representation learning
to the generalization analysis of downstream classification
problems, which outperforms the existing results by a factor
of k (ignoring a log factor).

The remaining parts of the paper are organized as follows.
Section 2 reviews the related work, and Section 3 provides
the problem formulation. We give generalization bounds for
CRL in Section 4 for three types of loss functions, which
are then applied to learning with both linear and nonlinear

features in Section 5. Conclusions are given in Section 6.

2. Related Work
The most related work is the generalization analysis of
CRL in Arora et al. (2019), where the authors developed
generalization bounds for unsupervised errors in terms of
Rademacher complexity of representation function classes.
Based on this, they further studied the performance of linear
classifiers on the learned features. In particular, they consid-
ered the mean classifier where the weight for a class label
is the mean of the representation of corresponding inputs.
A major result in Arora et al. (2019) is to show that the
classification errors of the mean classifier can be bounded
by the unsupervised errors of learned representation func-
tions. This shows that the downstream classification task
can benefit from a learned representation function with a
low unsupervised error.

The above work motivates several interesting theoretical
study of CRL. Nozawa et al. (2020) studied CRL in a PAC-
Bayesian setting, which aims to learn a posterior distribution
of representation functions. Nozawa et al. (2020) derived
PAC-Bayesian bounds for the posterior distribution and ap-
plied it to get PAC-Bayesian bounds for the mean-classifier,
which relaxes the i.i.d. assumption. Negative examples in
the framework (Arora et al., 2019) are typically taken to
be randomly sampled datapoints, which may actually have
the same label of the point of interest. This introduces a
bias in the objective function of CRL, which leads to perfor-
mance drops in practice. Motivated by this, Chuang et al.
(2020) introduced a debiased CRL algorithm by building
an approximation of unbiased error in CRL, and developed
generalization guarantees for the downstream classification.
Ash et al. (2022) refines the connection in Arora et al. (2019)
by removing the collision probability in the denominator,
which motivates the discussion on selecting the optimal
number of negative examples. Nozawa & Sato (2021) im-
proves the analysis Arora et al. (2019) by giving a generic
transfer theorem between unsupervised loss and supervised
loss, which exhibits a coverage-collision trade-off due to
the number of negative examples.

Several researchers studied CRL from other perspectives.
Lee et al. (2021) proposed to learn a representation function
f to minimize E(X1,X2)[∥X2−f(X1)∥22], whereX1, X2 are
unlabeled input and pretext target. Under an approximate
conditional independency assumption, the authors showed
that a linear function based on the learned representation
approximates the true predictor on downstream problems.
In a generative modeling setup, Tosh et al. (2021b) proposed
to learn representation functions by a landmark embedding
procedure, which can reveal the underlying topic posterior
information. Tosh et al. (2021a) studied CRL in a multi-
view setting with two views available for each datum. Under
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an assumption on the redundancy between the two views,
the authors showed that low-dimensional representation can
achieve near optimal downstream performance with lin-
ear models. HaoChen et al. (2021) studied self-supervised
learning from the perspective of spectral clustering based
on a population augmentation graph, and proposed a spec-
tral contrastive loss. They further developed generalization
bounds for both representation learning and the downstream
classification. This result is improved in a recent work by
developing a guarantee to incorporate the representation
function class (Saunshi et al., 2022). Wang et al. (2022) re-
moves the assumption on the conditional independency, and
proposes a guarantee on the downstream performance from
the viewpoint of augmentation overlap. Bao et al. (2022)
shows that the contrastive loss can be viewed as a surro-
gate objective of the downstream loss by building upper and
lower bounds for downstream classification errors. There
are also recent work on theoretical analysis of representation
learning via gradient-descent dynamics (Lee et al., 2021;
Tian et al., 2020b), mutual information (Tsai et al., 2020),
alignment of representations (Wang & Isola, 2020), and
causality (Mitrovic et al., 2020). CRL is related to metric
learning, for which generalization bounds have been studied
in the literature (Cao et al., 2016).

3. Problem Formulation
Let X denote the space of all possible datapoints. In
CRL, we are given several similar data in the form of pairs
(x,x+) drawn from a distribution Dsim and negative data
x−
1 ,x

−
2 , . . . ,x

−
k drawn from a distribution Dneg unrelated

to x. Our aim is to learn a feature map f : X 7→ Rd from a
class of representation functions F =

{
f : ∥f(·)∥2 ≤ R

}
for some R > 0, where ∥ · ∥2 denotes the Euclidean norm.
Here d ∈ N denotes the number of features.

We follow the framework in Arora et al. (2019) to define the
distribution Dsim and the distribution Dneg. Let C denote
the set of all latent classes and for each class c ∈ C we
assume there is a probability distribution Dc over X , which
quantifies the relevance of x to the class c. We assume
there is a probability distribution ρ defined over C. Then we
define Dsim(x,x+) and Dneg(x

−) as follows

Dsim(x,x+) = Ec∼ρ

[
Dc(x)Dc(x

+)
]
,

Dneg(x
−) = Ec∼ρ

[
Dc(x

−)
]
.

Intuitively, Dsim(x,x+) measures the probability of x and
x+ being drawn from the same class c ∼ ρ, while Dneg(x

−)
measures the probability of drawing an un-relevant x−. Let
(xj ,x

+
j ) ∼ Dsim and (x−

j1, . . . ,x
−
jk) ∼ Dneg, j ∈ [n] :=

{1, . . . , n}, where k denotes the number of negative exam-

ples. We collect these training examples into a dataset

S =
{
(x1,x

+
1 ,x

−
11, . . . ,x

−
1k), (x2,x

+
2 ,x

−
21, . . . ,x

−
2k),

. . . , (xn,x
+
n ,x

−
n1, . . . ,x

−
nk)

}
. (3.1)

Given a representation function f , we can measure its perfor-
mance by building a classifier based on this representation
and computing the accuracy of the classifier. To this aim,
we define a (K + 1)-way supervised task T consisting of
distinct classes {c1, . . . , cK+1} ⊆ C. The examples for this
supervised task are drawn by the following process:

We first draw a label c ∈ T = {c1, . . . , cK+1} from a
distribution DT over T , after which we draw an example
x from Dc. This defines the following distribution over
labeled pairs (x, c): DT (x, c) = Dc(x)DT (c). Since there
is a label for each example, we can build a multi-class
classifier g : X 7→ RK+1 for T , where gc(x) measures the
“likelihood” of assigning the class label c to the example x.
The loss of g on a point (x, y) ∈ X × T can be measured
by ℓs

({
g(x)y − g(x)y′}y′ ̸=y

)
, where ℓs : RK 7→ R+. We

quantify the performance of a classifier g on the task T by
the supervised loss. By minimizing the supervised loss, we
want to build a classifier whose component associated to the
correct label is largest.

Definition 3.1 (Supervised loss). Let g : X 7→ RK+1 be a
multi-class classifier. The supervised loss of g is defined as

Lsup(T , g) := E(x,c)∼DT

[
ℓs
({
g(x)c − g(x)c′

}
c′ ̸=c

)]
.

For CRL, we often consider g as a linear classifier based
on the learned representation f , i.e., g(x) =Wf(x), where
W ∈ R(K+1)×d. Then the performance of the representa-
tion function f(x) can be quantified by the accuracy of the
best linear classifier on the representation f(x):

Lsup(T , f) = min
W∈R(K+1)×d

Lsup(T ,Wf).

To find a good representation f based on unsupervised
dataset S, we need to introduce the concept of unsuper-
vised loss functions. Let ℓ : Rk 7→ R+ be a loss function
for which popular choices include the hinge loss

ℓ(v) = max
{
0, 1 + max

i∈[k]
{−vi}

}
(3.2)

and the logistic loss

ℓ(v) = log
(
1 +

∑
i∈[k]

exp(−vi)
)
. (3.3)

Let f(x)⊤ denote the transpose of f(x).

Definition 3.2 (Unsupervised error). The population unsu-
pervised error is defined as

Lun(f) := E
[
ℓ
({
f(x)⊤(f(x+)− f(x−

i ))
}k

i=1

)]
.
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The empirical unsupervised error with S is defined as

L̂un(f) :=
1

n

n∑
j=1

ℓ
({
f(xj)

⊤(f(x+
j )− f(x−

ji))
}k

i=1

)
.

A natural algorithm is to find among F the function
with the minimal empirical unsupervised loss, i.e., f̂ :=
argminf∈F L̂un(f). This function can then be used for the
downstream supervised learning task, e.g., to find a linear
classifier g(x) =Wf(x) indexed by W ∈ R(K+1)×d.

4. Generalization Error Bounds
In this paper, we are interested in the performance of f̂ on
testing, i.e., how the empirical behavior of f̂ on S would
generalize well to testing examples. Specifically, we will
control Lun(f̂)−L̂un(f̂). Since f̂ depends on the dataset S,
we need to control the uniform deviation between population
unsupervised error and empirical unsupervised error over
the function class F , which depends on the complexity of
F . In this paper, we will use Rademacher complexity to
quantify the complexity of F (Bartlett & Mendelson, 2002).

Definition 4.1 (Rademacher Complexity). Let F̃ be a
class of real-valued functions over a space Z and S̃ =
{zi}ni=1 ⊆ Z . The empirical Rademacher complexity
of F̃ with respect to (w.r.t.) S̃ is defined as RS̃(F̃) =
Eϵ

[
supf∈F̃

1
n

∑
i∈[n] ϵif(zi)

]
, where ϵ = (ϵi)i∈[n] ∼

{±1}n are independent Rademacher variables. We de-
fine the worst-case Rademacher complexity as RZ,n(F̃) =

supS̃⊆Z:|S̃|=n RS̃(F̃), where |S̃| is the cardinality of S̃.

For any f ∈ F , we introduce gf : X k+2 7→ R as follows

gf (x,x
+,x−

1 , . . . ,x
−
k ) = ℓ

({
f(x)⊤

(
f(x+)−f(x−

i )
)}k

i=1

)
.

It is then clear that

Lun(f)−L̂un(f) = Ex,x+,x−
1 ,...,x−

k

[
gf (x,x

+,x−
1 , . . . ,x

−
k )

]
− 1

n

∑
j∈[n]

gf (xj ,x
+
j ,x

−
j1, . . . ,x

−
jk).

Results in learning theory show that we can boundLun(f̂)−
L̂un(f̂) by RS(G) (Bartlett & Mendelson, 2002), where

G =
{
(x,x+,x−

1 , . . . ,x
−
k ) 7→

gf (x,x
+,x−

1 , . . . ,x
−
k ) : f ∈ F

}
.

Note functions in G involve the nonlinear function ℓ : Rk 7→
R+, which introduces difficulties in the complexity analysis.
Our key idea is to use the Lipschitz continuity of ℓ to reduce
the complexity of G to the complexity of another function
class without ℓ. Since the arguments in ℓ are vectors, we
can have different definition of Lipschitz continuity w.r.t.
different norms (Lei et al., 2015; Tewari & Chaudhuri, 2015;

Lei et al., 2019; Foster & Rakhlin, 2019; Mustafa et al.,
2022). For any a = (a1, . . . , ak) ∈ Rk and p ≥ 1, we

define the ℓp-norm as ∥a∥p =
(∑n

i=1 |ai|p
) 1

p .

Definition 4.2 (Lipschitz continuity). We say ℓ : Rk 7→ R+

is G-Lipschitz w.r.t. the ℓp-norm iff

|ℓ(a)− ℓ(a′)| ≤ G∥a− a′∥p, ∀a, a′ ∈ Rk.

In this paper, we are particularly interested in the Lipschitz
continuity w.r.t. either the ℓ2-norm or the ℓ∞-norm. Ac-
cording to Proposition G.1, the loss functions defined in Eq.
(3.2) and Eq. (3.3) are 1-Lipschitz continuous w.r.t. ∥ · ∥∞,
and 1-Lipschitz continuous w.r.t. ∥ · ∥2 (Lei et al., 2019).

Note each component of the arguments in ℓ are of the form
f(x)⊤(f(x+) − f(x−)). This motivates the definition of
the following function class

H =
{
hf (x,x

+,x−) = f(x)⊤
(
f(x+)−f(x−)

)
: f ∈ F

}
.

As we will see in the analysis, the complexity of G is closely
related to that of H. Therefore, we first show how to control
the complexity of H. In the following lemma, we provide
Rademacher complexity bounds of H w.r.t. a general dataset
S′ of cardinality n. We will use a vector-contraction lemma
to prove it (Maurer, 2016). The basic idea is to notice the
Lipschitz continuity of the map (x,x+,x−) 7→ x⊤(x+ −
x−) w.r.t. ∥ · ∥2 on X 3. The proof is given in Section B.

Lemma 4.3. Let n ∈ N and S′ = {(xj ,x
+
j ,x

−
j ) : j ∈ [n]}.

Assume ∥f(x)∥2 ≤ R for any f ∈ F and x ∈ S′. Then

RS′(H) ≤
√
12R

n
Eϵ∼{±1}n×{±1}d×{±1}3[

sup
f∈F

∑
j∈[n]

∑
t∈[d]

(
ϵj,t,1ft(xj)+ϵj,t,2ft(x

+
j )+ϵj,t,3ft(x

−
j )

)]
,

where ft(x) is the t-th component of f(x) ∈ Rd.

Remark 4.4. We compare Lemma 4.3 with the following
Rademacher complexity bound in HaoChen et al. (2021)

Eϵ∼{±1}n

[
sup
f∈F

∑
j∈[n]

ϵjf(xj)
⊤f(x+

j )
]
≤

dmax
t∈[d]

Eϵ∼{±1}n

[
sup
ft∈Ft

∑
j∈[n]

ϵjft(xj)ft(x
+
j )

]
, (4.1)

where Ft =
{
x 7→ ft(x) : f ∈ F

}
. As a comparison, our

analysis in Lemma 4.3 can imply the following bound

Eϵ∼{±1}n

[
sup
f∈F

∑
j∈[n]

ϵjf(xj)
⊤f(x+

j )
]
≤

2REϵ∼{±1}2nd

[
sup
f∈F

∑
j∈[n]

∑
t∈[d]

(
ϵj,t,1ft(xj)+ϵj,t,2ft(x

+
j )

)]
.

