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Abstract

In this paper, we attempt to provide a brief overview of methods and approaches that deal with the
evaluation of feasibility/flexibility and how these concepts can be used to optimize process design or
process operations. We focus on the description of process feasibility and the feasibility-based
optimization problem as a way to efficiently incorporate multiple constraints and avoid exploring
infeasible space. The ideas of process flexibility and robust optimization are also highlighted to illustrate
how to treat uncertainty within process design and operations. Applications on pharmaceutical design and
process scheduling problems are used to provide context in the utilization of the presented work.
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Introduction

Feasibility is a fundamental concept in mathematical
optimization, which generally uses equality and inequality
constraints to define a set that contains all feasible solutions,
also referred to as the feasible region. When optimizing the
design and operation of chemical processes, an accurate
description of the feasible region is of crucial importance
due to strict safety considerations. This has led to the
development of advanced feasibility analysis methods with
important applications in, for example, chemical and
pharmaceutical manufacturing. Surrogate-based feasibility
analysis methods can also be incorporated into simulation-
based optimization, providing an efficient approach to
optimizing over expensive black-box models.

A concept closely related to feasibility is flexibility,
which broadly refers to the ability of a process to handle
varying process conditions, disturbances, and uncertainty.
Flexibility is becoming increasingly important in the
process industries as the production plants use more
intermittent renewable resources, are subject to stricter
safety and environmental requirements, and face higher
levels of uncertainty due to various factors, including
unexpected extreme weather events and supply chain
disruptions. Flexibility analysis approaches have been
proposed to quantify the level of operational flexibility of a
given process design. The resulting metrics generally
represent the size of the set of feasible parameters of

interest; as such, feasibility analysis plays a key role in
flexibility analysis. The flexibility concept can be further
extended to address optimization problems with given
flexibility requirements. Flexibility analysis problems can
also be formulated as robust optimization problems,
establishing a connection to robust optimization, a research
area that has gained tremendous popularity in recent years,
and allowing us to leverage methods developed in that area.
This relationship has only been formally recognized more
recently, but it is probably not a surprise as one can view
robustness as the “pessimistic” interpretation of flexibility.

In this work, we present an overview of feasibility
analysis, feasibility-based optimization, flexibility analysis,
and its relationship to robust optimization, with a focus on
applications in process design and operations. We outline
the major concepts as well as current capabilities of existing
methods, and provide a brief perspective on future
opportunities in these research areas.

Feasible Region Evaluation

A feasible region describes the design space within
which a process can satisfy all production, operating, safety,
and quality constraints. The feasibility function is used to
describe whether for a fixed value of an uncertain
parameter, a process can be feasible by adjusting the control
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variables. The mathematical expression for the feasibility
function (¥(d, 6)) is shown in Eq. (1), where d represents
the set of design variables, 6 represents the set of uncertain
parameters, z represents the control variables, and g;
represents a set of J constraints (Grossmann et al., 2014).

Y(d, o) = min rr]_lg]x gi(d,z0) @)

The purpose of feasibility analysis is to identify the
feasible region where 1(d, 8) < 0. The boundary between
feasible and infeasible regions is indicated by ¥(d, 8) = 0.
The feasible region of an example problem is shown in
Figure 1, where the green region indicates feasible
operation.
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Figure 1. lllustration for feasibility and
[flexibility of an example problem

Different approaches have been developed to evaluate
the design space, including geometry-based and surrogate-
based methods. For geometry-based methods, Goyal and
Ierapetritou (2004) developed a simplicial approximation
approach, which is not applicable for nonconvex feasible
regions. Based on this idea, Ipsita Banerjee and Ierapetritou
(2005) proposed a surface reconstruction approach that can
be extended to disjoint and nonconvex feasible regions. The
limitation of geometry-based methods is that they require a
large number of function evaluations, which is not
applicable for problems involving computationally
expensive models. Surrogate-based methods are developed
to fit an inexpensive surrogate model to the feasibility
function and use this surrogate to predict the feasible region.
The sample points used to build the surrogate model need
to be carefully chosen to reduce sampling cost, which
motivates the use of adaptive sampling strategies to identify
the samples that provide the most important information
regarding the feasible region boundary. Different types of
surrogate models and adaptive sampling strategies have
been investigated, which are summarized in Table 1.

