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Abstract 

In this paper, we attempt to provide a brief overview of methods and approaches that deal with the 
evaluation of feasibility/flexibility and how these concepts can be used to optimize process design or 
process operations. We focus on the description of process feasibility and the feasibility-based 
optimization problem as a way to efficiently incorporate multiple constraints and avoid exploring 
infeasible space. The ideas of process flexibility and robust optimization are also highlighted to illustrate 
how to treat uncertainty within process design and operations. Applications on pharmaceutical design and 
process scheduling problems are used to provide context in the utilization of the presented work.    
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Introduction

Feasibility is a fundamental concept in mathematical 
optimization, which generally uses equality and inequality 
constraints to define a set that contains all feasible solutions, 
also referred to as the feasible region. When optimizing the 
design and operation of chemical processes, an accurate 
description of the feasible region is of crucial importance 
due to strict safety considerations. This has led to the 
development of advanced feasibility analysis methods with 
important applications in, for example, chemical and 
pharmaceutical manufacturing. Surrogate-based feasibility 
analysis methods can also be incorporated into simulation-
based optimization, providing an efficient approach to 
optimizing over expensive black-box models. 

A concept closely related to feasibility is flexibility, 
which broadly refers to the ability of a process to handle 
varying process conditions, disturbances, and uncertainty. 
Flexibility is becoming increasingly important in the 
process industries as the production plants use more 
intermittent renewable resources, are subject to stricter 
safety and environmental requirements, and face higher 
levels of uncertainty due to various factors, including 
unexpected extreme weather events and supply chain 
disruptions. Flexibility analysis approaches have been 
proposed to quantify the level of operational flexibility of a 
given process design. The resulting metrics generally 
represent the size of the set of feasible parameters of 
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interest; as such, feasibility analysis plays a key role in 
flexibility analysis. The flexibility concept can be further 
extended to address optimization problems with given 
flexibility requirements. Flexibility analysis problems can 
also be formulated as robust optimization problems, 
establishing a connection to robust optimization, a research 
area that has gained tremendous popularity in recent years, 
and allowing us to leverage methods developed in that area. 
This relationship has only been formally recognized more 
recently, but it is probably not a surprise as one can view 
robustness as the “pessimistic” interpretation of flexibility. 

In this work, we present an overview of feasibility 
analysis, feasibility-based optimization, flexibility analysis, 
and its relationship to robust optimization, with a focus on 
applications in process design and operations. We outline 
the major concepts as well as current capabilities of existing 
methods, and provide a brief perspective on future 
opportunities in these research areas. 

Feasible Region Evaluation 

A feasible region describes the design space within 
which a process can satisfy all production, operating, safety, 
and quality constraints. The feasibility function is used to 
describe whether for a fixed value of an uncertain 
parameter, a process can be feasible by adjusting the control 



  

variables. The mathematical expression for the feasibility 
function (𝜓(𝑑, 𝜃)) is shown in Eq. (1), where d represents 
the set of design variables, 𝜃 represents the set of uncertain 
parameters, 	𝑧  represents the control variables, and 𝑔! 
represents a set of J constraints (Grossmann et al., 2014). 

𝜓(𝑑, 𝜃) = 𝑚𝑖𝑛
"
𝑚𝑎𝑥
!∈$

𝑔!(𝑑, 𝑧, 𝜃)                                        (1) 

The purpose of feasibility analysis is to identify the 
feasible region where 𝜓(𝑑, 𝜃) ≤ 0. The boundary between 
feasible and infeasible regions is indicated by 𝜓(𝑑, 𝜃) = 0. 
The feasible region of an example problem is shown in 
Figure 1, where the green region indicates feasible 
operation. 
 