Eq. (4.1) decouples the relationship among different fea-
tures since the maximization over t ∈ [d] is outside of the
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expectation operator. As a comparison, our result preserves
this coupling since the summation over t ∈ [d] is inside the
supermum over f ∈ F . This preservation of coupling has
an effect on the bound. Indeed, it is expected that

Eϵ∼{±1}2nd

[
sup
f∈F

∑
j∈[n]

∑
t∈[d]

(
ϵj,t,1ft(xj)+ϵj,t,2ft(x

+
j )

)]
=

O
(√

dEϵ∼{±1}2n

[
sup
ft∈Ft

∑
j∈[n]

(
ϵj,1ft(xj)+ϵj,2ft(x

+
j )

)])
.

In this case, our result implies a bound with a better de-
pendency on d as compared to Eq. (4.1) (the factor of d in
Eq. (4.1) is replaced by

√
d here). We can plug our bound

into the analysis in HaoChen et al. (2021) to improve their
results. In Section A we will give a specific example where
our bound can outperform Eq. (4.1) by a factor of

√
d.

Remark 4.5. Lemma 4.3 requires an assumption ∥f(x)∥2 ≤
R. This assumption can be achieved by adding a projection
operator as f(x) = PR(f̃(x)) for f̃ ∈ F , where PR de-
notes the projection operator onto the Euclidean ball with
radius R around the zero point. According to the inequality
∥PR(f̃(x))− PR(f̃

′(x))∥2 ≤ ∥f̃(x)− f̃ ′(x)∥2, the argu-
ments in the proof indeed show the following inequality
with H =

{
hf̃ (x,x

+,x−) = PR(f̃(x))
⊤(PR(f̃(x

+)) −
PR(f̃(x

−))
)
: f̃ ∈ F

}
:

RS′(H) ≤
√
12R

n
Eϵ∼{±1}3nd

[
sup
f̃∈F

∑
j∈[n]

∑
t∈[d](

ϵj,t,1f̃t(xj) + ϵj,t,2f̃t(x
+
j ) + ϵj,t,3f̃t(x

−
j )

)]
.

That is, we can add a projection operator over F to remove
the assumption ∥f(x)∥2 ≤ R.

Loss Arora et al.’19 Ours

1-ℓ2-Lipschitz
√
kB
n

A
n

1-ℓ∞-Lipschitz
√
kB
n

C
n
√
k

∗

S.B. 1-Lipschitz
n−1+n−2k−1C2+(n−

1
2

+n−1k−
1
2C)L̂

1
2
un(f)∗

Table 2. Comparison between our generalization bounds and those
in Arora et al. (2019). The notation ∗ means we ignore log factors.
S.B. means self-bounding. The notations A,B and C are defined
in Eq. (4.2), (4.4) and (4.5), which are typically of the same order.
Then, our results improve the bounds in Arora et al. (2019) by a
factor of

√
k for ℓ2-Lipschitz loss, and by a factor of k for ℓ∞-

Lipscthiz loss. For self-bounding loss, we get optimistic bounds.

4.1. ℓ2 Lipschitz Loss

We first consider the ℓ2 Lipschitz loss. The following theo-
rem to be proved in Section B gives Rademacher complex-
ity and generalization error bounds for unsupervised loss

function classes. We always assume ℓ
({
f(x)⊤(f(x+) −

f(x−
i ))

}k

i=1

)
≤ B for any f ∈ F in this paper.

Theorem 4.6 (Generalization bound: ℓ2-Lipschitz loss).
Assume ∥f(x)∥2 ≤ R for any f ∈ F and x ∈ X . Let S
be defined as in Eq. (3.1). If ℓ : Rk 7→ R+ is G2-Lipschitz
w.r.t. the ℓ2-norm, then RS(G) ≤

√
24RG2A

n , where

A = E{ϵ}∼{±1}3nkdE
[
sup
f∈F

∑
j∈[n]

∑
i∈[k]

∑
t∈[d]

(
ϵj,i,t,1ft(xj)

+ ϵj,i,t,2ft(x
+
j ) + ϵj,i,t,3ft(x

−
ji)

)]
. (4.2)

Furthermore, for any δ ∈ (0, 1), with probability at least
1− δ the following inequality holds for any f ∈ F

Lun(f)− L̂un(f) ≤
4
√
6RG2A

n
+ 3B

√
log(2/δ)

2n
.

Remark 4.7. Under the same Lipschitz continuity w.r.t. ∥·∥2,
the following bound was established in Arora et al. (2019)

Lun(f) = L̂un(f) +O
(G2R

√
kB

n
+B

√
log(1/δ)

n

)
,

(4.3)
where

B = Eϵ∼{±1}n×{±1}d×{±1}k+2

[
sup
f∈F

∑
j∈[n]

∑
t∈[d]

(4.4)

(
ϵj,t,k+1ft(xj) + ϵj,t,k+2ft(x

+
j ) +

∑
i∈[k]

ϵj,t,kft(x
−
ji)

)]
.

Note A and B are of the same order. Indeed, the
dominating term in the braces of the above equation is∑

i∈[k] ϵj,t,kft(x
−
ji) and therefore we have

B ≍ Eϵ

[
sup
f∈F

∑
j∈[n]

∑
t∈[d]

∑
i∈[k]

ϵj,t,kft(x
−
ji)

]
.

Furthermore, A grows also in this order since ϵj,i,t,1ft(xj)+
ϵj,i,t,2ft(x

+
j ) + ϵj,i,t,3ft(x

−
ji) is of the same order of

ϵj,i,t,3ft(x
−
ji). Typically, A ≍ B ≍

√
nkd since there are

O(nkd) terms in the summation inside the supremum. In
this case, Theorem 4.6 implies a bound O(

√
kd/n), while

Eq. (4.3) gives a bound O(k
√
d/

√
n). It is clear our bound

improves the bound in Arora et al. (2019) by a factor of
√
k.

4.2. ℓ∞ Lipschitz Loss

We now turn to the analysis for the setting with ℓ∞ Lipschitz
continuity assumption, which is more challenging. The
following theorem controls the Rademacher complexity of
G w.r.t. the dataset S in terms of the worst-case Rademacher

5
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complexity of H defined on the set SH, where

SH =
{
(x1,x

+
1 ,x

−
11), (x1,x

+
1 ,x

−
12), . . . , (x1,x

+
1 ,x

−
1k)︸ ︷︷ ︸

induced by the first example

,

(x2,x
+
2 ,x

−
21), (x2,x

+
2 ,x

−
22), . . . , (x2,x

+
2 ,x

−
2k)︸ ︷︷ ︸

induced by the second example

, . . . ,

(xn,x
+
n ,x

−
n1), (xn,x

+
n ,x

−
n2), . . . , (xn,x

+
n ,x

−
nk)︸ ︷︷ ︸

induced by the last example

}
.

As compared to G, the function class H removes the loss
function ℓ and is easier to handle. Our basic idea is to exploit
the Lipschitz continuity of ℓ w.r.t. ∥ · ∥∞: to approximate
the function class {ℓ(v1(y), . . . , vk(y))}, it suffices to ap-
proximate each component vj(y), j ∈ [k]. This explains
why we expand the set S of cardinality n to the set SH of
cardinality nk. The proof is given in Section C.

Theorem 4.8 (Complexity bound: ℓ∞-Lipschitz loss). As-
sume ∥f(x)∥2 ≤ R for any f ∈ F and x ∈ X . Let S be
defined as in Eq. (3.1). If ℓ : Rk 7→ R+ is G-Lipschitz w.r.t.
the ℓ∞-norm, then

RS(G) ≤ 24G(R2 + 1)n−
1
2 + 48G

√
kRSH,nk(H)

×
(
1 + log(4R2n

3
2 k)

⌈
log2

R2
√
n

12

⌉)
,

where RSH,nk(H) = max{
(x̃j ,x̃

+
j ,x̃−

j )
}

j∈[nk]
⊆SH

Eϵ∼{±1}nk

[
sup
h∈H

1

nk

∑
j∈[nk]

ϵjf(x̃j)
⊤(f(x̃+

j )− f(x̃−
j ))

]
.

Note in RSH,nk(H) we restrict the domain of functions in
H to SH, and allow an element in SH to be chosen several
times in the above maximization.

We can use Lemma 4.3 to control RSH,nk(H) in Theorem
4.8, and derive the following generalization error bound.
The proof is given in Section C.

Theorem 4.9 (Generalization bound: ℓ∞-Lipschitz loss).
Let ℓ : Rk 7→ R+ be G-Lipschitz continuous w.r.t. ∥ · ∥∞.
Assume ∥f(x)∥2 ≤ R, δ ∈ (0, 1). Then with probability at
least 1− δ over S for all f ∈ F we have

Lun(f) ≤ L̂un(f)+3B

√
log(2/δ)

2n
+48G(R2+1)n−

1
2+

96
√
12GR

n
√
k

(
1 + log(4R2n

3
2 k)

⌈
log2

R2
√
n

12

⌉)
C,

where

C = max
{(x̃j ,x̃

+
j ,x̃−

j )}nk
j=1⊆SH

Eϵ∼{±1}nk×{±1}d×{±1}3 (4.5)[
sup
f∈F

∑
j∈[nk]

∑
t∈[d]

(
ϵj,t,1ft(x̃j) + ϵj,t,2ft(x̃

+
j ) + ϵj,t,3ft(x̃

−
j )

)]
.

Remark 4.10. We now compare our bound with Eq. (4.3)
developed in Arora et al. (2019). It is reasonable to assume
C and B are of the same order. 1 Then, our bound becomes

Lun(f) = L̂un(f)+O
(GRB log2(nRk)

n
√
k

+B

√
log(1/δ)

n

)
.

(4.6)
We know if ℓ is G2-Lipschitz continuous w.r.t. ∥ · ∥2, it is
also

√
kG2-Lipschitz continuous w.r.t. ∥ · ∥∞. Therefore,

in the extreme case we have G =
√
kG2. Even in this

extreme case, our bound is of the order Lun(f) = L̂un(f)+

O
(

G2RB log2(nRk)
n + B

√
log(1/δ)

n

)
, which improves Eq.

(4.3) by a factor of
√
k up to a logarithmic factor. For

popular loss functions defined in Eq. (3.2) and Eq. (3.3),
we have G = G2 = 1 and in this case, our bound in Eq.
(4.6) improves Eq. (4.3) by a factor of k if we ignore a
logarithmic factor.
Remark 4.11. we now give the intuition of our improve-
ments. Arora et al. (2019) considers the 1-Lipschitz continu-
ity of ℓ : Rk 7→ R w.r.t. ∥ · ∥2, while we use the 1-Lipschitz
continuity of ℓ w.r.t. ∥ ·∥∞. Note that 1-Lipschitz continuity
w.r.t. ∥ · ∥2 is a weaker condition as compared to the 1-
Lipschitz continuity w.r.t. ∥ · ∥∞. Indeed, if ℓ is 1-Lipschitz
continuous w.r.t. ∥ · ∥2, then it is also

√
k-Lipschitz continu-

ous w.r.t. ∥·∥∞ with a much larger Lipschitz constant. In our
problem, the contrastive loss is 1-Lipschitz continuous w.r.t.
both ∥ · ∥2 and ∥ · ∥∞. Therefore, we can use the stronger
assumption on the 1-Lipschitz continuity w.r.t. ∥ · ∥∞ to
save a factor of

√
k. Furthermore, Arora et al. (2019) use

the inequality ∥J∥2 ≤ ∥J∥F , where J ∈ Rk×(k+2)d, ∥ · ∥2
is the spectral norm and ∥ · ∥F is the Frobenius norm. The
inequality introduces an additional factor of

√
k since ∥J∥F

can be as large as
√
k∥J∥2. As a comparison, our anal-

ysis based on Lipschitz continuity w.r.t. ∥ · ∥∞ does not
introduce any loss in the factor of k (up to a log term), and
outperforms Arora et al. (2019) by a factor of k.

4.3. Self-bounding Lipschitz Loss

Finally, we consider a self-bounding Lipschitz condition
where the Lipschitz constant depends on the loss function
values. This definition was given in Reeve & Kaban (2020).

Definition 4.12 (Self-bounding Lipschitz Continuity). A
loss function ℓ : Rk 7→ R+ is said to be Gs-self-bounding
Lipschitz continuous w.r.t. ℓ∞ norm if for any a,a′ ∈ Rk∣∣ℓ(a)− ℓ(a′)

∣∣ ≤ Gs max
{
ℓ(a), ℓ(a′)

} 1
2 ∥a− a′∥∞.

It was shown that the logistic loss given in Eq. (3.3) satisfies
the self-bounding Lipschtiz continuity with Gs = 2 (Reeve

1Indeed, under a typical behavior of Rademacher complexity as
Eϵ∼{±1}n supa∈A⊂Rn

[
ϵiai

]
= O(

√
n) (Bartlett & Mendelson,

2002), we have C = O(
√
nkd) and B = O(

√
nkd).
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& Kaban, 2020). In the following theorem, we give gener-
alization bounds for learning with self-bounding Lipschitz
loss functions. The basic idea is to replace the Lipschitz
constant G in Theorem 4.9 with empirical errors by using
the self-bounding property. We use Õ to hide logarithmic
factors. The proof is given in Section D.
Theorem 4.13 (Generalization bound: self-bounding Lips-
chitz loss). Let ℓ : Rk 7→ R+ beGs-self-bounding Lipschitz
continuous w.r.t. ∥ · ∥∞. Assume ∥f(x)∥2 ≤ R, δ ∈ (0, 1).
Then with probability at least 1 − δ over S we have the
following inequality uniformly for all f ∈ F

Lun(f)= L̂un(f)+Õ
(
(B+G2

sR
4)n−1+G2

sR
2n−2k−1C2

)
+Õ

(
(
√
B+GsR

2)n−
1
2+GsRn

−1k−
1
2C

)
L̂

1
2
un(f) log

1
2 (1/δ).

Remark 4.14. Theorem 4.13 gives optimistic generaliza-
tion bounds in the sense that the upper bounds depend on
empirical errors (Srebro et al., 2010). Therefore, the gener-
alization bounds for Lun(f)− L̂un(f) would benefit from

low training errors. In particular, if L̂
1
2
un(f) = 0, Theorem

4.13 implies generalization bounds

Lun(f) = L̂un(f)+Õ
(
Bn−1+G2

sR
4n−1+G2

sR
2n−2k−1C2

)
.