Table 1. Surrogate models and adaptive sampling
approaches for feasibility analysis

Deterministic feasibility

Surrogate models Adaptive sampling Ref.
approaches
High dimensional . .
model representation - Iistlfl ]?;g(ig;j ¢
(HDMR) ’
Boukouvala
Gaussian process El and
(kriging) feas Ierapetritou
(2014)
Radial basis function El Wang a.md
RBF) feas Ierapetritou
( (2017)
Support vector Probability of Basudhar et al.
machine (SVM) feasibility (2012)
Artificial neural El Metta et al.
network (ANN) feas (2020)
Dias and
Decision tree - Ierapetritou
(2019)
Stochastic feasibility
Surrogate models Adaptive sampling Ref.
approaches
High dimensional Filter using
model representation  methodological Kucih?;%r;lg; et
(HDMR) constraints al
Wang and
El AEI
Stochastic kriging y eg,z I feas> Ierapetritou
feas (2018b)
Dynamic feasibility
Surrogate models Adaptive sampling Ref.
approaches
Gaussian process El Rogers .and
(kriging) feas Ierapetritou
(2015)

There have been many applications of the feasible
region evaluation approaches, for example, the feasible
region of solid-based continuous pharmaceutical
manufacturing processes (Wang, Escotet-Espinoza, &
Ierapetritou, 2017), continuous chromatography (Ding &
Ierapetritou, 2021), and integrated planning and scheduling
problems (Badejo & Ierapetritou, 2022; Dias & lerapetritou,
2019). As an illustration, two plots showing the feasible
operation conditions for a direct compaction (DC)
pharmaceutical manufacturing process are shown in Figure
2 due to limited space. Figure 2A indicates that the value of
fill depth in the tablet press unit needs to be carefully
maintained to assure product quality whereas plot 2B shows
that the whole input space for active pharmaceutical
ingredient (API) flowrate and blender blade speed is
feasible.



A B "
0.0105 280 -
o 7]
e o°
& e 5 o
S oot | : < 250 "
T — 2
00005 BV0FrF—= 240 o
29 3 31 29 3 31 ™
FRAP] FRAPI -

Figure 2. Feasible region of the DC line
Sflowsheet model (Wang, Escotet-Espinoza, &
lerapetritou, 2017)

Feasibility-Based Optimization

Simulation-based optimization has been widely studied
in the field of operations research for the optimization of
complex systems. A general problem formulation can be
represented by (P1), where f(x) represents the objective
function which depends on an expensive simulation model,
x € RX represents a set of decision variables, x” and x}*
form the lower and upper bounds for the decision variables,
gi(x) are a set of I constraints that are also dependent on the
simulation, and there may be J constraints that are
analytically available.

min f(x) (P1)
s.t. g;(x) <0,i €{1,2,...,1}

gi(x)<0,j€{12..,]}

xib < x, <xMPk€{1,2,..,K}

The solution of simulation-based optimization has
many challenges. First, the simulation is only available as a
black box for the evaluation of objective function and
constraints. Second, many simulations are computationally
expensive to run, limiting the number of function
evaluations that can be performed in search of the optimal
solution. Third, the derivative information is usually
unavailable or hard to estimate due to the computational
burden and output noise. Thus, it becomes challenging to
utilize the conventional optimization approaches such as
derivative-based and random search methods. Surrogate
models have been proposed to approximate the expensive
function evaluations and facilitate optimization (Bhosekar
& lerapetritou, 2018). The surrogate-based optimization
framework has also been extended to feasibility analysis, as
mentioned in the feasible region evaluation section.

In this section, we discuss simulation-based
optimization approaches, where the concept of feasibility is
integrated as black-box constraints. This strategy is shown
to be beneficial as it does not require any assumptions
regarding the form of the underlying feasible region
(Boukouvala & lerapetritou, 2014). However, the method
depends on the collected samples, which should be placed
at regions, according to certain infill criteria, that provide
maximum information regarding the feasible region
boundary. This needs to be balanced with the sampling
requirement for optimization, in which case samples are

needed to improve the objective function towards the
optimal solution.

The first type of strategy is to consider both feasibility
and optimization aspects together in one infill criterion.
There have been both unconstrained and constrained
formulations for the infill criteria to extend the efficient
global optimization (EGO) framework (Jones et al., 1998).
Bagheri et al. (2017) surveyed the existing constraint
handling methods for EGO and modified the unconstrained
method by introducing a newly defined probability of
feasibility.