 

Figure 1. Illustration for feasibility and 
flexibility of an example problem 

Different approaches have been developed to evaluate 
the design space, including geometry-based and surrogate-
based methods. For geometry-based methods, Goyal and 
Ierapetritou (2004) developed a simplicial approximation 
approach, which is not applicable for nonconvex feasible 
regions. Based on this idea, Ipsita  Banerjee and Ierapetritou 
(2005) proposed a surface reconstruction approach that can 
be extended to disjoint and nonconvex feasible regions. The 
limitation of geometry-based methods is that they require a 
large number of function evaluations, which is not 
applicable for problems involving computationally 
expensive models. Surrogate-based methods are developed 
to fit an inexpensive surrogate model to the feasibility 
function and use this surrogate to predict the feasible region. 
The sample points used to build the surrogate model need 
to be carefully chosen to reduce sampling cost, which 
motivates the use of adaptive sampling strategies to identify 
the samples that provide the most important information 
regarding the feasible region boundary. Different types of 
surrogate models and adaptive sampling strategies have 
been investigated, which are summarized in Table 1.  

Table 1. Surrogate models and adaptive sampling 
approaches for feasibility analysis 

Deterministic feasibility 

Surrogate models Adaptive sampling 
approaches Ref. 

High dimensional 
model representation 

(HDMR) 
- Ipsita Banerjee 

et al. (2010) 

Gaussian process 
(kriging) 

𝐸𝐼%&'( 

Boukouvala 
and 

Ierapetritou 
(2014) 

Radial basis function 
(RBF) 

𝐸𝐼%&'( 
Wang and 

Ierapetritou 
(2017) 

Support vector 
machine (SVM) 

Probability of 
feasibility 

Basudhar et al. 
(2012) 

Artificial neural 
network (ANN) 

𝐸𝐼%&'( 
Metta et al. 
(2020) 

Decision tree - 
Dias and 

Ierapetritou 
(2019) 

 
Stochastic feasibility 

Surrogate models Adaptive sampling 
approaches Ref. 

High dimensional 
model representation 

(HDMR) 

Filter using 
methodological 
constraints 

Kucherenko et 
al. (2020) 

Stochastic kriging 
𝐸𝐼%&'(, 𝐴𝐸𝐼%&'(, 

𝐸𝑄𝐼%&'( 

Wang and 
Ierapetritou 

(2018b) 
 
Dynamic feasibility 

Surrogate models Adaptive sampling 
approaches Ref. 

Gaussian process 
(kriging) 

𝐸𝐼%&'( 
Rogers and 
Ierapetritou 
(2015) 

 
There have been many applications of the feasible 

region evaluation approaches, for example, the feasible 
region of solid-based continuous pharmaceutical 
manufacturing processes (Wang, Escotet-Espinoza, & 
Ierapetritou, 2017), continuous chromatography (Ding & 
Ierapetritou, 2021), and integrated planning and scheduling 
problems (Badejo & Ierapetritou, 2022; Dias & Ierapetritou, 
2019). As an illustration, two plots showing the feasible 
operation conditions for a direct compaction (DC) 
pharmaceutical manufacturing process are shown in Figure 
2 due to limited space. Figure 2A indicates that the value of 
fill depth in the tablet press unit needs to be carefully 
maintained to assure product quality whereas plot 2B shows 
that the whole input space for active pharmaceutical 
ingredient (API) flowrate and blender blade speed is 
feasible. 



  

 

Figure 2. Feasible region of the DC line 
flowsheet model (Wang, Escotet-Espinoza, & 

Ierapetritou, 2017) 

Feasibility-Based Optimization 

Simulation-based optimization has been widely studied 
in the field of operations research for the optimization of 
complex systems. A general problem formulation can be 
represented by (P1), where 𝑓(𝑥) represents the objective 
function which depends on an expensive simulation model, 
𝑥 ∈ 𝑅) represents a set of decision variables, 𝑥*+, and 𝑥*-, 
form the lower and upper bounds for the decision variables, 
𝑔.(𝑥) are a set of I constraints that are also dependent on the 
simulation, and there may be J constraints that are 
analytically available.  