Typically, we have C = O(
√
nk) and in this case Lun(f) =

L̂un(f) + Õ
(
Bn−1 +G2

sR
4n−1

)
. In other words, we get

fast-decaying error bounds in an interpolating setting.

5. Applications
To apply Theorem 4.6 and Theorem 4.9, we need to control
the term A or C, which is related to the Rademacher com-
plexity of a function class. In this section, we will show how
to control C for features of the form x 7→ Uv(x), where
U ∈ Rd×d′

is a matrix and v : X 7→ Rd′
. Here v maps the

original data x ∈ X to an intermediate feature in Rd′
, which

is used for all the final features. If v is the identity map, then
we get linear features. If v is a neural network, then we get
nonlinear features. For a norm ∥ · ∥ on a matrix, we denote
by ∥ · ∥∗ its dual norm. The following lemmas to be proved
in Section E give general results on Rademacher complex-
ities. Lemma 5.1 gives upper bounds, while Lemma 5.2
gives lower bounds. It is immediate to extend our analysis
to control A. For brevity we ignore such a discussion.
Lemma 5.1 (Upper bound). Let d, d′ ∈ N. Let V be a
class of functions from X to Rd′

. Let F = {f(x) =
Uv(x) : U ∈ U ,v ∈ V}, where U =

{
U =

(u1, . . . ,ud)
⊤ ∈ Rd×d′

: ∥U⊤∥ ≤ Λ
}

and f(x) =
Uv(x) = (u1, . . . ,ud)

⊤v(x). Then

Eϵ∼{±1}nd sup
f∈F

∑
t∈[d]

∑
j∈[n]

ϵj,tft(xj) ≤

ΛEϵ∼{±1}nd sup
v∈V

∥∥( ∑
j∈[n]

ϵ1,jv(xj), . . . ,
∑
j∈[n]

ϵd,jv(xj)
)∥∥

∗.

Lemma 5.2 (Lower bound). If F is symmetric in the sense
that f ∈ F implies −f ∈ F , then we have

C≥
√
nk

2
sup
f∈F

max
(x̃,x̃+,x̃−)∈SH

(
∥f(x̃)∥22+∥f(x̃+)∥22+∥f(x̃−)∥22

) 1
2

.

Note in our definition of F , we ignore the projection oper-
ator, i.e., the feature function class should be of the form
f(x) = PR

(
Uv(x)) to satisfy the assumption ∥f(x)∥2 ≤

R. According to Remark 4.5, it is easy to extend our analy-
sis here to the case with including the projection operator in
the definition of feature function class.

5.1. Linear Features

We first apply Lemma 5.1 to derive Rademacher complexity
bounds for learning with linear features. For any p ≥ 1
and a matrix W = (w1, . . . ,wd′) ∈ Rd×d′

, the ℓ2,p

norm of W is defined as ∥W∥2,p =
(∑

i∈[d′] ∥wi∥p2
) 1

p .
If p = 2, this becomes the Frobenius norm ∥W∥F . For
any p ≥ 1, the Schatten-p norm of a matrix W ∈ Rd×d′

is defined as the ℓp-norm of the vector of singular values
(σ1(W ), . . . , σmin{d,d′}(W ))⊤ (the singular values are as-
sumed to be sorted in non-increasing order), i.e., ∥W∥Sp :=
∥σ(W )∥p. Let p∗ be the number satisfying 1/p+1/p∗ = 1.
The following proposition to be proved in Section E.1 gives
complexity bounds for learning with linear features.
Proposition 5.3 (Linear representation). Consider the fea-
ture map defined in Lemma 5.1 with v(x) = x.

(a) If ∥ · ∥ = ∥ · ∥2,p, then Eϵ sup
f∈F

∑
t∈[d]

∑
j∈[n]

ϵt,jft(xj)

≤ min
q≥p

{
Λd1/q

∗
max(

√
q∗ − 1, 1)

}( ∑
j∈[n]

∥xj∥22
) 1

2

.

(b) If ∥ · ∥ = ∥ · ∥Sp with p ≤ 2, then

Eϵ sup
f∈F

∑
t∈[d]

∑
j∈[n]

ϵt,jft(xj) ≤ Λ2−
1
4 min
q∈[p,2]

√
q∗π

e
×

max
{∥∥∥(d ∑

j∈[n]

xjx
⊤
j

) 1
2
∥∥∥
Sq∗

, d1/q
∗
( ∑

j∈[n]

∥xj∥22
)1/2}

.

We now plug the above Rademacher complexity bounds
into Theorem 4.9 to give generalization error bounds
for learning with unsupervised loss. Let Bx =
max{∥xj∥2, ∥x+

j ∥2, ∥x
−
jt∥2 : j ∈ [n], t ∈ [k]}. Note(∑

j∈[nk] ∥x̃j∥22
) 1

2 ≤
√
nkBx for x̃j in the definition of C,

from which and Proposition 5.3 we get the following bound
for the case v(x) = x (the definition of C involves nk ex-
amples, while in Proposition 5.3 we consider n examples):

C = O
(√

nkBx min
q≥p

{
Λd1/q

∗
max(

√
q∗ − 1, 1)

})
.

The following corollary then follows from Theorem 4.9.
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Corollary 5.4. Consider the feature map in Proposition 5.3
with ∥ · ∥ = ∥ · ∥2,p. Let ℓ be the logistic loss and δ ∈ (0, 1).
Then with probability at least 1− δ, for all f ∈ F

Lun(f)− L̂un(f) =
B log

1
2 (1/δ)√
n

+

Õ
(GRBx minq≥p

{
Λd1/q

∗
max(

√
q∗ − 1, 1)

}
√
n

)
.

It is also possible to give generalization bounds for learning
with ℓ2-Lipschitz loss functions, and optimistic generaliza-
tion bounds for learning with self-bounding Lipschitz loss
functions. We omit the discussion for brevity.

5.2. Nonlinear Features

We now consider Rademacher complexity for learning with
nonlinear features by DNNs. The following lemma to be
proved in Section E.2 gives Rademacher complexity bounds
for learning with features by DNNs. We say an activation
σ : R 7→ R is positive-homogeneous if σ(ax) = aσ(x) for
a ≥ 0, contractive if |σ(x)− σ(x′)| ≤ |x− x′|. The ReLU
activation function σ(x) = max{x, 0} is both positive-
homogeneous and contractive.

Proposition 5.5 (Nonlinear representation). Consider the
feature map defined in Lemma 5.1 with ∥ · ∥ = ∥ · ∥F and

V =
{
x 7→ v(x) = σ

(
VLσ

(
VL−1 · · ·σ(V1x)

))
:

∥Vl∥F ≤ Bl, ∀l ∈ [L]
}
,

where σ is positive-homogeneous, contractive and σ(0) = 0,
and L is the number of layers. Then

Eϵ sup
f∈F

∑
t∈[d]

∑
j∈[n]

ϵt,jft(xj) ≤
√
dΛBLBL−1 · · ·B1×

(
16L

( ∑
1≤i<j≤n

(x⊤
i xj)

2
) 1

2 +
∑
j∈[n]

∥xj∥22
) 1

2

.

Remark 5.6. If d = 1, the following bound was established
in Golowich et al. (2018)

Eϵ sup
f∈F

∑
j∈[n]

ϵjft(xj) = O
(√

L
( ∑

j∈[n]

∥xj∥22
) 1

2
∏
l∈[L]

Bl

)
.

Proposition 5.5 extends this bound to the general case
d ∈ N. In particular, if d = 1, our result matches the
result in Golowich et al. (2018) up to a constant factor.
We need to introduce different techniques to handle the
difficulty in considering the coupling among different fea-
tures u⊤

t v(x), t ∈ [d], which is reflected by the regularizer
on U as ∥U∥F ≤ Λ. Ignoring this coupling would im-
ply a bound with a crude dependency on d. To preserve
the coupling, we consider the moment generation func-
tion (MGF) of supf∈F

(∑
t∈[d]

∑
j∈[n] ϵt,jft(xj)

)2
, and

then reduce it to the MGF of a Rademacher chaos variable∑
1≤i<j≤n ϵiϵjx

⊤
i xj by repeated applications of contrac-

tion inequalities of Rademacher complexities. A direct
application of the analysis in Golowich et al. (2018) show

Eϵ sup
f∈F

∑
j∈[n]

ϵjft(xj) = O
(
d
√
L
( ∑
j∈[n]

∥xj∥22
) 1

2
∏
l∈[L]

Bl

)
.

As a comparison, our analysis implies a bound with a square-
root dependency on d. We will give more details on the
comparison of technical analysis in Remark E.6.

Note
(∑

1≤i<j≤n(x
⊤
i xj)

2
) 1

2 = O
(∑

j∈[n] ∥xj∥22
)
, from

which and Proposition 5.5 we get for nonlinear features
that C = O

(√
dLΛ(nk)

1
2Bx

∏
l∈[L]Bl

)
. The following

proposition then follows directly from Theorem 4.9.

Corollary 5.7. Consider the feature map in Proposition 5.5.
Let ℓ be the logistic loss and δ ∈ (0, 1). With probability at
least 1− δ the following inequality holds for all f ∈ F

Lun(f)− L̂un(f) =

Õ
(GR√dLΛBx

∏
l∈[L]Bl +B log

1
2 1

δ√
n

)
.

5.3. Generalization for Downstream Classification

In this subsection, we apply the above generalization bounds
on unsupervised learning to derive generalization guaran-
tees for a downstream supervised learning task. Similar
ideas can be dated back to metric/similarity learning, where
one shows that similarity-based learning guarantees a good
generalization of the resultant classification (Guo & Ying,
2014; Balcan et al., 2008; Balcan & Blum, 2006). Fol-
lowing Arora et al. (2019), we consider a particular mean
classifier with rows being the means of the representation
of each class, i.e., x 7→ Wµf(x) with the c-th row of W
being the mean µc of representations of inputs with label c:
µc := Ex∼Dc

[f(x)]. Consider the average supervised loss

Lµ
sup(f) := E{ci}K+1

i=1 ∼ρK+1

[
Lsup({ci}K+1

i=1 ,W
µf)|ci ̸= cj

]
,

where we take the expectation over T = {ci}K+1
i=1 . The

following lemma shows that the generalization performance
of the mean classifier based on a representation f can be
guaranteed in terms of the generalization performance of
the representation in unsupervised learning.

Lemma 5.8 (Arora et al. 2019). There exists a function
ρ : CK+1 7→ R+ such that the following inequality holds
for any f ∈ F : ET ∼D

[
ρ(T )Lµ

sup(f)
]
≤ Lun(f).

We refer the interested readers to Arora et al. (2019) for the
expression of ρ(T ), which is independent of n. The follow-
ing corollaries are immediate applications of Lemma 5.8
and our generalization bounds for unsupervised learning.
We omit the proof for brevity.
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Corollary 5.9 (Linear representation). Consider the feature
map in Proposition 5.3 with ∥ · ∥ = ∥ · ∥2,p. Let ℓs, ℓ be the
logistic loss and δ ∈ (0, 1). Then with probability at least
1− δ the following inequality holds

ET ∼D

[
ρ(T )Lµ

sup(f̂)
]
= L̂un(f̂) + Õ

(B log
1
2 (1/δ)√
n

+
GRBx minq≥p

{
Λd1/q

∗
max(

√
q∗ − 1, 1)

}
√
n

)
.

Remark 5.10. If p ≤ (log d)/(log d − 1), we set q =
(log d)/(log d − 1), and get d1/q

∗
max(

√
q∗ − 1, 1) =

O(log
1
2 d). In this case, we get a bound with a logarith-

mic dependency on the number of features. It is possible
to extend our discussion to more general norms ∥ · ∥ =
∥ · ∥p,q, p, q ≥ 1 (Kakade et al., 2012).

Corollary 5.11 (Nonlinear representation). Consider the
feature map in Proposition 5.5. Let ℓs, ℓ be the logistic loss
and δ ∈ (0, 1). With probability at least 1− δ we have

ET ∼D

[
ρ(T )Lµ

sup(f̂)
]
= L̂un(f̂)+

Õ
(GR√dLΛBx

∏
l∈[L]Bl

√
n

+
B log1/2(1/δ)√

n

)
.

Remark 5.12. If we combine our Rademacher complexity
bounds in Section 5 and Eq. (4.3) developed in Arora et al.
(2019), we would get generalization bounds for supervised
classification with a linear dependency on k. If we com-
bine our complexity bounds and Theorem 4.6, we would get
generalization bounds for supervised classification with a
square-root dependency on k. These discussions use the Lip-
schitz continuity of ℓ w.r.t ∥ · ∥2. As a comparison, the use
of Lipschitz continuity w.r.t. ∥ · ∥∞ allows us to derive gen-
eralization bounds with a logarithmic dependency on k in
Corollary 5.9 and Corollary 5.11. Furthermore, we can im-
prove the bounds Õ(1/

√
n) in these corollaries to Õ(1/n)

in an interpolation setting by applying Theorem 4.13.
Remark 5.13. Note ρ(T ) in the above corollaries can grow
very fast w.r.t. k, which motivates various studies on the
connection between feature learning and downstream clas-
sification tasks (Ash et al., 2022; Nozawa & Sato, 2021;
Wang et al., 2022; Bao et al., 2022). As a comparison, the
main focus of our paper is to improve generalization bounds
for pre-train task, which is orthogonal to the analysis in Ash
et al. (2022); Nozawa & Sato (2021); Wang et al. (2022);
Bao et al. (2022). It should be mentioned that Ash et al.
(2022) also studies generalization bounds for pre-train task.
Under the assumption ∥f(x)∥1 ≤ R1, Ash et al. (2022)
shows the following generalization bounds for contrastive
learning with ℓ∞ Lipschitz loss

Lun(f)−L̂un(f) ≲
R1

√
kd

n
max
t∈[d]

max
x1,...,xn

Eϵ sup
f∈F

∑
j∈[n]

ft(xj),

which is worse than our bound by a factor of
√
k. Moreover,

this bound uses R1 while our bound assumes ∥f(x)∥2 ≤ R.
Note R1 can be larger than R by a factor of

√
d.