The second type of strategy is to design separate stages
that focus on feasibility and optimization, respectively.
Basudhar et al. (2012) used the first stage to drive the
optimization based on expected improvement (EI) function
and probability of feasibility indicated by probabilistic
SVM models, and the second stage to refine the constraint
boundary approximation by selecting samples in sparse
regions with a high probability of misclassification.
Boukouvala and Ierapetritou (2014) proposed a novel
expected improvement function for locating feasibility
boundaries in the feasibility stage, followed by an optional
global search stage and trust region-based local search
stage.

The one-stage approach is expected to be more
economical in terms of sampling cost as every sample is
added with the consideration of both aspects. However,
when the original function is complex, for example, when
feasibility function is hard to approximate with a small
number of samples, it will be beneficial to focus on
feasibility refinement first and then perform optimization
within the feasible space. Therefore there is a trade-off
between sequential and simultaneous considerations of the
two objectives depending on the nature of the problem.

Note that both approaches can be used to address the
integration of uncertainty in the design and process
operations problems and have found different applications.
Wang and lerapetritou (2018a) proposed a feasibility-
enhanced EI function that considered objective and
feasibility simultaneously for a stochastic direct compaction
pharmaceutical manufacturing process. Wang, Escotet-
Espinoza, Singh, et al. (2017) used penalized feasibility EI
function and penalized EI function for the feasibility and
optimization stage, respectively, for a deterministic
pharmaceutical manufacturing process.

Flexibility Analysis and Robust Optimization

In flexibility analysis, the concept of the feasibility
function is further extended to derive a metric that
quantifies the degree of flexibility of a given design d. The
flexibility index, denoted by F, is defined as follows
(Swaney & Grossmann, 1985a):

F(d) = grel%)f{& elélTa&()l/J(d,G) <0 }, Q)



where T'(§), which is a function of a nonnegative scalar &,
denotes the set of all allowed realizations of the uncertain
parameters 6 . Traditionally, T(8) is assumed to be a
hyperbox defined as

T(8) = {6:0V — 600~ < 6 < 6N + 6063, )

where Y is a nominal point, and A9~ and Af% are
incremental negative and positive deviations from 6V,
respectively. The flexibility index problem is to find F(d),
i.e. the largest & such that the design d is feasible forall 6 €
T(8). An example of the largest possible T'(§) is shown in
Figure 1 as the rectangle inscribed in the projection of the
feasible region onto the 6 -space; it illustrates how the
flexibility index is representative of the degree of
operational flexibility of the given design. Earlier works
have proposed vertex-exploration (Swaney & Grossmann,
1985b) and active-set (Grossmann & Floudas, 1987)
strategies to solve the flexibility index problem.

There is a close relationship between flexibility
analysis and robust optimization (Ben-Tal et al., 2009),
which was independently developed in the operations
research community. This relationship was first formally
established for linear optimization problems in (Zhang,
Grossmann, et al., 2016). It turns out that the flexibility
index problem can be formulated as a two-stage robust
optimization problem, where T (8) represents the so-called
uncertainty set. Applying modern robust optimization
techniques, the flexibility index problem can often be
solved more efficiently than using traditional approaches.
Recently, alternative definitions of the flexibility index
based on uncertainty sets with shapes other than a hyperbox
have been proposed (Pulsipher et al., 2019), many of which
are drawn from the robust optimization literature. Defining
the feasibility space using alternative shapes and data-based
ideas is also described in the Feasibility section. Also, note
that the robust optimization formulation of the flexibility
index problem involves endogenous uncertainty (Lappas &
Gounaris, 2018; Zhang & Feng, 2020) since the uncertainty
set T(6) depends on the decision variable §. While Zhang
etal. (2016) show that the problem can be reformulated with
a fixed uncertainty set if T'(8) is a hyperbox, more involved
solution methods are needed for more complex uncertainty
sets.