𝑚𝑖𝑛	 𝑓(𝑥)                                                                          (P1) 
𝑠. 𝑡.		𝑔.(𝑥) ≤ 0, 𝑖 ∈ {1,2, … , 𝐼} 
								𝑔!(𝑥) ≤ 0, 𝑗 ∈ {1,2, … , 𝐽} 
								𝑥*+, ≤ 𝑥* ≤ 𝑥*-, , 𝑘 ∈ {1,2, … , 𝐾} 

The solution of simulation-based optimization has 
many challenges. First, the simulation is only available as a 
black box for the evaluation of objective function and 
constraints. Second, many simulations are computationally 
expensive to run, limiting the number of function 
evaluations that can be performed in search of the optimal 
solution. Third, the derivative information is usually 
unavailable or hard to estimate due to the computational 
burden and output noise. Thus, it becomes challenging to 
utilize the conventional optimization approaches such as 
derivative-based and random search methods. Surrogate 
models have been proposed to approximate the expensive 
function evaluations and facilitate optimization (Bhosekar 
& Ierapetritou, 2018). The surrogate-based optimization 
framework has also been extended to feasibility analysis, as 
mentioned in the feasible region evaluation section. 

In this section, we discuss simulation-based 
optimization approaches, where the concept of feasibility is 
integrated as black-box constraints. This strategy is shown 
to be beneficial as it does not require any assumptions 
regarding the form of the underlying feasible region 
(Boukouvala & Ierapetritou, 2014). However, the method 
depends on the collected samples, which should be placed 
at regions, according to certain infill criteria, that provide 
maximum information regarding the feasible region 
boundary. This needs to be balanced with the sampling 
requirement for optimization, in which case samples are 

needed to improve the objective function towards the 
optimal solution. 

The first type of strategy is to consider both feasibility 
and optimization aspects together in one infill criterion. 
There have been both unconstrained and constrained 
formulations for the infill criteria to extend the efficient 
global optimization (EGO)  framework (Jones et al., 1998). 
Bagheri et al. (2017) surveyed the existing constraint 
handling methods for EGO and modified the unconstrained 
method by introducing a newly defined probability of 
feasibility.  

The second type of strategy is to design separate stages 
that focus on feasibility and optimization, respectively. 
Basudhar et al. (2012) used the first stage to drive the 
optimization based on expected improvement (EI) function 
and probability of feasibility indicated by probabilistic 
SVM models, and the second stage to refine the constraint 
boundary approximation by selecting samples in sparse 
regions with a high probability of misclassification. 
Boukouvala and Ierapetritou (2014) proposed a novel 
expected improvement function for locating feasibility 
boundaries in the feasibility stage, followed by an optional 
global search stage and trust region-based local search 
stage.  

The one-stage approach is expected to be more 
economical in terms of sampling cost as every sample is 
added with the consideration of both aspects. However, 
when the original function is complex, for example, when 
feasibility function is hard to approximate with a small 
number of samples, it will be beneficial to focus on 
feasibility refinement first and then perform optimization 
within the feasible space. Therefore there is a trade-off 
between sequential and simultaneous considerations of the 
two objectives depending on the nature of the problem.   

Note that both approaches can be used to address the 
integration of uncertainty in the design and process 
operations problems and have found different applications. 
Wang and Ierapetritou (2018a) proposed a feasibility-
enhanced EI function that considered objective and 
feasibility simultaneously for a stochastic direct compaction 
pharmaceutical manufacturing process. Wang, Escotet-
Espinoza, Singh, et al. (2017) used penalized feasibility EI 
function and penalized EI function for the feasibility and 
optimization stage, respectively, for a deterministic 
pharmaceutical manufacturing process. 

Flexibility Analysis and Robust Optimization 

In flexibility analysis, the concept of the feasibility 
function is further extended to derive a metric that 
quantifies the degree of flexibility of a given design 𝑑. The 
flexibility index, denoted by 𝐹 , is defined as follows 
(Swaney & Grossmann, 1985a): 

𝐹(𝑑) = max
/∈ℝ!