It should be mentioned that our improvement on the gener-
alization bounds for pre-train task can be seamlessly com-
bined with the connection on pre-train task and downstream
task to get improved generalization bounds for the down-
stream task. For example, Nozawa & Sato (2021) derives
the bound Lu

sup(f̂) ≤ 2Lun(f̂)
vk+1

, where vk+1 is the proba-
bility that the sampled k negative examples contains all
classes. We can directly combine this result and our anal-
ysis to derive the following bounds on the performance of
downstream tasks for learning with linear features

Lu
sup(f̂) =

2

vk+1

(
L̂un(f̂) + Õ

( log1/2(1/δ) +√
d√

n

))
.

6. Conclusion
Motivated by the existing generalization bounds with a
crude dependency on the number of negative examples,
we present a systematic analysis on the generalization be-
havior of CRL. We consider three types of loss functions.
Our results improve the existing bounds by a factor of

√
k

for ℓ2 Lipschitz loss, and by a factor of k for ℓ∞ Lipschitz
loss (up to a log factor). We get optimistic bounds for self-
bounding Lipschitz loss, which imply fast rates under low
noise conditions. We justify the effectiveness of our results
with applications to both linear and nonlinear features.

Our analysis based on Rademacher complexities implies
algorithm-independent bounds. It would be interesting to
develop algorithm-dependent bounds to understand the in-
teraction between optimization and generalization. For ℓ∞
loss, our bound still enjoys a logarithmic dependency on
k. It would be interesting to study whether this logarithmic
dependency can be removed in further study.
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Appendix for “Generalization Analysis for Contrastive Representation Learning”

A. Effect on the Preservation of Coupling in Lemma 4.3
In this section, we show that Lemma 4.3 can improve Eq. (4.1) by a factor of

√
d due to the ability in preserving the coupling

among different coordinates in the features. To this aim, we introduce the following lemma on the spectral norm of random
matrices.

Lemma A.1 (Tropp 2016). Consider an independent family S1, . . . , Sn of random d× d matrices with E[Si] = 0 for each
i, and define Z =

∑
i∈[n] Si. Denote C(d) = 4(1 + 2⌈log d⌉). Then

E[∥Z∥op] ≤
√
C(d)max

{∥∥E[ZZ⊤]
∥∥ 1

2

op,
∥∥E[Z⊤Z]

∥∥ 1
2

op

}
+ C(d)

(
Emax

i
∥Si∥2op

) 1
2 .

For simplicity, let us consider linear features, i.e.,

F =
{
f(x) = (f1(x), . . . , fd(x))

⊤ :
∑
t∈[d]

∥wt∥22 ≤ R2
w

}
,

where ft(x) = ⟨wt,x⟩ and ∥x∥2 ≤ 1. In this case, we have

∥f(x)∥∞ = max
t∈[d]

|ft(x)| ≤ max
t∈[d]

∥wt∥2∥x∥2 ≤ Rw

and

∥f(x)∥2 =
( ∑

t∈[d]

f2t (x)
) 1

2 ≤
( ∑

t∈[d]

∥wt∥22∥x∥22
) 1

2 ≤ Rw.

Eq. (4.1) implies

Eϵ sup
f∈F

∑
j∈[n]

ϵjf(xj)
⊤f(x+

j ) ≤ dmax
t∈[d]

Eϵ∼{±1}n

[
sup
f∈F

∑
j∈[n]

ϵjft(xj)ft(x
+
j )

]
= dmax

t∈[d]
Eϵ∼{±1}n

[
sup
f∈F

∑
j∈[n]

ϵjw
⊤
t x

+
j x

⊤
j wt

]
= dmax

t∈[d]
Eϵ∼{±1}n

[
sup

∥wt∥2≤Rw

w⊤
t

( ∑
j∈[n]

ϵjx
+
j x

⊤
j

)
wt

]
= dR2

wEϵ∼{±1}n

∥∥∥ ∑
j∈[n]

ϵjx
+
j x

⊤
j

∥∥∥
op
,

where ∥ · ∥op denotes the spectral operator of a matrix. Let Z =
∑

j∈[n] ϵjx
+
j x

⊤
j . It is clear that

E
[( ∑

j∈[n]

ϵjx
+
j x

⊤
j

)( ∑
j∈[n]

ϵjx
+
j x

⊤
j

)⊤]
=

∑
j∈[n]

x+
j x

⊤
j xj(x

+
j )

⊤ ⪯
∑
j∈[n]

x+
j (x

+
j )

⊤

and

E
[( ∑

j∈[n]

ϵjx
+
j x

⊤
j

)⊤( ∑
j∈[n]

ϵjx
+
j x

⊤
j

)]
=

∑
j∈[n]

xj(x
+
j )

⊤x+
j x

⊤
j ⪯

∑
j∈[n]

xj(xj)
⊤.

Therefore, we have
max

{∥∥E[ZZ⊤]
∥∥ 1

2

op,
∥∥E[Z⊤Z]

∥∥ 1
2

op

}
≤

√
n.

Furthermore, we have
Emax

j
∥ϵjx+

j x
⊤
j ∥2op ≤ 1.
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It then follows from Lemma A.1 that

Eϵ∼{±1}n

∥∥∥ ∑
j∈[n]

ϵjx
+
j x

⊤
j

∥∥∥
op

≤
√
nC(d) + C(d).

We can combine the above discussions together to derive the following inequality based on Eq. (4.1)

Eϵ sup
f∈F

∑
j∈[n]

ϵjf(xj)
⊤f(x+

j ) ≤ dR2
w

(√
nC(d) + C(d)

)
. (A.1)

As a comparison, the inequality below Eq. (4.1) implies the following inequality via our approach

Eϵ sup
f∈F

∑
j∈[n]

ϵjf(xj)
⊤f(x+

j ) ≲ RwEϵ sup
f∈F

∑
j∈[n]

∑
t∈[d]

ϵj,tft(xj).

Furthermore, there holds

Eϵ sup
f∈F

∑
j∈[n]

∑
t∈[d]

ϵj,tft(xj) = Eϵ sup
f∈F

∑
j∈[n]

∑
t∈[d]

ϵj,t⟨wt,xj⟩ = Eϵ sup
f∈F

∑
t∈[d]

〈
wt,

∑
j∈[n]

ϵj,txj

〉
≤ Eϵ sup

f∈F

∑
t∈[d]

∥∥wt∥2
∥∥∥ ∑

j∈[n]

ϵj,txj

∥∥∥
2
≤ RwEϵ

( ∑
t∈[d]

∥∥ ∑
j∈[n]

ϵj,txj

∥∥2
2

) 1
2

≤ Rw

( ∑
t∈[d]

Eϵ

∥∥ ∑
j∈[n]

ϵj,txj

∥∥2
2

) 1
2

= Rw

( ∑
t∈[d]

Eϵ

∑
j∈[n]

∥xj∥22
) 1

2 ≤ Rw

√
nd,

where we have used Cauchy-Schwartz’s inequality in the first inequality and the Jensen’s inequality in the second inequality.
Therefore, our analysis implies

Eϵ sup
f∈F

∑
j∈[n]

ϵjf(xj)
⊤f(x+

j ) ≤ R2
w

√
nd.

It is clear our analysis improves (A.1) based on existing analysis by a factor of
√
d in this specific problem.

B. Proof of Theorem 4.6
To prove Theorem 4.6, we first prove Lemma 4.3 by the following vector-contraction lemma on Rademacher complexities.

Lemma B.1 (Maurer 2016). Let S = {zj}nj=1 ∈ Zn. Let F ′ be a class of functions f ′ : Z 7→ Rd and h : Rd 7→ R be
G-Lipschitz w.r.t. ℓ2-norm. Then

Eϵ∼{±1}n

[
sup
f ′∈F ′

∑
j∈[n]

ϵj(h ◦ f ′)(zj)
]
≤

√
2GEϵ∼{±1}nd

[
sup
f ′∈F ′

∑
j∈[n]

∑
t∈[d]

ϵj,tf
′
t(zj)

]
.

In Section F, we will provide an extension of the above lemma.

Proof of Lemma 4.3. Let f ′ : X 3 7→ R3d be defined as

f ′(x,x+,x−) =
(
f(x), f(x+), f(x−)

)
∈ R3d

and h : R3d 7→ R be defined as

h(y,y+,y−) = y⊤(y+ − y−), y,y+,y− ∈ Rd.

Then it is clear that
f(x)⊤(f(x+)− f(x−)) = h ◦ f ′(x,x+,x−).

Furthermore, for any y1,y
+
1 ,y

−
1 ,y2,y

+
2 ,y

−
2 with Euclidean norm less than or equal to R, we have

h(y1,y
+
1 ,y

−
1 )− h(y2,y

+
2 ,y

−
2 ) = y⊤

1 (y
+
1 − y−

1 )− y⊤
2 (y

+
2 − y−

2 )

= y⊤
1 (y

+
1 − y−

1 )− y⊤
1 (y

+
2 − y−

2 ) + y⊤
1 (y

+
2 − y−

2 )− y⊤
2 (y

+
2 − y−

2 )

= y⊤
1 (y

+
1 − y−

1 − y+
2 + y−

2 ) + (y1 − y2)
⊤(y+

2 − y−
2 ).
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It then follows from the elementary inequality (a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2 that∣∣h(y1,y
+
1 ,y

−
1 )− h(y2,y

+
2 ,y

−
2 )

∣∣2 ≤
2(1 + p)∥y1∥2∥y+

1 − y+
2 ∥2 + 2(1 + p)∥y1∥2∥y−

1 − y−
2 ∥22 + (1 + 1/p)∥y+

2 − y−
2 ∥22∥y1 − y2∥22.

We can choose p = 2 and get∣∣h(y1,y
+
1 ,y

−
1 )− h(y2,y

+
2 ,y

−
2 )

∣∣2 ≤ 6R2
(
∥y+

1 − y+
2 ∥2 + ∥y−

1 − y−
2 ∥22 + ∥y1 − y2∥22

)
= 6R2∥(y1,y

+
1 ,y

−
1 )− (y2,y

+
2 ,y

−
2 )∥22.

This shows that h is
√
6R-Lipschitz continuous w.r.t. ∥ · ∥2. We can apply Lemma B.1 to derive

Eϵ∼{±1}n

[
sup
f ′∈F ′

∑
j∈[n]

ϵj(h ◦ f ′)(zj)
]

≤
√
12REϵ∼{±1}n×{±1}d×{±1}3

[
sup
f∈F

∑
j∈[n]

∑
t∈[d]

(
ϵj,t,1ft(xj) + ϵj,t,2ft(x

+
j ) + ϵj,t,3ft(x

−
j )

)]
.

The proof is completed.

The following standard lemma gives generalization error bounds in terms of Rademacher complexities.

Lemma B.2 (Mohri et al. 2012). Let G̃ be a function class and S̃ = {z1, . . . , zn}. If for any g ∈ G̃ we have g(z) ∈ [0, B],
then for any δ ∈ (0, 1) the following inequality holds with probability (w.r.t. S̃) at least 1− δ

E[g(z)] ≤ 1

n

n∑
i=1

g(zi) + 2RS̃(G̃) + 3B

√
log(2/δ)

2n
, ∀g ∈ G̃.

Proof of Theorem 4.6. According to the G2-Lipschitz continuity of ℓ w.r.t. ℓ2-norm and Lemma B.1, we have

Eϵ∼{±1}n

[
sup
f∈F

∑
j∈[n]

ϵjℓ
({
f(xj)

⊤(f(x+
j )− f(x−

ji))
}
i∈[k]

)]
≤

√
2G2E{ϵ}∼{±1}nkE

[
sup
f∈F

∑
j∈[n]

∑
i∈[k]

ϵj,if(xj)
⊤(f(x⊤

j )− f(x−
ji))

]
.

According to Lemma 4.3, we further get

E{ϵ}∼{±1}nkE
[
sup
f∈F

∑
j∈[n]

∑
i∈[k]

ϵj,if(xj)
⊤(f(x⊤

j )− f(x−
ji))

]
≤

√
12RE{ϵ}∼{±1}3nkdE

[
sup
f∈F

∑
j∈[n]

∑
i∈[k]

∑
t∈[d]

(
ϵj,i,t,1ft(xj) + ϵj,i,t,2ft(x

+
j ) + ϵj,i,t,3ft(x

−
ji)

)]
.

We can combine the above two inequalities to get the Rademacher complexity bounds.

We now turn to the generalization bounds. Applying Lemma B.2, with probability at least 1− δ the following inequality
holds with probability at least 1− δ

Lun(f) ≤ L̂un(f) + 2RS(G) + 3B

√
log(2/δ)

2n
, ∀f ∈ F .

The stated bound on generalization errors then follows by plugging the Rademacher complexity bounds into the above
bound. The proof is completed.

C. Proof of Theorem 4.9
We first introduce several complexity measures such as covering numbers and fat-shattering dimension (Alon et al., 1997;
Anthony & Bartlett, 1999; Cucker & Zhou, 2007; Zhou, 2002).
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Definition C.1 (Covering number). Let S̃ := {z1, . . . , zn} ∈ Zn. Let F̃ be a class of real-valued functions defined over a
space Z . For any ϵ > 0 and p ≥ 1, the empirical ℓp-norm covering number Np(ϵ, F̃ , S̃) with respect to S̃ is defined as the
smallest number m of a collection of vectors v1, . . . ,vm ∈ {(f(z1), . . . , f(zn)) : f ∈ F̃} such that

sup
f∈F̃

min
j∈[m]

( 1

n

∑
i∈[n]

|f(zi)− vj
i |

p
) 1

p ≤ ϵ,

where vj
i is the i-th component of the vector vj . In this case, we call {v1, . . . ,vm} an (ϵ, ℓp)-cover of F̃ with respect to S̃.

Definition C.2 (Fat-Shattering Dimension). Let F̃ be a class of real-valued functions defined over a space Z̃ . We define the
fat-shattering dimension fatϵ(F̃) at scale ϵ > 0 as the largest D ∈ N such that there exist D points z1, . . . , zD ∈ Z̃ and
witnesses s1, . . . , sD ∈ R satisfying: for any δ1, . . . , δD ∼ {±1} there exists f ∈ F̃ with

δi(f(zi)− si) ≥ ϵ/2, ∀i ∈ [D].