The feasibility analysis and flexibility index problems
are solved to investigate a given design. Often, we also wish
to optimize the design itself subject to some flexibility
requirements. Such a design problem with flexibility
constraints was first formulated by Halemane and
Grossmann (1983) as follows:

I’I“iliz_l’l f(d) + Zses <ps f(d,Z_s) (P2)
s.t. g;(d,z,0,) <0 Vj€EJ,SES
i . <
rggg{ min rg_leajxg] (d,z,0) <0,

where the objective is to minimize the expected cost
approximated using a set of scenarios S. Each scenario s €

S is defined by a specific realization of the uncertainty &
and the corresponding probability ¢, . Apart from the
constraints for each scenario, the additional flexibility
constraints further enforce feasibility for all 6 over a given
uncertainty set T. This problem can also be naturally
formulated as a two-stage robust optimization problem.
Halemane and Grossmann (1983) developed a solution
algorithm that iterates between a master problem in which
the flexibility constraints are replaced by constraints over a
finite set of critical points C, i.e.

9i(d,z,6,)<0 Vj€]c€eC, 4)

and subproblems that check whether the design proposed by
the master problem satisfies the original flexibility
constraints and, if it is not yet feasible, generates new
critical points to be added to C . Interestingly, this is
essentially the same approach as the column-and-constraint
generation algorithm proposed for two-stage robust
optimization three decades later (Zeng & Zhao, 2013). Note
that design problems of the form (P2) can also be solved
using feasibility-based optimization.

Flexibility analysis gives rise to two-stage robust
optimization problems where the control variables z are the
second-stage decisions. In recent years, there has also been
a growing interest, including in process systems
engineering (Lappas & Gounaris, 2016; Shang & You,
2019; Zhang, Morari, et al., 2016), in multistage robust
optimization that can consider problems in which
uncertainty is realized and recourse decisions can be taken
at multiple time points, as it is often the case in planning,
scheduling, and control. Here, the decision rule approach
(Georghiou et al., 2018) has proven to be very effective,
where the recourse variables are explicitly stated as
functions of the uncertain parameters. For example, the
following decision rule defines the recourse variables at
time t, z;, as an affine function of all uncertain parameters
realized up to time ¢, i.e. 6, where k < t:

Ze = Pr + Xf=1 QuicOr- (%)

Such a decision rule inherently satisfies nonanticipativity
and can be applied to problems with arbitrarily many stages.
Importantly, the recourse decisions are now specified by the
variables p and Q, which can be chosen before the actual
realization of the uncertainty. As such, all methods for static
(i.e. single-stage) robust optimization can be applied to
solve decision-rule-based multistage robust optimization
problems. Note that in general, decision rules only
approximate the fully adjustable recourse decisions;
however, they are highly effective as they typically lead to
solutions that are very close to the true optimum while being
much more tractable.

Figure 3 shows some results from a multistage robust
optimization problem that considers the scheduling of a
cryogenic air separation plant over a one-week time horizon
with an hourly time discretization (Zhang, Morari, et al.,
2016). The plant operates under time-sensitive electricity



prices and provides an interruptible load to the power grid;
however, it is uncertain when and how much load reduction
will be requested by the grid operator. One must decide at
the beginning of the scheduling horizon how much
interruptible load the plant will provide. Then, in each time
period, the plant operation can be adjusted depending on the
realized load reduction request. Therefore, recourse can be
taken in every time period, resulting in a problem with 169
stages. Affine decision rules were applied to solve this
problem, and Figure 3 shows the target liquid oxygen flows
and inventory profile, where “target” refers to the case in
which no load reduction is ever requested during the
scheduling horizon. In addition, the green columns in
Figure 3 represent the cumulative recourse actions in terms
of changes in production and purchase rates. Negative
production recourse indicates time periods in which
interruptible load is provided. One can see that most of the
lost production is made up by increasing production after
load reduction (positive production recourse).
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Figure 3. Target and recourse liquid oxygen flows, and
target inventory profile. Reproduced from (Zhang, Morari,
etal., 2016).

Flexibility analysis and robust optimization remain
very active areas of research. Recent efforts focus on, for
example, new variants of the flexibility index problem
(Ochoa & Grossmann, 2020; Zhao et al., 2021), mixed-
integer recourse (Feng et al., 2021; Nasab & Li, 2021), and
endogenous uncertainty (Zhang & Feng, 2020).

Conclusions

The concepts of process feasibility and flexibility are
highlighted, and ideas of evaluating and integrating those
within process design optimization and process operations
are described. Some applications are outlined on how to
efficiently utilize those methods and effectively address
uncertainty within process design optimization.
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