I	𝛿: max
1∈2(/)

𝜓(𝑑, 𝜃) ≤ 0	L ,                            (2) 



  

where 𝑇(𝛿), which is a function of a nonnegative scalar 𝛿, 
denotes the set of all allowed realizations of the uncertain 
parameters 𝜃 . Traditionally, 𝑇(𝛿)  is assumed to be a 
hyperbox defined as 

𝑇(𝛿) = {	𝜃: 𝜃5 − 𝛿Δ𝜃6 ≤ 𝜃 ≤ 𝜃5 + 𝛿Δ𝜃7},                  (3) 

where 𝜃5  is a nominal point, and Δ𝜃6  and Δ𝜃7  are 
incremental negative and positive deviations from 𝜃5 , 
respectively. The flexibility index problem is to find 𝐹(𝑑), 
i.e. the largest 𝛿 such that the design 𝑑 is feasible for all 𝜃 ∈
𝑇(𝛿). An example of the largest possible 𝑇(𝛿) is shown in 
Figure 1 as the rectangle inscribed in the projection of the 
feasible region onto the 𝜃 -space; it illustrates how the 
flexibility index is representative of the degree of 
operational flexibility of the given design. Earlier works 
have proposed vertex-exploration (Swaney & Grossmann, 
1985b) and active-set (Grossmann & Floudas, 1987) 
strategies to solve the flexibility index problem. 

There is a close relationship between flexibility 
analysis and robust optimization (Ben-Tal et al., 2009), 
which was independently developed in the operations 
research community. This relationship was first formally 
established for linear optimization problems in (Zhang, 
Grossmann, et al., 2016). It turns out that the flexibility 
index problem can be formulated as a two-stage robust 
optimization problem, where 𝑇(𝛿) represents the so-called 
uncertainty set. Applying modern robust optimization 
techniques, the flexibility index problem can often be 
solved more efficiently than using traditional approaches. 
Recently, alternative definitions of the flexibility index 
based on uncertainty sets with shapes other than a hyperbox 
have been proposed (Pulsipher et al., 2019), many of which 
are drawn from the robust optimization literature. Defining 
the feasibility space using alternative shapes and data-based 
ideas is also described in the Feasibility section. Also, note 
that the robust optimization formulation of the flexibility 
index problem involves endogenous uncertainty (Lappas & 
Gounaris, 2018; Zhang & Feng, 2020) since the uncertainty 
set 𝑇(𝛿) depends on the decision variable 𝛿. While Zhang 
et al. (2016) show that the problem can be reformulated with 
a fixed uncertainty set if 𝑇(𝛿) is a hyperbox, more involved 
solution methods are needed for more complex uncertainty 
sets. 

The feasibility analysis and flexibility index problems 
are solved to investigate a given design. Often, we also wish 
to optimize the design itself subject to some flexibility 
requirements. Such a design problem with flexibility 
constraints was first formulated by Halemane and 
Grossmann (1983) as follows: 

min
8,"̅

			 𝑓(𝑑) + ∑ 𝜑(	𝑓̅(𝑑, 𝑧(̅)(∈;                                       (P2) 

s. t.			𝑔!(𝑑, 𝑧(̅, 𝜃̅() ≤ 0			∀	𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆																								 
 max
1∈2

min
"
max
!∈$

𝑔!(𝑑, 𝑧, 𝜃) ≤ 0,																			 

where the objective is to minimize the expected cost 
approximated using a set of scenarios 𝑆. Each scenario 𝑠 ∈

𝑆 is defined by a specific realization of the uncertainty 𝜃̅( 
and the corresponding probability 𝜑( . Apart from the 
constraints for each scenario, the additional flexibility 
constraints further enforce feasibility for all 𝜃 over a given 
uncertainty set 𝑇 . This problem can also be naturally 
formulated as a two-stage robust optimization problem. 
Halemane and Grossmann (1983) developed a solution 
algorithm that iterates between a master problem in which 
the flexibility constraints are replaced by constraints over a 
finite set of critical points 𝐶, i.e. 