To prove Theorem 4.8, we need to introduce the following lemma on Rademacher complexity, fat-shattering dimension and
covering numbers. Part (a) shows that the covering number can be bounded by fat-shattering dimension (see, e.g., Theorem
12.8 in Anthony & Bartlett (1999)). Part (b) shows that the fat-shattering dimension can be controlled by the worst-case
Rademacher complexity, which was developed in Srebro et al. (2010). Part (c) is a discretization of the chain integral to
control Rademacher complexity by covering numbers (Srebro et al., 2010), which can be found in Guermeur (2017). Let e
be the base of the natural logarithms.

Lemma C.3. Let S̃ := {z1, . . . , zn} ⊆ Z̃ . Let F̃ be a class of real-valued functions defined over a space Z̃ .

(a) If functions in F̃ take values in [−B,B], then for any ϵ > 0 with fatϵ(F̃) < n we have

logN∞(ϵ, F̃ , S̃) ≤ 1 + fatϵ/4(F̃)
(
log2

4eBn

ϵfatϵ/4(F̃)

)(
log

16B2n

ϵ2

)
.

(b) For any ϵ > RZ̃,n(F̃), we have fatϵ(F̃) < 4n
ϵ2 R

2
Z̃,n

(F̃).

(c) Let (ϵj)
∞
j=0 be a monotone sequence decreasing to 0 and any (a1, . . . , an) ∈ Rn. If ϵ0 ≥√

n−1 supf∈F̃
∑n

i=1

(
f(zi)− ai

)2
, then for any non-negative integer N we have

RS̃(F̃) ≤ 2
N∑
j=1

(
ϵj + ϵj−1)

√
logN∞(ϵj , F̃ , S̃)

n
+ ϵN . (C.1)

According to Part (a) of Lemma C.3, the following inequality holds for any ϵ ∈ (0, 2B] (the case fatϵ/4(F̃) = 0 is trivial
since in this case we have N∞(ϵ, F̃ , S̃) = 1, and otherwise we have fatϵ/4(F̃) ≥ 1)

logN∞(ϵ, F̃ , S̃) ≤ 1 + fatϵ/4(F̃) log22
8eB2|S̃|
ϵ2

. (C.2)

We follow the arguments in Lei et al. (2019) to prove Theorem 4.8.

Proof of Theorem 4.8. We first relate the empirical ℓ∞-covering number of F w.r.t. S = {(xj ,x
+
j ,x

−
j1,x

−
j2, . . . ,x

−
jk) : j ∈

[n]} to the empirical ℓ∞-covering number of H w.r.t. SH. Let{
rm =

(
rm1,1, r

m
1,2, . . . , r

m
1,k, . . . , r

m
n,1, r

m
n,2, . . . , r

m
n,k

)
: m ∈ [N ]

}
be an (ϵ/G, ℓ∞)-cover of H w.r.t. SH. Recall that

hf (x,x
+,x−) = f(x)⊤

(
f(x+)− f(x−)

)
. (C.3)

Then, by the definition of ℓ∞-cover we know for any f ∈ F we can find m ∈ [N ] such that

max
j∈[n]

max
i∈[k]

∣∣hf (xj ,x
+
j ,x

−
ji)− rmj,i

∣∣ ≤ ϵ/G.

15



Generalization Analysis for Contrastive Representation Learning

By the Lipschitz continuity of ℓ, we then get

max
j∈[n]

∣∣ℓ({f(xj)
⊤(f(x+

j )− f(x−
ji)

)}k

i=1

)
− ℓ

(
{rmj,i}ki=1

)∣∣
≤ G

∥∥(f(xj)
⊤(f(x+

j )− f(x−
ji)

))k
i=1

−
(
rmj,i

)k
i=1

∥∥
∞ = G

∥∥(hf (xj ,x
+
j ,x

−
ji)

)k
i=1

−
(
rmj,i

)k
i=1

∥∥
∞

≤ Gϵ/G = ϵ.

This shows that
{(
ℓ
(
{rm1,i}ki=1

)
, ℓ
(
{rm2,i}ki=1

)
, . . . , ℓ

(
{rmn,i}ki=1

))
: m ∈ [N ]

}
is an (ϵ, ℓ∞)-cover of G w.r.t. S and therefore

N∞(ϵ,G, S) ≤ N∞(ϵ/G,H, SH). (C.4)

Since we consider empirical covering number of F w.r.t. S, we can assume functions in H are defined over SH. For
simplicity, we denote Rnk(H) := RSH,nk(H). We now control N∞(ϵ/G,H, SH) by Rademacher complexities of H. For
any ϵ > 2Rnk(H), it follows from Part (b) of Lemma C.3 that

fatϵ(H) ≤ 4nk

ϵ2
R2

SH,nk(H) ≤ nk. (C.5)

Note for any f ∈ F , we have f(x)⊤(f(x+)− f(x−)) ∈ [−2R2, 2R2]. It then follows from Eq. (C.2) and Eq. (C.5) that
(replace B by 2R2)

logN∞(ϵ,H, SH) ≤ 1 + fatϵ/4(H) log2(32eR4nk/ϵ2)

≤ 1 +
64nkR2

nk(H)

ϵ2
log2(32eR4nk/ϵ2), ϵ ∈ (0, 4R2].

We can combine the above inequality and Eq. (C.4) to derive the following inequality for any 2GRnk(H) ≤ ϵ ≤ 4GR2

logN∞(ϵ,G, S) ≤ 1 +
64nkG2R2

nk(H)

ϵ2
log2(32eR4G2nk/ϵ2). (C.6)

Let ϵN = 24Gmax
{√

kRnk(H), n− 1
2

}
,

ϵj = 2N−jϵN , j = 0, . . . , N − 1,

where

N =

⌈
log2

2GR2

24Gmax
{√

kRnk(H), n− 1
2

}⌉
.

It is clear from the definition that
ϵ0 ≥ 2GR2 ≥ ϵ0/2.

The Lipschitz continuity of ℓ implies

ℓ(({hf (x,x+,x−
i )}i∈[k]))− ℓ((0, 0, . . . , 0)) ≤ G∥hf (x,x+,x−)∥∞ ≤ 2R2G.

According to the above inequality and Part (c) of Lemma C.3, we know (note ϵN ≥ 2GRnk(H) and therefore Eq. (C.6)
holds for ϵ = ϵj , j = 1, . . . , N )

RS(G) ≤ 2
N∑
j=1

(ϵj + ϵj−1)

√
logN∞(ϵj ,G, S)

n
+ ϵN

≤ 2n−
1
2

N∑
j=1

(ϵj + ϵj−1) +
16G

√
nkRnk(H)√
n

N∑
j=1

(ϵj + ϵj−1) log(32eR
4G2nk/ϵ2j )

ϵj
+ ϵN

≤ 6ϵ0n
− 1

2 + ϵN +
48G

√
nkRnk(H)√
n

N∑
j=1

log(32eR4G2nk/ϵ2j )

≤ 24GR2n−
1
2 + ϵN + 48GN

√
kRnk(H) log(32eR4G2nk) + 48G

√
kRnk(H)

N∑
j=1

log(1/ϵ2j ).
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According to the definition of ϵk, we know

N∑
j=1

log(1/ϵ2j ) =
N∑
j=1

log(22j/ϵ20) =
N∑
j=1

log(1/ϵ20) + log 4 ·
N∑
j=1

j = N log(1/ϵ20) +
N(N + 1) log 4

2

= N
(
log 1/ϵ20 + (N + 1) log 2

)
= N log 2N+1/ϵ20 = N log

( 1

ϵN

2

ϵ0

)
≤ N log

( 1

ϵN

2

2GR2

)
≤ N log

( √
n

24G

1

GR2

)
= N log

√
n

24G2R2
.

We can combine the above two inequalities together to get

RS(G) ≤ 24GR2n−
1
2 + ϵN + 48NG

√
kRnk(H)

(
log(32eR4G2nk) + log

√
n

24G2R2

)
≤ 24GR2n−

1
2 + ϵN + 48G

√
kRnk(H)

(
log(32eR4G2nk) + log

√
n

24G2R2

)⌈
log2

2GR2
√
n

24G

⌉
≤ 24GR2n−

1
2 + ϵN + 48G

√
kRnk(H)

(
log(4R2n

3
2 k)

)⌈
log2

R2
√
n

12

⌉
,

where we have used the definition of N and 32e/24 ≤ 4. The proof is completed.

Proof of Theorem 4.9. Applying Lemma B.2, with probability at least 1− δ the following inequality holds with probability
at least 1− δ

Lun(f) ≤ L̂un(f) + 2RS(G) + 3B

√
log(2/δ)

2n
, ∀f ∈ F .

According to Theorem 4.8 and Lemma 4.3, we know

RS(G) ≤ 48G(R2 + 1)n−
1
2 + 48G

√
kRnk(H)

(
1 + log(R2n

3
2 k)

⌈
log2

R2
√
n

12

⌉)
≤ 48G(R2 + 1)n−

1
2 +

48
√
12GR

√
k

nk

(
1 + log(R2n

3
2 k)

⌈
log2

R2
√
n

12

⌉)
C.

We can combine the above two inequalities together and derive the stated bound. The proof is completed.

D. Proof of Theorem 4.13
To prove Theorem 4.13, we introduce the following lemma on generalization error bounds in terms of local Rademacher
complexities (Reeve & Kaban, 2020).

Lemma D.1 (Reeve & Kaban 2020). Consider a function class G of functions mapping Z to [0, b]. For any S̃ = {zi : i ∈
[n]} and g ∈ G, let ÊS̃ [g] =

1
n

∑
i∈[n] g(zi). Assume for any S̃ ∈ Zn and r > 0, we have

RS̃

(
{g ∈ G : ÊS̃ [g] ≤ r}

)
≤ ϕn(r),

where ϕn : R+ 7→ R+ is non-decreasing and ϕn(r)/
√
r is non-increasing. Let r̂n be the largest solution of the equation

ϕn(r) = r. For any δ ∈ (0, 1), with probability at least 1− δ the following inequality holds uniformly for all g ∈ G

Ez[g(z)] ≤ ÊS̃ [g] + 90(r̂n + r0) + 4

√
ÊS̃ [g](r̂n + r0),

where r0 = b
(
log(1/δ) + 6 log log n

)
/n.

Proof of Theorem 4.13. For any r > 0, we define Fr as a subset of F with the empirical error less than or equal to r

Fr =
{
f ∈ F :

1

n

∑
j∈[n]

gf (xj ,x
+
j ,x

−
j1, . . . ,x

−
jk) ≤ r

}
.

Let {
rm =

(
rm1,1, r

m
1,2, . . . , r

m
1,k, . . . , r

m
n,1, r

m
n,2, . . . , r

m
n,k

)
: m ∈ [N ]

}
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be an (ϵ/(
√
2rGs), ℓ∞)-cover of Hr :=

{
hf ∈ H : f ∈ Fr

}
w.r.t. SH. Then, by the definition of ℓ∞-cover we know for

any f ∈ Fr we can find m ∈ [N ] such that

max
j∈[n]

max
i∈[k]

∣∣hf (xj ,x
+
j ,x

−
ji)− rmj,i

∣∣ ≤ ϵ/(
√
2rGs).

According to the self-bounding Lipschitz continuity of ℓ, we know

1

n

∑
j∈[n]

∣∣ℓ({f(xj)
⊤(f(x+

j )− f(x−
ji)

)}k

i=1

)
− ℓ

(
{rmj,i}ki=1

)∣∣2
≤ G2

s

n

∑
j∈[n]

max
{
ℓ
({
f(xj)

⊤(f(x+
j )− f(x−

ji)
)}k

i=1

)
, ℓ
(
{rmj,i}ki=1

)}∥∥(f(xj)
⊤(f(x+

j )− f(x−
ji)

))k
i=1

−
(
rmj,i

)k
i=1

∥∥2
∞

≤ G2
s

n

∑
j∈[n]

(
ℓ
({
f(xj)

⊤(f(x+
j )− f(x−

ji)
)}k

i=1

)
+ ℓ

(
{rmj,i}ki=1

))∥∥(hf (xj ,x
+
j ,x

−
ji)

)k
i=1

−
(
rmj,i

)k
i=1

∥∥2
∞

≤ 2G2
srϵ

2/(2rG2
s) = ϵ2,

where we have used the following inequalities due to the definition of Fr

1

n

∑
j∈[n]

ℓ
({
f(xj)

⊤(f(x+
j )− f(x−

ji)
)}k

i=1

)
≤ r,

1

n

∑
j∈[n]

ℓ
(
{rmj,i}ki=1

)
≤ r.

Therefore, we have
N2(ϵ,Gr, S) ≤ N∞(ϵ/(

√
2rGs),Hr, SH),

where Gr = {gf ∈ G : f ∈ Fr}. Analyzing analogously to the proof of Theorem 4.8, we get (replacing G there by
√
2rGs)

RS(Gr) ≤ 24
√
2rGs(R

2 + 1)n−
1
2 + 48

√
2rGs

√
kRSH,nk(H)

(
1 + log(4R2n

3
2 k)

⌈
log2

R2
√
n

12

⌉)
:= ψn(r).

Let r̂n be the point satisfying r̂n = ψn(r̂n):

r̂n = 24
√
2r̂nGs(R

2 + 1)n−
1
2 + 48

√
2r̂nGs

√
kRSH,nk(H)

(
1 + log(4R2n

3
2 k)

⌈
log2

R2
√
n

12

⌉)
,

from which we get

r̂n = Õ
(
G2

sR
4n−1 +G2

skR
2
SH,nk(H)

)
.

We can apply Lemma D.1 to get the following inequality with probability at least 1− δ uniformly for all f ∈ F

Lun(f) = L̂un(f)+Õ
(
Bn−1+G2

sR
4n−1+G2

skR
2
SH,nk(H)

)
+Õ

(√
Bn− 1

2 +GsR
2n−

1
2 +Gs

√
kRSH,nk(H)

)
L̂

1
2
un(f).

We can apply Lemma 4.3 to control RSH,nk(H) and derive the following bound

Lun(f) = L̂un(f)+ Õ
(
Bn−1 +G2

sR
4n−1 +G2

sR
2n−2k−1C2

)
+ Õ

(√
Bn− 1

2 +GsR
2n−

1
2 +GsRn

−1k−
1
2C

)
L̂

1
2
un(f).

The proof is completed.

E. Proof on Rademacher Complexities
We first prove Rademacher complexity bounds for feature spaces in Lemma 5.1, and then give lower bounds. Finally, we
will apply it to prove Proposition 5.3 and Proposition 5.5.