𝑔!(𝑑, 𝑧< , 𝜃<) ≤ 0			∀	𝑗 ∈ 𝐽, 𝑐 ∈ 𝐶,                                      (4) 

and subproblems that check whether the design proposed by 
the master problem satisfies the original flexibility 
constraints and, if it is not yet feasible, generates new 
critical points to be added to 𝐶 . Interestingly, this is 
essentially the same approach as the column-and-constraint 
generation algorithm proposed for two-stage robust 
optimization three decades later (Zeng & Zhao, 2013). Note 
that design problems of the form (P2) can also be solved 
using feasibility-based optimization. 

Flexibility analysis gives rise to two-stage robust 
optimization problems where the control variables 𝑧 are the 
second-stage decisions. In recent years, there has also been 
a growing interest, including in process systems 
engineering (Lappas & Gounaris, 2016; Shang & You, 
2019; Zhang, Morari, et al., 2016), in multistage robust 
optimization that can consider problems in which 
uncertainty is realized and recourse decisions can be taken 
at multiple time points, as it is often the case in planning, 
scheduling, and control. Here, the decision rule approach 
(Georghiou et al., 2018) has proven to be very effective, 
where the recourse variables are explicitly stated as 
functions of the uncertain parameters. For example, the 
following decision rule defines the recourse variables at 
time 𝑡, 𝑧=, as an affine function of all uncertain parameters 
realized up to time 𝑡, i.e. 𝜃* where 𝑘 ≤ 𝑡: 

𝑧= = 𝑝= + ∑ 𝑄=*𝜃* .=
*>? 	                                                     (5) 

Such a decision rule inherently satisfies nonanticipativity 
and can be applied to problems with arbitrarily many stages. 
Importantly, the recourse decisions are now specified by the 
variables 𝑝 and 𝑄, which can be chosen before the actual 
realization of the uncertainty. As such, all methods for static 
(i.e. single-stage) robust optimization can be applied to 
solve decision-rule-based multistage robust optimization 
problems. Note that in general, decision rules only 
approximate the fully adjustable recourse decisions; 
however, they are highly effective as they typically lead to 
solutions that are very close to the true optimum while being 
much more tractable. 

Figure 3 shows some results from a multistage robust 
optimization problem that considers the scheduling of a 
cryogenic air separation plant over a one-week time horizon 
with an hourly time discretization (Zhang, Morari, et al., 
2016). The plant operates under time-sensitive electricity 



  

prices and provides an interruptible load to the power grid; 
however, it is uncertain when and how much load reduction 
will be requested by the grid operator. One must decide at 
the beginning of the scheduling horizon how much 
interruptible load the plant will provide. Then, in each time 
period, the plant operation can be adjusted depending on the 
realized load reduction request. Therefore, recourse can be 
taken in every time period, resulting in a problem with 169 
stages. Affine decision rules were applied to solve this 
problem, and Figure 3 shows the target liquid oxygen flows 
and inventory profile, where “target” refers to the case in 
which no load reduction is ever requested during the 
scheduling horizon. In addition, the green columns in 
Figure 3 represent the cumulative recourse actions in terms 
of changes in production and purchase rates. Negative 
production recourse indicates time periods in which 
interruptible load is provided. One can see that most of the 
lost production is made up by increasing production after 
load reduction (positive production recourse). 

 

 
Figure 3. Target and recourse liquid oxygen flows, and 

target inventory profile. Reproduced from (Zhang, Morari, 
et al., 2016). 

 
Flexibility analysis and robust optimization remain 

very active areas of research. Recent efforts focus on, for 
example, new variants of the flexibility index problem 
(Ochoa & Grossmann, 2020; Zhao et al., 2021), mixed-
integer recourse (Feng et al., 2021; Nasab & Li, 2021), and 
endogenous uncertainty (Zhang & Feng, 2020).  

Conclusions  

The concepts of process feasibility and flexibility are 
highlighted, and ideas of evaluating and integrating those 
within process design optimization and process operations 
are described. Some applications are outlined on how to 
efficiently utilize those methods and effectively address 
uncertainty within process design optimization.   
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