Proof of Lemma 5.1. Let U = (u1, . . . ,ud)
⊤ and VS = (v(x1), . . . ,v(xn)). Then it is clear

UVS =

u⊤
1 v(x1) · · · u⊤

1 v(xn)
...

...
...

u⊤
d v(x1) · · · u⊤

d v(xn)

 .
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Let

Mϵ =

ϵ1,1 · · · ϵ1,n
...

...
...

ϵd,1 · · · ϵd,n

 ∈ Rd×n.

Then we have ∑
t∈[d]

∑
j∈[n]

ϵt,ju
⊤
t v(xj) =

〈
Mϵ, UVS⟩ = trace(M⊤

ϵ UVS) = trace(UVSM⊤
ϵ )

=
〈
U⊤, VSM

⊤
ϵ

〉
≤ ∥U⊤∥∥VSM⊤

ϵ ∥∗,

where trace denotes the trace of a matrix. Therefore, we have

sup
f∈F

∑
t∈[d]

∑
j∈[n]

ϵt,jft(xj) = sup
U∈U ,v∈V

∑
t∈[d]

∑
j∈[n]

ϵt,ju
⊤
t v(xj)

≤ Λ sup
v∈V

∥VSM⊤
ϵ ∥∗ = Λ sup

v∈V

∥∥( ∑
j∈[n]

ϵ1,jv(xj), . . . ,
∑
j∈[n]

ϵd,jv(xj)
)∥∥

∗.

The proof is completed.

Proof of Lemma 5.2. Note∣∣∣ ∑
j∈[nk]

∑
t∈[d]

(
ϵj,t,1ft(x̃j) + ϵj,t,2ft(x̃

+
j ) + ϵj,t,3ft(x̃

−
j )

)∣∣∣ =
max

{ ∑
j∈[nk]

∑
t∈[d]

(
ϵj,t,1ft(x̃j)+ϵj,t,2ft(x̃

+
j )+ϵj,t,3ft(x̃

−
j )

)
,−

∑
j∈[nk]

∑
t∈[d]

(
ϵj,t,1ft(x̃j)+ϵj,t,2ft(x̃

+
j )+ϵj,t,3ft(x̃

−
j )

)}
.

According to the symmetry of F we know

C = max
{(x̃j ,x̃

+
j ,x̃−

j )}nk
j=1⊆SH

Eϵ∼{±1}nk×{±1}d×{±1}3

[
sup
f∈F

∣∣∣ ∑
j∈[nk]

∑
t∈[d]

(
ϵj,t,1ft(x̃j) + ϵj,t,2ft(x̃

+
j ) + ϵj,t,3ft(x̃

−
j )

)∣∣∣]
≥ sup

f∈F
max

{(x̃j ,x̃
+
j ,x̃−

j )}nk
j=1⊆SH

Eϵ∼{±1}nk×{±1}d×{±1}3

[∣∣∣ ∑
j∈[nk]

∑
t∈[d]

(
ϵj,t,1ft(x̃j) + ϵj,t,2ft(x̃

+
j ) + ϵj,t,3ft(x̃

−
j )

)∣∣∣],
where we have used the Jensen’s inequality in the last step.

Since we take maximization over {(x̃j , x̃
+
j , x̃

−
j )}nkj=1 ⊆ SH, we can choose (x̃j , x̃

+
j , x̃

−
j ) = (x̃, x̃+, x̃−) for any

(x̃, x̃+, x̃−) ∈ SH. Then we get

C ≥ sup
f∈F

max
(x̃,x̃+,x̃−)∈SH

Eϵ∼{±1}nk×{±1}d×{±1}3

[∣∣∣ ∑
j∈[nk]

∑
t∈[d]

(
ϵj,t,1ft(x̃) + ϵj,t,2ft(x̃

+) + ϵj,t,3ft(x̃
−)

)∣∣∣]
≥ 2−

1
2 sup
f∈F

max
(x̃,x̃+,x̃−)∈SH

( ∑
j∈[nk]

∑
t∈[d]

(
f2t (x̃) + f2t (x̃

+) + f2t (x̃
−)

)) 1
2

= 2−
1
2 sup
f∈F

max
(x̃,x̃+,x̃−)∈SH

( ∑
j∈[nk]

(
∥f(x̃)∥22 + ∥f(x̃+)∥22 + ∥f(x̃−)∥22

)) 1
2

=
√
2−1nk sup

f∈F
max

(x̃,x̃+,x̃−)∈SH

(
∥f(x̃)∥22 + ∥f(x̃+)∥22 + ∥f(x̃−)∥22

) 1
2

,

where we have used the following Khitchine-Kahane inequality (De la Pena & Giné, 2012)

Eϵ

∣∣ n∑
i=1

ϵiti
∣∣ ≥ 2−

1
2

[ n∑
i=1

|ti|2
] 1

2 , ∀t1, . . . , tn ∈ R, (E.1)

The proof is completed.
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Remark E.1. The analysis in the proof implies a lower bound for RS̃(F̃) for a symmetric F̃ and S̃ = {z1, . . . , zn}

RS̃(F̃) ≥ 1√
2n

sup
f∈F̃

∥∥(f(z1), . . . , f(zn))∥∥2.
Indeed, by the symmetry of F , the Jensen inequality and Eq. (E.1), we have

RS̃(F̃) = Eϵ

[
sup
f∈F̃

1

n

∑
i∈[n]

ϵif(zi)
]
= Eϵ

[
sup
f∈F̃

1

n

∣∣ ∑
i∈[n]

ϵif(zi)
∣∣]

≥ 1

n
sup
f∈F̃

Eϵ

[∣∣ ∑
i∈[n]

ϵif(zi)
∣∣] ≥ 1√

2n
sup
f∈F̃

( ∑
i∈[n]

f2(zi)
) 1

2

.

E.1. Proof of Proposition 5.3

The following Khintchine-Kahane inequality (De la Pena & Giné, 2012; Lust-Piquard & Pisier, 1991) is very useful for us
to estimate Rademacher complexities.

Lemma E.2. Let ϵ1, . . . , ϵn be a sequence of independent Rademacher variables.

(a) Let v1, . . . ,vn ∈ H, where H is a Hilbert space with ∥ · ∥ being the associated norm. Then, for any p ≥ 1 there holds

[
Eϵ∥

n∑
i=1

ϵivi∥p
] 1

p ≤ max(
√
p− 1, 1)

[ n∑
i=1

∥vi∥2
] 1

2 . (E.2)

(b) Let X1, . . . , Xn be a set of matrices of the same dimension. For all q ≥ 2,(
Eϵ

∥∥ n∑
i=1

ϵiXi

∥∥q
Sq

) 1
q ≤ 2−

1
4

√
qπ

e
max

{∥∥( n∑
i=1

X⊤
i Xi

) 1
2
∥∥
Sq
,
∥∥( n∑

i=1

XiX
⊤
i

) 1
2
∥∥
Sq

}
. (E.3)

Proof of Proposition G.1. Let q ≥ p. It is clear q∗ ≤ p∗. The dual norm of ∥ · ∥2,p is ∥ · ∥2,p∗ . Therefore, according to
Lemma 5.1 and ∥ · ∥p∗ ≤ ∥ · ∥q∗ we know

Eϵ sup
f∈F

∑
t∈[d]

∑
j∈[n]

ϵt,jft(xj) ≤ ΛEϵ

( ∑
t∈[d]

∥∥ ∑
j∈[n]

ϵt,jxj

∥∥p∗

2

)1/p∗

≤ ΛEϵ

( ∑
t∈[d]

∥∥ ∑
j∈[n]

ϵt,jxj

∥∥q∗
2

)1/q∗

≤ Λ
(
Eϵ

[ ∑
t∈[d]

∥∥ ∑
j∈[n]

ϵt,jxj

∥∥q∗
2

])1/q∗

= Λ
(
dEϵ

∥∥ ∑
j∈[n]

ϵjxj

∥∥q∗
2

)1/q∗

,

where we have used Jense’s inequality and the concavity of x 7→ x1/q
∗
. By Lemma E.2, we know

Eϵ

∥∥ ∑
j∈[n]

ϵjxj

∥∥q∗
2

≤ max(
√
q∗ − 1, 1)q

∗
( ∑

j∈[n]

∥xj∥22
) q∗

2

.

It then follows that

Eϵ sup
f∈F

∑
t∈[d]

∑
j∈[n]

ϵt,jft(xj) ≤ Λd1/q
∗
max(

√
q∗ − 1, 1)

( ∑
j∈[n]

∥xj∥22
) 1

2

.

Note the above inequality holds for any q ≥ p. This proves Part (a).

We now prove Part (b). Since the dual norm of ∥ · ∥Sp is ∥ · ∥Sp∗ , by Lemma 5.1 we know

Eϵ sup
f∈F

∑
t∈[d]

∑
j∈[n]

ϵt,jft(xj) ≤ ΛEϵ

∥∥( ∑
j∈[n]

ϵ1,jxj , . . . ,
∑
j∈[n]

ϵd,jxj

)∥∥
Sp∗

.

For any t ∈ [d] and j ∈ [n], define
X̃t,j =

(
0 · · · 0 xj 0 · · · 0

)
,
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i.e., the t-th column of X̃t,j = xj , and other columns are zero vectors. This implies that( ∑
j∈[n]

ϵ1,jxj , . . . ,
∑
j∈[n]

ϵd,jxj

)
=

∑
t∈[d]

∑
j∈[n]

ϵt,jX̃t,j .

It is clear that X̃t,jX̃
⊤
t,j = xjx

⊤
j and

X̃⊤
t,jX̃t,j =


0 · · · · · · 0
... . . . · · · 0
... 0 x⊤

j xj 0
0 · · · · · · . . . .

 = x⊤
j xjdiag(0, . . . , 0︸ ︷︷ ︸

t−1

, 1, 0 . . . , 0),

where diag(a1, . . . , an) denotes the diagonal matrix with elements a1, . . . , an. Therefore, we have∑
t∈[d]

∑
j∈[n]

X̃t,jX̃
⊤
t,j = d

∑
j∈[n]

xjx
⊤
j

and ∑
t∈[d]

∑
j∈[n]

X̃⊤
t,jX̃t,j =

( ∑
j∈[n]

x⊤
j xj

)
Id×d,

where Id×d denotes the identity matrix in Rd×d. Therefore, we can apply Lemma E.2 to show that

Eϵ sup
f∈F

∑
t∈[d]

∑
j∈[n]

ϵt,jft(xj) ≤ Λ
(
Eϵ

∥∥( ∑
j∈[n]

ϵ1,jxj , . . . ,
∑
j∈[n]

ϵd,jxj

)∥∥q∗
S∗
q

)1/q∗

≤ Λ2−
1
4

√
q∗π

e
max

{∥∥∥(d ∑
j∈[n]

xjx
⊤
j

) 1
2
∥∥∥
Sq∗

, d1/q
∗( ∑

j∈[d]

∥xj∥22
) 1

2

}
.

The proof is completed.

E.2. Proof of Proposition 5.5

For convenience we introduce the following sequence of function spaces

Vk =
{
x 7→ σk

(
Vkσ

(
Vk−1 · · ·σ(V1x)

))
: ∥Vj∥F ≤ Bj

}
, k ∈ [L].

To prove Proposition 5.5, we need to introduce several lemmas. The following lemma shows how the supremum over a
matrix can be transferred to a supremum over a vector. It is an extension of Lemma 1 in Golowich et al. (2018) from d = 1
to d ∈ N, and can be proved exactly by the arguments in Golowich et al. (2018).
Lemma E.3. Let σ : R 7→ R be a 1-Lipschitz continuous, positive-homogeneous activation function which is applied
elementwise. Then for any vector-valued function class F̃

sup
f̃∈F̃,V ∈Rh×h′ :∥V ∥F≤B

∑
t∈[d]

∥∥∥ ∑
j∈[n]

ϵt,jσ(V f̃(xj))
∥∥∥2
2
≤ B2 sup

f̃∈F̃,ṽ∈Rh′ :∥ṽ∥2≤1

sup
∥ṽ∥2≤1

∑
t∈[d]

∣∣∣ ∑
j∈[n]

ϵt,jσ(ṽ
⊤f̃(xj))

∣∣∣2.
Proof. Let v⊤

1 , . . . ,v
⊤
h be rows of matrix V , i.e., V ⊤ =

(
v1, . . . ,vh

)
. Then by the positive-homogeneous property of

activation function we have

∑
t∈[d]

∥∥∥ ∑
j∈[n]

ϵt,jσ(V f̃(xi))
∥∥∥2
2
=

∑
t∈[d]

∥∥∥∥∥∥∥∥

∑

j∈[n] ϵt,jσ(v
⊤
1 f̃(xj))

...∑
j∈[n] ϵt,jσ(v

⊤
h f̃(xj))


∥∥∥∥∥∥∥∥
2

2

=
∑
t∈[d]

∑
r∈[h]

∑
j∈[n]

ϵt,jσ(v
⊤
r f̃(xj))

2

=
∑
r∈[h]

∥vr∥22
∑
t∈[d]

( ∑
j∈[n]

ϵt,jσ
( v⊤

r

∥vr∥2
f̃(xj)

))2

≤
( ∑

r∈[h]

∥vr∥22
)
max
r∈[h]

∑
t∈[d]

∣∣∣ ∑
j∈[n]

ϵt,jσ
( v⊤

r

∥vr∥2
f̃(xj)

)∣∣∣2
≤ B2 sup

∥ṽ∥2≤1

∑
t∈[d]

∣∣∣ ∑
j∈[n]

ϵt,jσ(ṽ
⊤f̃(xj))

∣∣∣2.
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The proof is completed.

The following lemma gives a general contraction lemma for Rademacher complexities. It allows us to remove a nonlinear
function ψ, which is very useful for us to handle the activation function in DNNs.

Lemma E.4 (Contraction Lemma, Thm 11.6 in Boucheron et al. (2013)). Let τ̃ : R+ 7→ R+ be convex and nondecreasing.
Suppose ψ : R 7→ R is contractive in the sense |ψ(t)− ψ(t̃)| ≤ |t− t̃| and ψ(0) = 0. Then the following inequality holds
for any F̃

Eϵτ̃

(
sup
f∈F̃

n∑
i=1

ϵiψ
(
f(xi)

))
≤ Eϵτ̃

(
sup
f∈F̃

n∑
i=1

ϵif(xi)

)
.

The following lemma gives bounds of MGFs for a random variable Z =
∑

1≤i<j≤n ϵiϵjaij , which is called a Rademacher
chaos variable (De la Pena & Giné, 2012; Ying & Campbell, 2010).

Lemma E.5 (page 167 in De la Pena & Giné (2012)). Let ϵi, i ∈ [n] be independent Rademacher variables. Let
ai,j ∈ R, i, j ∈ [n]. Then for Z =

∑
1≤i<j≤n ϵiϵjaij we have

Eϵ exp
(
|Z|/(4es)

)
≤ 2, where s2 :=

∑
1≤i<j≤n

a2i,j .

Proof of Proposition 5.5. The dual norm of ∥ · ∥F is ∥ · ∥F . Therefore, according to Lemma 5.1 we know

Eϵ sup
f∈F

∑
t∈[d]

∑
j∈[n]

ϵt,jft(xj) ≤ ΛEϵ sup
v∈V

( ∑
t∈[d]

∥∥ ∑
j∈[n]

ϵt,jv(xj)
∥∥2
2

)1/2

= ΛEϵ

(
sup

f̃∈VL−1,V :∥V ∥F≤BL

∑
t∈[d]

∥∥∥ ∑
j∈[n]

ϵt,jσ(V f̃(xj))
∥∥∥2
2

) 1
2

≤ ΛBLEϵ

(
sup

f̃∈VL−1,ṽ:∥ṽ∥2≤1

∑
t∈[d]

∣∣∣ ∑
j∈[n]

ϵt,jσ(ṽ
⊤f̃(xj))

∣∣∣2) 1
2

,

where we have used Lemma E.3 in the second inequality. Let λ ≥ 0 and τ(x) = exp(λx2). It is clear that τ is convex and
increasing in the interval [0,∞). It then follows from the Jensen’s inequality that

exp

(
λ
(
Eϵ sup

f∈F

∑
t∈[d]

∑
j∈[n]

ϵt,jft(xj)
)2

)
≤ exp

(
λ

(
ΛBLEϵ

(
sup

f̃∈VL−1,ṽ:∥ṽ∥2≤1

∑
t∈[d]

∣∣∣ ∑
j∈[n]

ϵt,jσ(ṽ
⊤f̃(xj))

∣∣∣2) 1
2
)2)

≤ Eϵ exp

(
λ

(
ΛBL

(
sup

f̃∈VL−1,ṽ:∥ṽ∥2≤1

∑
t∈[d]

∣∣∣ ∑
j∈[n]

ϵt,jσ(ṽ
⊤f̃(xj))

∣∣∣2) 1
2
)2)

= Eϵ exp

(
λΛ2B2

L sup
f̃∈VL−1,ṽ:∥ṽ∥2≤1

∑
t∈[d]

∣∣∣ ∑
j∈[n]

ϵt,jσ(ṽ
⊤f̃(xj))

∣∣∣2)

≤ Eϵ exp

(
λΛ2B2

L

∑
t∈[d]

sup
f̃∈VL−1,ṽ:∥ṽ∥2≤1

∣∣∣ ∑
j∈[n]

ϵt,jσ(ṽ
⊤f̃(xj))

∣∣∣2)

= Eϵ

∏
t∈[d]

exp

(
λΛ2B2

L sup
f̃∈VL−1,ṽ:∥ṽ∥2≤1

∣∣∣ ∑
j∈[n]

ϵt,jσ(ṽ
⊤f̃(xj))

∣∣∣2)

=
∏
t∈[d]

Eϵt exp

(
λΛ2B2

L sup
f̃∈VL−1,ṽ:∥ṽ∥2≤1

∣∣∣ ∑
j∈[n]

ϵt,jσ(ṽ
⊤f̃(xj))

∣∣∣2)

= Eϵ∼{±1}n exp

(
dλΛ2B2

L sup
f̃∈VL−1,ṽ:∥ṽ∥2≤1

∣∣∣ ∑
j∈[n]

ϵjσ(ṽ
⊤f̃(xj))

∣∣∣2),
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where we have used the independency between ϵt = (ϵt,j)j∈[n], t ∈ [d]. Let τ̃ : R+ 7→ R+ be defined as τ̃(x) =
exp(dλΛ2B2

Lx
2). Then we have

exp

(
λ
(
Eϵ sup

f∈F

∑
t∈[d]

∑
j∈[n]

ϵt,jft(xj)
)2

)
≤ Eϵ∼{±1}n τ̃

(
sup

f̃∈VL−1,ṽ:∥ṽ∥2≤1

∣∣∣ ∑
j∈[n]

ϵjσ(ṽ
⊤f̃(xj))

∣∣∣)

≤ Eϵ∼{±1}n τ̃

(
sup

f̃∈VL−1,ṽ:∥ṽ∥2≤1

∑
j∈[n]

ϵjσ(ṽ
⊤f̃(xj))

)
+ Eϵ∼{±1}n τ̃

(
sup

f̃∈VL−1,ṽ:∥ṽ∥2≤1

−
∑
j∈[n]

ϵjσ(ṽ
⊤f̃(xj))

)

= 2Eϵ∼{±1}n τ̃

(
sup

f̃∈VL−1,ṽ:∥ṽ∥2≤1

∑
j∈[n]

ϵjσ(ṽ
⊤f̃(xj))

)
≤ 2Eϵ∼{±1}n τ̃

(
sup

f̃∈VL−1,ṽ:∥ṽ∥2≤1

∑
j∈[n]

ϵj ṽ
⊤f̃(xj)

)

= Eϵ∼{±1}n τ̃

(
sup

f̃∈VL−1,ṽ:∥ṽ∥2≤1

ṽ⊤
∑
j∈[n]

ϵj f̃(xj)

)
= Eϵ∼{±1}n τ̃

(
sup

f̃∈VL−1

∥∥∥ ∑
j∈[n]

ϵj f̃(xj)
∥∥∥
2

)
. (E.4)

where we have used Lemma E.4 and the contraction property of σ in the last inequality.

According to Lemma E.3, we know

Eϵ∼{±1}n τ̃

(
sup

f̃∈VL−1

∥∥∥ ∑
j∈[n]

ϵj f̃(xj)
∥∥∥
2

)
= Eϵ∼{±1}n τ̃

(
sup

∥VL−1∥F≤BL−1,f̃∈VL−2

∥∥∥ ∑
j∈[n]

ϵjσ
(
VL−1f̃(xj)

)∥∥∥
2

)

≤ Eϵ∼{±1}n τ̃

(
BL−1 sup

∥ṽ∥2≤1,f̃∈VL−2

∣∣∣ ∑
j∈[n]

ϵjσ
(
ṽ⊤f̃(xj)

)∣∣∣).
It then follows that

Eϵ∼{±1}n τ̃

(
sup

f̃∈VL−1

∥∥∥ ∑
j∈[n]

ϵj f̃(xj)
∥∥∥
2

)

≤ Eϵ∼{±1}n τ̃

(
BL−1 sup

∥ṽ∥2≤1,f̃∈VL−2

∑
j∈[n]

ϵjσ
(
ṽ⊤f̃(xj)

))
+ Eϵ∼{±1}n τ̃

(
BL−1 sup

∥ṽ∥2≤1,f̃∈VL−2

−
∑
j∈[n]

ϵjσ
(
ṽ⊤f̃(xj)

))

= 2Eϵ∼{±1}n τ̃

(
BL−1 sup

∥ṽ∥2≤1,f̃∈VL−2

∑
j∈[n]

ϵjσ
(
ṽ⊤f̃(xj)

))
≤ 2Eϵ∼{±1}n τ̃

(
BL−1 sup

∥ṽ∥2≤1,f̃∈VL−2

∑
j∈[n]

ϵj ṽ
⊤f̃(xj)

)

= 2Eϵ∼{±1}n τ̃

(
BL−1 sup

∥ṽ∥2≤1,f̃∈VL−2

ṽ⊤
∑
j∈[n]

ϵj f̃(xj)

)
≤ 2Eϵ∼{±1}n τ̃

(
BL−1 sup

f̃∈VL−2

∥∥∥ ∑
j∈[n]

ϵj f̃(xj)
∥∥∥
2

)
.

We can apply the above inequality recursively and derive

Eϵ∼{±1}n τ̃

(
sup

f̃∈VL−1

∥∥∥ ∑
j∈[n]

ϵj f̃(xj)
∥∥∥
2

)
≤ 2L−1Eϵ∼{±1}n τ̃

(
BL−1 · · ·B1

∥∥∥ ∑
j∈[n]

ϵjxj

∥∥∥
2

)
.

Furthermore, by Eq. (E.4) we know

Eϵ sup
f∈F

∑
t∈[d]

∑
j∈[n]

ϵt,jft(xj) = τ−1τ

(
Eϵ sup

f∈F

∑
t∈[d]

∑
j∈[n]

ϵt,jft(xj)

)

≤ τ−1

(
Eϵ∼{±1}n τ̃

(
sup

f̃∈VL−1

∥∥∥ ∑
j∈[n]

ϵj f̃(xj)
∥∥∥
2

))

≤ τ−1

(
2L−1Eϵ∼{±1}n τ̃

(
BL−1 · · ·B1

∥∥∥ ∑
j∈[n]

ϵjxj

∥∥∥
2

))

= τ−1

(
2L−1Eϵ∼{±1}n exp

(
dλΛ2B2

LB
2
L−1 · · ·B2

1

∥∥∥ ∑
j∈[n]

ϵjxj

∥∥∥2
2

))
,
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where the last identity follows from the definition of τ̃ . Let λ0 = dλΛ2B2
LB

2
L−1 · · ·B2

1 . Then

Eϵ∼{±1}n exp
(
λ0

∥∥∥ ∑
j∈[n]

ϵjxj

∥∥∥2
2

)
= Eϵ∼{±1}n exp

(
λ0

∑
j∈[n]

∥xj∥22 + 2λ0
∑

1≤i<j≤n

ϵiϵjx
⊤
i xj

)
≤ exp

(
λ0

∑
j∈[n]

∥xj∥22
)
Eϵ∼{±1}n exp

(
2λ0

∑
1≤i<j≤n

ϵiϵjx
⊤
i xj

)
.

We choose λ = 1
8esdΛ2B2

LB2
L−1···B2

1
, where s =

(∑
1≤i<j≤n(x

⊤
i xj)

2
) 1

2 . Then it is clear λ0 = 1
8es . We can apply Lemma

E.5 to derive that
Eϵ∼{±1}n exp

(
2λ0

∑
1≤i<j≤n

ϵiϵjx
⊤
i xj

)
≤ 2

and therefore
Eϵ∼{±1}n exp

(
λ0

∥∥∥ ∑
j∈[n]

ϵjxj

∥∥∥2
2

)
≤ 2 exp

(
λ0

∑
j∈[n]

∥xj∥22
)
.

We know τ−1(x) =
√
λ−1 log x. It then follows that

Eϵ sup
f∈F

∑
t∈[d]

∑
j∈[n]

ϵt,jft(xj) ≤
(
λ−1(L− 1) log 2 + λ−1 logEϵ∼{±1}n exp

(
λ0

∥∥∥ ∑
j∈[n]

ϵjxj

∥∥∥2
2

)) 1
2

≤
(
λ−1(L− 1) log 2 + λ−1 log

(
2 exp

(
λ0

∑
j∈[n]

∥xj∥22
))) 1

2

=

(
λ−1L log 2 + λ−1λ0

∑
j∈[n]

∥xj∥22
) 1

2

=

(
8esdΛ2B2

LB
2
L−1 · · ·B2

1L log 2 + dΛ2B2
LB

2
L−1 · · ·B2

1

∑
j∈[n]

∥xj∥22
) 1

2

=
√
dΛBLBL−1 · · ·B1

(
8esL log 2 +

∑
j∈[n]

∥xj∥22
) 1

2

.

The proof is completed by noting 8e(log 2) ≤ 16.

Remark E.6. Our proof of Proposition 5.5 is motivated by the arguments in Golowich et al. (2018), which studies Rademacher
complexity bounds for DNNs with d = 1. Our analysis requires to introduce techniques to handle the difficulty of considering
d features simultaneously. Indeed, we control the Rademacher complexity for learning with d features by

Eϵ sup
f∈F

∑
t∈[d]

∑
j∈[n]

ϵt,jft(xj) ≤ Eϵ

(
sup

f̃∈VL−1,ṽ:∥ṽ∥2≤1

∑
t∈[d]

∣∣∣ ∑
j∈[n]

ϵt,jσ(ṽ
⊤f̃(xj))

∣∣∣2) 1
2

.

If d = 1, this becomes

Eϵ sup
f∈F

∑
t∈[d]

∑
j∈[n]

ϵt,jft(xj) ≤ Eϵ sup
f̃∈VL−1,ṽ:∥ṽ∥2≤1

∣∣∣ ∑
j∈[n]

ϵjσ(ṽ
⊤f̃(xj))

∣∣∣,
and the arguments in Golowich et al. (2018) apply. There are two difficulties in applying the arguments in Golowich
et al. (2018) to handle general d ∈ N. First, the term

∑
t∈[d]

∣∣∣∑j∈[n] ϵt,jσ(ṽ
⊤f̃(xj))

∣∣∣ cannot be written as a Rademacher

complexity due to the summation over t ∈ [d]. Second, there is a square function of the term
∣∣∣∑j∈[n] ϵt,jσ(ṽ

⊤f̃(xj))
∣∣∣. To

handle this difficulty, we introduce the function τ(x) = exp(λx2) instead of the function τ(x) = exp(λx) in Golowich
et al. (2018). To this aim, we need to handle the MGF of a Rademacher chaos variable

∑
1≤i<j≤j ϵiϵj(x

⊤
i xj)

2, which is
not a sub-Gaussian variable. As a comparison, the analysis in Golowich et al. (2018) considers the MGF for a sub-Gaussian
variable. One can also use the following inequality( ∑

t∈[d]

∣∣∣ ∑
j∈[n]

ϵt,jσ(ṽ
⊤f̃(xj))

∣∣∣2) 1
2

≤
∑
t∈[d]

∣∣∣ ∑
j∈[n]

ϵt,jσ(ṽ
⊤f̃(xj))

∣∣∣,
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the latter of which can then be further controlled by the arguments in Golowich et al. (2018). This, however, incurs a bound
with a linear dependency on d. As a comparison, our analysis gives a bound with a square-root dependency on d.

F. A General Vector-contraction Inequality for Rademacher Complexities
In this section, we provide a general vector-contraction inequality for Rademacher complexities, which recovers Lemma B.1
with τ(a) = a. The lemma is motivated from Lemma E.4 by considering a general convex and nondecreasing τ .

Theorem F.1. Let F be a class of bounded functions f : Z 7→ Rd which contains the zero function. Let τ : R+ → R+ be a
continuous, non-decreasing and convex function. Assume g̃1, . . . , g̃n : Rd → R are G-Lipschitz continuous w.r.t. ∥ · ∥2 and
satisfy g̃i(0) = 0. Then

Eϵ∼{±1}nτ
(
sup
f∈F

n∑
i=1

ϵig̃i(f(xi))
)
≤ Eϵ∼{±1}ndτ

(
G
√
2 sup
f∈F

n∑
i=1

d∑
j=1

ϵi,jfj(xi)
)
. (F.1)

The following lemma is due to (Maurer, 2016). We provide here the proof for completeness.

Lemma F.2. Let F be a class of functions f : Z 7→ Rd and g be any functional defined on F . Assume that g̃1, . . . , g̃n :
Rd → R are G-Lipschitz continuous w.r.t. ∥ · ∥2. Then,

Eϵ∼{±1}n sup
f∈F

[
g(f) +

n∑
i=1

ϵig̃i(f(xi))
]
≤ Eϵ∼{±1}nd sup

f∈F

[
g(f) +G

√
2

n∑
i=1

d∑
j=1

ϵi,jfj(xi)
]
. (F.2)

Proof. We prove this result by induction. According to the symmetry between f and f̃ , we derive

Eϵn sup
f∈F

[
g(f) +

n∑
i=1

ϵig̃i(f(xi))
]

=
1

2
sup

f,f̃∈F

[
g(f) + g(f̃) +

n−1∑
i=1

ϵig̃i(f(xi)) +

n−1∑
i=1

ϵig̃i(f̃(xi)) + g̃n(f(xn))− g̃n(f̃(xn))
]

=
1

2
sup

f,f̃∈F

[
g(f) + g(f̃) +

n−1∑
i=1

ϵig̃i(f(xi)) +
n−1∑
i=1

ϵig̃i(f̃(xi)) +
∣∣g̃n(f(xn))− g̃n(f̃(xn))

∣∣], (F.3)

According to the Lipschitz property and Eq. (E.1), we derive

∣∣g̃n(f(xn))− g̃n(f̃(xn))
∣∣ ≤ G

∥∥f(xn)− f̃(xn)
∥∥
2
≤ G

√
2Eϵn,1,...,ϵn,j

∣∣ d∑
j=1

ϵn,j
[
fj(xn)− f̃j(xn)

]∣∣.
Plugging the above inequality back into (F.3) and using the Jensen’s inequality, we get

Eϵn sup
f∈F

[
g(f) +

n∑
i=1

ϵig̃i(f(xi))
]

≤ 1

2
Eϵn,1,...,ϵn,j sup

f,f̃∈F

[
g(f) + g(f̃) +

n−1∑
i=1

ϵig̃i(f(xi)) +
n−1∑
i=1

ϵig̃i(f̃(xi)) +G
√
2
∣∣ d∑
j=1

ϵn,j
[
fj(xn)− f̃j(xn)

]∣∣]

=
1

2
Eϵn,1,...,ϵn,j

sup
f,f̃∈F

[
g(f) + g(f̃) +

n−1∑
i=1

ϵig̃i(f(xi)) +
n−1∑
i=1

ϵig̃i(f̃(xi)) +G
√
2

d∑
j=1

ϵn,j
[
fj(xn)− f̃j(xn)

]]

= Eϵn,1,...,ϵn,j
sup
f∈F

[
g(f) +

n−1∑
i=1

ϵig̃i(f(xi)) +G
√
2

d∑
j=1

ϵn,jfj(xn)
]
,

where we have used the symmetry in the second step.

The stated result can be derived by continuing the above deduction with expectation over ϵn−1, ϵn−2 and so on.
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To prove Theorem F.1, we introduce the following lemmas on the approximation of a continuous, non-decreasing and
convex function. Let a+ = max{a, 0}.

Lemma F.3. Let f : [a, b] → R+ be a continuous, non-decreasing and convex function and m ≥ 2. Let a = x1 < · · · <
xm = b. Then the function g̃ : [a, b] → R defined by

g̃(x) = f(xk) +
f(xk+1)− f(xk)

xk+1 − xk
(x− xk), if x ∈ [xk, xk+1]

belongs to the set

H[a,b] :=
{
c0 +

m∑
i=1

ci(x− ti)+ : ci ≥ 0, i ∈ [n], ti ∈ R,m ∈ N, x ∈ [a, b]
}
. (F.4)

Proof. Define

f̄(x) = f(x1) +
m−1∑
i=1

f(xi+1)− f(xi)

xi+1 − xi

[
(x− xi)+ − (x− xi+1)+

]
.

We first show that f̄(x) = g̃(x) for all x ∈ [a, b]. Suppose that x ∈ [xk, xk+1). Then, it is clear that

f̄(x) = f(x1) +
k−1∑
i=1

f(xi+1)− f(xi)

xi+1 − xi

[
(x− xi)+ − (x− xi+1)+

]
+
f(xk+1)− f(xk)

xk+1 − xk

[
(x− xk)+ − (x− xk+1)+

]
+

m−1∑
i=k+1

f(xi+1)− f(xi)

xi+1 − xi

[
(x− xi)+ − (x− xi+1)+

]
= f(x1) +

k−1∑
i=1

f(xi+1)− f(xi)

xi+1 − xi

[
(x− xi)− (x− xi+1)

]
+
f(xk+1)− f(xk)

xk+1 − xk

[
(x− xk)− 0

]
= f(xk) +

f(xk+1)− f(xk)

xk+1 − xk
(x− xk) = g̃(x).

We now show that f̄(x) belongs to the set H[a,b]. Indeed, it follows from (x− xm)+ = 0 for all x ≤ xm = b that

f̄(x) = f(x1) +
m−1∑
i=1

f(xi+1)− f(xi)

xi+1 − xi
(x− xi)+ −

m∑
i=2

f(xi)− f(xi−1)

xi − xi−1
(x− xi)+

= f(x1) +
f(x2)− f(x1)

x2 − x1
(x− x1)+ +

m−1∑
i=2

[f(xi+1)− f(xi)

xi+1 − xi
− f(xi)− f(xi−1)

xi − xi−1

]
(x− xi)+.

Therefore, f̄(x) can be written as f̄(x) = c0 +
∑m−1

i=1 ci(x − ti)+ with ti = xi, c0 = f(x1), c1 = f(x2)−f(x1)
x2−x1

and

ci = f(xi+1)−f(xi)
xi+1−xi

− f(xi)−f(xi−1)
xi−xi−1

, i = 2, . . . ,m − 1. The terms c1, . . . , cm−1 are all non-negative since f is non-
decreasing and convex. The proof is completed.

Lemma F.4. If f : [a, b] → R+ is continuous, non-decreasing and convex, then f belongs to the closure of H[a,b] defined in
Eq. (F.4).

Proof. Let m ∈ N. We can find a = x
(m)
1 < x

(m)
2 < · · · < x

(m)
n+1 = b such that

f(x
(m)
k )− f(x

(m)
k−1) ≤

f(b)− f(a)

n
.

Introduce

f (m)(x) := f(x
(m)
k ) +

f(x
(m)
k+1)− f(x

(m)
k )

x
(m)
k+1 − x

(m)
k

(x− x
(m)
k ) if x ∈ [x

(m)
k , x

(m)
k+1].
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For any x ∈ [x
(m)
k , x

(m)
k+1], it follows from the convexity of f that

|f (m)(x)− f(x)| =
∣∣∣f(x(m)

k )− f(x) +

(
f(x

(m)
k+1)− f(x

(m)
k )

)
(x− x

(m)
k )

x
(m)
k+1 − x

(m)
k

∣∣∣
= f(x

(m)
k )− f(x) +

(
f(x

(m)
k+1)− f(x

(m)
k )

)
(x− x

(m)
k )

x
(m)
k+1 − x

(m)
k

≤
(
f(x

(m)
k+1)− f(x

(m)
k )

)
(x− x

(m)
k )

x
(m)
k+1 − x

(m)
k

≤ f(b)− f(a)

n
,

from which we know limn→∞ |f (m)(x)− f(x)| = 0 for all x ∈ [a, b]. Lemma F.3 shows that f (m) ∈ H[a,b] for all m ∈ N.
Therefore, f belongs to the closure of H[a,b]. The proof is completed.

Proof of Theorem F.1. According to the boundedness assumption of f ∈ F and the fact 0 ∈ F , there exist B > 0 such that

0 ≤ min
{
sup
f∈F

n∑
i=1

ϵig̃i(f(xi)), G
√
2 sup
f∈F

n∑
i=1

d∑
j=1

ϵi,jfj(xi)
}

≤ max
{
sup
f∈F

n∑
i=1

ϵig̃i(f(xi)), G
√
2 sup
f∈F

n∑
i=1

d∑
j=1

ϵi,jfj(xi)
}
≤ B

for all ϵ ∈ {±1}n. Let t ∈ R be an arbitrary number. Define gt : F 7→ R by gt(f) = 0 for any f ̸= 0 and gt(0) = t. It is
clear that

Eϵ∼{±1}n sup
f∈F

[
gt(f) +

n∑
i=1

ϵig̃i(f(xi))
]
= Eϵ∼{±1}n max

{
sup

f∈F :f ̸=0

[ n∑
i=1

ϵig̃i(f(xi))
]
, t
}

and

Eϵ∼{±1}nd sup
f∈F

[
gt(f) +G

√
2

n∑
i=1

d∑
j=1

ϵi,jfj(xi)
]
= Eϵ∼{±1}nd max

{
G
√
2 sup
f∈F :f ̸=0

[ n∑
i=1

d∑
j=1

ϵi,jfj(xi)
]
, t
}
.

Plugging the above identities into (F.2) with g = gt gives

Eϵ∼{±1}n max
{

sup
f∈F :f ̸=0

[ n∑
i=1

ϵig̃i(f(xi))
]
, t
}
≤ Eϵ∼{±1}nd max

{
G
√
2 sup
f∈F :f ̸=0

[ n∑
i=1

d∑
j=1

ϵi,jfj(xi)
]
, t
}
.

If t ≥ 0, the above inequality is equivalent to

Eϵ∼{±1}n max
{
sup
f∈F

[ n∑
i=1

ϵig̃i(f(xi))
]
, t
}
≤ Eϵ∼{±1}nd max

{
G
√
2 sup
f∈F

[ n∑
i=1

d∑
j=1

ϵi,jfj(xi)
]
, t
}

(F.5)

by noting g̃i(0) = 0 for all i ∈ Nn. If t < 0, it follows from (F.2) with g(f) = 0 that

Eϵ∼{±1}n max
{
sup
f∈F

[ n∑
i=1

ϵig̃i(f(xi))
]
, t
}

= Eϵ∼{±1}n sup
f∈F

[ n∑
i=1

ϵig̃i(f(xi))
]
≤ Eϵ∼{±1}nd sup

f∈F

[
G
√
2

n∑
i=1

d∑
j=1

ϵi,jfj(xi)
]

= Eϵ∼{±1}nd max
{
G
√
2 sup
f∈F

[ n∑
i=1

d∑
j=1

ϵi,jfj(xi)
]
, t
}
,

where we have used g̃i(0) = 0 for all i ∈ Nn in the first identity. That is, (F.5) holds for all t ∈ R. Subtracting t from both
sides of Eq. (F.5) gives

Eϵ∼{±1}n

(
sup
f∈F

n∑
i=1

ϵig̃i(f(xi))− t
)
+
≤ Eϵ∼{±1}nd

(
G
√
2 sup
f∈F

[ n∑
i=1

d∑
j=1

ϵi,jfj(xi)
]
− t

)
+
, ∀t ∈ R, (F.6)
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from which we know

Eϵ∼{±1}n τ̃
(
sup
f∈F

n∑
i=1

ϵig̃i(f(xi))
)
≤ Eϵ∼{±1}nd τ̃

(
G
√
2 sup
f∈F

n∑
i=1

d∑
j=1

ϵi,jfj(xi)
)
, ∀τ̃ ∈ H[0,B].

According to Lemma F.4, we know τ : [0, B] → R+ belongs to the closure of H[0,B]. Therefore, Eq. (F.1) holds. The proof
is completed.

G. Lipschitz Continuity of Loss Functions
The following proposition is known in the literature (Lei et al., 2019). We prove it for completeness.

Proposition G.1. (a) Let ℓ be defined as Eq. (3.2). Then ℓ is 1-Lipschitz continuous w.r.t. ∥·∥∞ and 1-Lipschitz continuous
w.r.t. ∥ · ∥2.

(b) Let ℓ be defined as Eq. (3.3). Then ℓ is 1-Lipschitz continuous w.r.t. ∥ · ∥∞ and 1-Lipschitz continuous w.r.t. ∥ · ∥2.

Proof. We first prove Part (a). For any v and v′, we have

|ℓ(v)− ℓ(v′)| =
∣∣max

{
0, 1 + max

i∈[k]
{−vi}

}
−max

{
0, 1 + max

i∈[k]
{−v′i}

}∣∣
≤ |max

i∈[k]
{−vi} −max

i∈[k]
{−v′i}| ≤ max

i∈[k]
|vi − v′i| = ∥v − v′∥∞,

where we have used the elementary inequality

|max
i∈[k]

ai −max
i∈[k]

bi| ≤ max
i∈[k]

|ai − bi|.

This proves Part (a).

We now prove Part (b). It is clear that
∂ℓ(v)

∂vi
=

− exp(−vi)
1 +

∑
i∈[k] exp(−vi)

.

Therefore, the ℓ1 norm of the gradient can be bounded as follows

∥∇ℓ(v)∥1 ≤ 1

1 +
∑

i∈[k] exp(−vi)
∑
i∈[k]

exp(−vi) ≤ 1.

This proves Part (b). The proof is completed.
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